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ABSTRACT

Recent advances in next-generation sequencing technology have significantly promoted
high-throughput experimental probing of RNA secondary structures. The resulting enzy-
matic or chemical probing information is then incorporated into a minimum free energy
folding algorithm to predict more accurate RNA secondary structures. A drawback of this
approach is that it does not consider the presence of alternative RNA structures. In addition,
the alternative RNA structures may contaminate experimental probing information of each
other and direct the minimum free-energy folding to a wrong direction. In this article, we
present a combinatorial solution for this problem, where two alternative structures can be
folded simultaneously given the experimental probing information regarding the mixture of
these two alternative structures. We have tested our algorithm with artificially generated
mixture probing data on adenine riboswitch and thiamine pyrophosphate (TPP) riboswitch.
The experimental results show that our algorithm can successfully recover the ON and OFF
structures of these riboswitches.

Key words: high-throughput RNA structure probing; next-generation sequencing; RNA

alternative structures; RNA folding; RNA SHAPE chemistry.

1. INTRODUCTION

The structures of noncoding RNAs are critical in understanding the transcriptome, including

structure–function relationship, stability of the RNA transcripts, and various regulations that may be

applied (Eddy, 2001; Storz, 2002; Martin and Ephrussi, 2009). Recently, many enzymatic and chemical RNA

structure-probing techniques have been coupled with next-generation sequencing, aiming at producing ge-

nome-wide RNA structure maps. In a high-throughput RNA structure-probing experiment, the RNA samples

are treated with restriction enzymes or chemical reagents, which have preferential reactivity with helix or

loop regions of the RNA transcripts. The resulting fragments of the reaction are pulled out and sequenced to

recover RNA structural information (Wan et al., 2011). After sequencing, one can see discrepancies in the

reads mapping profile between the paired and unpaired regions. The major idea of this technique is very
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similar to the traditional RNA probing techniques (Weeks, 2010), except that the resulting fragments are

being sequenced using high-throughput next-generation sequencing rather than electrophoresis.

Kertesz et al. (2010) pioneered whole-genome RNA secondary structure probing and applied this novel

technique to the yeast genome. Underwood et al. (2010) modified this technique with an alternative

restriction enzyme and applied it to the mouse genome to discover novel ncRNAs. Besides restriction

enzymes, chemicals have also been used as probing reagents. A technique named SHAPE uses chemical

reagents such as NMIA or 1M7 to preferentially react with single-stranded RNA transcripts (Merino et al.,

2005; Wilkinson et al., 2006; Mortimer and Weeks, 2007). Later, SHAPE technique was coupled with next-

generation sequencing (SHAPE-seq) by Lucks et al. (2011) to improve its throughput and application.

Although not yet applied to genome-wide analysis, SHAPE-seq has demonstrated its strong potential by

accurately recovering the secondary structures of 16S and 23S ribosomal RNAs (Deigan et al., 2009).

The resulting output of these techniques is the potential for each site of the RNA transcript to react with

the probing enzyme or reagent. The potential, also termed reactivity, is usually derived from the read

mappings (normalized with a control experiment) of the chemical probing experiment (Aviran et al., 2011).

Take the SHAPE experiment, for example, a site with reactivity ‘1’ indicates that it is highly reactive to the

chemical reagent, suggesting a free (unpaired) configuration of the site. On the other hand, a site with

reactivity ‘0’ indicates a restricted (paired) configuration of the site. These site-wise reactivities are usually

transformed into pseudoenergies and incorporated into the existing minimum free energy (MFE) folding

tools, such as RNAstructure (Reuter and Mathews, 2010), to predict the structure of the RNA transcript

(Deigan et al., 2009; Low and Weeks, 2010). Recently, Washietl et al. (2012) developed an iterative

approach to compute the optimal weight for the pseudoenergy that should be taken into account.

However, none of these approaches considers the presence of alternative RNA structures from the same

RNA transcript (such as riboswitch elements). If alternative RNA structures are present, the reactivities for

the mixture of RNA structures are generated from the experiment (Fig. 1). Such mixture reactivities may

fail to capture the structural information from one, or even both, alternative RNA structures and can lead to

misprediction while using current available approaches. Even though combining the experimental

pseudoenergy and McCaskill’s (1990) algorithm, a complete folding landscape of the RNA of interest can

be generated, it is very difficult to obtain the two alternative structures of interest from an exponentially

large search space (Wuchty et al., 1999; Li and Zhang, 2011). In this case, developing a new computational

approach to partition the mixture of reads and explicitly predict the two alternative structures of interest is

extremely important for extending experimental RNA structure-probing applications.

We propose considering the observed reactivity as a mixture before performing the constrained folding

algorithm. Ideally, if the correct assignment of the reactivities is given, we can perform the traditional

constrained folding using the two sets of reactivities separately and reach satisfying results. However,

unlike the reads assignment problems, there is no sequence discrepancy between these two RNA

transcripts. Therefore, its very difficult to devise a statistical framework to infer the real partition. Thus, we

will simultaneously fold these two alternative structures, such that (1) the sum of their free energies is

minimized, and (2) the discrepancy between the expected and the observed reactivity profiles is minimized

(Fig. 1).

