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Abstract

It has been shown that minimum free energy structure for RNAs and RNA-RNA interaction
is often incorrect due to inaccuracies in the energy parameters and inherent limitations of the en-
ergy model. In contrast, ensemble based quantities such as melting temperature and equilibrium
concentrations can be more reliably predicted. Even structure prediction by sampling from the
ensemble and clustering those structures by Sfold [7] has proven to be more reliable than mini-
mum free energy structure prediction. The main obstacle for ensemble based approaches is the
computational complexity of the partition function and base pairing probabilities. For instance,
the space complexity of the partition function for RNA-RNA interaction is O(n4) and the time
complexity is O(n6) which are prohibitively large [4, 12]. Our goal in this paper is to give a
fast algorithm, based on sparse folding, to calculate an upper bound on the partition function.
Our work is based on the recent algorithm of Hazan and Jaakkola [10]. The space complexity
of our algorithm is the same as that of sparse folding algorithms, and the time complexity of
our algorithm is O(MFE(n)ℓ) for single RNA and O(MFE(m,n)ℓ) for RNA-RNA interaction
in practice, in which MFE is the running time of sparse folding and ℓ ≤ n (ℓ ≤ n + m) is a
sequence dependent parameter.

1 Introduction

Since the turn of the millennium and the advent of high throughput biology in the post-genome
era, startling discoveries have redefined the role of RNA as a key player in the cellular arena.
The ribosome and spliceosome are essentially two major RNA machines that together with other
structural RNAs such as microRNAs (miRNA), long intergenic non-coding RNAs (lincRNA), small
bacterial non-coding RNAs, and many other categories of structural RNAs run the cell at an extent
that is comparable to that of protein machinery. For instance, lincRNAs have been recently shown
to play sophisticated regulatory roles in mammalian cells, and miRNAs play a significant role in
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the development of cancer. These discoveries have put RNA together with proteins in the center of
focus for research and therapeutic purposes, including personalized medicine. Humanity has just
begun to unravel RNA’s complicated roles in living cells, and RNA is no longer considered a mere
information medium from DNA to proteins, but it is rather in the center of attention in molecular
and cellular biology research. RNA molecules often function through interaction with other RNAs.
In the absence of high throughput experimental assays to observe RNA structure and RNA-RNA
interactions, the problems of RNA structure prediction and RNA-RNA interaction prediction gain
the highest priority in bioinformatics.

RNA structure and RNA-RNA interaction prediction have recently received significant atten-
tion. The majority of algorithms that have been developed predict the minimum free energy
structure [1] or binding sites [21]. However, it is a well-known fact that minimum free energy
structure is often incorrect due to inaccuracies in the energy parameters and inherent limitations of
the energy model. On the other hand, it has been shown that thermodynamic quantities, such as
melting temperature and equilibrium concentrations, that are derived from the partition function
which captures the properties of the whole Boltzmann ensemble rather than those of the most
likely structure, can be more reliably predicted [4]. Even structure prediction by sampling from the
ensemble and clustering those structures by Sfold [7] has proven to be more reliable than minimum
free energy structure prediction [5, 6].

The main obstacle for ensemble based approaches is the computational complexity of the par-
tition function and base pairing probabilities. For instance, the space complexity of computing
the partition function for RNA-RNA interaction is O(n4) and the time complexity is O(n6) which
are prohibitively large [4, 12]. On the other hand, recent progress in sparse folding algorithms
has provided fast algorithms for the prediction of the most likely (minimum free energy) structure
[2, 20, 23]. Although the partition function cannot be calculated exactly using sparsification ideas,
it may be approximated. Our goal in this paper is to give a fast algorithm, based on sparse folding,
to calculate an upper bound on the partition function. Our work is based on the recent algorithm
of Hazan and Jaakkola [10].

2 Related Work

Methods to approximate the partition function for interacting RNAs have not been proposed in the
literature. Instead, methods for exact comutation of the partition function have been developed,
having high both time and space complexity. Most notably, [4] developed an O(n6)–time and
O(n4)–space dynamic programming algorithm that computes the partition function of RNA–RNA
interaction complexes, thereby providing detailed insights into their thermodynamic properties.
[13] has developed a sampling algorithm that produces a Boltzmann weighted ensemble of RNA-
RNA interaction structures for the calculation of interaction probabilities (and not the partition
function) for any given interval on the target RNAs.

