
Estimation of Tumor Size Evolution Using Particle Filters

JOSE M.J. COSTA,1,2 HELCIO R.B. ORLANDE,1 HAROLDO F. CAMPOS VELHO,3

SUANI T.R. DE PINHO,4 GEORGE S. DULIKRAVICH,5 RENATO M. COTTA,1

and SILVIO H. DA CUNHA NETO6

ABSTRACT

Cancer is characterized by the uncontrolled growth of cells with the ability of invading local
organs and/or tissues and of spreading to other sites. Several kinds of mathematical models
have been proposed in the literature, involving different levels of refinement, for the evolution
of tumors and their interactions with chemotherapy drugs. In this article, we present the
solution of a state estimation problem for tumor size evolution. A system of nonlinear ordi-
nary differential equations is used as the state evolution model, which involves as state var-
iables the numbers of tumor, normal and angiogenic cells, as well as the masses of the
chemotherapy and anti-angiogenic drugs in the body. Measurements of the numbers of tumor
and normal cells are considered available for the inverse analysis. Parameters appearing in
the formulation of the state evolution model are treated as Gaussian random variables and
their uncertainties are taken into account in the estimation of the state variables, by using an
algorithm based on the auxiliary sampling importance resampling particle filter. Test cases
are examined in the article dealing with a chemotherapy protocol for pancreatic cancer.

Key words: cancer modeling, inverse problem, particle filter, state estimation problem, tumor

size.

NOMENCLATURE

fi growth inhibition due to the intracompetition of cells

gi growth inhibition due to the intercompetition of cells

hi interactions of the cell populations with the drugs

ki support capacity for the cells

N1 number of normal cells

N2 number of tumor cells

N3 number of endothelial cells

pi rate of reduction of cells due to drugs

qi define the competition between the tumor and normal cells
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T time interval between infusions

t time

u chemotherapy drug consumption and excretion

v anti-angiogenic drug consumption and excretion

W mass of anti-angiogenic drug in the body

w weight for the particle filter

x vector of state variables

Y mass of chemotherapy drug in the body

Greeks
ai rate of cell population growth

d infusion rate of the chemotherapy drug

f infusion rate of the anti-angiogenic drug

x decay rate of the chemotherapy drug

g proportion of endothelial cells that affect tumor support capacity

t duration of infusion

p ( �j� ) conditional probability

h vector of model parameters

Subscripts
i = 1, 2, and 3 denote normal, tumor, and endothelial cells, respectively

k time instant tk

Superscript

i particle number

1. INTRODUCTION

According to the World Health Organization (WHO), neoplastic diseases were responsible for

13% of deaths worldwide in 2008, with a rising projection estimated to 13.1 million deaths in 2030.

Cancer has been demanding efforts from the scientific community for a long time, but it still presents itself as

a challenging and, in many cases, unsolvable situation. The physicochemical phenomena involved in cancer

are complex and their interrelations, depending on the case, might not be completely understood. Many

different mechanisms are relevant for the complex dynamics of tumor growth, such as tumor angiogenesis

(Sanga et al., 2006). Furthermore, the appearance and growth of a tumor is strongly affected by environ-

mental and genetic aspects (Michor et al., 2004). Although scientific research and new technologies have

promoted advances in conventional therapies (surgery, chemotherapy, and radiotherapy), as well as the

development of new ones (immunotherapy, virustherapy, and anti-angiogenic therapy) in the last decades,

cancer control investigation still demands an enormous amount of human and financial resources (Gatenby,

2009).

Several kinds of mathematical models have been proposed in the literature, involving different levels of

refinement, for the evolution of tumors and their interactions with proposed treatments, such as chemo-

therapy drugs (Schabel Jr., 1969; Spratt et al., 1996; Norton, 1998; Bellomo et al., 2003; Preziozi, 2003;

Alarcon et al., 2004, 2006a,b; Araujo and McElwaim, 2004; Komarova, 2004; Mantzaris et al., 2004;

Michor et al., 2004; Jiang et al., 2005; Byrne et al., 2006; Sanga et al., 2006; Rosse et al., 2007; Mo-

hammadi et al., 2008; Crispen et al., 2009; Gatenby, 2009; Cabrales et al., 2010; Pinho et al., 2011, 2013;

Rodrigues et al., 2012). The literature on the subject is vast and even the terminology in silico has appeared,

in analogy to in vitro and in vivo, to designate computational simulation of cancer-related phenomena

(Sanga et al., 2006). On the other hand, most of the published research on this topic treats the models, and

consequently their associated computational simulations, as deterministic. Such is the case despite the fact

that the complex physicochemical phenomena involved are not fully understood and that model parameters

are generally obtained through tests involving a large variability of human subjects. The treatment of cancer

patients is continuously monitored by physicians through clinical, imaging, and blood examinations, in

order to verify the control, regression, or spread of the disease. Such examinations may serve to pro-

vide measurements of dependent variables used in the mathematical models of tumor growth. With the
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availability of mathematical models and measured data, both of which contain inherent uncertainties, a

better prediction of the transient variables used for monitoring the disease can then be obtained through the

solution of state estimation problems, within the Bayesian framework of statistics (Kalman, 1960; Sor-

enson, 1970; Maybeck, 1979; Arulampalam et al., 2001; Kaipio and Somersalo, 2004; Ristic et al., 2004;

Kaipio et al., 2005; Welch and Bishop, 2006).

