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The Approximability of Shortest Path-Based Graph

Orientations of Protein–Protein Interaction Networks

DIMA BLOKH,1* DANNY SEGEV,2* and RODED SHARAN1

ABSTRACT

The graph orientation problem calls for orienting the edges of an undirected graph so as to
maximize the number of prespecified source-target vertex pairs that admit a directed path
from the source to the target. Most algorithmic approaches to this problem share a common
preprocessing step, in which the input graph is reduced to a tree by repeatedly contracting
its cycles. Although this reduction is valid from an algorithmic perspective, the assignment
of directions to the edges of the contracted cycles becomes arbitrary and, consequently, the
connecting source-target paths may be arbitrarily long. In the context of biological net-
works, the connection of vertex pairs via shortest paths is highly motivated, leading to the
following variant: Given an undirected graph and a collection of source-target vertex pairs,
assign directions to the edges so as to maximize the number of pairs that are connected by a
shortest (in the original graph) directed path. Here we study this variant, provide strong
inapproximability results for it, and propose approximation algorithms for the problem, as
well as for relaxations where the connecting paths need only be approximately shortest.
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1. INTRODUCTION

1.1. Biological motivation

Protein–protein interactions form the skeleton of signal transduction in the cell. Although many of

these interactions carry directed signaling information, current interaction measurement technologies,

such as yeast two hybrid (Fields, 2005) and co-immunoprecipitation (Gavin et al., 2002), reveal the presence

of an interaction, but not its directionality. Identifying this directionality is fundamental to our understanding

of how these protein networks function. To this end, previous work has relied on information from pertur-

bation experiments (Yeang et al., 2004), in which a gene is perturbed (cause) and, as a result, other genes

change their expression levels (effects). The fundamental assumption is that, for an effect to take place, there

must be a directed path in the network from the causal gene to the affected gene. This setting calls for an
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orientation, that is, an assignment of directions to the edges of the network, such that a maximum number of

cause-effect pairs admit a directed path from the causal gene to the affected gene.

1.2. Previous work

Recently, large-scale networks for many organisms have become available, leading to increasing

interest in orientation problems of this nature. Medvedovsky et al. (2008), Gamzu et al. (2010),

and later on Elberfeld et al. (2013) were the first to study the maximum graph orientation problem

(MGO), where the objective is to direct the edges of a given (undirected) network so as to maximize

the number of vertex pairs that are connected by directed source-target paths. The latter are not constrained

and can be of arbitrary length. In this series of works, it was shown that MGO is NP-hard to approximate to

within a factor of 13/12 but admits an O(log n/log log n) approximation algorithm, where n is the number of

vertices in the input graph (Gamzu et al., 2010; Elberfeld et al., 2011). It was further shown that MGO, as

well as several natural extensions, admits integer programming formulations with polynomially-many

variables and constraints (Medvedovsky et al., 2008; Silverbush et al., 2011).

The main caveat of these approaches is that they all use a preprocessing step in which cycles in the input

graph are contracted one after the other, ending up with a tree network. Such structural modifications do not

affect the optimization criterion, because directed connectivity can be preserved when cycles are consis-

tently oriented in advance, in either a clockwise or counterclockwise direction. However, in practice, this

preprocessing step results in a large fraction of the edges being arbitrarily oriented and in arbitrarily long

directed source-target paths.

Other approaches to the problem concentrated on short connecting paths, which are more plausible

biologically (Yeang et al., 2004). Gitter et al. (2011) focused on paths whose length is bounded by a

parameter k, showing that although the resulting problem is NP-hard, it can still be approximated to within

a factor of O(2k/k). Vinayagam et al. (2011) developed a Bayesian learning strategy to predict the direc-

tionality of each edge based on the shortest paths that contain it.

1.3. Problem definition

In this article, we study the latter biologically motivated setting (Gitter et al., 2011), in which the

directed paths connecting each pair of source-target vertices are required to be shortest. Let G = (V, E)

be an undirected graph with a vertex set V of size n and an edge set E of size m. Denote by dG(s, t) the

length (number of edges) of a shortest path between s and t. An orientation ~G of G is a directed graph

on the same vertex set whose edge set contains a single directed instance of every undirected edge, i.e.,
~G can be created from G by picking a unique direction for each edge (and nothing more). We say that a

pair of vertices (s, t) is satisfied by an orientation ~G when the latter contains a directed s-t path of length

dG(s, t). In other words, this pair is satisfied when at least one of the shortest s-t paths in the original

graph G is oriented from s to t. The maximum shortest-path orientation (MSPO) problem is defined as

follows:

Input: An undirected graph G and a collection P = f(s1‚ t1)‚ . . . ‚ (sk‚ tk)g of source-target vertex pairs.

Objective: Compute an orientation of G that satisfies a maximum number of pairs.

1.4. Our contribution

In this article, we focus on the fundamental question of how well the MSPO problem can be efficiently

approximated. Specifically, we establish lower bounds on the best approximation factor that can be

achieved in polynomial time, and complement these findings by a number of algorithmic results, obtained

by synthesizing ideas such as metric embeddings and greedy methods. Our main contributions, along with

some technical remarks, can be briefly summarized as follows:

1. We relate the hardness of approximating MSPO to that of the independent set problem through a

combinatorial construction called the ‘‘single-pair gadget,’’ which may be interesting in its own right.