We refer to this problem as the RNA mutually constrained folding problem, because each of the two

alternative structures may exert constraint on, or be constrained by, the other structure. Therefore, to solve

the RNA mutually constrained folding problem, we devise a combinatorial algorithm that finds the optimal

solution by enumerating all possible constraining structures and constraining orders (which will be formally

defined in the Methods section). We first present an algorithm using the Nussinov’s energy model (Nus-

sinov et al., 1978) (base-pair maximization). The algorithm can be run within O(l8) time and O(l5) space,

where l is the length of the RNA sequence. To make the algorithm more applicable in real cases, we further

present an improved algorithm that is guided by stacks (continuously nested base pairs), with the im-

plementation of Turner’s energy model (free-energy minimization). The improved algorithm can run within

O(n5) time and O(n3l) space, where n is the number of stacks and n < l in most real scenarios (Bafna et al.,

2006). In this case, we can significantly reduce the running time and space consumption, and the algorithm

can be applied to predict alternative structures of real RNA sequences.

We implemented the improved algorithm into a program called MutualFold using GNU C+ + . Using

artificially generated reactivities on adenine and thiamine pyrophosphate (TPP) riboswitches, we showed

that our program, MutualFold, can successfully recover the major scaffold of the true alternative

structures given a set of mixture reactivities. On the contrary, the traditional energy minimization approach,
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both with and without reactivity as an auxiliary information, failed to predict one or both of the alternative

structures. In this case, we anticipate that the proposed MutualFold algorithm will significantly promote

future RNA alternative structure prediction and related research.

2. METHODS

In this section, we will introduce the RNA mutually constrained folding problem, which predicts two

alternative RNA structures of the minimum sum of free energies with the consideration of step-wise folding

constraint effect. We will first present the basic problem formulation in section 2.1, and then present a

straightforward solution to the problem using Nussinov’s energy model in section 2.2. We will further

introduce a more realistic algorithm with sophisticated Turner’s energy model and an improved time com-

plexity in section 2.3. Finally, we will discuss how we handle reactivities and pseudoenergies in section 2.4.

2.1. Problem formulation

We begin the formulation of the RNA mutually constrained folding problem by introducing the inputs of

the algorithm. The algorithm requires three inputs: (1) the RNA sequence S with length l, from which the

alternative structures are to be predicted; (2) a set of observed mixture reactivities R = fr0‚ r1‚ . . . ‚ rl - 1g,
where ri is the reactivity for the ith nucleotide; and (3) the expected partition of these two alternative

structures w, where 0 £ w £ 1.

The outputs of the algorithm are two simultaneously predicted RNA structures T A and T B. We expect

that the predicted structures are thermodynamically stable, or, the sum of the real free energies of the two

structures, say Ec(T A) + Ec(T B) (a solid dot is used to indicate real energy), is minimized. At the same time,

we also expect that the discrepancy between the expected and the observed reactivity profile, say

jR - mixture(R(T A), R(T B))j, is minimized. Here, R(T A) refers to the expected reactivity profile of structure

T A alone. The discrepancy of the reactivity profiles is usually quantified by the pseudoenergy (Deigan et al.,

2009; Low and Weeks, 2010), and we adopt this measurement as well. For example, let T A(i) be the structural

configuration of the ith nucleotide in T A, and assume T A(i) is paired. If the probing enzyme/chemical reagent is

not reactive to the paired nucleotides, we should expect rather low reactivity observed at this nucleotide, that

is, r̂i = 0. The following formula (reformulated from Deigan et al., 2009 and Low and Weeks, 2010) has been

proposed to compute the pseudoenergy E+ (a void dot is used to indicate pseudoenergy):

E�(jri - r̂ij) = m � log (jri - r̂ij + 1) + b‚ (1)

where m is positive and b is a negative constant. If jri - r̂ij = 0 (i.e., no discrepancy), E�(jri - r̂ij) = b, and a

favorable pseudoenergy is returned to indicate that the assumption of T A(i) being paired is correct. If

jri - r̂ij > 0‚ E�(jri - r̂ij) > b, and a less favorable pseudoenergy is returned to question the assumption.

We can simplify the notation of pseudoenergy as E+(ri) since r̂ is known. We also assume the pseudo-

energies to be additive as the real energies, that is, E�(Ti‚ j) =
Pj

k = i E�(rk). In this case, the pseudo energy

can be incorporated into the real free energy, that is, E(T A) = Ec(T A) + E+(T A), and our algorithm will

minimize E(T A) + E(T B) to simultaneously consider thermodynamic stability and reactivity discrepancy.

Now, we can formally define the RNA mutually constrained folding problem as follows:

Input: an RNA sequence S, a set of mixture reactivities R, and an expected partition w.

Output: two RNA structures T A and T B of S, such that the sum of free energies (including both real and

pseudo energies) E(T A) + E(T B) is minimized.

The key to the solution of this problem is based on the understanding of how T A and T B are mutually

constrained, that is, how the folding of one structure may exert constraint on, or be constrained by, the other

structure. Recall that ri is the observed reactivity at the ith nucleotide, and let it be a mixture (with a ratio w)

of the reactivity from structure A (defined as rA
i ) and structure B (defined as rB

i ). In other words,

ri = f (w‚ rA
i ‚ rB

i ). Also assume that we can represent the observed reactivity rB
i by its expectation r̂B

i , which is

determined by the structural configuration T B(i), i.e., rB
i = r̂B

i = g(TB(i)). Therefore, ri = fg(w‚ rA
i ‚ TB(i)) and

finally, rA
i = f 0g(w‚ ri‚ TB(i)). For the sake of simplicity, we will write rA

i = f (TB(i)), as w and ri are not

variables and are given as the inputs. In this case, the pseudoenergy used for folding T A is affected by the

structure of T B and vise versa. In this case, T A and T B are mutually constrained.
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With the understanding of mutual constraints, we can easily devise a brute force solution, which takes

exponential time. We can enumerate all possible T B as constraints and fold T A correspondingly. The pair of