The present work deals with the solution of a state estimation problem involving the modeling of tumor

size evolution under chemotherapy. State estimation problems, also designated as nonstationary inverse

problems (Kaipio and Somersalo, 2004), are of great interest in innumerable practical applications. In this

kind of problem, the available measured data are used, together with prior knowledge about the physi-

cochemical phenomena of the problem under analysis and of the measuring devices, in order to sequentially

produce estimates of the desired dynamic variables. This is accomplished in such a manner that the error is

statistically minimized, with the use of methods denoted as Bayesian filters (Maybeck, 1979; Winkler,

2003; Kaipio and Somersalo, 2004). Although the Kalman filter is one quite popular of such methods, its

application is limited to linear models with additive Gaussian noises (Kalman, 1960; Sorenson, 1970;

Maybeck, 1979; Arulampalam et al., 2001; Kaipio and Somersalo, 2004; Ristic et al., 2004; Kaipio et al.,

2005; Welch and Bishop, 2006). Extensions of the Kalman filter were developed in the past for less

restrictive cases (Sorenson, 1970; Maybeck, 1979; Kaipio and Somersalo, 2004; Ristic et al., 2004; Welch

and Bishop, 2006). Sequential Monte Carlo methods, usually denoted as particle filters, have also been

developed in order to represent the posterior density in terms of random samples and associated weights.

Particle filters do not require the restrictive hypotheses of the Kalman filter; that is, they can be applied to

nonlinear models with non-Gaussian errors (Liu and Chen, 1998; Carpenter et al., 1999; Doucet et al.,

2000, 2001; Arulampalam et al., 2001; Andrieu et al., 2004a,b; Kaipio and Somersalo, 2004; Ristic et al.,

2004; Kaipio et al., 2005; Del Moral et al., 2006, 2007; Johansen and Doucet, 2008; Orlande et al., 2012).

In this article, the state estimation problem of interest is solved with the particle filter, implemented in

the form of the auxiliary sampling importance resampling (ASIR) algorithm of Liu and West (2001), which

allows that uncertainties in the model parameters be taken into account in the analysis.

2. TUMOR GROWTH AND CHEMOTHERAPY: FORWARD PROBLEM MODEL

Quite involved models can be found in the literature for cancer modeling (Schabel Jr., 1969; Spratt et al.,

1996; Norton, 1998; Bellomo et al., 2003; Preziozi, 2003; Alarcon et al., 2004, 2006a,b; Araujo and

McElwaim, 2004; Komarova, 2004; Mantzaris et al., 2004; Michor et al., 2004; Jiang et al., 2005; Byrne

et al., 2006; Sanga et al., 2006; Rosse et al., 2007; Mohammadi et al., 2008; Crispen et al., 2009; Gatenby,

2009; Cabrales et al., 2010; Pinho et al., 2011, 2013; Rodrigues et al., 2012), such as those based on partial

differential equations (continuum models) or on discrete cell interactions. In this respect, an issue comes

into focus, between reliability and realism of the computational results obtained with such models (Rosse

et al., 2007). As the detailed phenomena in cancer modeling are better comprehended, there is a clear trend

to develop overly complex and detailed mathematical models, for which accurate predictions can only be

obtained if the parameters appearing in the formulation are accurately known. Indeed, the number of

parameters appearing in such models can be greater than 30 (Mantzaris et al., 2004). Therefore, despite the

detailed physiological and biological phenomena included in such models, their results might not be more

accurate than simpler models that are better parameterized, based on the principle of parsimony (Beck and

Arnold, 1977).

As the main objective of this work is to introduce the use of state estimation techniques for the analysis

of tumor growth and its interaction with chemotherapy/anti-angiogenic agents, a system of nonlinear

ordinary differential equations is used as the state evolution model. The model used in this work is mainly

based on that presented in reference (Pinho et al., 2013) and involves as state variables the numbers of

normal (N1), tumor (N2), and endothelial (N3) cells, as well as the masses in the body of a chemotherapy

drug (Y) and of an anti-angiogenic drug (W). However, here we assume periodic infusions as in reference

(Rodrigues et al., 2012), aiming at the present practical application of interest. As proposed by Pinho et al.

