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ABSTRACT

Local alignment-free sequence comparison arises in the context of identifying similar seg-
ments of sequences that may not be alignable in the traditional sense. We propose a ran-
domized approximation algorithm that is both accurate and efficient. We show that under
D2 and its important variant D�2 as the similarity measure, local alignment-free comparison
between a pair of sequences can be formulated as the problem of finding the maximum
bichromatic dot product between two sets of points in high dimensions. We introduce a
geometric framework that reduces this problem to that of finding the bichromatic closest
pair (BCP), allowing the properties of the underlying metric to be leveraged. Local align-
ment-free sequence comparison can be solved by making a quadratic number of alignment-
free substring comparisons. We show both theoretically and through empirical results on
simulated data that our approximation algorithm requires a subquadratic number of such
comparisons and trades only a small amount of accuracy to achieve this efficiency. There-
fore, our algorithm can extend the current usage of alignment-free–based methods and can
also be regarded as a substitute for local alignment algorithms in many biological studies.

Key words: algorithms, alignment, dynamic programming, metagenomics.

1. INTRODUCTION

Sequence alignment is perhaps the most well-known and intensively studied computational problem in

modern molecular biology. The need to quickly and reliably identify relations between sequences has

been a driving force in the field of computational biology, both on the statistical (Dayhoff et al., 1978; Karlin

and Altschul, 1990; Waterman and Vingron, 1994) and algorithmic fronts ( Johnson et al., 2008; Pearson and

Lipman, 1988; Smith and Waterman, 1981; Zhang et al., 1998). Sequence alignment arises in a wide variety

of data analysis contexts, ranging from theoretical studies of evolution to the practical use of sequencing

instrumentation.

Alignment-based sequence similarity makes a correspondence between letters (bases or residues) in

sequences but also requires this correspondence to preserve the order of letters. Alignment-free sequence

comparison ignores positional information in strings and compares sequences without regard for the order

(or orientation) of elements within the sequences. The use of such methods is motivated partially by

technical issues of more rapidly screening candidates in very large-scale database searching (Haubold
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et al., 2011; Mahmood et al., 2012) and also by biological issues that suggest more functional information

can be leveraged when order and orientation of sequence elements are not constrained (Sims and Kim,

2011).

To date every optimal sequence alignment algorithm requires a core step, based on dynamic program-

ming, that requires quadratic time in the length of the sequences. Although heuristics have been extensively

applied to improve the computational efficiency (Altschul et al., 1990, 1997), the inherent quadratic

behavior remains unchanged when the sequence similarity is weak and there is no prior knowledge

available about sequences. On the other hand, for global sequence comparison, alignment-free methods can

run in time that is a linear function of the sequence lengths. Even in cases when alignment-free similarity is

not as biologically meaningful as alignment-based similarity, the additional speed makes alignment-free

approaches attractive for large-scale database filtering to reduce the number of pairwise sequence align-

ments that must be computed (Altschul et al., 1997; Lippert et al., 2002).

There are also certain biological phenomena overlooked by alignment and hence motivate the use of

alignment-free methods as a substitute. Among these problems is the study of horizontal gene transfer

(HGT), the transfer of genetic material between two organisms to acquire new traits. HGT is believed to be

a vital step in bacterial adaptation and virulent niches (Alm et al., 2006). A recent study suggests HGT

frequency in oceanic bacteria is up to a hundred million times greater than previously estimated, implying

that the diversity gained by HGT might be dramatically underestimated (McDaniel et al., 2010). On the

other hand, horizontal gene transfer as a localized recombination phenomenon scatters DNA fragments and

makes the homologous sequences difficult to align (Domazet-Lošo and Haubold, 2011). Recent results

have shown alignment-free methods are able to accurately reconstruct evolutionary relationships between

metagenomic populations (Song et al., 2012).

Just as local alignment is used to identify locally similar parts of sequences, the concept of alignment-

free comparison may be applied in a local sense. The essence of such methods emerges when the conserved

functional elements are harbored in certain regions of the divergent sequences hindering the global methods

to discover them. One clear example with this complication is the identification of transcription factor–

binding sites in gene regulatory regions with low level of sequence conservation (Berman et al., 2002).

Gene expression is often controlled by regulatory modules typically seen as short stretches of DNA

sequence with highly variable distances from the target gene. Each of these modules, called a cis-regulatory

module (CRM), contains one or a combined set of binding sites that is recognized by transcription factors

(Kazemian et al., 2011). Identification of CRMs has been addressed as a challenging computational

problem, especially for organisms in which high binding-site turnover takes place (Meader et al., 2010;

Sinha and Siggia, 2005; Venkataram and Fay, 2010). This decreases the performance of alignment-based

methods significantly because the order of functional elements is not necessarily preserved between sim-

ilarly functioning sequences (Taher et al., 2011).