Consequently, we show that this problem is NP-hard to approximate to within factors of O(k1 - �) and

O(m1=3 - �), for any fixed � > 0 (Section 2). We also extend these inapproximability results to the

maximum bounded orientation problem, studied by Gitter et al. (2011), for which nontrivial lower

bounds are currently unknown (Section 2.3).
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2. On the positive side, we adapt the approximation algorithm of Elberfeld et al. (2013), initially

suggested for MGO in mixed graphs (i.e., graphs in which some of the edges are predirected), and

attain a performance guarantee of O( maxfn‚ kg1=
ffiffi
2
p

) (Section 3.1).

3. Last, we show that significantly better upper bounds can be obtained when one is willing to settle for

bicriteria approximations, where the strict requirement of connecting pairs only via shortest paths is

relaxed and, instead, approximately-shortest paths are allowed. Here, we make use of random em-

beddings to compute Õ(log n)-approximate shortest paths connecting an O(1/log n) fraction of all

pairs, with constant probability.1 Additionally, we show that by using (1 + e)-approximate shortest

paths one can satisfy an ~O( minf2 - 1=�‚ 1=
ffiffiffi
k
p
g) fraction of the pairs (Section 3.2).

As a side note, it is worth pointing out that the algorithmic results in items 2 and 3 are obtained without

making use of the previously mentioned preprocessing step, in which cycles are repeatedly contracted.

Although a tree network is significantly (and provably) easier to handle, a reduction of this nature does not

preserve shortest paths, and is generally incorrect.

2. HARDNESS OF APPROXIMATION

In this section, we provide a reduction from independent set, showing that it is NP-hard to approximate

MSPO to within factors O(k1 - e) and O(m1/3 - e) of optimum for any fixed e > 0. To this end, we first

construct a single-pair gadget, which shows that there are MSPO instances in which even optimal ori-

entations satisfy only one out of k source-target pairs. This construction will serve as the main building

block of our hardness reduction. The single-pair gadget is also interesting in its own right, as it creates a

strong separation between our definition of satisfying a given pair via a shortest path and the one studied by

Medvedovsky et al. (2008), in which pairs could be satisfied via any directed path (regardless of its length),

a setting where a logarithmic fraction of all pairs can always be satisfied.

2.1. The single-pair gadget

As previously mentioned, we begin by looking into an interesting combinatorial question: Given an

integer parameter k, does there exist an undirected graph G and a collection of k reachable source-target

pairs, for which any orientation can satisfy at most one pair? In what follows, we answer this question in the

affirmative, and more importantly, show how to constructively create such an instance, of size poly(k).

For convenience, we describe the single-pair gadget using an edge-weighted mixed graph, in which some

of the edges are predirected. Later on, we explain how to remove these extra constraints. Given any integer

k, we show how to create an MSPO instance (G, P) with k pairs, O(k2) vertices and O(k2) edges, such that

the following properties are satisfied:

1. For every pair in P, there is some orientation that satisfies it.

2. Any orientation of G satisfies at most one pair in P.

To this end, we will argue that, in the instance described below, there is a unique shortest path connecting

any given source-target pair. Moreover, these will be contradicting paths, in the sense that when one sets

the direction of any such path from source to target, all other paths can no longer be similarly directed (due

to overlapping edges that need to be oriented in opposite directions).

Our construction is schematically drawn in figure 1. In detail, the graph vertices are partitioned into k

layers, V1‚ . . . ‚Vk where V i contains 2k - i vertices, fvi‚ 1‚ . . . ‚ vi‚ 2k - ig. There are three types of edges:

� Cross edges, Ecross: For every 1 £ i < j £ k, we have a pair of directed edges (vj,i, vi,2j - i - 1) and (vi,2j - i - 2,

vj,i + 1). The weight of these edges is 1.
� Contradiction edges, Econt: For every 1 £ i < j £ k, we have an undirected edge (vi,2j - i - 2,vi,2j - i - 1).

The weight of these edges is 0.
� Direction edges, Edir: For every 1 £ i < j £ k, we have a directed edge (vi,2j - i - 1, vi,2j - i). The weight of

these edges is 2.

1Here, and in the remainder of this article, Õ(f (n)) = O(f (n) $ polylog(f (n))).
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Finally, the collection of pairs is P = {(si, ti) : 1 £ i £ k}, where si = vi,1 and ti = vi,2k - i.

We begin to analyze the single-pair gadget by highlighting a couple of structural properties that will be

required to establish the uniqueness of shortest paths and the way in which they intersect. Observations 2.1

and 2.2 characterize the unique paths that connect vertices in one vertical column of the gadget (i.e.,

vi‚ j‚ . . . ‚ vk‚ j) to its successive column (vi + 1‚ i + 1‚ . . . ‚ vk‚ i + 1). Somewhat informally, these observations will

allow us to argue that for any si-ti path, the sequence of column entry points si = vi‚ 1,vi2‚ 2, � � �,vii‚ i is

nondecreasing in its vertical distance from si, that is, ipi2p � � �pii.

Observation 2.1. For every 1 £ i < j1 £ j2 £ k, there is only one path from vj1,i
to vj2,i + 1. More spe-

cifically,

� If j1 = j2, this path takes the cross edge from vj1,i
to vi,2j1 - i - 1, then a single contradiction edge (in right-

to-left direction), and finally the cross edge from vi,2j1 - i - 2 to vj1,i + 1. Hence, the total weight of this

path is 2.
� If j1 < j2, this path takes the cross edge from vj1,i

to vi,2j1 - i - 1, then travels in left-to-right direction in V i,

alternating between direction and contradiction edges, and finally takes the cross edge from vi,2j2 - i - 2

to vj2,i + 1. Hence, the total weight of this path is 2 + 2(j2 - j1).

Observation 2.2. For every 1 £ i < j1 < j2 £ k, there are no paths from vj2,i
to vj1,i + 1.