T A and T B that results in the minimum sum of free energies can be taken as the optimal solution. However,

this approach is computationally expensive, as there are an exponential number of possible structures that

are to be enumerated as the structural constraint T B. To resolve this issue, we can break down the problem

into smaller subproblems using dynamic programming formulation. Let (i1 . . . j1)A be a substructure in T A

(which begins with Si1 and ends with Sj1), and (i2 . . . j2)B be a substructure in T B (which begins with Si2 and

ends with Sj2). These two substructures may or may not overlap each other. If the optimal structures (with

the minimum sum of energies) adopted by both subregions, say Ti1,j1;i2,j2, are known, we can use them as

structural constraints to fold nearby RNA sequences. We can reach the final solution using this approach by

extending i1, j1 to 0 and i2, j2 to l - 1.

To guarantee optimality, we need to consider all possible constraining orders when computing Ti1,j1;i2,j2.

For example, let ‘‘ - ’’ indicate a void region that exerts no structural constraint, T - , - ;i2,k2 / Ti1,j1;i2,k2 /
Ti1,j1;i2,j2 (where i2 £ k2 £ j2) represents the following constraining order: (1) (i2 . . . k2)B is folded without

constraint, (2) (i1 . . . j1)A is folded by applying (i2 . . . k2)B as a structural constraint, and (3) (k2 + 1 . . . j2)B is

folded by applying (i1 . . . j1)A as a structural constraint. Other constraining orders are possible as well.

For example, T - , - ;i2,k2 / Ti1,k1;i2,k2 / Ti1,k1;i2,j2 / Ti1,j1;i2,j2 (where i1 £ k1 £ j1) can act as an alter-

native constraining order to be traversed during the computation of Ti1,j1;i2,j2. In summary, all subregions

(Ti1,j1;i2,j2) and all constraining orders need to be taken into account in the algorithm. We present a

combinatorial solution using the Nussinov’s energy model (Nussinov et al., 1978) in the following

section.

2.2. An algorithm with Nussinov’s energy model

In this section, we will introduce a solution for the RNA mutually constrained folding problem using

Nussinov’s energy model (Nussinov et al., 1978) to facilitate the understanding of the major idea. The

object function of Nussinov’s RNA folding formulation is to maximize the number of base pairs, instead of

minimizing the free energy, of the predicted RNA structure. Therefore, denote F(i1,j1;i2,j2) as the maximum

number of base pairs within the subregions (i1 . . . j1)A and (i2 . . . j2)B, where F(i1‚ j1; i2‚ j2) = F(TA
i1‚ j1;i2‚ j2

) +
F(TB

i1‚ j1;i2‚ j2
), and TA

i1‚ j1;i2‚ j2
is the structure for the subregion (i1 . . . j1)A of Ti1,j2;i2,j2. Note that F also contains

both real and pseudo base pairs, that is, F = Fc + F+. Also denote FA(i1‚ j1‚ TB
i2‚ j2

) as the maximal number

of base pairs within the subregions (i1 . . . j1)A given the structure TB
i2‚ j2

as a structural constraint. For the

sake of clarity, we underline the terms that correspond to the terminal cases, whose values can be directly

computed or looked up. We can compute F(i1,j1;i2,j2) using the following recursive function:

F(i1‚ j1; i2‚ j2)

= max

0 [if i1 = j1 and i2 = j2]‚

F(i1 + 1‚ j1 - 1; i2‚ j2) + 1 + F�(f (TB
i1 + 1‚ j1 - 1;i2‚ j2

(i1))) + F�(f (TB
i1 + 1‚ j1 - 1;i2‚ j2

(j1))) [if i1 pairs with j1]‚

F(i1‚ j1; i2 + 1‚ j2-1) + 1 + F�(f (TA
i1‚ j1;i2 + 1‚ j2 - 1(i2))) + F�(f (TA

i1‚ j1;i2 + 1‚ j2 - 1(j2))) [if i2 pairs with j2]‚

maxi1 < k1pj1fF(k1 + 1‚ j1; i2‚ j2) + FA(i1‚ k1‚ TB
k1 + 1‚ j1;i2‚ j2

)g‚
maxi1pk1 < j1fF(i1‚ k1 - 1; i2‚ j2) + FA(k1‚ j1‚ TB

i1‚ k1 - 1;i2‚ j2
)g‚

maxi2 < k2pj2fF(i1‚ j1; k2 + 1‚ j2) + FB(i2‚ k2‚ TA
i1‚ j1;k2 + 1‚ j2

)g‚
maxi2pk2 < j2fF(i1‚ j1; i2‚ k2 - 1) + FB(k2‚ j2‚ TA

i1‚ j1;i2‚ k2 - 1)g: ð2Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

The first case described in Equation (2) corresponds to a boundary case where no base pair is formed.

