
A Genome-Scale Modeling Approach

to Study Inborn Errors of Liver Metabolism:

Toward an In Silico Patient

ROBERTO PAGLIARINI and DIEGO DI BERNARDO

ABSTRACT

Inborn errors of metabolism (IEM) are genetic diseases caused by mutations in enzymes or
transporters affecting specific metabolic reactions that cause a block in the physiological met-
abolic fluxes. Therapeutic treatment can be achieved either by decreasing the metabolic flux
upstream of the block or by increasing the flux downstream of the block. The identification of
upstream and downstream fluxes however is not trivial, since metabolic reactions are inter-
twined in a complex network. To overcome this problem, we propose an innovative computa-
tional workflow to model the alteration of metabolism caused by IEM and predict the
metabolites and reactions that are affected by the mutation. Our workflow exploits a recent
genome-scale metabolic network model of hepatocyte metabolism to identify metabolites ac-
cumulating in hepatocytes due to single gene mutations in IEM via an innovative ‘‘differential
flux analysis.’’ We simulated 38 IEMs in the liver, and in about half of the cases, our workflow
correctly identified the metabolites known to accumulate in the blood and urine of IEM patients.

Key words: differential flux analysis, flux balance analysis, hepatocyte metabolism, inborn errors

of metabolism, mathematical modeling.

1. INTRODUCTION

Inborn errors of metabolism (IEM) are genetic diseases caused by alterations of specific metabolic

reactions, which in turn affect one or more metabolic fluxes. A metabolic flux can be defined as ‘‘the

production or elimination of a quantity of metabolite per mass of organ over a specific time’’ (Lanpher et al.,

2006). IEMs are individually rare but collectively common in the population.

These disorders are generally caused by single-gene mutations (monogenic) causing a loss- or gain-of-

function1 in the encoded protein (usually an enzyme or a transporter). The accepted explanation for the

pathogenesis of IEM diseases is that a mutated enzyme will cause an altered metabolic flux in the same pathway

of which it is a part. Therapeutic avenues include dietary restrictions or supplements, enzyme replacement

therapy where possible, or substrate reduction therapy (Lanpher et al., 2006). The hypothesis underlying such

therapeutic strategies is that treatment can be achieved if the block in the physiological metabolic fluxes caused

by an IEM can be restored. This can be achieved either by decreasing the metabolic flux upstream of the block

Telethon Institute of Genetics and Medicine, Naples, Italy.
1Gain-of-functions are extremely rare among IEMs.
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or by increasing the flux downstream of the block. The identification of upstream and downstream fluxes,

however, is not as trivial as it may seem since metabolic reactions are intertwined in a complex network, which

may give rise to unpredictable behaviors if perturbed even by a single gene mutation.1

Our work builds on the hypothesis that a genome-scale metabolic network model of hepatocyte me-

tabolism (Gille et al., 2010) may be used to identify novel therapeutic targets whose modulation can restore

the physiological metabolic fluxes in inborn errors of liver metabolism. Moreover, it may also explain the

pathomechanism of IEM, which may have been missed by currently biased approaches and may allow the

identification of novel disease biomarkers.

Toward this goal, we first extended the HepatoNet1 model (Gille et al., 2010), which comprises 2539

reactions for 777 metabolites to include enzymes whose function is specifically altered in liver IEM

disorders such as Primary HyperOxaluria Type I and II (PH1 and PH2). We then developed an innovative

computational workflow to predict the metabolites and reactions that are the most affected by a single gene

gain- or loss-of-function mutation typical of inborn errors of liver metabolism (Lanpher et al., 2006).

The proposed workflow, in Figure 1, consists of four steps comprising the entire process of modeling,

simulating, and in silico phenotyping of liver IEM, starting from the first genome-scale model of a

comprehensive metabolic network of human hepatocytes (Gille et al., 2010). The first step concerns the

genome-scale metabolic network reconstruction of liver metabolism. In the second one, flux balance

analysis (Orth et al., 2010) is applied to the metabolic network to simulate physiological and pathological

metabolic flux distributions. The third step involves a ‘‘differential flux analysis’’ (DFA), which we

developed, to identify those metabolites and reactions predicted to be most affected by a gene loss- or gain-

of-function. Finally, in order to evaluate the predicted in silico phenotypes, we simulated 38 IEMs affecting

hepatocytes resulting from single mutation, and assessed if the metabolites identified by the DFA as the

most affected include those metabolites known to be altered in the disease.