Much of the literature is on alignment-free sequence comparison addressing the statistical features of

word frequencies in sequences. Sequences are often represented by word-count vectors, and inferences are

made using similarity scores defined for those vectors. In this context, it is natural to count the number of

k-letter words (k-mers) that a pair of sequences have in common for small values of k. This results in a well-

studied and often applied statistic called D2 (Torney et al., 1990). Several investigations have analyzed the

properties of this statistic and its variants (Forêt et al., 2009; Kantorovitz et al., 2007; Liua et al., 2011).

One important concern is to estimate the asymptotic distribution of this statistic under the null hypothesis

that two sequences are generated by a particular model (e.g., Markovian dependence or i.i.d. sequences).

Once the distribution of D2 (or its variants) is approximated for such sequences, meaningful thresholds can

be established to measure the deviation from the null hypothesis signaling biological relatedness (Lippert

et al., 2002; Reinert et al., 2009; Wan et al., 2010). Due to the simplicity and time efficiency for the

calculation of this statistic, D2 and its transformations have been previously used for EST sequence

searches (Lippert et al., 2002). A formal treatment of D2 and two of its particular variants D�2 and DS
2 are

given in the next section.

We present an algorithm for local alignment-free sequence comparison (Liua et al., 2011) under a class

of similarity measures that we describe as dot product measures. The well-known D2 measure falls within

this class, as does the specific standardized variant called D�2. We construct a framework to transform this

string problem to a classical problem from computational geometry: to find the bichromatic closest pair

(BCP) of points in a high-dimensional metric space (Agarwal et al., 1991; Indyk, 2001; Khuller and Matias,

1995). Our framework provides a general means of transforming dot product similarity into metric distance
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in the context of many similarity optimization problems, and we expect this framework will find appli-

cations outside of alignment-free sequence comparison.

In the next section, we introduce technical concepts and provide formal definitions used throughout

subsequent sections. Section 3 elucidates the general framework for transforming the problem of finding

maximum local similarity to BCP. In Section 4, we explain a randomized algorithm to solve BCP in

subquadratic time with bounded error. We present empirical results related to the practical performance of

our algorithm in Section 5.

2. BACKGROUND

We assume all strings are over a fixed alphabet A. For any string S, let S[i..j] denote the substring of S

beginning at position i and having length j - i + 1. A k-mer is a string of length k, and we let Ak denote the

set of possible k-mers. Define the count of k-mer z in string Si as

viz = jfj : Si[j::j + k - 1] = zgj:

The k-mer count vector associated with Si is

Vi = fviz : z 2 Akg:

The similarity measure D2 between strings S1 and S2 is defined as

D2(S1‚ S2) = V1 � V2 =
Xd

z = 1

v1zv2z‚ (1)

that is the dot product between k-mer count vectors for S1 and S2. Here d = jAjk is the dimension of each

vector, and we treat count vectors as points in Rd. Dot products are computed as usual, the norm of point p

is jjpjj ¼
ffiffiffiffiffiffiffiffiffiffiffi
pT � p

p
, and the angle between points p and q is hpq = arccos pT q=(jjpjj � jjqjj).

The D2 similarity measure was first applied to molecular sequences by Torney et al. (1990). Neglecting

to account for statistical properties of k-words inherent in various kinds of molecular sequences has proven

problematic (Lippert et al., 2002), and augmented measures have been designed to improve upon D2. If we

view Si as a random sequence, letting pia denote the probability of drawing letter a 2 A when generating Si,

then for any z = z1z2 . . . zk 2 Ak,

piz =
Yk

j = 1

pizj
‚

so �npiz = (n - k + 1)piz, with n = jSij, approximates the expected number of occurrences of z in Si (ignoring

autocorrelations). The associated standard deviation is denoted rz. The D�2 measure introduced by Reinert

et al. (2009) is defined

D�2(S1‚ S2) =
X

z

vc
1zv

c
2zffiffiffiffiffiffiffiffiffiffiffiffi

r2
1zr

2
2z

q : (2)

where vc
iz = viz - �npiz. Since frequencies of k-mers in sequences can be approximated using a Poisson

approximation,

r2
i‚ z � �npiz‚

and we can simplify Equation (2). Let

~viz =
viz - �npizffiffiffiffiffiffiffiffi

�npiz

p ‚

and ~Vi = f~viz : z 2 Akg. Then we can also express D�2 as a dot product of vectors:

D�2(Si‚ Sj) = ~Vi � ~Vj: (3)
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We will also consider DS
2 a variant of D2 introduced by Reinert et al. (2009):

DS
2(S1‚ S2) =

X
z

vc
1zv

c
2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1z + r2

2z

q �
X

z

vc
1zv

c
2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�np1z + �np2z

p : (4)

Local similarity: We are interested in local similarity between two sequences, analogous to local align-

ment. While local alignments seek to optimize both the locations and the lengths of the aligned substrings,

we restrict ourselves to fixed-sized windows. So in pairwise sequence comparison, we seek to identify

windows of fixed width, one in each of two strings, such that the similarity between the pair of windows is

maximal over all possible pairs of substrings.

Local alignment-free pairwise sequence similarity

Input: Two strings S1 and S2, both of length n, a similarity measurement score s and positive integers w £ n

and k £ w.