The second and third cases correspond to paired cases, where the outmost nucleotides (i1 and j1, or i2 and j2,

respectively) form a base pair. In this case, ‘‘1’’ is added to indicate the base pair that has formed, and how

well the observed reactivity supports the pair is evaluated by pseudo base pairs (F+s). The last four cases try

all possible branching points with different constraining orders. Take the fourth case as an example; the last

added structural component (i.e., (i1 . . . k1)A) will be predicted using the existing optimal substructure (i.e.,

TB
k1 + 1‚ j1;i2‚ j2

) as a constraint by the traditional Nussinov’s folding algorithm (Nussinov et al., 1978) with soft

constraints.
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The optimal structural configuration for a region with a structural constraint, for example,

FA(i‚ j‚ TB
i1‚ j1;i2‚ j2

) [similar for FB(i‚ j‚ TA
i1‚ j1;i2‚ j2

)], can be computed as follows:

FA(i‚ j‚ TB
i1‚ j1;i2‚ j2

)

= max

0 [if i = j]‚

FA(i + 1‚ j - 1‚ TB
i1‚ j1;i2‚ j2

) + 1 + F�(f (TB
i1‚ j1;i2‚ j2

(i))) + F�(f (TB
i1‚ j1;i2‚ j2

(j))) [if i pairs with j]‚

maxi< kpjfFA(i‚ k - 1‚ TB
i1‚ j1;i2‚ j2

) + FA(k‚ j‚ TB
i1‚ j1;i2‚ j2

)g‚

8>><
>>: (3)

A direct implementation of this algorithm leads to an O(l8) time complexity and O(l5) space complexity.

Indeed, to complete the algorithm, we need to fill up a four-dimensional dynamic programming table F,

which requires O(l4) time. For each entry in F, O(l) time is used for traversing all branching k1 and k2, and

O(l3) is used to compute the constrained folding FA and FB. Therefore, the overall time complexity would

be O(l8). The space complexity is O(l5). Note that the algorithm needs to maintain the four-dimensional

table F, in addition, and O(l) space is also required for each entry of F to record the corresponding optimal

structure that would be used as a structural constraint in the future folding steps. Hence the overall space

complexity is O(l5).

2.3. An improved algorithm with Turner’s energy model

The time and space complexity of the previous algorithm are prohibitively high and are not feasible

for most real RNA sequences. Therefore, we need to devise a more efficient algorithm. At the same

time, we need to consider the more realistic Turner’s energy model (Turner et al., 1988). Inspired by

the idea of RNAscf (Bafna et al., 2006), we observe that the major scaffolds of RNA secondary

structures can be represented by stacks. A stack, built from a number of continuously nested base pairs,

form the regular A-form helix of the RNA structure that stabilizes the structure. Note that we only

consider the significant stacks, that is, those with more than four base pairs and eight hydrogen bonds,

as the number of these significant stacks is usually small and less than the length of the RNA sequence

(Bafna et al., 2006). Therefore, at each folding step we will add a stack or a structural component

enclosed by a stack. Thus we can achieve significant speedup compared to the previous algorithm with

base-pair resolution.

We begin the exposition of the algorithm by introducing basic definitions of stacks and their relation-

ships. An RNA structure can be represented by a set of significant stacks; denote the set as P. A stack p can

be uniquely determined by three indices: the leftmost endpoint l( p), the rightmost endpoint r( p), and the

width of the stack w( p). The nucleotides at l( p) and r( p) form the outmost (smallest 50 and largest 30

indices) base pair of p, while l( p) + w( p) - 1 and r( p) - w( p) + 1 form the innermost base pair of p. To

simplify the notations, we also say that lI( p) and rI( p) form the innermost base pair of p. The stacks can be

partially ordered by increasing rightmost endpoints and decreasing leftmost endpoints. With such partial

ordering, we can denote the ith stack in P as pi.

Let pi and pj be two stacks in P and assume that i < j. If pi is enclosed by pj, that is, lI( pj) < l( pi) and

rI( pj) > r( pi), denote their relationship as pi < I pj. If pi is juxtaposed to pj, that is, r( pi) < l( pj), denote their

relationship as pi < J pj. If there is no stack pk such that pi < J pk and pk < J pj, we say that pi is directly

before pj. Note that there may exist more than one stack that are directly before pj, therefore denote the

stacks that are directly before pj as a set F (pj). The size of the set F (pj) is expected to be a constant when

only the significant stacks are considered (Bafna et al., 2006).

Since Turner’s energy model also considers the free energies of loops (unpaired regions) formed between

stacks, we define the loop regions as follows. Denote the hairpin loop formed by stack pi as L( pi), which

refers to the region (lI(pi) + 1 . . . rI(pi) - 1). Denote the internal/bulge loops formed between stacks pi and pj

as Ll( pi, pj) and Lr( pi, pj) if pi < I pj, which refer to the two regions (lI(pj) + 1 . . . l(pi) - 1) and

(r(pi) + 1 . . . rI(pj) - 1), respectively. If not specified, L( pi, pj) is used to represent both loops. Denote the

multibranch loop formed between stacks pi and pj as L( pi, pj) if pi < J pj, which refers to the region

(r(pi) + 1 . . . l(pj) - 1). Finally, we can also represent a loop region by explicitly giving the sequence region,

for example, L(i . . . j) is a loop starting from the ith nucleotide and ending with the jth nucleotide.

Let the minimum free energy of the regions enclosed by stacks pi and pj (including these two stacks) be

E( pi; pj), and E = Ec + E+. If we artificially add a stack p*, where l( p*) = 0, r( p*) = l - 1 and w( p*) = 0,
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we can retrieve the global optimal solution from E( p*;p*). For clarity, we explicitly write E( pi;pj) as

E(pA
i ; pB

j ) to indicate that pi is presented in the structure A and pj is presented in the structure B. Also, denote

Eh(pA
i ; pB

j ) as the minimum free energy for the most recent hairpin loop folding event, El(p
A
i ; pB

j ) for the

most recent internal/bulge loop folding event, and Em(pA
i ; pB

j ) for the most recent multibranch loop folding

event. Therefore:

E(pA
i ; pB

j ) = minf0‚ Eh(pA
i ; pB

j )‚ El(p
A
i ; pB

j )‚ Em(pA
i ; pB

j )g‚ (4)

where the first case ‘‘0’’ is a boundary case where no structure is formed.