We achieved very promising results from the application of our workflow, thus demonstrating for the

first time that these genetic disorders can be modeled computationally and that the model can be used to

identify new therapeutic targets in an unbiased and inexpensive way.

2. MATERIAL AND METHODS

2.1. Extension of a hepatocyte-specific genome-scale metabolic network model

Current genome-scale metabolic models provide a computational platform to study in silico the meta-

bolic fluxes in a given condition and cell type. Recently, a genome-scale reconstruction of the metabolic

FIG. 1. Steps of the workflow for studying the

effect of gene perturbation on liver metabolism.
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network of the human hepatocyte HepatoNet1 (Gille et al., 2010) has been generated. In this network, 777

metabolites and 2539 reactions are arranged in six intracellular and two extracellular compartments, thus

providing a model able to simulate a large set of known metabolic liver functions.

We extended HepatoNet1 to include: i) all the reactions and metabolites known to be involved in

glyoxylate metabolism, causative of two IEM disorders (Primary Hyperoxaluria Type I and II), starting from

published models (Duarte et al., 2007; Ma et al., 2007), public databases (Cerami et al., 2011; Kanehisa and

Goto, 2000; Matthews et al., 2009), and literature analysis (Danpure, 2006; Danpure and Jennings, 1986); and

ii) transport reactions useful to balance the fluxes in the different compartments. At the end of this step, we

obtained a single tissue-specific metabolic model of human hepatocytes, which can be used to study hepa-

tocyte functions. (A list of the new reactions and metabolites added can be found in Table 1).

In order to validate this extended model, we performed producibility analysis to test that the model is

able to produce all the compounds in the glyoxylate metabolism, as well as flux-balance analyses to

establish a flux distribution for each of the different metabolic objectives listed in Gille et al (2010).

A metabolite xi is producible by a metabolic network if the network can sustain its synthesis under the

steady state and thermodynamic constraints. To test the producibility of xi, we added a reaction rj in

the cytoplasmic compartment that consumes xi, and then a flux-balance problem is solved to check if the

network can produce strictly positive flux through rj.

2.2. Flux balance analysis and thermodynamic constraint-base modeling

The extended Hepatonet1 network topology can be mathematically described by a stoichiometric matrix

S 2 Rn · 2m, where n is the number of metabolites and m of reactions,2 which indicates how metabolic

fluxes affect the concentrations of metabolites. More in detail, this matrix is formed from the stoichiometric

coefficients of the reactions, which are integers that comprise the network. This matrix is organized such

that each column corresponds to a reaction and each row to a metabolite.

Considering the stoichiometric matrix, the flux balance statement is given by S · V = 0 where

V = v
( + )
1 ‚ v

( + )
2 ‚. . . ‚ v( + )

m ‚ v
( - )
1 ‚ v

( - )
2 ‚. . . ‚ v( - )

m

� �
2 R2m is the vector of fluxes associated with the forward and

reverse reactions of the network. Moreover, additional constraints, including those that relate to the

maximal fluxes that can be supported by each reaction, can be introduced as inequalities. Furthermore, we

need to specify the metabolic input(s) and output(s) of the network—the boundary reactions—which define

the set Rbound . If we consider k boundary reactions, we then obtain an extended stoichiometric matrix
~S 2 Rn · (2m + k) and an extended vector of fluxes ~V 2 R2m + k. Moreover, to accomplish a particular func-

tional state, the fluxes through a certain number of essential reactions, also called target reactions (Rtar),

have to be maintained at nonzero values. This is obtained by equality constraints of the form vj = jj > 0.

In the constraint-base modeling, a metabolic network is assumed to optimize a biological objective function.