Question: What is the maximum value of s(S1[i..i + w - 1], S2[j..j + w - 1]) over all 1 £ i, j £ n - w + 1?

Here w is the window size, which is fixed, and for all practical applications k = o(w) and w = o(n). The

similarity measure s is assumed to be based on the k-mer counts vectors. In particular, we study dot-

product-based similarity measures, for example D2 and D�2.

For each of the similarity measures in this study, the naive or brute-force algorithm for solving the local

pairwise similarity problem iterates over all possible pairs of windows in each of the two given sequences

and explicitly computes dot products for each. For sequences of length n, this requires Y(kn2) time, where k
is the time required to compute each dot product. This time depends on how we represent count vectors

(including the standardized vectors), but will generally be Y(d).

When we think of each S[i..i + w - 1] window as a point in k-mer counts space, the sequence of such

points has an interesting geometric interpretation. Each point in the sequence differs from the previous

point by at most one unit (i.e., a single count) in at most two dimensions. One new k-mer is included,

and the corresponding count increases. Another, possibly the same, k-mer is excluded, and the cor-

responding count is decreased. We refer to this dynamic of our points as the ‘‘sliding property’’ and use

it later to improve the running time of our algorithm. The naive algorithm can also take advantage of

this property. For each update it identifies two ‘‘in’’ and ‘‘out’’ k-mers separately in logarithmic time

and modifies the corresponding counts. Since there are Y(n2) updates required to find the largest local

dot-product between two sequences, the naive algorithm takes Y(k log (jAj)n2) using sliding property.

By encoding the sequences as suffix trees and making clever use of suffix links, the factor of k can be

eliminated.

3. A GEOMETRIC FRAMEWORK FOR MAXIMIZING SIMILARITY

In this section we place the local alignment-free sequence comparison problem in a geometric context

that can transform a large class of similarity measures to distances satisfying the triangle inequality. Our

framework is sufficiently general that it can be used for many global alignment-free similarity optimization

problems. In this section we assume that the similarity measure is the basic D2. We remark that our

framework can be applied to other variants of this statistic with only slight modification. First we recast the

local alignment-free similarity problem as the maximial dot product problem.

Maximal dot product (MDP)

Input: Two sets R and B of vectors in Rd.

Question: What is the maximum value of r $ b over any pair (r‚ b) 2 R ·B?

The transformation from local alignment-free pairwise similarity under D2 is clear: the vectors in R are the

count vectors for the length w windows in S1 and the vectors in B are the count vectors for the length w

windows in S2. When referring to these sets of points, unless otherwise stated we assume jRj = jBj = n,

which is equivalent to assuming jS1j = jS2j in the original problem instance.

We can say a few things immediately about MDP problem instances obtained from instances of

pairwise local alignment-free similarity. First, the dimensions correspond to the k-mers over the se-

quence alphabet, d = jAjk. This should immediately raise concerns among those familiar with high-

dimensional optimization problems, which frequently require time that is exponential in the dimension
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of the space. Second, when the similarity measure is D2, the ‘1 norm of each of these vectors is

precisely determined by the values of w and k:

jjujj1 = w - k + 1‚

for all u 2 R [ B, since each possible k-mer in a window contributes one count in the vectors. More

generally, for other similarity measures in the original problem, the ‘1 norms can usually be bounded. We

can also bound the ‘2 norms of these vectors. In the case of D2, the maximum possible norm is achieved

when all counts are for the same k-mer. This can only happen for jAj distinct substrings, corresponding to

runs of the same letter. We have the following bound under D2, which will be useful later:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w - k + 1
p

pjjujj2pw - k + 1: (5)

The naive solution for MDP is the quadratic time evaluation of all pairs of elements from two sets.

Nothing is trivially gained by transforming local alignment-free similarity into MDP, and our definition

of MDP does not reflect the potentially useful structural property relating count vectors for consecutive

windows. The dot product between vectors is related to the angle between those vectors, and opti-

mization involving angles between vectors has received attention in the context of comparing docu-

ments based on the cosine similarity metric (Tan et al., 2006). Identifying the pair of points with

maximum cosine similarity is equivalent to finding the pair with minimum angle but ignores the

magnitude of those points. Instead of directly solving the MDP problem, we transform it into the well-

studied bichromatic closest pair.

Bichromatic closest point (BCP)

Input: Two sets R and B of vectors in Rd.

Question: What is the minimum value of kr - bk over any pair (r‚ b) 2 R ·B?

The BCP problem was first addressed by Yao (1982) under the name nearest foreign neighbor in the

context of geometric spanning trees. We will show how to efficiently approximate MDP if an oracle for

BCP is available, and in later sections we will explain how to rapidly solve BCP for our problem.

We begin with the following straight-forward observation, which provides motivation for our approach.