To compute the hairpin loop energy Eh(pA
i ; pB

j ), denote es( p) as the free energy of a stack p, and eh(L(pA
i ))

as the free energy for the hairpin loop L(pA
i ) (recall that the underlined terms indicate the terminal cases that

can be directly computed or looked up). Denote Euc(pA
i ) as the minimum free energy for the stack pA

i and

the region enclosed by it when folded without mutual constraint. The matrix Euc can be precomputed by

using the traditional minimum free energy folding algorithms (Zuker and Sankoff, 1984; Hofacker et al.,

1994; Reuter and Mathews, 2010), while the reactivities are used as soft constraints [extending the re-

cursive function for computing FA(i‚ j‚ TB
i1‚ j1;i2‚ j2

) with Turner’s energy model]. Note that we only need to

precompute the matrix once, and all required unconstrained folding results can be retrieved. Let the

structure that corresponds to Euc(pA
i ) be Tuc(pA

i ). For pseudoenergies, denote E�(pA
i ; TB) as the pseudo-

energy of adopting pA
i as a stack into the structure given the constraint T B, and E�(L(pA

i ); TB) as the

pseudoenergy of adopting the loop region given the constraint. (We do not consider loop pseudoenergy if

both structures are unpaired at this region.) The recursive function for computing Eh(pA
i ; pB

j ) considers two

cases, where (1) pB
j , or (2) pA

i is recently added as a hairpin loop:

Eh(pA
i ; pB

j ) = min
Euc(pA

i ) + E�(pB
j ; Tuc

pA
i

) + E�(L(pB
j ); Tuc

pA
i

) + es(p
B
j ) + eh(L(pB

j ))‚

Euc(pB
j ) + E�(pA

i ; Tuc
pB

j

) + E�(L(pA
i ); Tuc

pB
j

) + es(p
A
i ) + eh(L(pA

i )):

8<
: (5)

To consider the internal/bulge loop case, denote el(L(pA
x ‚ pA

i )) as the free energy for the internal/bulge

loop formed by pA
x and pA

i , if pA
x <I pA

i . The recursive function for computing El(p
A
i ; pB

j ) considers two

cases, where (1) pB
j or (2) pA

i is recently added as an internal/bulge loop:

El(p
A
i ; pB

j ) = min

minpB
y < I p

B
j
fE(pA

i ; pB
y ) + E�(pB

j ; TA
pA

i
;pB

y
) + E�(L(pB

y ; pB
j ); TA

pA
i

;pB
y
) + es(p

B
j ) + el(L(pB

y ‚ pB
j ))g‚

minpA
x < I p

A
i
fE(pA

x ; pB
j ) + E�(pA

i ; TB
pA

x ;pB
j

) + E�(L(pA
x ; pA

i ); TB
pA

x ;pB
j

) + es(p
A
i ) + el(L(pA

x ‚ pA
i ))g:

8<
: (6)

To compute the multibranch loop case, we have to introduce a new three-dimensional matrix Em1. Em1

stores the minimum free energy formed between an opened multibranch loop and a closed loop. The

opened multibranch loop can be viewed as a chain, which is formally defined as a set of juxtaposing stacks

and their enclosed structural components. Therefore, the entry Em1(pA
i ‚ pA

x ; pB
j ) is the optimal structural

configuration formed between the chain that is ended with pA
x and enclosed by pA

i (pA
i itself is NOT included

in the chain), and the structural component that is enclosed by pB
j (where pB

j itself is included). Let ema be

the multibranch loop closing penalty, emb be the unpaired region extension penalty (applied on the length of

the loop L, jLj), and emc be the bonus free energy for adding a new branch. The recursive function for

computing Em(pA
i ; pB

j ) considers two cases, where (1) pB
j , or (2) pA

i is recently added as a multibranch loop:

Em(pA
i ‚ pB

j ) = min

minpB
y < I p

B
j
fEm1(pA

i ; pB
j ‚ pB

y ) + E�(pB
j ‚ TA

pA
i
;pB

j
‚ pB

y
) + E�(Lr(p

B
y ‚ pB

j )‚ TA
pA

i
;pB

j
‚ pB

y
)

+ es(p
B
j ) + ema + emb � jLr(p

B
y ‚ pB

j )j + emcg‚

minpA
x < I p

A
i
fEm1(pA

i ‚ pA
x ; pB

j ) + E�(pA
i ‚ TB

pA
i

‚ pA
x ;pB

j

) + E�(Lr(p
A
x ‚ pA

i )‚ TB
pA

i
‚ pA

x ;pB
j

)

+ es(p
A
i ) + ema + emb � jLr(p

A
x ‚ pA

i )j + emcg:

8>>>>>><
>>>>>>:

(7)

To compute Em1(pA
i ‚ pA

x ; pB
j ), we introduce another matrix Em2 that corresponds to the minimum free

energy configuration formed between two chains. The two chains that correspond to the entry

Em2(pA
i ‚ pA

x ; pB
j ‚ pB

y ) are the ones that ended with pA
x (enclosed by pA

i ) and pB
y (enclosed by pB

j ), respectively.