(2011), the model used here is presented first in the following general form:

dN1(t)

dt
= a1N1f1(N1) - g1(N1‚N2) - h1(N1‚ Y) (1:a)
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dN2(t)

dt
= a2N2f2(N2‚N3) - g2(N1‚N2) - h2(N2‚ Y) (1:b)

dN3(t)

dt
= a3N3f3(N3) + bN2 - h3(N3‚W) (1:c)

dY(t)

dt
= d(t) - u(Y) (1:d)

dW(t)

dt
=/(t) - v(W) (1:e)

Here, the subscripts i = 1, 2, and 3 denote normal, tumor, and endothelial cells, respectively; ai is the rate
of cell population growth; fi(.) is the growth inhibition due to the intracompetition of cells for nutrients, etc.;

and gi(.) is the growth inhibition due to the intercompetition of cells for nutrients, etc. The functions hi(.),

for i = 1, 2, and 3, model the interactions of the cell populations with the chemotherapy and the anti-

angiogenic drugs (Pinho et al., 2013). The infusion rate of the chemotherapy agent is given by d(t), while
u(Y) is the model for the drug consumption and excretion. Analogous effects are, respectively, taken care of

by the functions f(t) and v(W) for the anti-angiogenic drug. The model given by Equations (1.d,e) neglects

any dependence of the functions u(Y) and v(W) with respect to the numbers of cells (Pinho et al., 2011,

2013). Other functions proposed by Pinho et al. (2013) are used here, which are consistent with the

physiological and biological phenomena, as described next.

The logistic model is used for the functions fi(.), i = 1, 2, and 3; that is,

f1(N1) = 1 -
N1

k1
; f2(N2‚N3) = 1 -

N2

k2 + cN3

; f3(N3) = 1 -
N3

k3
(2:a - c)

where ki represents the support capacity for the cells. For the vascular stage of the tumor growth, the

support capacity of the tumor cells k2 is enhanced by a proportion g of the endothelial cells because of

angiogenesis, as shown by Equation (2.b).

The functions gi(.) are given in the form (Pinho et al., 2013)

gi(N1‚N2) = qiN1N2 for i = 1‚ 2 (3)

where qi, i = 1 and 2, are coefficients that define the competition between the tumor and normal cells. The

function g1(N1,N2) models the negative effects of the tumor over the normal tissues, while g2(N1,N2)

represents the body mechanisms of self-defense against the tumor. Meanwhile, note in Equation (1.c) that

the growth rate of endothelial cells is assumed to be directly proportional to the number of tumor cells,

through the constant b.

First-order pharmacokinetic models are used to govern the mass of drugs in the body. For the chemo-

therapy agent we have

u(Y) = nY (4:a)

where x is the decay rate, which is related to the half-life (t1/2) of the drug as

n =
ln 2

t1=2
(4:b)

Similar expressions are used for the anti-angiogenic drug (Pinho et al., 2011, 2013; Rodrigues et al., 2012).

Note in Equations (1.a–c) that it is assumed that normal and tumor cells are only directly affected by the

chemotherapy drug, while endothelial cells are only directly affected by the anti-angiogenic drug, through

functions hi(.) that describe the pharmacodymanics of these drugs. Holling’s type 2 functions are used for

hi(.) in the form (Pinho et al., 2013)

h1(N1‚ Y) = p1
N1Y

a1 +N1

; h2(N2‚ Y) = p2
N2Y

a2 +N2

; h3(N3‚W) = p3
N3W

a3 +N3

(5:a - c)

where pi, i = 1, 2, and 3, give the rates of reduction of cells due to the drugs in the body. Here the actions of

endothelial cells and of the anti-angiogenic agent enhancing the chemotherapy delivery, assumed in ref-

erence (Pinho et al., 2013), are also neglected.
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Finally, the infusion rate function d(t) of the chemotherapy drug is given as a periodic function, as in

reference (Rodrigues et al., 2012), in the form

d(t) = d0 = constant‚ n � t � n + s
0 ‚ n + s < t < n +T

�
(6)

Here, T is the period of time between infusions, n = 0‚ T‚ 2T‚ . . ., and t is the infusion duration. A similar

expression was used for the infusion rate of the anti-angiogenic drug, /(t).
All the functions and parameters appearing in Equations (1–6) are positive. With Equations (2–5),

Equations (1.a–e) can be rewritten as

dN1(t)

dt
= a1N1 1 -

N1

k1

� �
- q1N1N2 - p1

N1Y

a1 +N1

(7:a)

dN2(t)

dt
= a2N2 1 -

N2

k2 + cN3

� �
- q2N1N2 - p2

N2Y

a2 +N2

(7:b)

dN3(t)

dt
= a3N3 1 -

N3

k3

� �
+ bN2 - p3

N3W

a3 +N3

(7:c)

dY(t)

dt
= d(t) - nY (7:d)

dW(t)

dt
=/(t) - gW (7:e)

Equations (7.a–e) are subjected to initial conditions given by

N1(0) =N10 (7:f)

N2(0) =N20 (7:g)

N3(0) =N30 (7:h)

Y(0) = 0 (7:i)

W(0) = 0 (7:j)

Here, N10 > 0, N20 > 0, and N30 > 0 are the numbers of normal, tumor, and endothelial cells, respectively,

at the beginning of the chemotherapy treatment. We consider that no chemotherapy or anti-angiogenic

drugs are encountered in the body when the treatment is started [see Eqs. (7.i,j)]. The number of tumor cells

can be estimated from its size; a cancer of 10mm in diameter contains approximately 109 cells and 1 g of

mass, while the whole human body contains about 1013 cells (Spratt et al., 1996).