With these observations in place, let us focus on one particular si-ti path, pi, which is schematically

drawn in Figure 2 (for i = 3). This path repeatedly takes two cross edges and one contradiction edge i - 1

times until it arrives at vi,i, and then traverses V i in left-to-right direction to reach vi,2k - i = ti. The next

lemma shows that pi must be shortest and unique.

FIG. 2. The path p3 connecting s3 to t3.

FIG. 1. The single-pair gadget (only the first two layers are shown). Here, direction edges are drawn as thick lines,

cross edges as regular lines, and contradiction edges as thin lines.
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Lemma 2.3. For every 1 £ i £ k, the path pi is the unique shortest si-ti path.

Proof. By definition of pi, this path traverses 2(i - 1) cross edges and i - 1 contradiction edges prior to

arriving at vi,i. Then it traverses k - i additional pairs of direction and cross edges before reaching ti.

Therefore, the total weight of pi is exactly 2(i - 1) + 2(k - i) = 2k - 2.

Now consider some other si-ti path, p s pi, and let vj,i be the entry point of p into the ith column (whose

vertices are vi‚ i‚ . . . ‚ vk‚ i). Suppose j = i and consider all the entry points of p into columns 2‚ . . . ‚ i - 1. By

Observation 2.2, all these points must be at layer i and, hence, p identifies with pi, contradicting our initial

assumption. Thus, we may assume that j > i. By Observations 2.1 and 2.2, it follows that p traverses 2(i - 1)

cross edges and j - i direction edges prior to arriving at vj,i. The combined weight of those edges is 2(i - 1) +
2(j - i) = 2j - 2. From vj,i, the path p must traverse the cross edge to vi,2j - i - 1 and then k - j + 1 additional

direction edges before reaching ti. Consequently, the total weight of p is (2j - 2) + 1 + 2(k - j + 1) = 2k

+ 1, which is strictly greater than the weight of pi, a contradiction. -

We conclude that for every pair (si‚ ti) 2 P there exists an orientation satisfying this pair, in which all

contradiction edges along pi are oriented from si to ti. It remains to show that any orientation satisfies at

most one pair. Suppose to the contrary that there exists an orientation ~G that satisfies both (si1
, ti1

) and (si2
,

ti2
), for some i1 < i2, meaning in particular that both pi1

and pi2
must agree with ~G. However, these paths

intersect in exactly one contradiction edge, (vi1, 2i2 - i1 - 2, vi1, 2i2 - i1 - 1), where in pi1
it is orientated from left to

right, and in pi2
its direction is from right to left, a contradiction.

2.2. Reduction from independent set

We are now ready to make use of the single-pair gadget in order to prove the hardness of approximating

MSPO. To simplify the presentation, we first establish this result for the more general setting in which the

underlying graph is mixed (i.e., contains both directed and undirected edges) and weighted, similar to the

construction described in Section 2.1.

Theorem 2.4. For any fixed e > 0, it is NP-hard to approximate MSPO to within factors O(k1 - e) and

O(m1/2 - e) of optimum in mixed weighted graphs.

Proof. The basis for our reduction is the independent set problem, which is known to be hard to

approximate to within a factor of O(n1 - e) on an n-vertex graph for any fixed e > 0 (Håstad, 1996). Given an

independent set instance G = (V, E), we begin by constructing a single-pair gadget for k = jVj. In this

construction, every layer V i represents a vertex vi 2 V . Next, for every pair of vertices vi and vj such that

(vi‚ vj) =2 E‚ i < j, we replace the cross edges (vj,i, vi,2j - i - 1) and (vi,2j - i - 2,vj,i + 1) by a single directed edge

(vj,i, vj,i + 1) of weight 2. This modification is illustrated in Figure 3.

Now, for an original vertex vi, let us focus once again on one particular si - ti path, ~pi. This path is created

from the unique shortest path pi in the original single-pair gadget by replacing every sequence of Ccross,

contradiction, crossD edges along pi with its corresponding newly added edge, whenever this modification

has been made. By adapting the analysis given in Section 2.1, it is easy to verify that ~pi becomes the unique

shortest si-ti path. We proceed by observing that for every pair of original vertices vi and vj, i < j, the unique

FIG. 3. An example modification for v2 and v3, where their newly added edge is drawn as a dashed line.
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shortest paths ~pi and ~pj, respectively connecting si to ti and sj to tj, are edge-disjoint if and only if (vi‚ vj) =2 E.

This follows from the way in which ~pi and ~pj were derived from pi and pj, along with our previous

observation that pi and pj intersect in exactly one contradiction edge. This edge, (vi,2j - i - 2, vi,2j - i - 1), will be

skipped in the modified instance by ~pj if and only if (vi‚ vj) =2 E.

It follows that there is a one-to-one correspondence between solutions fvi : i 2 Ig to the independent set

instance and sets of pairs f(si‚ ti) : i 2 Ig that can be satisfied by some orientation. As the resulting MSPO

instance consists of n pairs and O(n2) edges, the hardness of approximation for independent set implies

bounds of O(k1 - e) and O(m1/2 - e) on the approximability of MSPO. -

It remains to show that the above reduction can be extended to the setting of undirected and un-weighted

graphs. For the former, we will show that when every directed edge is replaced in the single-pair gadget by

an undirected edge, shortest paths remain unchanged. The following lemmas establish the correctness of

this alteration.

Lemma 2.5. For every 1 £ i £ k, a shortest si-ti path in the undirected single-pair gadget cannot

traverse cross edges in a direction different from the one defined in the mixed gadget.

