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ABSTRACT

To understand disease relationships in terms of their genetic mechanisms, it is important to
study the common genetic basis among different diseases. Although discoveries on pleio-
tropic genes related to multiple diseases abound, methods flexibly applicable to various types
of datasets generated from different studies or experiments are needed to gain big pictures
on the genetic relationships among a large number of diseases. We develop a set of genetic
similarity measures to gauge the genetic overlap between diseases, as well as several esti-
mators of the number of overlapping disease genes between diseases. These methods are
based on ranked gene lists so that they could be flexibly applied to different types of data.
We first investigate the performance of the genetic similarity measure for evaluating the
similarity between human diseases in simulation studies. Then we apply the method to
diseases in the OMIM database. We show that our proposed genetic measure achieves
superior performance in explaining phenotype similarities between diseases compared to
simpler methods. Furthermore, we identified common genes underlying the genetic overlap
between disease pairs. With an example of five vision-related diseases, we demonstrate how
our methods can provide insights into the relationships among diseases based on their
shared genetic mechanisms.
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1. INTRODUCTION

Exploring the genetic basis of complex human diseases has long been an important aspect in

understanding disease etiology. Genome-wide association studies (GWAS) have succeeded in identi-

fying an immense amount of variants associated with various traits. Gene expression studies have identified

many genes and pathways whose expression profiles change with different phenotypes. These findings have

provided major insights into the biological mechanisms of common genetic variants underlying complex

traits, especially human diseases. Susceptibility genes common to different related diseases are found in

numerous studies (Hindorff et al., 2009; Jawaheer et al., 2001; Danoy et al., 2010; Smyth et al., 2008;

Scherrer et al., 2003; Blonigen et al., 2005; Toulopoulou et al., 2007; Kalaria and Ballard, 1999; Eyre et al.,

2010), providing evidence in neurology, psychiatry, and some other autoimmune diseases that several

different diseases may share a certain extent of genetic overlap. These studies suggest that exploring the
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common genetic risk factors for related diseases or phenotypes can help advance our understanding of disease

etiologies (Blonigen et al., 2005). The genetic overlap can also help identify new disease genes and suggest

important common biological pathways that could be informative in identifying therapeutic targets for

multiple diseases (Eyre et al., 2010).

On the other hand, the rising interest in identifying pleiotropic genes from the genetic findings of related

diseases (Sivakumaran et al., 2011) calls for efficient methods to identify disease-associated variants

common to multiple diseases. To study the genetic overlap among different phenotypes, Rzhetsky et al.

(2007) proposed a probabilistic model to describe the linkage of an individual’s genetic variation to

multiple disease status at different stages of one’s life, and built a phenotypic disease network consisting of

657 diseases. This analysis indicated that genetic overlap among different disease phenotypes is so

prevalent that most disorders studied are rooted in these shared genetic variations one way or another.

Cotsapas et al. (2011) developed a method called cross phenotype meta-analysis (CPMA), which detects

the association of an SNP to multiple phenotypes, and clustered SNPs potentially associated with multiple

immune diseases. Suthram et al. (2010) used gene expression data of several diseases and a protein

interaction network to study the common ‘‘functional modules’’ for diseases. Linghu et al. (2009) studied

the association between diseases by their mutual predictability, a quantitative measure of how genes related

to one disease can predict the genes related to the other disease. Another study in genetic overlap is

between Crohn’s disease (CD) and psoriasis (PS) (Ellinghaus et al., 2012). Indications of overlapping

genetic or environmental factors between these two diseases include the observation that the two diseases

occur together more frequently than expected, and that individual GWAS studies for each of them find

common SNPs that are associated with both diseases.

Moreover, when there are multiple studies for each disease, the study of genetic overlap among diseases

may involve ranking genes for each study first then using data integration methods to integrate multiple

ranked lists (Adler et al., 2009; Boulesteix and Slawski, 2009; Deng et al., 2008; Jurman et al., 2012; Lin

and Ding, 2009; Lin, 2010; Pihur et al., 2009). Therefore, it is necessary to consider the problem of finding

genetic overlap among diseases under a more general setting, based on ranked lists of genes that could be

obtained from any heterogeneous types of studies, rather than from a specific type of data or a homoge-

neous study. A closely related article (Natarajan et al., 2012) studied the problem of list-intersection test for

gene lists, including its control of Type I error, within set FDR and sensitivity. Several other studies

( Jurman et al., 2012; Subramanian et al., 2005; Fury et al., 2006; Yang et al., 2006; Roider et al., 2009;

Plaisier et al., 2010; Ni and Vingron, 2012; Antosh et al., 2013) also addressed related topics of detecting

overlap between ranked gene lists. However, most methods either use a fixed cutoff position and only

consider intersection between lists on top of it, or use a weighting parameter to impose a higher weight on

the top part of lists; or by using varying cutoffs to select the one that produces the most significant result,

then evaluate the significance of that result, which induces heavier computation burden.