In the context of single RNA secondary structure prediction, [16] devised a Metropolis Monte
Carlo algorithm, called “Wang and Landau” algorithm [27], to approximate the partition func-
tion as well as density of states. Although the computation of the partition function over all
secondary structures and over all pseudoknot-free hybridizations can be done by efficient dynamic
programming algorithms, the real advantage of [16] is in approximating the partition function where
pseudoknotted structures are allowed; a context known to be NP-complete [17].

In the machine learning community, there has been extensive research on obtaining non-

deterministic and deterministic approximations of the log-partition function. Firstly, sampling
and Monte Carlo methods (e.g. Gibbs Sampling and Monte Carlo Markov Chain) have been devel-
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oped as non-deterministic approaches for estimating the partition function (cf. [15] and references
therein). In high dimensions, obtaining independent samples from a given distribution is difficult
since the mixing time is typically exponential in the size of the problem. Therefore, these methods
are computationally very demanding, and in practice, they are rarely applied to large-scale prob-
lems. Secondly, variational techniques have been extensively developed as a deterministic approach
to efficiently estimate the partition function in large-scale problems. In this approach, a simpler
distribution is optimized as an approximation to the true distribution in a KL-divergence sense.
However, the difficulty of this approach comes from: (i) Non-convexity of the set of feasible distri-
butions (e.g. in “mean field” approximation [14]), and/or (ii) Hardness of computing the entropy
embedded in the KL objective. Variational upper bounds on the other hand are convex, usually
derived by replacing the entropy term in the KL objective with a simpler surrogate function and
relaxing constraints on sufficient statistics hence convexifying the set of feasible distributions [26].

The basis of our work is [10] which provides a framework for approximating and bounding the
partition function using MAP1 inference (i.e. prediction of the most likely structure) on randomly
perturbed models. Particularly, they propose to estimate the partition function as the max-statistics
of collections of random variables, which is a major topic in extereme value statistics (e.g. see [3]).
More broadly, there is an emerging body of work on perturbation methods, showing the benefits of
explicitly adding noise into the modeling, learning, and inference pipelines [22, 25].

3 Preliminaries

3.1 Notation

The input nucleic acid sequences are denoted by R and S throughout this paper. Function L
denotes the length of the input sequence, and R is indexed from 1 to L(R), and S is indexed from 1
to L(S) both in 5′ to 3′ direction. We refer to the ith nucleotide inR and S by iR and iS respectively.
The subsequence from the ith nucleotide to the jth nucleotide in a strand is denoted by [i, j]. An
intramolecular base pair between the nucleotides i and j in a strand is called an arc and denoted
by a bullet i • j. An intermolecular base pair between the nucleotides iR and iS is called a bond

and denoted by a circle iR ◦ iS . We denote an RNA (RNA-RNA interaction) secondary structure
by s, which is mathematically a set of constituent base pairs (arcs and bonds). The collection of
all such feasible structures is denoted by S.

Throughout this paper, we denote the partition function by

Q :=
∑

s∈S

e−
G(s)
RT , (1)

in which G(s) is the free energy of s, R is the gas constant, and T is temperature. For a more
detailed presentation of the partition function see [19, 4]. We use the Turner energy model for
single RNAs [18] and our energy model for RNA-RNA interaction [4].

In this paper, we consider only the canonical base pairing system, i.e. each nucleotide is Watson-
Crick paired with at most one nucleotide. We also assume there are no pseudoknots in individual
secondary structures of R and S, and there are no crossing bonds and zigzags between R and S [4].
However, an extension of our ideas to non-canonical base pairing systems [11] and pseudoknotted
(crossing and zigzagged) structures [24] is straight forward. The key requirement for such an
extension is the existence of a fast minimum free energy structure prediction algorithm that can
incorporate per base-pair energy contributions for the considered class of structures.

1Maximum a posteriori
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3.2 Energy Perturbations

Following the Hazan-Jaakkola’s approach [10], let {γiR•jR}, {γiR•jR
},{γiS•jS}, {γiS•jS}, {γiR◦iS},

and {γiR◦iS
} be six families of independent and identically distributed (i.i.d.) random variables,

which are energy perturbations corresponding to presence and absence of base pairs, following the
Gumbel distribution whose cumulative distribution function is

F (x) := P [γ ≤ x] = e−e−(x+C)
. (2)

Above, C is the Euler’s constant, so that the mean of our Gumbel distribution defined in (2) is
zero. For every structure s ∈ S, let the energy perturbation of a structure be

γ(s) =
∑

i•j∈s

γi•j +
∑

i•j 6∈s

γi•j (3)

if s is single RNA structure and

γ(s) =
∑

iR•jR∈s

γiR•jR +
∑

iR•jR 6∈s

γiR•jR
+

∑

iS•jS∈s

γiS•jS +
∑

iS•jS 6∈s

γiS•jS

+
∑

iR◦iS∈s

γiR◦iS +
∑

iR◦iS 6∈s

γiR◦iS

(4)

if s is RNA-RNA interaction structure.