3. STATE ESTIMATION PROBLEM AND METHOD OF SOLUTION

In order to define the state estimation problem, consider a model for the evolution of the vector x in the

form (Arulampalam et al., 2001; Ristic et al., 2004)

xk =Fk(xk - 1‚ vk - 1) (8:a)

where the subscript k = 1‚ 2‚ . . . , denotes a time instant tk in a dynamic problem. The vector x 2 Rnx

contains the state variables to be dynamically estimated and v 2 Rnv is the state noise vector. Consider also

that measurements zk 2 Rnz are available at tk, k = 1‚ 2‚ . . . . The measurements are related to the state

variables x in the form

zk =Hk(xk‚ nk) (8:b)

where n 2 Rnn is the measurement noise. Equation (8.b) is referred to as the observation (measurement)

model.

The state estimation problem aims at obtaining information about xk based on the state evolution model

(8.a) and on the measurements z1:k = fzi‚ i = 1‚ . . . ‚ kg given by the observation model (8.b) (Kalman, 1960;

Sorenson, 1970; Maybeck, 1979; Liu and Chen, 1998; Carpenter et al., 1999; Doucet et al., 2000, 2001;
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Arulampalam et al., 2001; Winkler, 2003; Andrieu et al., 2004a,b; Kaipio and Somersalo, 2004; Ristic

et al., 2004; Kaipio et al., 2005; Del Moral et al., 2006, 2007; Welch and Bishop, 2006; Johansen and

Doucet, 2008; Orlande et al., 2012). The evolution-observation model given by Equations (8.a,b) is based

on the following assumptions (Maybeck, 1979; Winkler, 2003; Kaipio and Somersalo, 2004):

(i) The sequence xk for k = 1‚ 2‚ . . . , is a Markovian process; that is,

p(xkjx0‚ x1‚ . . . ‚ xk - 1) = p(xkjxk - 1) (9:a)

(ii) The sequence zk for k = 1‚ 2‚ . . . , is a Markovian process with respect to the history of xk; that is,

p(zkjx0‚ x1‚ . . . ‚ xk) = p(zkjxk) (9:b)

(iii) The sequence xk depends on the past observations only through its own history; that is,

p(xkjxk - 1‚ z1:k - 1) = p(xkjxk - 1) (9:c)

where p (ajb) denotes the conditional probability of a when b is given.

In addition, for the evolution-observation model given by Equations (8.a,b), it is assumed that for isj the

noise vectors vi and vj, as well as ni and nj, are mutually independent and also mutually independent of the

initial state x0. The vectors vi and nj are also mutually independent for all i and j (Kaipio and Somersalo, 2004).

This article deals with the filtering problem, concerned with the determination of p(xkjz1:k). By assuming that

p(x0jz0) = p(x0) is available, the posterior probability densityp(xkjz1:k) is then obtained with Bayesian filters in

two steps: prediction and update (Kalman, 1960; Sorenson, 1970; Maybeck, 1979; Liu and Chen, 1998;

Carpenter et al., 1999; Doucet et al., 2000, 2001; Arulampalam et al., 2001; Liu and West, 2001; Winkler, 2003;

Andrieu et al., 2004a,b; Kaipio and Somersalo, 2004; Ristic et al., 2004; Kaipio et al., 2005; Del Moral et al.,

2006 , 2007; Welch and Bishop, 2006; Johansen and Doucet, 2008; Orlande et al., 2012). In the prediction step,

the particles are advanced in time with the state evolution model, providing a prior distribution for the state

variables. In the update step, the information provided by the measured data is taken into account through a

likelihood function, which is adjoined to the prior distribution by utilizing Bayes’s theorem.

The particle filter method is a Monte Carlo technique for the solution of state estimation problems.

Monte Carlo techniques are the most general and robust approaches to nonlinear problems and/or non-

Gaussian distributions. The key idea is to represent the required posterior density function by a set of

random samples (particles) with associated weights, and to compute the estimates based on these samples

and weights. As the number of samples is increased, this Monte Carlo characterization becomes an

equivalent representation of the posterior probability function, and the solution approaches the optimal

Bayesian estimate (Kalman, 1960; Sorenson, 1970; Maybeck, 1979; Liu and Chen, 1998; Carpenter et al.,

1999; Doucet et al., 2000, 2001; Arulampalam et al., 2001; Liu and West, 2001; Winkler, 2003; Andrieu

et al., 2004a,b; Kaipio and Somersalo, 2004; Ristic et al., 2004; Kaipio et al., 2005; Del Moral et al., 2006,

2007; Welch and Bishop, 2006; Johansen and Doucet, 2008; Orlande et al., 2012).