We consider the principle of flux-minimization (Holzhütter, 2004), which states that given the value of relevant

target fluxes, the most likely distribution of stationary fluxes within the metabolic network is such that the

weighted sum of all fluxes is a minimum. Employing the principle of flux minimization results in the solution of

the following constrained linear optimization problem for the calculation of stationary metabolic fluxes:

min
V2R2m

Xm

j = 1

wj · v
( + )
j + wj · K

equ
j · v

( - )
j

� � !
(1)

where wj is the weight associated with vj (in our simulations, fluxes in the objective function are

weighted equally by default unless modified in selected cases to reflect differential activity of enzymes with

alternative substrates or cofactors), while the equilibrium constants K
equ
j are introduced to constraint fluxes

according to Gibbs free energy calculations. Weighting the backward flux with the thermodynamic equi-

librium constants takes into account the thermodynamic effort connected with reversing the natural di-

rection of the reaction (Holzhütter, 2004). The minimization problem Equation (1) is subject to the

following constraints:

2In our model, we consider 2m reactions because a metabolic flux can be positive or negative. Therefore, to deal with
non-negative variables, each reaction is decomposed into an irreversible forward one and an irreversible backward one.
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Table 1. The Set of Reactions that Extends the Genome-Scale Model Developed in Gille et al, (2010)

Peroxisomal enzymatic reactions

Alanine(p) + Glyoxylate(p) / Glycine(p) + Pyruvate(p)

Serine(p) + Pyruvate(p) / Hydroxypyruvate(p) + Alanine(p)

Glyoxylate(p) + O2(p) / H2O2(p) + Oxalate(p)

Glycolate(p) + O2(p) / Glyoxylate(p) + H2O2(p)

Glycine(p) + H2O(p) + O2(p) / Glyoxylate(p) + H2O2(p) + NH3(p)

Chenodeoxycholoyl-CoA(p) + Glycine(p) / CoA(p) + Glycochenodeoxycholate(p)

Choloyl-CoA(p) + Glycine(p) / CoA(p) + Glycocholate(p)

H2O(p) + O2(p) + Sarcosine(p) / Formaldehyde(p) + Glycine(p) + H2O2(p)

H2O2(p) #O2(p) + H2O(p)

Cytoplasmic enzymatic reactions

Glyoxylate(c) + NAD + (c) / NADH(c) + Oxalate(c)

Glyoxylate(c) + NADPH(c) / Glycolate(c) + NADP + (c)

Glyoxylate(c) + NADH(c) / Glycolate(c) + NAD + (c)

3htmelys(c) + H + (PG)(c) / 4tmeabut(c) + Glycine(c)

Gcald(c) + H2O(c) + NAD + (c) / Glycolate(c) + 2 H + (PG)(c) + NADH(c)

Glyoxylate(c) + Alanine(c) / Glycine(c) + Pyruvate(c)

Glycine(c) / Glyoxylate(c)

Glycolate(c) / Oxalate(c)

Serine(c) # Glycine(c) + H2O(c)

Glycolaldehyde(c) + NAD + (c) / Glycolate(c) + NADH(c)

Hydroxypyruvate(c) / Glycolaldehyde(c) + CO2(c)

Hydroxypyruvate(c) + NADH(c) / Glycerate(c) + NAD + (c)

Tryptophan(c) / Oxalate(c)

Mitochondrial enzymatic reactions

Alanine(m) + Glyoxylate(m) / Glycine(m) + Pyruvate(m)

Glyoxylate(m) + H + (PG)(m) + NADPH(m) / Glycolate(m) + NADP + (m)

Glycine(m) + H + (PG)(m) + Lipoamide(m) # Alpam(m) + CO2(m)

Glycine(m) + H + (PG)(m) + Lpro(m) #Alpro(m) + CO2(m)

FAD(m) + Sarcosine(m) + THF(m) / FADH2(m) + Glycine(m) + 5,10-Methylene-THF(m)

Transport reactions

H2O2(c) # H2O2(p)

H2O2(c) # O2(c) + H2O(c)

NH3(p) # NH3(c)

H + (PG)(p) # H + (PG)(c)

Alanine(c) # Alanine(p)

Pyruvate(p) # Pyruvate(c)

Serine(p) # Serine(c)

Glycochenodeoxycholate(p) # Glycochenodeoxycholate(c)

Glycocholate(p) # Glycocholate(c)

Sarcosine(p) # Sarcosine(c)

Formaldehyde(p) # Formaldehyde(c)

NH4 + (p) # NH4 + (c)

Glycine(c) # Glycine(p)

Glycolate(c) # Glycolate(p)

Glyoxylate(c) # Glyoxylate(m)

Oxalate(p) # Oxalate(c)

Hydroxypyruvate(p) # Hydroxypyruvate(c)

Consuming reactions

Glycerate(c) /
Oxalate(c) /
Glycolate(c) /
Glycolaldehyde(c) /

(c), cytosol; (m), mitochondrial matrix; (p), peroxisome.