Proof. Let p be some shortest si-ti path, and suppose that p traverses some cross edge in the opposite

direction, i.e., from a layer V‘ to the vertical column on its left, or from the vertical column on the right of

V‘ into layer V‘. We restrict attention to the first cross edge along p that is being traversed in the opposite

direction. In this case, it is easy to verify that the second option mentioned earlier, in which we move from

the vertical column on the right of V‘ into layer V‘ is not possible, because this means that p must be

walking back and forth on that edge, so it cannot be a shortest path. Focusing then on the first option, we

observe that p must contain as a subpath either

~pLR = v‘ - 1‚ ‘ - 1 + x ! v(2‘ + x)=2‚ ‘ ! v‘‚ ‘ + x - 1 ! v‘‚ ‘ + x ! � � � ! v‘‚ ‘+ x + y - 1 ! v(2‘+ x + y)=2‚ ‘ ! v‘ - 1‚ ‘- 1 + x + y‚

where x ‡ 0 and y ‡ 1 are even integers (see Fig. 4 for an example), or

~pRL = v‘- 1‚ ‘ - 1 + x ! v(2‘+ x)=2‚ ‘ ! v‘‚ ‘+ x - 1! v‘‚ ‘+ x - 2! � � � ! v‘‚ ‘+ x - y - 1! v(2‘ + x - y)=2‚ ‘ ! v‘- 1‚ ‘ - 1 + x - y:

To better understand this, note that to traverse a cross edge from the vertical column on the right of V‘
into layer V‘, the path p first has to enter and exit the ‘-th column going left to right. Then, p necessarily

walks along the layer V‘+ 1 either left to right (corresponding to ~pLR) or right to left (corresponding to ~pRL),

followed by entering and exiting the ‘-th column from right to left; any other way of leaving layer V‘ + 1

necessarily implies that we are not looking at the first cross edge that was traversed in the opposite

direction.

We argue that neither ~pLR nor ~pRL can be shortest paths and, in turn, that p cannot be a shortest si-ti path

(due to the optimality of subpaths). Below, we prove this claim for ~pLR, noting that the analogous proof for

~pRL is nearly identical:

FIG. 4. An illustration of the subpath ~pLR for the special case where ‘ = 2, x = 2, and y = 2k - 8. Here, ~pLR becomes

v1,3 / v3,2 / v2,3 / v2,4 / / v2,2k - 5 / vk - 1,2 / v1,2k - 5. The extra-thick path from v1,3 to v1,2k - 5 is strictly shorter

than ~pLR.
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� When x ‡ 1, the subpath ~pLR traverses four cross edges and y/2 direction edges, so its total weight is

exactly y + 4. However, another path connecting v‘ - 1,‘- 1 + x to v‘ - 1,‘- 1 + x + y is simply the one that

walks between these vertices along the layer V‘ - 1. The weight of this path is y.
� Similarly, when x = 0 the subpath ~pLR traverses three cross edges and (y - 1)/2 direction edges, so its

total weight is exactly y + 2. However, while walking between v‘- 1,‘ - 1 to v‘ - 1,‘- 1 + y along the layer

V‘- 1 we incur a total weight of y. -

Lemma 2.6. For every 1 £ i £ k, a shortest si-ti path in the undirected single-pair gadget cannot

traverse direction edges from right to left.

Proof. An immediate consequence of Lemma 2.5 is that shortest si-ti paths have a very particular

structure. As such paths cannot traverse cross edges in the opposite direction, they necessarily start at

si = vi,1, enter the first layer V1, walk along V1 in either left-to-right or right-to-left direction, then proceed

to layer V2, walk along it in exactly one of two possible directions, so forth and so on, until arriving at layer

V i, which is necessarily traversed in left-to-right direction prior to arriving at vi,2k - i = ti.

For any shortest si-ti path p, let L( p) denote the maximal layer index ‘ 2 f1‚ . . . ‚ i - 1g for which p

traverses direction edges right to left along V‘, unless there is no such layer, in which case L( p) = N.

Suppose to the contrary that there is at least one path with finite L($) value, and let p be such a path with

maximal (finite) L( p). We show below how to construct another shortest path p0 such that L( p0) = L( p) + 1,

arriving at a contradiction.

For this purpose, suppose that p traverses r ‡ 1 direction edges on layer V‘ =VL(P) from right to left.

Letting v‘,j1
and v‘+ 1,j2

be the first vertices in V‘ and V‘ + 1 visited by the path p, respectively, note that

j2 = j1 - 2r - 1. We use to denote the subpath of p connecting v‘,j1 to v‘ + 1,j2. We proceed by arguing that

there is another path from v‘,j1 to v‘+ 1,j2 whose weight does not exceed that of ~p, in which: (1) direction

edges are not traversed in right-to-left direction along layer V‘; (2) direction edges are being traversed in

right-to-left direction along layer V‘+ 1; and (3) such traversals are not introduced in any of the layers

V1‚ . . . ‚V‘- 1. By pasting this path into p instead of ~p, we obtain a new shortest si-ti path p0 with L( p0) =
L( p) + 1. An example of this swap is given in Figure 5. The definition of our replacement path depends

on the relation between j2 and ‘:

� Case 1: j2 > ‘ + 1. Here, the subpath ~p is of the form v‘‚ j1 ! v‘‚ j1 - 1 ! � � � ! v‘‚ j1 - 2r - 1 !
v(j1 + ‘ - 2r + 1)=2‚ ‘ + 1 ! v‘ + 1‚ j1 - 2r - 1 = v‘ + 1‚ j2 , meaning that it traverses two cross edges and r direction

edges, so its total weight is exactly 2r + 2. However, another path connecting v‘,j1 to v‘+ 1,j2 is

v‘‚ j1 ! v‘‚ j1 - 1 ! v(j1 + ‘ + 1)=2‚ ‘+ 1 ! v‘+ 1‚ j1 - 1 ! � � � ! v‘ + 1‚ j1 - 2r - 1 = v‘+ 1‚ j2 . The weight of this path

is 2r + 2 as well, due to traversing two cross edges and r direction edges (all in layer V‘ + 1).
� Case 2: j2 = ‘ + 1. Here, the subpath ~p is of the form v‘‚ j1 ! v‘‚ j1 - 1 ! � � � ! v‘‚ ‘ ! v‘ + 1‚ ‘+ 1 = v‘+ 1‚ j2 ,

meaning that it traverses one cross edge and r direction edges, with a total weight of 2r + 1.