Let fxi0:k : i = 0‚ . . . ‚Ng be the particles with associated normalized weights fwi
k : i = 0‚ . . . ‚Ng and

x0:k = fxj : j = 0‚ . . . ‚ kg be the set of all state variables up to tk, where N is the number of particles. Then, the

marginal distribution at time tk, which is of interest for the filtering problem, can be approximated as

(Kalman, 1960; Sorenson, 1970; Maybeck, 1979; Liu and Chen, 1998; Carpenter et al., 1999; Doucet et al.,

2000, 2001; Arulampalam et al., 2001; Liu and West, 2001; Winkler, 2003; Andrieu et al., 2004a,b; Kaipio

and Somersalo, 2004; Ristic et al., 2004; Kaipio et al., 2005; Del Moral et al., 2006, 2007; Welch and

Bishop, 2006; Johansen and Doucet, 2008; Orlande et al., 2012)

p(xkjz1:k) �
XN
i = 1

wi
kd(xk - x

i
k) (10)

with weights computed from (Arulampalam et al., 2001; Ristic et al., 2004):

wi
k / wi

k - 1p(zkjxik) (11)

where d(.) is the Dirac delta function.
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The sequential application of the particle filter might result in the degeneracy phenomenon, characterized

by very few particles with negligible weight. Because of the degeneracy phenomenon, a large computational

effort is used to update particles that do not significantly contribute for the approximation of the posterior

density function. This problem can be overcome with a resampling step in the application of the particle filter.

Resampling deals with the elimination of particles originally with low weights and the replication of particles

with high weights. Resampling can be performed if the number of effective particles (particles with large

weights) falls below a certain threshold number (Kalman, 1960; Sorenson, 1970; Maybeck, 1979; Liu and

Chen, 1998; Carpenter et al., 1999; Doucet et al., 2000, 2001; Arulampalam et al., 2001; Liu and West, 2001;

Winkler, 2003; Andrieu et al., 2004a,b; Kaipio and Somersalo, 2004; Ristic et al., 2004; Kaipio et al., 2005;

Del Moral et al., 2006, 2007; Welch and Bishop, 2006; Johansen and Doucet, 2008; Orlande et al., 2012).

Alternatively, resampling can also be applied indistinctively at every instant tk, as in the sampling importance

resampling (SIR) algorithm described in (Arulampalam et al., 2001; Ristic et al., 2004). Although the

resampling step reduces the effects of the degeneracy problem, it may lead to a loss of diversity and the

resultant sample may contain many repeated particles. Indeed, this problem, known as sample impoverish-

ment, can be severe in the case of small state evolution noise (Arulampalam et al., 2001; Doucet et al., 2001;

Ristic et al., 2004). With the ASIR algorithm an attempt is made to overcome these drawbacks, by performing

the resampling step at time tk- 1, with the available measurement at time tk (Arulampalam et al., 2001; Doucet

et al., 2001; Ristic et al., 2004). The resampling is based on some point estimate lik that characterizes

p(xkjxik - 1), which can be the mean of p(xkjxik - 1) or simply a sample of p(xkjxik - 1).
We note that the functions Fk(.) and Hk(.), in the evolution and observation models, respectively, contain

several constant parameters, here denoted as the vector h. The above description of the particle filter

method was based on a deterministic vector, h. However, in general, such parameters are not deterministic.

Therefore, the samples need to be extended to fxik‚ hik : i = 0‚ . . . ‚Ng. The subscript k for the parameters h
and associated quantities is used to indicate that they refer to the posterior distribution at time tk; it does not

mean that such quantities are time dependent (Liu and West, 2001).

In this work, the algorithm developed by Liu and West (2001), and based on the ASIR algorithm, is used

for the solution of the state estimation problem with the evolution model given by Equations (7.a–e).

Therefore, the vector of state variables is given by

xT = [N1‚N2‚N3‚ Y‚W] (12)

and the vector of parameters is given by

hT = [a1‚ a2‚ a3‚ k1‚ k2‚ k3‚ q1‚ q2‚ b‚ p1‚ p2‚ p3‚ a1‚ a2‚ a3‚ n‚ g‚ c] (13)

By using Bayes’s theorem, the posterior distribution p (xk, hjzl:k) can be written as (Liu and West, 2001)

p(xk‚ hjz1:k) / p(zkjxk‚ h)p(xkjh‚ z1:k - 1)p(hjz1:k - 1) (14)

In the algorithm developed by Liu and West, uncertainties in the model parameters are taken into

account through Gaussian kernel smoothing by assuming (Liu and West, 2001)

p(hjz1:k - 1) �
XN
i = 1

wi
k - 1N(hjmi

k - 1‚ h
2Vk - 1) (15)

where N ($j m, S) is a Gaussian density with mean m and covariance matrix S, while h is a smoothing

parameter and Vk - 1 is the Monte Carlo posterior covariance matrix at time tk - 1. Equation (15) shows that

the density p(hjz1:k - 1) is a mixture of N(hjmi
k - 1‚ h

2Vk - 1) distributions weighted by the sample weights

wi
k - 1. The kernel locations are specified by using the following shrinkage rule (Liu and West, 2001):

mi
k - 1 =Ah

i
k - 1 + (1 -A)�hk - 1 (16)

where A=
ffiffiffiffiffiffiffiffiffiffiffi
1 - h2

p
and �hk - 1 is the mean of h at time tk - 1. The shrinkage factor A is computed as (Liu and

West, 2001)

A =
3e - 1
2e

(17)

where 0.95 < e < 0.99.
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Table 1 summarizes the basic steps of Liu and West’s algorithm (Liu and West, 2001), as applied for the

advancement of the particles from time tk - 1 to time tk.