386 PAGLIARINI AND DI BERNARDO



~S · ~V = 0

0pv
(+)
j pu

(+)
j if rj =2 Rtar (2)

0pv
(-)
j pu

(-)
j if rj =2 Rtar

vj = kj if rj 2 Rtar

where u
( + )
j ‚ u

( - )
j 2 R + represents the upper bounds of v

( + )
j and v

( + )
j , respectively, while wj is the weight

associated with the flux vj.

2.3. Simulating wild-type and loss- or gain-of-function metabolic flux distributions

The consequence of an enzyme mutation on the metabolic network can be simulated by solving a flux

minimization problem (Subsection 2.2) where the flux through the affected reaction is constrained to zero

(in case of a loss-of-function) or to a value greater than zero (in case of a gain-of-function).

Let rj be the reaction catalyzed by an enzyme. In order to simulate the effect of a loss-of-function mutation

of this enzyme in l different metabolic conditions, we first need to solve l optimization problems of type (1) to

compute the wild-type flux distributions for the l different functions. Secondly, the same flux-balance

problems must be solved by constraining the fluxes through vj to zero (loss-of-function mutation), that is,

v
( + )
j = v

( - )
j = 0. The results of the simulations are stored in two matrices: i) Vwt 2 Rm · l, which contains the

fluxes of the m internal reactions computed in the wild-type simulations, and ii) Vko 2 Rm · l storing the fluxes

obtained by the loss of function simulations. Namely, vwt
i‚ j 2 Vwt(vko

i‚ j 2 Vko) represents the flux of reaction ri

in the j-th metabolic functions, with vi‚ j = v
( + )
i if v

( + )
i > 0 and vi‚ j = - v

( - )
i if v

( - )
i > 0. We follow this rule

to store the value of a metabolic flux vi and to take the direction of ri into account.

2.4. Differential flux analysis

We would like to identify those metabolites and reactions that are likely to be most affected by the

loss-of-function of an enzyme or transporter. To perform ‘‘differential flux analysis,’’ (DFA) we first

apply flux balance analysis in both wild-type and loss-of-function conditions for each of the l different

metabolic functions to obtain the matrix of fluxes Vwt and Vko as defined previously. We then compute

the difference D of each of the m fluxes between the two conditions (wt and ko) for the l different

metabolic functions:

D = Vwt - Vko (3)

with D 2 Rm · l. Next, we compute for each of the m reactions the mean of flux differences across the l

different metabolic functions:

dmean
i =

1

l

Xl

j = 1

di‚ j (4)

where di,j is the element of D having indexes i and j. We indicate with Dmean = (dmean
1 ‚ dmean

2 ‚. . . ‚ dmean
m ) the

vector containing the average of flux differences.

Dmean is then directly used to obtain a ranked list of fluxes (and hence reactions) arranged in ascending

order. In this way, at the top and at the bottom of the list, we will find the reactions having the metabolic

flux most affected by the loss-of-function (or gain-of-function) mutation. More in details, the top of the list

contains the reactions for which the flux is decreased in the simulated disorder, while in the bottom of the

list we find the reactions having an increased flux.

Metabolites are instead ranked by taking into account also the stoichiometry of the network. We thus

estimate the impact of an enzymatic defect on a metabolite concentration xi by means of the following

index:

wxi
=
Xm

j = 1

si‚ j

�� ��dmean
j (5)

where si,j is the element of matrix S of index (i, j).
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The vector C = (wx1
‚ wx2

‚. . . ‚ wxm
) is then used to obtain a ranked list of metabolites, named Xord,

arranged in ascending order. Also in this case, at the top and at the bottom of the list, we will find

metabolites whose concentration changes the most.

The resulting ranked list Xord may contain the same metabolite associated with different compartments in

different positions. In order to study the in silico phenotype, we would like to have only one instance for

each metabolite. To this aim, we decided to keep, for each compound, the one having the maximal absolute

value of wxi across all the different compartments.