Let the term ‘E(pA
i ‚ pB

j ):E�(A)’ refer to the real free energy of the structural component formed in A as

recorded in E(pA
i ‚ pB

j ). For boundary cases, denote Euc
m (pA

i ‚ pA
x ) as the unconstrained free energy of the chain
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that is enclosed at pA
i and ended at pA

x . Note that the Euc
m matrix is auxiliary to Euc matrix (Zuker and

Sankoff, 1984; Hofacker et al., 1994), which can also be precomputed for a constant time look-up. Let the

corresponding structure of Euc
m (pA

i ‚ pA
x ) be Tuc

pA
i

‚ pA
x
. The recursive function for computing Em1(pA

i ‚ pA
x ; pB

j )
considers five cases: where the closed loop pB

j is recently added as (1) a hairpin loop, (2) an internal/bulge

loop, or (3) a multi-branch loop, respectively; or the last component pA
x in the chain is recently added as (4)

an extension, or (5) the beginning of the chain.

Em1(pA
i ‚ pA

x ; pB
j ) = min

Euc
m (pA

i ‚ pA
x ) + E�(pB

j ‚ Tuc
pA

i
‚ pA

x
) + E�(L(pB

j )‚ Tuc
pA

i
‚ pA

x
) + es(p

B
j ) + eh(L(pB

j ))‚

minpB
y < I p

B
j
fEm1(pA

i ‚ pA
x ; pB

y ) + E�(pB
i ‚ TA

pA
i

‚ pA
x ;pB

y
) + E�(L(pB

y ‚ pB
j )‚ TA

pA
i

‚ pA
x ;pB

y
)

+ es(p
B
j ) + el(L(pB

y ‚ pB
j ))g‚

minpB
y < I p

B
j
fEm2(pA

i ‚ pA
x ; pB

j ‚ pB
y ) + E�(pB

j ‚ TA
pA

i
‚ pA

x ;pB
j

‚ pB
y
) + E�(Lr(p

B
y ‚ pB

j )‚ TA
pA

i
‚ pA

x ;pB
j

‚ pB
y
)

+ es(p
B
j ) + ema + emb � jLr(p

B
y ‚ pB

j )jg‚
minpA

u2F (pA
x )fEm1(pA

i ‚ pA
u ; pB

j ) + E�(L(pA
u ‚ pA

x )‚ TB
pA

i
‚ pA

u ;pB
j

) + emb � jL(pA
u ‚ pA

x )j + emc

+ minpB
v2TB

pA
i

‚ pA
u ;pB

j

fE(pA
x ; pB

v ):E�(A) + E�(TA
pA

x ;pB
v
‚ TB

pA
i

‚ pA
u ;pB

j

)gg‚

Euc(pB
j ) + E�(Ll(p

A
x ‚ pA

i )‚ Tuc
pB

j

) + minpB
v2Tuc

pB
j

fE(pA
x ‚ pB

v ):E�(A) + E�(TA
pA

x ;pB
v
‚ Tuc

pB
j

)g

+ emb � jLl(p
A
x ‚ pA

i )j + emc:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(8)

In the last two cases, note that we do not fold the structure enclosed by pA
x from scratch as we did in the

naive algorithm. Instead, we assume that its structure is majorally determined by only one structural

constraint. Let the structural constraint be enclosed by pB
v . By search all pB

v 2 TB
pA

i
‚ pA

u ;pB
j

‚ pB
y
, we will identify

this structural constraint from TB
pA

i
‚ pA

u ;pB
j

‚ pB
y
. Once we have identified pB

v , which encloses the structural

constraint, we can retrieve the corresponding structure that is enclosed by pA
x from E(pA

x ; pB
v ). Note that we

omitted the cases where pA
x adopts no structure, which can be computed easily by adjusting the length to be

applied on emb and discard emc.

Note that the recursive function for computing Em1(pA
i ; pB

j ‚ pB
y ) can be easily derived based on the

symmetricity. Therefore, we omit the exposition of this part. Finally, the recursive function for computing

Em2(pA
i ‚ pA

x ; pB
j ‚ pB

y ) considers four cases, where (1) pB
y from the chain is recently added as an extension of

the existing chain, (2) pA
x is added as an extension, (3) pB

y is added as the beginning of the chain, or (4) pA
x is

added as the beginning of the chain:

Em2(pA
i ‚ pA

x ; pB
j ‚ pB

y )

= min

minpB
v2F (pB

y )fEm2(pA
i ‚ pA

x ; pB
j ‚ pB

v ) + E�(L(pB
v ‚ pB

y )‚ TA
pA

i
‚ pA

x ;pB
j

‚ pB
v
) + emb � jL(pB

v ‚ pB
y )j + emc

+ minpA
u2TA

pA
i

‚ pA
x ;pB

j
‚ pB

v

fE(pA
u ‚ pB

y ):E�(B) + E�(TB
pA

u ;pB
y
‚ TA

pA
i

‚ pA
x ;pB

j
‚ pB

v
)gg‚

minpA
u2F (pA

x )fEm2(pA
i ‚ pA

u ; pB
j ‚ pB

y ) + E�(L(pA
u ‚ pA

x )‚ TB
pA

i
‚ pA

u ;pB
j

‚ pB
y
) + emb � jL(pA

u ‚ pA
x )j + emc

+ minpB
v2TB

pA
i

‚ pA
u ;pB

j
‚ pB

y

fE(pA
x ‚ pB

v ):E�(A) + E�(TA
pA

x ;pB
v
‚ TB

pA
i

‚ pA
u ;pB

j
‚ pB

y
)gg‚

Euc
m (pA

i ‚ pA
x ) + E�(Ll(p

B
y ‚ pB

j )‚ Tuc
pA

i
‚ pA

x
) + emb � jLl(p

B
y ‚ pB

j )j + emc

+ minpA
u2Tuc

pA
i

‚ pA
x

fE(pA
u ‚ pB

y ):E�(B) + E�(TB
pA

u ;pB
y
‚ Tuc

pA
i

‚ pA
x
)g‚

Euc
m (pB

j ‚ pB
y ) + E�(Ll(p

A
x ‚ pA

i )‚ Tuc
pB

j
‚ pB

y
) + emb � jLl(p

A
x ‚ pA

i )j + emc

+ minpB
v2Tuc

pB
j

‚ pB
y

fE(pA
x ‚ pB

v ):E�(A) + E�(TA
pA

x ;pB
v
‚ Tuc

pB
j

‚ pB
y
)g:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>: (9)