4. RESULTS AND DISCUSSION

The state estimation problem under analysis in this work, involving the estimation of the vector x given

by Equation (12) and taking into account uncertainties in the vector of parameters h given by Equation (13),
was solved with simulated measurements of the numbers of tumor and normal cells. For practical appli-

cations, uncertainties in the evolution model can be estimated through off-line Monte Carlo simulations,

which may even take into account errors on the use of reduced models (Kaipio and Somersalo, 2004), while

uncertainties in the observation model can be accounted for through calibration of the measurement

techniques. Since this work utilizes simulated measurements, and its main objective is to the demonstrate

the capabilities of the state estimation problem as applied to the analysis of tumor growth, uncertainties in

the state evolution and measurement models, as well as on the model parameters, were modeled as

uncorrelated, additive, and Gaussian, with zero mean and known covariance matrices.

The simulated measurements were generated from the numerical solution of the forward problem given

by Equations (7.a–j), with the parameters specified in Table 2 that satisfy inequalities imposed by bio-

logical restrictions (Pinho et al., 2013) and with the initial conditions N10 = 1013 cells, N20 = 109 cells,

N30 = 102 cells, and Y(0) =W(0) = 0mg. Other conditions used to generate the simulated measurements are

described below.

The decay parameter x used in this work was computed based on the half-life of GEMZAR, which, for

men of age of 79 years, is t1/2 = 79min (Data Sheet of GEMZAR, 2011). We note that the half-life of such

drug is influenced by its infusion duration, age, and gender. Furthermore, such drug follows a two-

compartment model of pharmacokinetics, but no information can be found in the literature on the model

parameters. Hence, a first-order pharmacokinetic model was used in this work, as described above.

Table 1. Liu and West’s Algorithm (Liu and West, 2001)

Step 1

Find the mean �hk - 1 of the parameters h at time tk - 1.

Step 2

For i = 1‚ . . . ‚N compute mi
k - 1 with Equation (16), draw new particles xik from the prior density p(xkjxik - 1‚mi

k - 1), and
then calculate some characterization lik of xk. Use the likelihood density to calculate the corresponding weights

wi
k = p(zkjlik‚mi

k - 1)w
i
k - 1.

Step 3

Calculate the total weight t =Si w
i
k and then normalize the particle weights, that is, for i = 1‚ . . . ‚N let wi

k = t - 1wi
k.

Step 4

Resample the particles as follows:

Construct the cumulative sum of weights (CSW) by computing ci = ci - 1 +wi
k for i= 1‚ . . . ‚N, with c0 = 0

Let i= 1 and draw a starting point u1 from the uniform distribution U[0,N - 1]

For j = 1‚ . . . ‚N
Move along the CSW by making uj = u1 +N - 1(j - 1)

While uj > ci make i = i + 1
Assign samples x

j
k - 1 = x

i
k - 1‚m

j
k - 1 =m

i
k - 1, and ljk = l

i
k

Assign sample weights wj
k=N - 1

Assign parent ij= i

Step 5

For j = 1‚ . . . ‚N draw samples hjk from N(hjkjm
ij
k - 1‚ h

2Vk - 1), by using the parent ij.

Step 6

For j = 1‚ . . . ‚N draw particles xjk from the prior density p(xkjxijk - 1‚ hjk), by using the parent ij, and then use the

likelihood density to calculate the correspondent weights w
j
k =p(zkjx

j
k‚ h

j
k)=p(zkjl

ij
k ‚m

ij
k - 1).

Step 7

Calculate the total weight t =Sj w
j
k and then normalize the particle weights, that is, for j = 1‚ . . . ‚N let wj

k= t- 1 wj
k.
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GEMZAR is used for the treatment of different kinds of cancer, but as one of the main chemotherapy

agents for pancreatic cancer (Schneider et al., 2005; Ghaneh et al., 2008; Data Sheet of GEMZAR, 2011;

Ng et al., 2012; Tokh et al., 2012). Pancreatic cancer is one of the major causes of cancer death and remains

a challenge for the oncology community. When diagnosed, the majority of patients present with advanced

disease and few (less than 15%) are eligible for a resection surgery. Regretfully, advances in treating

Table 2. Parameters Used in the Simulations

(Pinho et al., 2013)

Parameter Value

a1, day
- 1 6.8 · 10 - 3

a2, day
- 1 10 - 2

a3, day
- 1 2· 10 - 3

k1, cell 2 · 1015

k2, cell 1.95 · 1011

k3, cell 2.1 · 104

q1, cell
- 1 day- 1 3.6 · 10 - 15

q2, cell
- 1 day- 1 3.6 · 10 - 18

b, day - 1 4· 10 - 3

p1, mg- 1 day- 1 2.4 · 10 - 5

p2, mg- 1 day- 1 40

p3, mg- 1 day- 1 0

a1, cell 2.2 · 1015

a2, cell 9 · 1011

a3, cell 0

n, day - 1 12.63

g, day - 1 0

g 0.15

Table 3. Computational Times, RMS, and NRMS Errors for Different Numbers

of Particles, Obtained with Standard Deviations of 5% for the State Evolution Model,