2.5. Metabolite enrichment analysis

The ranked lists resulting from the previous step allow us to analyze how a loss-of-function changes

the metabolic flux distribution. In order to validate whether the in silico results for a given loss-of-

function mutation resemble clinically observed phenotypes of the IEM, we applied a variant of the

gene set enrichment analysis (GSEA) (Subramanian et al., 2005) to test if metabolites that are clini-

cally known to accumulate due to a loss-of-function mutation occur toward the bottom of the list Xord

and vice versa. In order to avoid confusion, we named this statistical analysis ‘‘metabolic enrichment

analysis’’ (MEA).

We considered 760 disease-associated metabolite sets comprising 500 different diseases, from a public

repository (Xia and Wishart, 2010). These sets are divided into two subcategories based on the biofluids in

which they have been measured: i) 414 sets in blood and ii) 346 in urine. Let Sblood
i , i = 1‚ 2‚. . . ‚ 414, be the

i-th disease-associated metabolite set in blood, and Surine
i , i = 1‚ 2‚. . . ‚ 346, be the i-th disease-associated

metabolite set in urine. We then consider their union, namely, Sblood = Sblood
1 [ Sblood

2 [ . . . [ Sblood
414 and

Surine = Surine
1 [ Surine

2 [ . . . [ Surine
346 .

After that, we start from the list Xord to obtain two new lists, namely, Xblood and Xurine. The first one is

obtained by removing from Xord the metabolites that are not elements of the set Sord X Sblood, while the

second one by removing the ones that are not in the set Sord X Surine, where Sord is a set containing all the

metabolites in Xord.

Metabolite enrichment analysis is performed by checking whether the disease-associated metab-

olites for a given IEM tend to be ranked at top (or bottom) of the ranked list Xblood and Xurine

obtained by simulating the IEM under investigation. More in details, let us consider the disease-

associated metabolite sets in blood (the same approach is applied to disease-associated metabolite

sets in urine). For each Sblood
i , enrichment analysis is performed to compute an enrichment score

ESblood
i , which reflects the degree to which Sblood

i is overrepresented at the top or bottom of Xblood.

This score, which corresponds to a Kolmogorov-Smirnov test, evaluates if the metabolites of Sblood
i

tend to be found at top or bottom of Xblood or if they are randomly distributed (Subramanian et al.,

2005).

We applied a permutation test to asses the statistical significance of ESblood
i (Edgington, 1986). The

significance of a permutation test is represented by its p-value. It is the probability of obtaining a result

at least as extreme as the test statistic given that the null hypothesis is true. In permutation tests, the

null hypothesis is defined as: ‘‘the elements of a list are interchangeable.’’ Significantly low p-values

indicate that the elements are not interchangeable and that the original list is relevant with respect to

the data.

The p-value is assessed by performing a set of permutations and computing the fraction of permutation

values that are at least as extreme as the test statistic from the unpermuted data. Then, the enrichment score

is computed after a random shuffling of Xblood. Let I($) be the indicator function. The permutation pro-

cedure is repeated t times and ESblood
i‚ j ‚ j = 1‚ 2‚. . . ‚ t, are computed. The p-value associated to ESblood

i is

calculated as:

p - valblood
i =

1
t

Pt
1 (I(ESblood

i‚ j > ESblood
i )) if ESblood

i > 0

1
t

Pt
1 (I(ESblood

i‚ j < ESblood
i )) if ESblood

i < 0:

8<
: (6)

The disease sets are ranked in ascending order according to absolute values of the enrichment scores, and

then the rank is pruned by removing the sets for which the p-value is above a fixed threshold, usually set as

0.05 or 0.01.
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Table 2. The Simulated Inborn Errors of Metabolism

Disease Enzyme OMIM Pathways

Argininemia EC 3.5.3.1 207800 Arginine and proline metabolism

Argininosuccinic aciduria EC 4.3.2.1 207900 Alanine, aspartate, and glutamate

metabolism

Arginine and proline metabolism

Gaucher disease EC 3.2.1.45 230800 Sphingolipid metabolism

Lysosome

Von Gierke disease EC 3.1.7.9 232200 Starch and sucrose metabolism

Insulin signaling pathway

Lysosome

Phenylketonuria EC 1.14.16.1 261600 Phenylalanine metabolism

Phenylalanine, tyrosine, and tryptophan

biosynthesis

Folate biosynthesis

Ornithine transcarbamylase

deficiency

EC 2.1.3.3 311250 Arginine and proline metabolism

Methylmalonic acidemia EC 5.4.99.2 251000 Valine, leucine, and isoleucine degradation