However, another possibility for connecting v‘,j1
to v‘ + 1,j2

is v‘‚ j1 ! v‘‚ j1 - 1 ! v(j1 + l + 1)=2‚ ‘ + 1 !
v‘+ 1‚ j1 - 1 ! � � � ! v‘+ 1‚ ‘ + 1 = v‘ + 1‚ j2 . The weight of this path is 2r, due to traversing two cross

edges and r-1 direction edges (all in layer V‘+ 1), implying that ~p cannot be a shortest path. -

FIG. 5. An illustration of the subpath ~p for the special case where j1 = 2k - 5 and j2 = 3. Here, ~p becomes

v1‚ 2k - 5 ! � � � ! v1‚ 3 ! v3‚ 2 ! v2‚ 3. The dashed path from v1,2k - 5 to v2,3 is of identical weight.
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It remains to show how to remove edge weights from our construction. To this end, we first transform the

original weights in the single-pair gadget so that these become positive integers. Whereas cross and

direction edges are associated with weights 1 and 2, respectively, contradiction edges are associated with

zero weights. Our objective is to ‘‘scale’’ these values without changing the shortest path structure on the

one hand, while avoiding the use of large values on the other hand, so as not to affect the inapproximability

bound by much.

We begin by setting the weight of contradiction edges to 1/k. This implies that for every 1 £ i £ k, the

total weight of the unique shortest si-ti path pi (see Section 2.1), which has been preserved during the

reduction from mixed to undirected graphs, is at most 2k - 2 + (k - 1)/k. This is lighter than any other si-ti
path, which has weight at least 2k + 1 according to the proof of Lemma 2.3. We proceed by scaling all edge

weights by a factor of k to make them integral. Last, we replace each edge e of weight w(e) by a path

consisting of w(e) unit-weight edges. As a result, the number of vertices and edges blows up to O(k3)

instead of O(k2) as in the original gadget. Combined with our reduction from the independent set problem,

the next inapproximability result follows.

Theorem 2.7. For any fixed e > 0, it is NP-hard to approximate MSPO to within factors of O(k1 - e) and

O(m1/3 - e) of optimum.

2.3. Length-bounded orientations

Interestingly, we can use our construction to provide similar hardness of approximation results for the

problem variant studied by Gitter et al. (2011), for which nontrivial bounds were not known before. Their

work considered the following maximum bounded orientation (MBO) problem:

Input: A connected undirected graph G = (V, E) with weight function w : V W E / [0, 1], a collection of

k source-target vertex pairs (s1‚ t1)‚ . . . ‚ (sk‚ tk), and a length bound B.

Objective: Compute an orientation ~G of G that maximizes
P

p2PB
I(p) � w(p). Here, PB is the set of all

source-target paths with total weight at most B, I( p) is an indicator for the event in which the

path p is satisfied, and w(p) =
Q

v2p w(v) �
Q

e2p w(e).

Technically speaking, the next hardness result applies even to a severely restricted special case of MBO,

to which we refer as MBO1. Here, the basic assumption is that w(v) = 1 for every vertex v 2 V and that

w(e) = 1 for every edge e 2 E. This assumption immediately implies that w( p) = 1 for every path p,

meaning that the objective function reduces to
P

p2PB
I(p).

Theorem 2.8. For any fixed e > 0, it is NP-hard to approximate MBO1 to within factors O(k1 - e) and

O(m1/3 - e) of optimum.

Proof. To establish this claim, we slightly modify the reduction from independent set described in the

proof of Theorem 2.7. Let B denote the maximum length of any unique shortest path (out of p1‚ . . . ‚ pk) in

the original construction. We extend these paths so that their lengths all become B; this is achieved by

adding a new source �ti instead of ti, which is connected to the latter via a path of length B minus that of pi.

Note that, after this modification, for any (new) pair ((si‚ �ti)) there is exactly one si-�ti path of length at most

B, which is obtained by concatenating pi with the path from ti to �ti. Consequently, the problem of maxi-

mizing
P

p2PB
I(p) becomes that of maximizing the number of shortest-path–satisfied pairs and, in turn,

also maximizing the cardinality of an independent set in the original instance. To summarize, as the

resulting MBO1 instance consists of n pairs and O(n3) edges, the hardness of approximation for independent

set implies bounds of O(k1 - e) and O(m1/3 - e) on the approximability of MBO1. -

3. APPROXIMATION ALGORITHMS

In this section, we provide an approximation algorithm for MSPO whose performance guarantee is

sublinear in either the number of vertices of the underlying graph or in the number of input pairs. In light of

the hardness results established in Section 2, we cannot expect to come significantly closer to the optimal
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number of satisfied pairs, and the only possible avenue for improvement is decreasing the exponent we

attain. However, a detailed inspection of Theorem 2.7 and its proof reveals that these do not exclude the

possibility of obtaining better performance guarantees when one is willing to relax the strict requirement of

satisfying pairs only via shortest paths and, instead, make use of approximately-shortest paths. We explore

this option as well, and show how to improve our previously mentioned algorithm by utilizing such paths.