Note that we also omitted the cases where pA
x or pB

y adopts no structure, which can be computed by

adjusting the loop size for emb and discarding emc.
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The time complexity of the improved algorithm is O(n5), where n is the number of significant stacks

predicted from the input RNA sequence. It is shown that n < l (Bafna et al., 2006), and thus the improved

algorithm is feasible for most real RNAs. The algorithm will fill up the two-dimensional matrix E. To compute

an entry in E, say E(pA
i ‚ pB

j ), one needs to compute three matrices: Em1(pA
i ‚ pA

x ; pB
j ), Em1(pA

i ; pB
j ‚ pB

y ), and

Em2(pA
i ‚ pA

x ; pB
j ‚ pB

y ). Since pA
i and pB

j are determined, the variables become pA
x and pB

y . Therefore, we can use

O(n) time to compute the Em1 matrix, and O(n2) time to compute the Em2 matrix. Since we need to traverse a

number of constraining structural components for computing each entry of Em1 and Em2, the time complexities

add up to O(n2) and O(n3), respectively. Hence, the overall time complexity for this algorithm is O(n5).

The space complexity of the improved algorithm is O(n3l). Consider the fact that the matrix Em2 is

only referred to by the computation of Em1 with the same enclosing base pairs (pA
i and pB

j ), it can be

discarded immediately once the corresponding entries in Em1 are computed. Therefore, we only need to

store E and Em1. For each entry in E and Em1, O(l) space is used to record the optimal structures. As a

result, the overall space complexity for this algorithm is O(n3l) (note that Em1 is a three-dimensional

matrix).

2.4. Inferring reactivities and pseudoenergies

In this section, we mainly discuss how we infer the reactivities and compute the corresponding pseu-

doenergies. Note that the reactivity is computed as a scaled reads mapping difference between the treated

sample and the control sample (Deigan et al., 2009; Low and Weeks, 2010). In this case, when we assume

that the number of reads for the control sample is very small (which can be expected from high-quality

experiments), we can derive the following naive model to partition the mixture of reactivities. Given the

partition for the first transcript w, and the expected reactivities for T A and T B at the ith nucleotide alone,

that is, r̂A
i and r̂B

i , we approximately model the observed reactivity ri as the weighted (w) sum of r̂A
i and

r̂B
i : ri = w � rA

i + (1 - w) � r̂B
i . The expected reactivity may vary in experiments, where different enzymes/

chemical reagents are used. In this article, we assume r̂(unpaired) = 1 and r̂(paired) = 0. In cases when one

of the structures is not determined, say T B(i) = unknown, we make rA
i = r̂(TA(i)). That is, an optimistic

pseudoenergy is applied no matter what structural configuration T A(i) may adopt. In other words, T A(i) has

the ‘‘right of free folding’’ and will constrain the folding of T B in the future. After inferring the reactivity,

we can then compute pseudoenergy using the traditional way as described in Equation (1). Note that we

only compute the pseudoenergy E+(ri) when at least one of T A(i) and T B(i) is paired (Deigan et al., 2009;

Low and Weeks, 2010). The parameters m and b are used as suggested in the references, where m = 2.6

kcal/mol and b = - 0.8 kcal/mol.

Note that we only present a naive way of handling the reactivities and pseudoenergies. More

sophisticated algorithms are encouraged if the characteristics of the probing enzymes/chemical re-

agents are well understood (Vasa et al., 2008; Aviran et al., 2011). In addition, if the raw reads are

available, we can better model their mutual constraints and devise a more accurate estimation of the

reactivities. Nevertheless, our focus of this work is to devise a new algorithmic framework for folding

RNA structures with mutual constraints, and the reactivity and pseudoenergy handling components are

independent of the major algorithmic framework. Different handling techniques are expected to be

derived for specific applications.

3. RESULTS

We have implemented the improved algorithm into a program called MutualFold using GNU C+ + .

We searched for real experimental data on RNA alternative structures that cannot be correctly predicted

simultaneously. Unfortunately, we cannot find such experimental data, because this technology is only

developed recently. Therefore, we generate two artificial examples to demonstrate that MutualFold can

correctly predict the alternative structures through partitioning the mixture of reactivities. We artificially

assigned the mixture reactivities based on known alternative structures of adenine (Lemay et al., 2011) and

TPP (Mironov et al., 2002; Rentmeister et al., 2007) riboswitches to their corresponding sequences,

respectively. Following the convention of the SHAPE technology, we assumed that the expected re-

activities for the unpaired regions are 1 and for paired regions are 0. Also, we introduced 20% error rate

into the expected reactivities to simulate experimental errors. We expected that such high error rate is
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sufficient to cover most of the real experimental errors, and we also expected to show that the

MutualFold algorithm is robust with such errors.