Glyoxylate and dicarboxylate metabolism

Propanoate metabolism

Galactosemia type I EC 2.7.7.12 230400 Galactose metabolism

Amino sugar and nucleotide sugar

metabolism

Galactosemia type II EC 2.7.1.6 Galactose metabolism

Amino sugar and nucleotide sugar

metabolism

Galactosemia type III EC 5.1.3.2 Galactose metabolism

Amino sugar and nucleotide sugar

metabolism

Pyruvate carboxylase deficiency EC 6.4.1.1 266150 Citrate cycle (TCA cycle)

Pyruvate metabolism

Medium-chain acyl-CoA EC 1.3.99.3 201450 Fatty acid metabolism

Valine, leucine and isoleucine degradation

beta-Alanine metabolism

Propanoate metabolism

Fructose intollerance EC 4.1.2.13 229600 Glycolysis / Gluconeogenesis

Pentose phosphate pathway

Fructose and mannose metabolism

Maple Syrup Type II EC 1.2.4.4 248600 Valine, leucine, and isoleucine degradation

Maple Syrup Type III EC 1.8.1.4 248600 Glycolysis / Gluconeogenesis

Citrate cycle (TCA cycle)

Glycine, serine, and threonine metabolism

Valine, leucine, and isoleucine degradation

Pyruvate metabolism

Tyrosinemia type I EC 3.7.1.2 276700 Tyrosine metabolism

Phenylalanine metabolism

Homocystinuria EC 4.2.1.22 236200 Glycine, serine, and threonine metabolism

Cysteine and methionine metabolism

Tay-Sachs EC 3.2.1.52 272800 Other glycan degradation

Various types of N-glycan biosynthesis

Amino sugar and nucleotide sugar

metabolism

Glycosaminoglycan degradation

Glycosphingolipid biosynthesis - globo

series

Glycosphingolipid biosynthesis - ganglio

(continued)
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3. RESULTS

3.1. In silico simulation of inborn errors of liver metabolism

We applied our computational workflow to simulate the metabolic phenotypes of 38 IEMs reported in

Table 2. For each of the 38 IEMs, flux-balance analysis, as outlined in Subsections 2.2 and 2.3, was applied

to the extended HepatoNet1 metabolic network model to compute both wild-type and loss-of-function

Table 2. (Continued)

Disease Enzyme OMIM Pathways

series

Lysosome

Adenosine deaminase deficiency EC 3.5.4.4 102700 Purine metabolism

Smith-Lemli-Opitz Syndrome EC 1.3.1.21 270400 Steroid biosynthesis

Niemann-Pick Type A EC 3.1.4.12 257200 Sphingolipid metabolism

Lysosome

Lesch-Nyhan-Syndrome EC 2.4.2.8 300322 Purine metabolism

Drug metabolism - other enzymes

Carbamyl phosphate synthetase EC 6.3.4.16 237300 Arginine and proline metabolism

Carbamyl phosphate synthetase B EC 6.3.5.5 237300 Arginine and proline metabolism

Glycogen storage disease 0 EC 2.4.1.11 611556 Starch and sucrose metabolism

Insulin signaling pathway

Lysosome

Glycogen storage disease II EC 3.1.3.9 232200 Starch and sucrose metabolism

Insulin signaling pathway

Lysosome

Hers disease EC 2.4.1.1 232700 Starch and sucrose metabolism

Insulin signaling pathway

Lysosome

Andersen disease EC 2.4.1.18 232500 Starch and sucrose metabolism

Insulin signaling pathway

Lysosome

Tarui disease EC 2.7.1.11 610681 Starch and sucrose metabolism

Insulin signaling pathway

Lysosome

Cori disease (GSD III) EC 3.2.1.33/2.4.1.25 232400 Starch and sucrose metabolism

Insulin signaling pathway

Lysosome

ACYL-CoA dehydrogenase,

medium chain

EC 1.3.99.3 607008 Fatty acid metabolism

Valine, leucine, and isoleucine degradation

ACYL-CoA dehydrogenase, short

chain

EC 1.3.99.2 606885 Fatty acid metabolism

Valine, leucine, and isoleucine,

degradation

Glutaric acidemia EC 1.3.99.7 231670 Fatty acid metabolism

Fatty acid metabolism

Lysine degradation

Isovaleric acidemia EC 1.3.99.10 231670 Valine, leucine, and isoleucine degradation