Suppose krk = xr for all r 2 R and kbk = xb for all b 2 B. Then, by the cosine law,

jjr - bjj2 = x2
r + x2

b - 2xrxb cos (hrb)‚

where hrb is the angle between r and b relative to the origin. So if the ‘2 norms for all points in R and B are

fixed, any bichromatic pair of points with maximal dot product also has minimal Euclidean distance:

arg max
r2R‚ b2B

(r � b) = arg min
r2R‚ b2B

jjr - bjj:

As explained above, the ‘1 norm is fixed for all points when the original similarity measure is D2, but the ‘2

norm can vary (Equation (5)). We introduce the sequential layering framework (SLF) to transform the

original vectors in a way that constrains their ‘2 norms.

We now explain how the SLF is used to partition the set R. The procedure is identical for B but the two

sets must be partitioned separately. Define the set SR =S = fS1‚ . . . ‚Sm + 1g of hyperspheres centered at the

origin. Note that we have dropped the subscript from SR for convenience, and S with no subscript is

assumed to be defined relative to R. We will explain below how we compute the value of m. Radii of the

hyperspheres are defined recursively as follows:

radius(S1) = min
r2R
jjrjj‚

and for 2 £ i £ m + 1,

radius(Si) = b radius(Si - 1):

We will explain later how the constant b > 1 is determined. For each r 2 R, define the orthogonal projection

proj(r‚S) = max
1pipm

radius(Si)pjjrjj

r
radius(Si)

jjrjj

� �
‚
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which effectively ‘‘shrinks’’ r by the smallest amount so that it resides on a hypersphere in S. Then define,

for 1 £ i £ m,

Ri = fproj(r‚S) : jjproj(r‚S)jj= radius(Si)g‚

and let R = fR1‚ . . . ‚ Rmg. We define B = fB1‚ . . . ‚ Bmg similarly based on B and SB.

Our procedure is as follows. As mentioned previously, we assume an oracle for BCP. The m-partitions of

R and B by the SLF are used to create m2 subproblems. We solve each of these subproblems by identifying

pairs of points from each Ri · Bj that solve BCP(Ri, Bj). Dot products are only actually computed for the m2

point pairs returned as solutions for BCP from each of the m2 subproblems. We retain the maximum dot

product from among these m2 as the solution to MDP. Pseudocode for this procedure is presented in

Algorithm 1. In the pseudocode we use the notation proj - 1 to denote the inverse of projections used above

to define R and B from R and B. What remains is to determine an appropriate value for m and to explain

why the bichromatic point pair produced by this algorithm is guaranteed to have dot product within a

certain factor of the optimal.

Proposition 1. If we select b = ffiffiffi
q
p

for some q > 1 in Algorithm 1, then the optimal dot product value is

at most q times the value returned by the algorithm.

Proof. Denote the optimal pair (ropt, bopt) and suppose ropt 2 Ri and bopt 2 Bj. Let (r, b) be the output of

BCP for the same subproblem. For convenience we assume u0 = proj(u‚S) for every point u. For any point u

we have jju0jjpjjujj<bjjujj. Since the angle between any pair of points is preserved when both are

projected toward the origin,

r0opt � b0optpropt � bopt<q(r0opt � b0opt):

On the other hand, BCP guarantees r0opt � b0optpr0 � b0. Therefore,

ropt � bopt<q(r0 � b0)pq(r � b):

If (r, b) is replaced in a subsequent iteration, the resulting dot product is increased and the above inequality

holds for the replacing pair of points. -

We now explain how the size m of partitions ofR and B is determined based on our desired performance

ratio.

Proposition 2. There exists a set of Y(logq w) hyperspheres partitioning B such that for all b 2 B,

jjbjj=jjproj(b‚B)jjp ffiffiffi
q
p

:

Algorithm 1: Approximation for MDP via SLF with an oracle for BCP

Input: Sets B and R of points and constant b > 1.

Output: A pair (r‚ b) 2 R·B with approximately maximal dot product

1: Construct B = fB1‚ . . . ‚ Bmg and R = fR1‚ . . . ‚ Rmg from B and R
2: (r‚ b))(~0‚~0)
3: for i = 1 to m do

4: for j = 1 to m do

5: ( p, q) ) BCP(Bi, Rj)

6: (p0‚ q0))(proj - 1(p‚SR)‚ proj - 1(q‚SB))
7: if p0 $ q0 > r $ b then

8: (r, b) ) ( p0, q0)
9: return (r, b)
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Proof. We show m = Y(logq w) is sufficient for orthogonal projection of all points inB with the performance

ratio q > 1. Denote bmin (bmax) the point with the minimum (maximum) norm in B. As we previously

described (Eq. 5), jjbminjjq
ffiffiffiffi
�w
p

and jjbmaxjjp�w where �w = w - k + 1. Since bmin and bmax are projected to S1

and Sm respectively, kbmaxk=kbmink can not be greater than radius(Sm + 1)/radius(S1) and thereby

�wffiffiffiffi
�w
p <qm=2‚

and the desired bound for m follows. -

In fact, m = logq �w + 1 hyperspheres suffice for partitioning B with the performance ratio q. Note that

since k = o(w), we can remove the dependency of m on k and write m = Y(logqw). In the statement of the

next result we explicitly bound the constant c between 1 and 2. While this may seem artificial, it simplifies

the proof compared with a more general statement and also corresponds to actual bounds: we can never do

better than linear time, and the naive algorithm takes quadratic time.