4 Upper Bound on the Partition Function

Corollary 1 in [10] states that

logQ ≤ Eγ

[

max
s∈S

{−G(s)/RT + γ(s)}

]

= −Eγ

[

min
s∈S

{G(s)/RT − γ(s)}

]

,

(5)

in which E is the expectation with respect to γ’s. The perturbations γ include terms that depend
on base pairs (γ·) and terms that depend on lack of base pairs (γ ·). To simplify the incorporation
of γ terms into the energy model, let

λ(s) =
∑

i•j∈s

(γi•j − γi•j) (6)

for single RNA structure and

λ(s) =
∑

iR•jR∈s

(γiR•jR − γiR•jR
) +

∑

iS•jS∈s

(γiS•jS − γiS•jS)

+
∑

iR◦iS∈s

(γiR◦iS − γiR◦iS
)

(7)

for RNA-RNA interaction structure. Since the difference between two random variables following
the Gumbel distribution follows the logistic distribution, we can rewrite the single RNA λ(s) as

λ(s) =
∑

i•j∈s

λi•j (8)
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and the RNA-RNA interaction one as

λ(s) =
∑

iR•jR∈s

λiR•jR +
∑

iS•jS∈s

λiS•jS +
∑

iR◦iS∈s

λiR◦iS , (9)

where λ’s are independent identically distributed random variables following the logistic distribu-
tion. In that case, (3) and (6) imply

γ(s) =
∑

i•j

γi•j + λ(s) (10)

and (4) and (7) imply

γ(s) =
∑

iR◦iS

γiR◦iS
+

∑

iR•jR

γiR•jR
+

∑

iS•jS

γiS•jS
+ λ(s). (11)

Since
∑

i•j γi•j and
∑

i◦j γi◦j are constants inside the minimization in (5), whose expectations are
zero because of (2), we can rewrite (5) as follows where λ follows the logistic distribution:

logQ ≤ −Eλ

[

min
s∈S

{G(s)/RT − λ(s)}

]

. (12)

Our algorithm computes the right hand side of (12) and calculates the upper bound Qub =
exp(−Eλ [mins∈S{G(s)/RT − λ(s)}]). The minimization inside the expectation is essentially min-
imum free energy prediction, albeit with a perturbed energy. Recall that the energy perturbation
−λ(s) is the sum of individual base-pair perturbations for all base-pairs in s; therefore, incorpora-
tion of such a perturbation in fast minimum free energy prediction algorithms, such as [2] which
exploits sparsity, is straight forward. Particularly, we only need to add −λi•j to the calculation of
Lc(i, j) in [2] when i and j can form a base-pair. Additionally, the scaling of energy by RT in (12)
has to be carefully applied to the sparse algorithm. Similarly, we only need to add −λiR◦iS to the
calculation of hybrid components in [23], in addition to proper handling of −λiR•jR and −λiS•jS in
intramolecular base-pairings.

4.1 Complexity Analysis

Note that the perturbed energy is such that the triangle inequality in Property 1 of [2] still holds.
Therefore, the running time of all sparse folding algorithms based on the triangle inequality [2,
20, 23] is not affected by our energy perturbation. To calculate the expectation above, we sample
λ’s independently from the logistic distribution until the estimation of the expectation by simple
averaging converges. Our experimental results show that the number of samples needed is much
lower than the size of the input sequence.

For a single RNA with length n, the time complexity of our upper bound algorithm is O([n2 +
MFE(n)]ℓ) in which ℓ ≤ n is the number of samples needed for the expectation estimation to
converge, and MFE(n) is the running time of minimum free energy prediction. In this case,
the space complexity is O(n2 +MFES(n)), in which MFES(n) is the memory space needed for
minimum free energy prediction.