3.1. Exact shortest paths

To tackle MSPO, we adapt the approximation algorithm of Elberfeld et al. (2013), which was initially

suggested for MGO in mixed graphs. In that setting, pairs could be satisfied via any connecting path,

regardless of its length, whereas in the current setting, connecting paths are required to be shortest.

Let (G, P) be an MSPO instance. For every (si‚ ti) 2 P, choose arbitrarily a shortest path pi between them.

Let P = fpi : (si‚ ti) 2 Pg. The algorithm is iterative. At any point in time, we will be holding a partial

orientation G‘ of G and a subset P‘ � P of shortest paths, where these sets are indexed according to the

step number that has just been completed. Initially G0 = G and P0 =P. Now, as long as none of the

termination conditions described below is met, we proceed as follows:

1. Let p̂ = (s‚ . . . ‚ t) be a minimum-length path in P‘.
2. Orient p̂ in the direction from s to t to obtain G‘ + 1.

3. To prevent the edges in p̂ from being reoriented in subsequent iterations, discard from P‘ the path p̂ as

well as any path that overlaps (in edges) with it, obtaining P‘ + 1.

There are two conditions that will cause the greedy iterations to terminate. For now, we state both

conditions in terms of two parameters, a ‡ 0 and b ‡ 0, whose values will be optimized later on.

1. jP‘jpna. In this case, we orient an arbitrary path from P‘.
2. There exists a vertex v such that at least jP‘jb paths in P‘ go through v. Let P0‘ be this sub-collection

of paths, and let P0 be the collection of corresponding pairs. We show, as part of proving Lemma 3.1

below, that one can satisfy at least 1/4 of these pairs.

Under both termination conditions, we complete the orientation by directing the remaining edges in an

arbitrary manner. With some modifications through their analysis, the arguments of Elberfeld et al. (2013)

essentially give rise to the next claim.

Lemma 3.1. When the algorithm terminates due to condition 1, O(k=nmaxf1 - a(1 - 2b)‚ ag) pairs are sat-

isfied. Termination due to condition 2 leads to O(k=maxfn1 - a(1 - 2b)‚ k1 - bg) satisfied pairs.

Proof. In what follows, we assume that L greedy iterations have been completed prior to satisfying one

of the termination conditions. To prove the first claim, we begin by arguing that an O(1=n1 - a(1 - 2b)) fraction

of the pairs in f(si‚ ti) : pi =2 PLg are already satisfied by the partial orientation GL. To this end, note that in

each iteration 1 £ ‘ £ L we satisfy a single pair by orienting the shortest path p̂ 2 P‘ - 1, and eliminating

several others to obtain P‘. To prove the claim above, it is sufficient to show that the number of eliminated

paths satisfies jP‘- 1yP‘jpn1 - a(1 - 2b). Denote by E( p) the set of edges of a path p, so that jE( p)j is its

length. We begin by observing that, as condition 2 has not been met in iteration ‘, each edge can have at

most jP‘ - 1jb paths from P‘- 1 going through it, implying that jP‘- 1yP‘jpjE(p̂)j�jP‘- 1jb. As jE(p̂)j is

upper bounded by the average length of the paths in P‘ - 1, we have

jE(p̂)jp 1

jP‘ - 1j
X

pi2P‘ - 1

jE(pi)jp
1

jP‘ - 1j
X

pi2P‘- 1

jV(pi)j =
1

jP‘ - 1j
X
v2V

fpi 2 P‘- 1 : v 2 V(pi)gj j

p 1

jP‘ - 1j
� n � jP‘ - 1jb =

n

jP‘ - 1j1 - b
‚

where the third inequality holds because condition 2 has not been met. Hence,

jP‘ - 1yP‘jp
n

jP‘ - 1j1 - 2b
p n

na(1 - 2b)
= n1 - a(1 - 2b)‚

where the second inequality follows from jP‘- 1j > na, as condition 1 has not been met.
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Based on the above discussion, it follows that the number of satisfied pairs when we terminate the

algorithm due to condition 1 is

O
1

n1 - a(1 - 2b)

� �
(jPj - jPLj) + 1 =O

1

n1 - a(1 - 2b)

� �
(jPj - na) +

1

na
na

=O
1

maxfn1 - a(1 - 2b)‚ nag

� �
jPj =O

k

nmaxf1 - a(1 - 2b)‚ ag

� �
:

When the algorithm terminates due to condition 2, it is easy to verify that the union of all paths inP0L contains a

v-rooted shortest-path tree T in which the unique path connecting si to ti (for pairs in P0) necessarily

traverses v. This tree can be extracted by using any single-source shortest-path algorithm. Consequently, we

obtain a maximum orientation instance on a tree T where all paths connecting pairs in P0 go through a common

vertex. By using an algorithm due to Medvedovsky et al. (2008) (Lemma 4), this instance admits an orientation

that satisfies at least jP0j=4 = jP0Lj=4qjPLjb=4 pairs. Therefore, the number of satisfied pairs in this case is

O
1

n1 - a(1 - 2b)

� �
(jPj - jPLj) +

jPLjb

4
=O

1

n1 - a(1 - 2b)

� �
(jPj - jPLj) +O

1

jPLj1 - b

 !
jPLj

=O
1

maxfn1 - a(1 - 2b)‚ k1 - bg

� �
k:

-

To obtain the best-possible performance guarantee, we pick values for a and b so as to minimize the

maximum of all exponents mentioned above. To this end, the optimal values are a� =
ffiffiffiffiffiffiffiffi
1=2

p
and

b� = 1 -
ffiffiffiffiffiffiffiffi
1=2

p
, in which case the maximal exponent becomes

ffiffiffiffiffiffiffiffi
1=2

p
� 0:707.