Theorem 1. Given an oracle that solves BCP(Ri, Bj) in O((jRij + jBjj)c) time, for some constant

1 £ c £ 2, MDP can be approximated with performance ratio q in time O(logq (w)nc).

Proof. Let TBCP be the time complexity for BCP and similarly define TSLF(R, B) for the runtime for

solving MDP via SLF. Partitioning R(B) is linear. Therefore,

TSLF(R‚B) =
Xm

i = 1

Xm

j = 1

TBCP (Ri‚ Bj) +Y(n)pa
Xm

i = 1

Xm

j = 1

(jRij + jBjj)c +Y(n):

for some constant a. Let X = (x1‚ . . . ‚ xm) and Y = (y1‚ . . . ‚ ym) and define

f (X‚ Y) =
Xm

i = 1

Xm

j = 1

(xi + yj)
c‚

subject to xi ‡ 0, yi ‡ 0 and
P

xi =
P

yi = n. Using the method of Lagrange multipliers, we obtain

f (X‚ Y)p(2m + 2c - 2)nc:

Since the sizes of members of R and B are under the same constraints as X and Y, we can substitute the

bound on f(R, B) and conclude

TSLF(R‚B) � a(2m + 2)n1 + c +Y(n) = O(mn1 + c) = O( logq (w)n1 + c)‚

since logq(w) is the number of hyperspheres required to ensure the performance ratio. -

The sequential layering framework transforms MDP into the well-studied BCP problem with a

performance ratio of q and an additional factor of logqw time. BCP can be considered well-

solved when the number of dimensions is low. Elegant and efficient o(n2) time algorithms have

been designed specifically for R2 and R3 points (Preparata and Shamos, 1985). However, few options

exist for solving the general BCP efficiently in high dimensions. Recall that the dimensions of our problem

instances are already exponential in a natural parameter of our original problem: d = 4k. The time com-

plexity of existing algorithms are either exponential in the number of dimensions or rapidly approach

quadratic as d grows. The randomized algorithm of Khuller and Matias (1995) is an example of the former,

requiring O(3d) time for a filtering step. As an example of the latter, Agarwal et al. (1991) proposed a

randomized algorithm to solve BCP in expected O(n2 - f (d) + �) time, for any positive e, where f (d) = 2/( Qd/

2S + 1).

In the following section, we describe an algorithm based on hashing for BCP and show that it provides

the subquadratic oracle in our algorithm. This is, however, just one approach to solving BCP and SLF can

be regarded as a general framework to find the maximum local alignment-free score under dot-product-

based similarity measures.
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4. SOLVING BCP IN HIGH DIMENSIONS

In this section, we present an algorithm for solving BCP in high dimensions based on random hashing.

We show that under certain assumptions about the statistical properties of the inputs, the algorithm has a

subquadratic time complexity. Later we investigate the behavior of the algorithm when relaxing some

constraints on the input.

We conduct our analysis under the assumption of i.i.d. sequences—an assumption commonly used in

sequence analysis. We assume all of the sequences are generated under the null hypothesis that each

alphabet letter is identically and independently distributed and all sequences are independent. We name

points extracted from such sequences i.i.d.-induced points.

In our context, even if the sequences are i.i.d., we have two sources of dependency: within a count vector

the overlapping k-mers in the underlying string are not independent, and between count vectors from the

same original string there is an overlap of the window size w making consecutive points highly dependent.

We refer to the former as the dependency associated with parameter k and the latter as dependency

associated with parameter w. We first conduct our analysis ignoring these two sources of dependence, and

then explicitly address the dependency associated with w. For the dependency associated with k, we present

simulation results to indicate that in practice the behavior of our algorithm is not affected by the latter form

of dependency for a broad range of values for k.

A previous study showed that under D�2, the count of each k-mer has an asymptotic standard normal

distribution for i.i.d. sequences (Reinert et al., 2009). It is well-known that if the counts of each coordinate

of a vector have independent standard normal distributions, then the normalized vector is uniformly

distributed on the surface of the hypersphere (Muller, 1959). Therefore, ignoring dependencies associated

with k and w reduces our problem to solving BCP when the input is two independent sets of i.i.d.-induced

points, each having a uniform distribution on the surface of the unit hypersphere.

Our algorithm relies on the concept of locality sensitive hashing, which has been successfully applied to

solve a closely related problem of finding the nearest neighbor in high dimensions in various contexts

(Buhler, 2001; Dutta et al., 2006; Haveliwala et al., 2000). The basic idea is to hash points using a function

that ensures nearby points are more likely to hash into the same bucket. Here we use a family of such hash

functions that uses the angle between points as the measure of proximity.