Measurements, and Model Parameters

Number of particles

100 200 500 1000 2000

CPU time, s 238 475 1181 2307 4998

RMS errors N1, cell Mean 8.4 · 1011 8.2 · 1011 8.1 · 1011 8.0 · 1011 7.6 · 1011

Standard deviation 4.5 · 1010 4.4 · 1010 2.8 · 1010 2· 1010 1.5 · 1010

N2, cell Mean 1.3 · 108 1.3 · 108 1.3 · 108 1.3 · 108 8.9 · 107

Standard deviation 8.5 · 106 7.7 · 106 5· 106 3.4 · 106 2.4 · 106

N3, cell Mean 3.3 · 105 3.1 · 105 3.0 · 105 2.9 · 105 2.4 · 105

Standard deviation 5.5 · 104 5.4 · 104 3.4 · 104 2 · 104 2· 104

Y, mg Mean 7· 10 - 4 6.6 · 10 - 4 5.5 · 10 - 4 5.1 · 10 - 4 4.9 · 10 - 4

Standard deviation 6.2 · 10 - 4 3.9 · 10 - 4 2.6 · 10 - 4 1.7 · 10 - 4 1.5 · 10 - 4

NRMS errors N1, cell Mean 0.0373 0.0363 0.0357 0.0357 0.0335

Standard deviation 0.0020 0.0019 0.0012 0.0009 0.0007

N2, cell Mean 0.0392 0.0388 0.0386 0.0386 0.0271

Standard deviation 0.0026 0.0023 0.0015 0.0010 0.0007

N3, cell Mean 0.0283 0.0267 0.0255 0.0246 0.0204

Standard deviation 0.0047 0.0046 0.0029 0.0017 0.0017

Y, mg Mean 0.1090 0.1034 0.0860 0.0797 0.0768

Standard deviation 0.0974 0.0613 0.0409 0.0267 0.0236

Values shown in the table for the RMS errors represent the mean and the standard deviation of 100 runs of the particle filter with

different sets of measurements. For each run, RMS errors were summed up for all times that the solution was computed.

NRMS errors are the RMS errors divided by the maximum exact values of the corresponding state variables.
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locally advanced pancreatic cancer have been few and modest, and prognosis still remains poor after

surgery, with a median survival of about 13.3 months and a 5-year survival rate of about 10.5%. Therefore,

neoadjuvant chemotherapy plays a fundamental role for the treatment of pancreatic cancer (Ghaneh et al.,

2008). On the other hand, the median survival with the recommended protocol of GEMZAR is still of the

order of 6 months (Data Sheet of GEMZAR, 2011). We note, however, that recent promising results show

that molecular analysis of circulating tumor cells may identify candidate therapeutic targets to prevent the

distal spread of this lethal form of cancer (Yu et al., 2012).

Although it has been shown that the antitumor efficacy with metronomic low-dose GEMZAR

schedule was equivalent to that of conventional dosing in a model of human pancreatic carcinoma, anti-

angiogenic effects have been recently identified (Laquente et al., 2008). Other recent findings show the

efficacy of combined use of GEMZAR and anti-angiogenic drugs in the treatment of pancreatic cancer

(Awasthi et al., 2012; Breuer et al., 2013). Anyhow, the simulated measured data used in this work were

generated for a case involving a standard chemotherapy protocol for the treatment of pancreatic cancer

based only on GEMZAR, without the administration of anti-angiogenic drugs, that is, W(t) = 0mg. The

protocol consists of one intravenous administration per week for three consecutive weeks, followed by

one week of rest. In the cases studied, 1700mg of GEMZAR was administered within 30 minutes (Data

Sheet of GEMZAR, 2011), so that d0 = 81600mg day - 1 and t = 0.021 day. The simulated measurements

of the numbers of tumor and normal cells were supposedly available periodically, every seven days after

beginning of the treatment. The solution of the forward problem given by Equations (7.a–e) for the

generation of the simulation measurements, as well as to advance the particle filter at each time instant,

was obtained by using the function ode15s of the Matlab platform. The computer codes developed in

FIG. 1. Estimation of the number of tumor cells for (a) 500 particles, (b) 1000 particles, and (c) 2000 particles.
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this work, for the solution of the forward and state estimation problems, can be obtained from the

corresponding author upon request.

Before addressing the results obtained for the present state estimation problem, the effects of the number

of particles on the solution were examined, by assuming standard deviations of 5% of the corresponding

maximum values for the state evolution model, measurements, and model parameters. Table 3 presents the

computational times obtained with one single run of the particle filter for different numbers of particles.