Propionic acidemia EC 6.4.1.3 606054 Valine, leucine, and isoleucine degradation

Propanoate metabolism

Alkaptonuria EC 1.13.11.5 203500 Tyrosine metabolism

Carnitine palmitoyltransferase

deficiency I

EC 2.3.1.21 600528 Fatty acid metabolism

Valine, leucine, and isoleucine degradation

Primary hyperoxaluria type I EC 2.6.1.44 259900 Glycine, serine, and threonine metabolism

Glyoxylate and dicarboxylate metabolism

The KEGG database has been used as reference for the patnwas associated with each disease.
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metabolic flux distributions across 8843 different metabolic objectives, simulating different physiological

functions of the hepatocyte.

Following FBA, we then applied differential flux analysis (Sec. 2.4 and 2.5) to identify the metabolites

predicted to change the most in each of the 38 IEMs due the loss-of-function mutation.

Next, we applied Metabolite Enrichment Analysis (MEA) (Sec. 2.5) to check whether metabolites whose

levels are known to be altered in blood or urine of patients are correctly identified as the most changed by

the in silico simulations. MEA assigns an enrichment score and a p-value to each one of 500 distinct

metabolic sets known to be altered in 500 distinct metabolic disorders (including the 38 IEMs). We deemed

a simulated metobolic phenotype correct (true positive), if the p-value of the metabolic set associated with

the simulated IEM was significant (i.e., below 0.01 or 0.05).

To assess the performance of our in silico workflow, we used the positive predictive value (PPV): for each of

the 38 simulated disorders, we counted the number of true positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN), and computed the PPV as TP/(TP + FP) and sensitivity as TP/(TP + FP).

Figures 2 and 3 plot the PPV versus rank and PPV versus sensitivity for the ranked list obtained by using,

respectively, p–value £ 0.05 and p–value £ 0.01 to select TPs. As shown in Figure 2, the PPV reaches a maximum

of approximately 15% for disease-associated metabolite sets in blood, and of approximately 23% for disease-

associated metabolite sets in urine. Moreover, the sensitivities are approximately 47% and 34%, respectively.

On the other hand, when the lists are filtered by using 0.01 as thresholds for the p-values, then the PPV

significantly increases. In fact, we obtained a maximum of 31% for disease-associated metabolite set in

blood and of approximately 38% for disease-associated metabolite sets in urine.

In Tables 3 and 4, we report the ranks of the simulated diseases that are present in the final ranked lists,

considering the two p-value thresholds. Due to the fact that some disorders can have different clinical

manifestations, we associated more than one rank to some of them.

4. CONCLUSIONS AND ONGOING WORK

In this article, we proposed a computational workflow, based on a genome-scale metabolic model of

hepatocytes, to simulate in silico the changes in metabolites observed in patients affected by IEM. In this

Table 3. Ranks of the Simulated Diseases in the Final Ranked Lists of Disease-Associated

Metabolite Sets in Blood After the Pruning

Disease Rank p-val = 0.05 Rank p-val = 0.01

Argininemia 2

Argininosuccinic aciduria 29 15

Gaucher disease 1 1

Von Gierke disease 1 1

Ornithine transcarbamylase dificiency 30 13

Methylmalonic aciduria 9, 12, 19, 20 4

Galactosemia type I 1 1

Galactosemia type II 2 2

Galactosemia type III 7

Fructose intollerance 19

Maple syrup type II 32

Tyrosinemia type I 6, 18 7

Homocystinuria 7

Glycogen storage disease 2 2

Acyl-CoA dehydrogenase medium chain 8, 16 6

Acyl-CoA dehydrogenase short chain 10, 21

Glutaric aciduria 2

Carnitine palmitoyltransferase deficiency I 10, 12 6

3We simulated the 442 physiological funtions of the hepatocyte (Gille et al., 2010) by considering two different sets
of flux constraints for the reaction exchanging glycine between cytosol and peroxisome.
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work, we considered Mendelian disorders, but we would like to point out that our method might have

broader applications for the study of other aspects of the metabolism and common human diseases, such as

obesity, diabetes, and cancer.