Theorem 3.2. MSPO can be approximated to within a factor of O( maxfn‚ kg1=
ffiffi
2
p

).

3.2. Approximate shortest paths

In order to improve on the performance guarantee attained in Theorem 3.2, we proceed by providing

bicriteria approximation algorithms for MSPO. Here, we relax the strict requirement of satisfying pairs only

via shortest paths and, instead, allow approximately-shortest paths.

The precise setting we consider is as follows: For r ‡ 1, we say that a given orientation ~G r-satisfies the

pair (si, ti) when it contains a directed si-ti path of length at most r times that of a shortest path, i.e.,

d~G(si‚ ti)pr � dG(si‚ ti). For a £ 1 and r ‡ 1, we say that a given algorithm guarantees an (a, r)-

approximation when, for any instance of the problem, it computes an orientation that r-satisfies at least

a $ OPT pairs. Here, OPT stands for the maximal number of pairs that can be 1-satisfied by any orientation.

3.2.1. An (O(log n), Õ(log n))-approximation via embedding. With a slight adaptation of the

metric embeddings terminology to our particular setting, the basic idea in this approach is to compute a random

spanning tree T 4 G, sampled from a distribution T over a set of spanning trees in a way that pairwise

distances do not get ‘‘stretched’’ by much in expectation. This line of work (Alon et al., 1995; Elkin et al.,

2008) has evolved into a near-optimal bound due to Abraham et al. (2008), who showed how to sample a

random spanning tree such that the expected stretch is Õ(log n) uniformly over all vertex pairs, that is,

max
(u‚ v)2V · V

ET~T
dT (u‚ v)

dG(u‚ v)

� �
pw(n) = O( log n � ( log log n) � ( log log log n)3):

Here, ET~T [�] denotes expectation with respect to the random choice of T and w(n) is our notation for the

precise upper bound on the maximal expected stretch. In what follows, we argue that this result can be

exploited to obtain logarithmic error bounds in both the number of satisfied pairs and the extent to which

distances are stretched.

Theorem 3.3. There is a randomized algorithm that Õ(log n)-satisfies O(k/log n) pairs with constant

probability.

Proof. We begin by computing a random spanning tree T using the embedding method of Abraham

et al. (2008). With respect to this tree, let Psmall 4 P be the collection of pairs whose shortest path distances

have not been significantly stretched beyond a factor of w(n), which will be formally defined as
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Psmall = (si‚ ti) 2 P : dT (si‚ ti)p2w(n) � dG(si‚ ti)f g:
As ET~T [dT (si‚ ti)]pw(n) � dG(si‚ ti) for every pair (si‚ ti) 2 P, by Markov’s inequality, each of these pairs is

indeed a member of Psmall with probability at least 1/2. For this reason, E[jPsmallj] ‡ k/2, which implies that

jPsmallj ‡ k/4 with probability at least 1/3, because

k

2
pE[jPsmallj]

= Pr jPsmalljq
k

4

� �
� E jPsmallj

���jPsmalljq
k

4

� �

+ Pr jPsmallj <
k

4

� �
� E jPsmallj

���jPsmallj <
k

4

� �

pPr jPsmalljq
k

4

� �
� k + 1 - Pr jPsmalljq

k

4

� �� �
� k
4
:

Thus, with constant probability we obtain a spanning tree for which jPsmallj, i.e., the number of pairs in P

with stretch smaller than 2w(n) = Õ(log n), contains a constant fraction of the pairs in P. As we formed a

tree instance, the maximum tree orientation algorithm of Medvedovsky et al. (2008) can be used to

compute an orientation that satisfies O(1/log n) $ jPsmallj = O(k/log n) pairs. -

3.2.2. An ( ~O(
ffiffiffi
k
p

)‚ 1 + �)-approximation. Even though our embedding-based algorithm improves on

the one described in Section 3.1 by orders of magnitude, at least as far as the number of satisfied pairs is

concerned, it uses paths that may be ~O( log n)-fold longer than needed. In the remainder of this section, we

propose another direction for improvement, in which pairs are guaranteed to be (1 + e)-satisfied, for any

required degree of accuracy e > 0. As it turns out, by resorting to e-approximate paths, it is possible to

satisfy an ~O(1=k1=2) fraction of the pairs, rather than O(1=maxfn‚ kg1=
ffiffi
2
p

) as in the exact case.

Prior to formally describing our algorithm, it is worth pointing out that when a constant fraction of the

pairs (si‚ ti) 2 P are connected via very short paths or, more precisely, when dG(si, ti) £ 1/e, the setting in

question becomes very simple. In this case, a random orientation where the direction of each edge is picked at

random, with equal probabilities for both options (independently of other edges), 1-satisfies each pair with

probability at least 2 - 1/e. Therefore, the expected fraction of pairs that are satisfied is O(2- 1/e). This bound can

also be achieved deterministically in time Õ(nO(1/e)), because for the previous argument to work, all we need

are 0/1-random variables with 1/e-wise independence, which is achievable by O(nO(1/e))-size probability spaces

(see, for instance, Alon and Spencer, 2007, Chap. 16). For this reason, we focus attention only on pairs for

which dG(si, ti) > 1/e, and assume from this point on that all other pairs have already been discarded from P.