Suppose u is a point sampled uniformly at random on the d-dimensional unit hypersphere centered at the

origin. Assuming a source of random bits, simple algorithms are known for generating such points (Muller,

1959). For any p 2 Rd define

hu(p) = 1 if p � u � 0‚

0 otherwise:

n
(6)

The function hu has the property that for any two points p and q,

Pr (hu(p) = hu(q)) = 1 - hpq=p‚ (7)

where 0 £ hpq £ p. Let U = fu1‚ . . . ‚ uvg be a set of random points in R with unit norm and define the hash

function

hU(p) =
Xv

i = 1

hui
(p)2i - 1: (8)

In words, the closer the two points are on the unit hypersphere, the more likely they are to have a common

image under the hash function hU. Hash functions with this behavior are called ‘‘locality sensitive’’ (Indyk

and Motwani, 1998). This particular function, which can be considered locality sensitive when distances

are measured as angles, originated in the elegant analysis due to Goemans and Williamson (Goemans and

Williamson, 1995) and was first applied in the context of locality sensitive hashing by Charikar (2002).

Subsequently, this function has been applied in different contexts including document similarity search

(Ture et al., 2011) and natural language processing (Ravichandran et al., 2005).

Recall from Algorithm 1 that we need to solve BCP(Ri, Bj), where Ri and Bj are obtained by transforming

subsets of R and B. The solution to BCP(Ri, Bj) is achieved by performing L hashing iterations as follows.

In one iteration, a set U of random vectors is generated, with jUj = v. Each p in Ri W Bj is hashed using the

function hU( p) of Equation (8). Then for every bucket that contains points of both colors, we solve the BCP
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problem restricted to the (unprojected) pre-images of points that were hashed into that bucket. The max-

imum dot product is retained over all buckets and over each of the L iterations.

This is a randomized algorithm, and the parameters L and v determine the relationship between the time

complexity of the algorithm and the probability of missing the closest bichromatic pair. In what follows, we

analyze this algorithm and show how L and v can be chosen to achieve a favorable balance between running

time and accuracy of the algorithm.

A random string S consists of jSj/w independent substrings of length w. Under our geometric interpre-

tation, as k-mer count vectors these are jSj/w points without any dependency associated with w. First we

consider these points and analyze our algorithm for BCP(Ri, Bj) assuming all members of Ri and Bj are

independent random points.

Without loss of generality, let jRij = jBjj = n and assume each point has unit norm—thanks to the SLF in

the previous section we need only be concerned with angles between points. According to Equation (8), the

hashing value of a point p is determined by the relative position of p to v random vectors in U. For any

u 2 U, the geometric loci of all points p such that p $ u > 0 is obtained by (1) partitioning the hypersphere

into two equal parts by the hyperplane orthogonal to u and (2) selecting the half that contains u. We may

consider this random partitioning as a Bernoulli trial, and therefore two points p and q are hashed to the

same bucket if they fall on the same side of a random hyperplane v times or equivalently when the outcome

of v independent Bernoulli trials for p and q are identical.

Observation 1. Let v = log n and hash point set X using v random vectors and the hash family h. Then

occupancy of any bucket follows a binomial distribution with parameters n and p = 1/n.

This observation, which follows directly from the uniformity assumption on the distribution of points,

casts our analysis as a classic occupancy problem. The following upper bound on the maximum occupancy

of the buckets can then be established (similar to Theorem 3.1 in Motwani and Raghavan, 1995).

Proposition 3. There exists an absolute constant c < 2.91 such that if n independent i.i.d.-induced

points are hashed to n buckets, the probability that any bucket occupancy exceeds c log n is at most 1/n2.

Consider all of L iterations of this hashing-based procedure. The probability that no bucket occupancy

ever exceeds c log n is at least

(1 - 1=n2)Lq1 - L=n2:

Assume sublinear number of iterations is sufficient to find the bichromatic minimum angle (i.e., L = o(n)),

then the above formula establishes an important fact about our algorithm: The number of naive dot-product

computations in any bucket does not exceed O(log2n) (with high probability), and thereby BCP algorithm

mostly performs O(nL log2n) dot-product computations to obtain and retain the closest bichromatic pair.

It remains to bound the probability that the algorithm fails to identify the closest pair when L = o(n).

Suppose points r0 2 Ri and b0 2 Bj achieve the minimum angle hmin in a given instance of BCP. According

to Equation (7), the probability that r0 and b0 hash to different buckets in all L iterations is

(1 - (1 - hmin=p)v)Lpr‚

for some constant error probability threshold r > 0. For v = log n this inequality establishes a trade-off

between hmin and L. In particular, it is straightforward to show that L = O(nc) where c < 1 is sufficient to

satisfy this inequality if hmin < p/2.

Proposition 4. Suppose set R of n independent points is uniformly distributed on the unit d-

hypersphere. For any point b on the unit d-hypersphere and any h satisfying

sin h> (c
ffiffiffiffiffiffiffiffiffiffi
d - 1
p

( log n)=n)1=(d - 1)‚

for some constant c, with probability at least 1 - 1/n there exists an r 2 R such that hrb < h.