To validate our computational approach, we simulated the in silico phenotype of a representative set of

inborn errors of metabolism capturing the wide spectrum of pathophysiology, clinical presentation, and

clinical management of these Mendelian disorders. The results here presented prove that our workflow can

be a valuable tool to simulate IEM in liver and to identify new therapeutic targets in an unbiased and

inexpensive way.

As an ongoing work, we are testing the usefulness of such a system-level approach in automatically

identifying the most promising therapeutic targets by focusing on Primary Hyperoxaluria Type I, which is

caused by a loss-of-function mutation of the liver-specific AGT enzyme. In the peroxisomes of normal

human hepatocytes, this enzyme catalyzes the transamination of the intermediary metabolite glyoxylate to

glycine. This is a detoxification reaction because its dysfunction in an IEM known as Primary Hyperox-

aluria Type 1 (PH1) allows glyoxylate to escape from the peroxisomes into the cytosol where it is oxidized

to oxalate, catalyzed by lactate dehydrogenase, and reduced to glycolate, catalyzed by glyoxylate/hydro-

xypyruvate reductase (Danpure, 2006). In humans, at least, oxalate cannot be further metabolized, and its

increased synthesis and urinary excretion leads to the progressive deposition of insoluble calcium oxalate

(CaOx) in the kidney and urinary tract, resulting in various combinations of nephrocalcinosis (diffuse

deposition throughout the renal parenchyma) and/or urolithiasis (calculi). This eventually leads to renal

failure and a multi systemic disorder due to widespread tissue CaOx accumulation, following which the

combined effects of increased oxalate synthesis and failure to remove it from the body results in the

deposition of CaOx almost anywhere.

As shown in Table 4, the metabolites known to accumulate in the urine of PH1 patients match very well

with the list of metabolites predicted to change the most by a loss-of-function mutation of AGT by our

computational method (first rank in the disease sets associated to urine). To analyze in more details the

simulated PH1 phenotype, we observed that in the associated ranked lists of metabolites, namely Xurine and

Xord, the top two metabolites predicted to increase the most are glycolate and oxalate in the cytosolic

compartment; this prediction is in agreement with the known increased conversion rate of glyoxylate to

oxalate and glycolate in PH1 patients (Beck and Hoppe, 2006).

Moreover, we observed that metabolites and fluxes involded in the pathways that convert hy-

droxypyruvate and tryptophan to oxalate are predicted to significantly change. It is known that

hydroxypyruvate is a precursor of oxalate (Gambardella and Richardson, 1978; Raghavan and

Richardson, 1983), that is, it increases endogenus oxalate via glycolaldehyde / glycolate / glyox-

ylate / oxalate. Moreover, tryptophan has been shown to be converted to oxalate (Gambardella and

Richardson, 1977).

Table 4. Ranks of the Simulated Diseases in the Final Ranked Lists of Disease-Associated

Metabolite Sets in Urine, After the Pruning

Disease Rank p-val = 0.05 Rank p-val = 0.01

Methylmalonic aciduria 2, 3 2, 3

Argininosuccinic aciduria 29 15

Gaucher disease 1 1

Von Gierke disease 1 1

Ornithine transcarbamylase deficiency 30 13

Methylmalonic aciduria 9, 12, 19, 20 4

Galactosemia type I 1 1

Galactosemia type II 2 2

Galactosemia type III 6

Tyrosinemia type I 7

Homocystinuria 4,8 5

Adenosine deaminase deficiency 9

Lesch-Nyhan sindrome 2

Glutaric aciduria 2

Primary hyperoxaluria type I 1 1
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These results show that our proposed methodology is able to perform nontrivial predictions and that it

can be ultimately used to identify alternative therapeutic strategies proposing nontrivial substrate reduction

therapies or enzymes whose modulation could restore physiological metabolic fluxes in IEM.
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