Let b = b(n, k, e) be a parameter whose value will be optimized later on. As in the greedy algorithm, we

use pi to denote some shortest si-ti path, arbitrarily picked in advance, and define P = fpi : (si‚ ti) 2 Pg.
Moreover, for a path p 2 P, let Ip(P) be the set of paths in P that intersect p, i.e., share at least one common

edge. With these definitions in place, our algorithm works in two phases:

1. As long as there exists a path p 2 P, say from s to t, such that jIp(P)j < b:

(a) Orient p in the direction from s to t.

(b) Discard from P the path p as well as all paths in Ip(P).
2. Once the condition in phase 1 is no longer satisfied, let p be the shortest among all paths in P,

connecting s to t.

(a) Partition the path p into at most 1/e edge-disjoint subpaths, each of length at most Ø� � dG(s‚ t)øp2��
dG(s‚ t), where this inequality holds because dG(s, t) ‡ 1/e.

(b) Identify a subpath ~p for which jI~p(P)jq(�=2) �jIp(P)jq�b=2, and let r be some arbitrary vertex in ~p.

(c) Construct an r-rooted shortest-path tree T in the subgraph that results from unifying ~p and all

paths in I~p(P). At this point in time, we have just created an instance of the maximum tree

orientation problem, where the underlying tree is T and the collection of pairs are those corre-

sponding to the paths in I~p(P). Hence, we can use the algorithm of Medvedovsky et al. (2008) to

compute an orientation that satisfies O(1= log n) � jI~p(P)j =O(�b= log n) pairs.

Obviously, all pairs that were connected in phase 1 are 1-satisfied, because these connections are

due to exact shortest paths. For this reason, it remains to show that every connection in phase 2 uses a
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(1 + e)-approximate shortest path. This follows from the next claim, where we derive an upper bound

on the factor by which pairwise distances can grow in T (for the relevant subset of pairs).

Lemma 3.4. For every path pi 2 I~p(P) connecting si to ti,

dT (si‚ ti)p(1 + 4�) � dG(si‚ ti):

Proof. Consider some path pi 2 I~p(P), and let ysi be its first vertex (in the direction from si to ti) that

also belongs to the subpath ~p. Similarly, let yti
be the last vertex in pi that still resides in ~p. As T is an r-

rooted shortest path tree in the union of ~p and all paths in I~p(P), and as the entire length of ~p is at most

2e $ dG(s, t) and dG(s, t) £ dG(si, ti), we must have

dT (r‚ si)pdG(r‚ ysi
) + dG(ysi

‚ si)p2� � dG(si‚ ti) + dG(ysi
‚ si)

dT (r‚ ti)pdG(r‚ yti ) + dG(yti ‚ ti)p2� � dG(si‚ ti) + dG(yti ‚ ti)

8<
:

These inequalities can now be used to prove the desired claim, because:

dT (si‚ ti)pdT (si‚ r) + dT (r‚ ti)

p(2� � dG(si‚ ti) + dG(ysi
‚ si)) + (2� � dG(si‚ ti) + dG(yti ‚ ti))

p(dG(si‚ ysi
) + dG(ysi

‚ yti ) + dG(yti ‚ ti)) + 4� � dG(si‚ ti)

= dG(si‚ ti) + 4� � dG(si‚ ti)

p(1 + 4�) � dG(si‚ ti): -

We conclude the description of the algorithm by showing how to optimize the value of b = b(n, k, e)

such that it balances between the worst-case performances of phases 1 and 2.

Theorem 3.5. For any fixed e > 0, there is a deterministic algorithm that (1 + e)-satisfies a fraction of

O( minf2 - 1=�‚ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k log n)=�

p
g) of the pairs.

Proof. We have already explained how to 1-satisfy an O(2-1/e) fraction of the pairs (si, ti) for which si and ti
are within distance at most 1/e. If such pairs constitute an O(1) fraction of all input pairs, we are done. Otherwise,

when these are discarded, and P consists only of pairs for which dG(si, ti) > 1/e, the argument proceeds as follows.

Let D be the number of paths that were eliminated from P in phase 1. By the condition to terminate this

phase, at least D/b of these paths must have been oriented so that the corresponding pairs are satisfied. In

addition, as shown above, the number of (1 + e)-satisfied pairs in phase 2 is O(eb/log n). Therefore, the

overall number of (1 + e)-satisfied pairs is at least

D

b
+O

�b
log n

� �
=

1

b
� D +O

�b
(jPj - D) log n

� �
� (jPj - D)

=O min
1

b
‚

�b
(jPj - D) log n

� 	� �
� jPj

=O min
1

b
‚

�b
k log n

� 	� �
� k:

To obtain the best-possible performance guarantee, we pick a value for b so as to maximize

minminf1
b ‚ �b

k log n
g. The latter term attains its maximal value at b� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k log n)=�

p
. -

4. CONCLUSIONS

In this work, we have studied the complexity of orienting an undirected network so that a maximum

number of given pairs admit a directed path between them, requiring each of these directed paths to be of

length equal, or approximately equal, to the length of a shortest path between the corresponding pair. We

have provided strong inapproximability results for this problem as well as approximation algorithms for it
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attaining qualitatively close bounds. By relaxing the shortest-path requirement, we are able to achieve

approximation ratios that are similar to the nonconstrained case where the paths may be arbitrarily long.

Although the shortest path-based orientation overcomes the cycle contraction problem of previous work,

there is still much to be desired as this orientation ignores edges that do not lie on some shortest path

between a cause and an effect in the graph. Bicriteria problems like the one considered here, where the

paths are only required to be approximately shortest, have the potential to capture the biological constraints

and at the same time cover a large fraction of the edges in the input graph. The evaluation of these

approaches against real data can guide the search for the most appropriate problem variants.
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