Computational times in this work were obtained using the Matlab platform, on a computer with an Intel i7

CPU and 4 GB of RAM. This table also presents the means and the standard deviations of the RMS errors

obtained for the state variables, with 100 runs of the particle filter, for each number of particles. Such

number of runs was used in order to avoid any bias resulting from the simulated measurements on the

analysis of the accuracy of the present solution approach. The RMS errors were computed as follows:

RMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

XR
r = 1

(xr‚ est - xr‚ exa)2

vuut (18)

where R = 100 is the number of runs, x denotes a state variable or a parameter, and the subscripts est and exa

denote estimated and exact quantities, respectively. The RMS errors presented in Table 3 are the sum of the

RMS errors for each time that the variables were estimated. The normalized RMS errors (NRMS), obtained

by dividing the RMS errors by the maximum values of the corresponding state variables, are presented in

Table 3 as well. Table 3 shows that the computational times linearly increase with respect to the number of

particles. In general, the means and the standard deviations of the RMS errors decrease when the number of

FIG. 2. Estimation of the number of endothelial cells for (a) 500 particles, (b) 1000 particles, and (c) 2000 particles.
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particles is increased, as expected. For 2000 particles, the means of the RMS errors correspond to

3.35%, 2.71%, 2.04%, and 7.68% of the maximum values of N1, N2, N3, and Y, respectively. Relatively,

the most uncertain estimated variable is the mass of drug in the body, Y, for which the standard deviation

of the NRMS error corresponds to 2.36% of its maximum value. On the other hand, the standard

deviation for the NRMS error of N3, for which measurements are also not available, is 0.17%, and its

mean of the NRMS error is the smallest (2.04%). For the variables for which measurements are

available, the standard deviation of the NRMS error is 0.07%. Table 3 clearly shows that the estimated

state variables are more accurate than the available measurements and than the evolution model, which

contained errors with standard deviations of 5% of the maximum values of the corresponding state

variables.

Figures 1 and 2 present the exact values and the results for the estimation of the numbers of tumor and

endothelial cells, respectively, obtained with 500, 1000, and 2000 particles. Such state variables were

chosen for this analysis because measurements are available for the number of tumor cells, but not for the

number of endothelial cells. The behaviors presented in these figures are typical of those for the other state

variables. The results are presented in the form of the means and of the 99% confidence bounds of each

state variable, based on one single run of the particle filter. Figure 1 also presents the simulated mea-

surements, which were taken every 7 days, as well as their 99% confidence bounds. Although the RMS

errors basically decrease by increasing the number of particles (see Table 3), we note in Figures 1 and 2

that, in the graph scale, the results are very little affected by increasing the number of particles and

estimated means tend to closely follow the exact values of the number of tumor cells, as well as the number

of endothelial cells.

FIG. 3. Estimation of state variables with 2000 particles and standard deviations of 5% for the state evolution model,

measurements, and model parameters.
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Figure 3 presents the estimations of the state variables, obtained with 2000 particles and standard

deviations of 5% of the corresponding maximum values for the state evolution model, measurements, and

model parameters. Similarly, the random behavior of selected model parameters, namely, a1, a2, k2, and n,
is presented in Figure 4. We note in Figure 3b and c that, with the proposed model and with the current

model parameters, the numbers of tumor and endothelial cells increase despite the action of chemotherapy,

in the time period selected for the analysis. The drug infusion in accordance with the protocol of one

administration per week for three consecutive weeks, followed by one week of rest, is apparent in Figure

3d. Figure 3a–d shows that the estimated means are in excellent agreement with the exact values of the state

variables. The 99% confidence bounds for the numbers of normal and tumor cells increase during the

periods between measurements (see Fig. 3a,b). Such bounds for the number for endothelial cells and the

mass of drug in the body (see Fig. 3c,d) relatively increase as time evolves, due to the lack of measurements

of such variables. However, these variables are still quite accurately estimated by using only the mea-

surements of tumor and normal cells. The model parameters show an excellent agreement with the exact

ones, as illustrated by Figure 4a–d. Such behavior for a1, a2, k2, and n is representative for the other

parameters.

Results similar to those of Figures 3 and 4 are presented in Figures 5 and 6, for standard deviations of

10% of the corresponding maximum values for the state evolution model, measurements, and model

parameters. Figures 5 and 6 show that excellent estimates are obtained for the means of state variables and

parameters, even with such extremely large uncertainties in the evolution model, measurements, and model

parameters. As expected, the 99% confidence intervals are wider than those for standard deviations of 5%

(see Figs. 3 and 4), as a result of the larger uncertainties in the present case.

FIG. 4. Estimation of selected model parameters with 2000 particles and standard deviations of 5% for the state

evolution model, measurements, and model parameters.
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5. CONCLUSIONS

This work dealt with the solution of a state estimation problem for the monitoring of tumor growth. The

forward model was based on a system of nonlinear ordinary differential equations. The state estimation

problem was solved by using simulated measurements of the numbers of tumor and normal cells. Un-

certainties in the evolution model, measurements, and in the model parameters were taken into account in

the solution procedure, which was based on the algorithm proposed by Liu and West that makes use of the

ASIR particle filter. Such uncertainties were assumed as additive, Gaussian, with zero means and known

covariance matrices.

Results obtained with uncertainties of standard deviations of 5% and 10% (of the maximum values of

state variables, measurements, and model parameters) reveal that the present solution procedure is very

accurate and robust. Even for such large values of standard deviations, the estimated means are in excellent

agreement with the exact values of state variables and model parameters. The corresponding uncertainties

of the estimated quantities could be appropriately identified by using an adequate number of particles in

the solution approach. In addition, accurate results could be obtained within computational times of about

20 minutes by using only 500 particles.
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