For RNA-RNA interaction with lengths m and n, the time complexity of our algorithm is
O
([

m2 + n2 +MFE(m,n)
]

ℓ
)

in which ℓ ≤ n + m is the number of samples needed for the ex-
pectation estimation to converge, and MFE(m,n) is the running time of minimum free energy
prediction. In this case, the space complexity is O(m2+n2+MFES(m,n)), in which MFES(m,n)
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is the memory space needed for minimum free energy prediction. Usually the running time and
space complexity of our upper bound are dominated by those of minimum free energy prediction;
therefore in practice, the time complexity of our upper bound is O(MFE(n)ℓ) for single RNA and
O(MFE(m,n)ℓ) for RNA-RNA interaction, and its space complexity is often the same as that of
minimum free energy prediction.

5 Results

We implemented the upper bound algorithm in our piRNA package [4]. To test the overestimation
of partition function and also the number of samples needed for the algorithm to converge, we
randomly selected totally 273,512 RNA sequences from Rfam 11.0 database [8, 9] and computed
the upper bounds for them. Since the partition functions are often large numbers, we report the
ensemble energies. The ensemble energy is proportional to the minus log of the partition function
and an overestimation of the partition function becomes an underestimation of the ensemble energy.
Fig. 1 depicts the results of our experiment. The top plot shows the histogram of ensemble energy
underestimation calculated by −RT logQ + RT logQub. The middle plot shows the histogram of
ensemble energy underestimation percentage calculated from the ratio logQub/ logQ − 1. This
plot shows that for a vast majority of cases this ratio is below 40%. The bottom plot depicts the
distribution of ensemble energy −RT logQ in the input dataset. Although this distribution exhibits
multiple peaks, the middle distribution, which is the underestimation percentage, has a unimodal
behaviour. Out of 273,512 RNAs, for 249,622 of them the underestimation is less than 50% of their
ensemble energy, and for about half of the sequences (148,762) this difference is smaller than 30%.
The number of sequences for which this difference is negative is 2,356 which is less than 1% of the
total number of RNAs.

Fig. 2 shows the performance of our algorithm. The top plot is the histogram of the number
of samples ℓ (iterations) needed for the algorithm to converge. The middle and bottom plots show
the histogram of the number of iterations per input size and per the log of input size. The vast
majority of sequences required less than 15% of their length iterations to converge. The number
of iterations starts with 7 and almost all the sequences need less than 40 samples. 243,119 or 89%
of RNAs need not more than 20 iterations, and for more than half of the sequences (153,515) the
experiment has been done with less than 15 iterations. Therefore at most 40 iterations are enough
for different Rfam RNAs with different lengths. The number of iterations per length ratio for most
of the sequences is less than 30%. For 90% of the RNAs in this dataset, this number is between
7% and 25%. Clearly the relation between length and the number of iterations is not linear, and
upper bounds for different RNAs with the same length require different number of iterations.

Recall that the space complexity of our algorithm is the same as that of sparse minimum free
energy prediction. Therefore, our algorithm is both fast and space efficient in practice.

6 Conclusion

We gave a fast algorithm, based on the recent algorithm of Hazan and Jaakkola [10], to iteratively
compute an upper bound on the partition function of nucleic acids by perturbing energy. Our upper
bound algorithm uses a fast minimum free energy prediction in each iteration. Our algorithm
preserves the properties on which sparsification methods rely; therefore, we minimally modified
sparse folding algorithms [2, 20, 23] to obtain the required fast minimum free energy prediction.

For the lower bound, one can trivially use the single term corresponding to the minimum
free energy. The lower bound algorithm of Hazan and Jaakkola [10] requires modification to be
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Figure 1: Histograms of (top) ensemble energy underestimation −RT logQ + RT logQub for
all 273,512 sequences in our dataset, (middle) percentage of ensemble energy underestimation
logQub/ logQ− 1, and (bottom) ensemble energy −RT logQ in the input dataset.
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Figure 2: Histograms of (top) number of iterations ℓ needed for all sequences in our dataset,
(middle) number of iterations as a percentage of the input sequence length, and (bottom) number
of iterations per the log of the input sequence length.
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applicable to our problem. We leave such more accurate lower bound algorithms for future work.
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Schneider, K., Toma, C., eds.: BIRD. Volume 13 of Communications in Computer and Infor-
mation Science., Springer (2008) 114–127

[22] Papandreou, G., Yuille, A.: Perturb-and-map random fields: Using discrete optimization to
learn and sample from energy models. In: Proc. IEEE Int. Conf. on Computer Vision (ICCV),
Barcelona, Spain (November 2011) 193–200
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