A detailed proof is given in the Supplementary Material (available online at www.liebertonline.com/

cmb). This proposition asserts that even for small subproblems with a few points, there exists a bichromatic

pair r 2 Ri and b 2 Bj such that sin hrb < 1 and thus the minimum bichromatic angle should be bounded

ALIGNMENT-FREE SEQUENCE COMPARISON 479



away from p/2. We extend these findings considering dependency between our points associated with w and

conclude a subquadratic algorithm for solving BCP.

Theorem 2. For i.i.d.-induced points, BCP problem with two point sets each having n points can be

solved using O(n1 + c log n) hashing and O(n1 + c(w log n)2) dot-product computations for some c < 1.

Proof. For each point, the algorithm requires Lv hash function evaluations overall. To find the number

of dot-product computations, we notice that the maximum bucket occupancy is O(w log n). This is because

of the fact that during the hashing process the number of the independent i.i.d.-induced points in any bucket

is O(log n) with high probability. On the other hand, for each point there are at most w - 1 points with

some shared k-mers and hence proposing some dependency associated with w. Assuming v = log n, we

have n buckets in each iteration and therefore the number of dot-product computations does not exceed

O(Ln(w log n)2). Substituting L = O(nc) completes the proof. -

Up to this point, we ignored the existing dependency associated with the parameter k. In the Supple-

mentary Material, we present the empirical evaluation of the behavior of our algorithm considering the

dependency associated with k. More specifically, (1) we show the maximum bucket occupancy remains

O(log n) for i.i.d.-induced points if w/d is sufficiently large and (2) we argue that with high probability, the

minimum bichromatic angle in any BCP subproblem is strictly less than p/2 if both sequences are generated

from the same model.

5. RESULTS

We present empirical results to demonstrate both the accuracy and efficiency of our method. We show

that under a reasonable random data model (i.i.d. sequences) our algorithm is typically much more accurate

than the theoretical guarantees established above. Moreover, our simulations show that under a planted

motif model, our algorithm performs almost as accurately as the naive algorithm. Therefore, to the degree

that D�2 describes important sequence similarities, our algorithm is an effective means of identifying regions

of local similarity.

Simulation setup: Our simulation experiments require specifying a triple (n, w, k) of parameters. For simu-

lations under the null hypothesis, when the sequences share no interesting local similarity, a pair S1 and S2 of

length n sequences is randomly generated by sampling letters i.i.d. from the DNA alphabet. We use a planted

motif model for the alternate hypothesis, which first generates sequences S1 and S2 as for the null hypothesis, but

then modifies the sequences. For each of the two sequences, a random location is chosen and the corresponding

window of length w is replaced by a sequence that has additional planted occurrences of a specific k-mer (called

the motif). This k-mer is randomly sampled from all of the d = 4k possible k-mers for each experiment.

Nonoverlapping motif occurrences are inserted randomly, and we use the parameter a to indicate the density of

these occurrences; the selected length w window will contain aw/k occurrences of the motif.

When evaluating an algorithm under the alternate hypothesis, we ask whether the algorithm has iden-

tified the pair of windows in which the motif has been planted. The local alignment-free comparison

involves identifying a pair of maximally similar windows within the sequences being compared. We

compute the amount of overlap between the windows identified by the algorithm (WO1 and WO2, in

sequences S1 and S2, respectively) and the windows generated during the simulation (WM1 and WM2 in S1

and S2, respectively). Assume x is the starting position where motifs have been inserted in S1 and y is the

analogous position in S2. We define sD as follows:

sD = sD1
· sD2

with sDi
=
jWMi

\WOi
j

jWMi
[WOi

j :

Here, WM1 starts at x-th position in the first sequence and ends at position x + w - 1. It is important to note

that there is some chance in the simulation that sD will be less than 1 even for the naive algorithm, if the

optimal windows are not exactly those that have been targeted in the simulation process.

Study of the naive algorithm: We conducted a set of experiments repeating each of them 100 times while

we increment the length of the sequence from 2,000 to 20,000 base pairs. Using the naive algorithm, we
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compare the performance of D2 and two of its variants D�2 and DS
2 for different values of a. Figure 1A shows

the results for a = 0.05. We also tested the performance of these three statistics using the same process for

different values of w, k, and a (see Supplementary Materials). Based on the results, local D�2 achieves the

best performance (the largest sD) in discrimination of the regions containing planted motifs from the

background sequence. Furthermore, D�2 has the minimum variance among these three statistics, meaning

that it is the most robust and stable one in local identification of the sequence relatedness.

Accuracy of the algorithm on simulated data: We evaluated sD of the approximation algorithm while a is

adjusted from 0 to 0.1 at increments of 0.01. Each experiment was repeated 20 times and the results were
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FIG. 1. (A) A comparison of D2 and two of its important variants D�2 and DS
2 with w = 1000 and k = 5 for a range of

sequence lengths. (B) The power of the approximation algorithm compared with the naı̈ve algorithm under D�2. Data

was simulated as described in the text for a set of a values; (n, w, k) = (100k, 1k, 5) and for each fixed a the experiment

was repeated 20 times.
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compared to the naive algorithm. Interestingly, in almost all of the experiments the performance of the

approximation algorithm is identical with the naı̈ve, demonstrating the accuracy of our algorithm. The

results shown in Figure 1B are all based on parameter combinations of (n, w, k) = (100k, 1k, 5).