We first generated a set of mixture reactivities from a known adenine riboswitch. We assume that 70% of

the transcripts adopt the ‘‘ON’’ structure, and 30% of them adopt the ‘‘OFF’’ structure. Given the mixture

reactivities (and the correct partition w, see the Discussion section for cases in which the correct w is not

available), we applied MutualFold to predict the two alternative structures and compared the results with

the true alternative structures. We also used RNAstructure to predict the minimum free energy structure

a

b

c

d

e

f

FIG. 3. Alternative structures of thiamine pyrophosphate (TPP) riboswitch and structures predicted by MutualFold
and RNAstructure. (a and b) ON and OFF structures of TPP riboswitch, respectively. (c and d) Two alternative

structures of TPP riboswitch predicted by MutualFold. (e) The MFE folding result of TPP riboswitch by RNAs-
tructure. (f) The MFE folding result of TPP riboswitch with artificially generated reactivities by RNAstructure.

a

b

c

d

e

f

FIG. 2. Alternative structures of adenine riboswitch and structures predicted byMutualFold andRNAstructure.

(a and b) ON and OFF structures of adenine riboswitch, respectively. (c and d) Two alternative structures of adenine

riboswitch predicted by MutualFold. (e) The minimum free energy (MFE) folding result of adenine riboswitch by

RNAstructure. (f) The MFE folding result of adenine riboswitch with artificially generated reactivities by

RNAstructure.
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of the RNA, both with and without the reactivities as auxiliary information. We summarize the experi-

mental results for adenine riboswitch in Figure 2.

The real alternative structures of adenine riboswitch are shown in Figure 2 a and b. The two structures

that are simultaneously predicted by MutualFold are shown in Figure 2 c and d. We can see that the two

alternative structures predicted by MutualFold are exactly the same as the true structures. Therefore, the

proposed algorithm is very powerful in recovering alternative structures when the mixture reactivities are

given. In addition, MutualFold is also very robust in handling experimental errors, as both correct

structures can be perfectly predicted even when 20% error rate is assumed. On the other hand, we found

that the minimum free energy structure, both with and without (Fig. 2e and f, respectively) reactivity,

cannot perfectly predict the real structures. Therefore, the alternative structures cannot be predicted sep-

arately, and the algorithm that can simultaneously predict both structures is necessary.

For a more challenging test, we artificially generated the mixture reactivities for a TPP riboswitch, while

assuming the transcript partition is 50%–50%. This test is challenging because (1) a large fraction of the

TPP riboswitch adopts the same structure, thus the mixture reactivities have less distinguishing power to

recover both alternative structures; and (2) there exist many insignificant stacks presented in the TPP

riboswitch alternative structures that will be considered by MutualFold. We presented the test results of

TPP riboswitch in Figure 3.

The real alternative structures of TPP riboswitch are shown in Figure 3a and b. The two structures that are

simultaneously predicted by MutualFold are shown in Figure 3c and d, and the minimum free energy

structures, with and without input reactivities, are shown in Figure 3e and f, respectively. Using the reactivities

as soft constraint, RNAstructure can only predict the ‘‘OFF’’ structure with high accuracy. On the other

hand, MutualFold is able to recover the major scaffold of both ‘‘ON’’ and ‘‘OFF’’ structures, although

several insignificant stacks are missed. We argue that MutualFold only considers significant stacks for

computational efficiency, and the insignificant stacks can be easily taken back when more powerful com-

putational resource is available. Nevertheless, even with the missed insignificant stacks, MutualFold is still

capable of recovering the major scaffold of both ‘‘ON’’ and ‘‘OFF’’ structures (Fig. 3c and d).

4. DISCUSSION

The algorithm presented in this work assumes that the real partition of the alternative structures, w, is

known. In cases when such information is unknown, we can devise an EM (Expectation Maximization)

algorithm to computationally estimate the partition w. We start with arbitrarily assigning a value between 0

and 1 to w as the a priori estimation, and compute the alternative structures using the MutualFold
algorithm as the E-step. In the M-step, we update the partition estimation using the reactivity profiles at

regions where the two predicted structures T A and T B adopt different structural configurations. This EM

algorithm will terminate when the predictions of T A and T B become invariant.

In cases when the partition is difficult to estimate, we claim that the proposed combinatorial algorithm is

not sensitive to the estimation of w. The phase transition property of dynamic programming indicates that

the results are invariant when the parameters vary only within a certain range. That is, small deviation of

the partition estimation will not change the predicted alternative structures significantly. We have tested

the adenine example with partition estimation from 50% to 80% (note that the real partition is 70%), and

MutualFold can still predict the correct alternative structures. In addition, because of the symmetricity,

the partition estimation from 20% to 50% will also generate the correct prediction. In this case, the

algorithm can accept a wide range (20% to 80% in this case) of partition estimations without making errors

in the prediction.

In summary, we presented a combinatorial algorithm to simultaneously fold two alternative structures

from a mixture of their experimental structure-probing results. The algorithm has a time complexity of

O(n5) and a space complexity of O(n3l), where n is the number of significant stacks, l is the length of the

RNA sequence, and n < l. We implemented the algorithm into a program called MutualFold and have

shown that MutualFold is capable of simultaneously predicting both alternative structures with the

artificially generated mixture reactivities. The algorithmic framework can be applied to different RNA

structure-probing techniques, and only the reactivity and pseudoenergy handling component need to be

revised. Therefore, we anticipate that the proposed algorithm will significantly promote future RNA

structure-probing studies and related research.
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