Evaluating the speed of the algorithm: We expect to observe quadratic behavior for the naive algorithm

and a subquadratic running time for the approximation algorithm. Figure 2A shows results for both

algorithms when no motif is planted and both sequences are i.i.d.. In the broad range of input sequence

lengths from 100 kbp to 500 kbp, these results match our expectations based on the analysis presented in

Section 4.

According to the theory, if the number of shared k-mers is increased then the minimum bichromatic

angle, and consequently the number of required iterations for BCP, will decrease. We compared the

running time of our algorithm in three cases of a e {0, 0.05, 0.1}. The results, presented in Figure 2B,

demonstrate that these heuristics lead to substantial improvement in running time as the local similarity

increases. Interestingly the relative error for all experiments carried out here remained less than three

percent while the performance ratio of SLF was set to q = 1.05. Overall, the running time and the

accuracy of the approximation algorithm to identify the regions with the maximum D�2 makes it appli-

cable for solving many real biological problems efficiently. For example, our algorithm enables compar-

isons of large orthologous intergenic regions to identify locally similar intervals of several hundred to a few

thousand bases, which are candidate enhancer regions bearing similar sets of transcription factor binding

sites.

6. DISCUSSION

Alignment-free sequence comparison is becoming increasingly important because it can accel-

erate similarity searching (e.g., either alone or as a filtering step prior to alignment). It can also

detect biological signals that evade alignment-based methods, for example analogously functioning

regulatory regions whose similarity is based on convergent evolution with individual sites whose

order, orientation and multiplicity allow flexibility. Statistical measures to describe similarity

without alignment have received attention, but there has been little attention to the development of

algorithms for rapid alignment-free comparison. Here, focusing on a local variant of the alignment-

free sequence comparison problem, we introduce an algorithmic framework that substantially ac-

celerates the sequence comparisons while providing a means of achieving a balance between

accuracy and speed. We designed this framework in the context of the D2 and D�2 statistics, but we

remark that our framework is equally applicable to other measures based on dot-product similarity (Göke et

al., 2012).

The essence of our framework is a transformation that maps the original string problem to a geometric

problem and then decomposes dot-product similarity measures by separating the influence of vector

angles and norms. This framework, which we call SLF, converts a nonmetric similarity measure to the

Euclidean distance, which is accompanied by the triangle inequality. This transformation increases time

complexity by a logarithmic factor. Following this transformation, the triangle inequality allows inherent

locality in the data to be leveraged. Besides allowing us to draw from a large body of existing algo-

rithmic results for searching in metric spaces, the SLF has another major advantage for local alignment-

free sequence comparison: it permits heuristics in the flavor of branch-and-bound to be implemented at

several stages. Such heuristics for pruning the search space are not apparent as extensions of the naive

algorithm, which performs all pairs of comparisons between windows in the two sequences. Our em-

pirical results show that these heuristics lead to substantial speed-ups even when the similarity in the

sequences is weak.

In order to solve local alignment-free sequence comparison, the SLF must be coupled with a procedure

to solve BCP problem instances that result from the transformation. We described a simple method based

on random hashing and showed favorable performance both in theory and in practice. However, any

approach for solving BCP could be used, and in some situations other BCP algorithms may be more

appropriate. Under the null hypothesis, nonoverlapping windows of sequences are transformed into a set

of points that may satisfy certain sparsity constraints (e.g., Preparata and Shamos, 1985), and we believe

such sparsity could form the basis for alternative efficient algorithms to find the minimum bichromatic

angle.
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Our approach has certain limitations, and in our analyses we made specific assumptions that are not

always met in practice. First, we assumed generally that our sequence background is i.i.d. with equi-

probable letters. While neither of these simplifying assumptions hold for biological sequences, both have

been used effectively in the past (Lippert et al., 2002; Reinert et al., 2009) and are reasonable approxi-

mations. Second, we ignored the overlap between k-mers in the analysis of our algorithm. Even for i.i.d.

sequences, especially for sparse k-mer count vectors, the dependency between overlapping k-mers means

the spatial distribution of hashed points will not be uniform in the domain and therefore bucket occupancy

may not be balanced. Our upper bound on the maximum bucket occupancy after hashing assumed inde-

pendence between different coordinates of the vectors. Previous studies (Reinert et al., 2009) have shown

that the covariance matrix describing the effects of these k-mer overlap dependencies does not disappear

even for the asymptotic distribution of D�2. Fortunately, our empirical results indicate that this specific issue

has little impact on the efficiency of our method for values of k we tested (Supplementary Fig. S1). Finally,

we note that without too much difficulty, our analysis for D�2 can be extended to sequences generated by a

homogeneous Markov chain as the asymptotic distribution of D�2 has been already generalized for this case

(Reinert et al., 2009).
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