In this article we develop novel methods to study disease relationships based on their genetic similarity. We

find in simulation studies a parameter-free statistic and an estimator of the genetic overlap size that show

relatively good performance, indicating strong medical significance in application. Then we apply our proposed

WeiSumE genetic similarity measure to detect genetic overlaps between diseases from the OMIM database. In

addition, we include another application on diseases in the catalog of GWAS from National Human Genome

Research Institute in the Supplementary Material (available online at www.liebertonline.com/cmb).

2. METHODS

We propose two sets of statistics based on ranked lists to detect and measure the extent of genetic overlap

between diseases given a list of genes ranked according to the importance of their contributions to each

disease: scan statistics Kr and SM, and weighted sum statistics WeiSumE and WeiSumV.

Figure 1 is a schematic outline of the workflow of our methods. Given two diseases A and B, we obtain

for each disease a list of genes ranked by their strength of association to the disease, regardless of the types

of experiments that produce these ranks. Then based on our proposed genetic similarity measures, we

compute the value of dissimilarity between diseases A and B, and similarly for all other disease pairs,

giving a dissimilarity matrix. Finally, we identify the common genes contributing to the genetic overlap

between each disease pair and depict the pattern of the genetic overlap among the diseases of interest. In

addition, we propose three estimators for the number of overlapping disease genes.
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2.1. Testing whether genetic overlap exits using scan statistics

2.1.1. A basic statistic and its extensions. Given n genes and the ranked list of these genes

according to their relationship to each of two diseases, we first introduce a basic statistic that measures the

extent of the genetic overlap between the two diseases, then propose some extensions on this statistic.

Suppose through some previous studies we are given two ranked lists, and in each list genes are ranked

decreasingly based on their contributions to a disease. To address the question of whether the two diseases

have a common genetic foundation in their respective etiologies, or in other words a significant ‘‘genetic

overlap,’’ we develop a basic statistic to describe the extent of this ‘‘genetic overlap’’ as follows. Let Gd(k),

d = 1, 2 denote the set of top k ranked genes in list d corresponding to the d-th disease. We propose the

following statistic:

K = minfk : G1(k)
\

G2(k) 6¼ Fg‚

FIG. 1. Outline of the methods. Given two diseases A and B, we obtain for each disease a list of genes ranked by their

strength of association to the disease, regardless of the types of experiments that produce these ranks. Then based on our

proposed genetic similarity measures, we can compute the value of dissimilarity between diseases A and B, and

similarly for all other disease pairs, giving a dissimilarity matrix. The dissimilarity matrix provides a quantitative

estimate of the genetic overlapping pattern among a set of diseases, which is readily applicable to further analysis.

Furthermore, we can identify the genes underlying the genetic overlaps and provide an overlapping pattern for a set of

diseases of interest.
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where F is the empty set. If two diseases have genetic overlaps, K is expected to be small. Under the null

model that the two ranked lists are random shuffling of the genes, the p-value can be defined as

p - value = P0(Kpk)‚

where k is the observed value of K for the two diseases.

This formulation of the null is equivalent to fixing the order of the n genes for one disease, randomly

order the genes for the other disease, and let

K = minfk : min
1pipk

fOigpkg‚

where Oi is the ranking order of the i-th gene for the second disease. Therefore, K follows the distribution of

a shuffled order of one sequence under the null hypothesis, and the p-value is:

P0(Kpk) = 1 -
Yk - 1

i = 0

1 -
k

n - i

� �
: (1)

Derivation of Equation 1 is given in section S2.1 in the Supplementary Materials.

We can further extend the above studies to r ‡ 1 overlaps. Let Kr be the minimum number of top ranked

genes needed to observe r overlapping genes. We use Kr as a statistic to test the hypothesis that the two

gene lists have overlaps versus the null hypothesis that the two ranks are not related (randomly shuffled)

(Chen and Karlin, 2007; Karlin and Chen, 2004). Similarly, the p-value is:

P0fKrpcg = 1 -
Xr - 1

c = 0

k
c

� �Qc - 1
i = 0 (k - i)

Q2k - c - 1
j = k (n - j)Qk - 1

l = 0 (n - l)
‚ (2)

where c is the observed value of Kr. Derivation of Equation 2 is given in section S2.2 of the Supplementary

Materials.

As in the use of r-scan statistics to locate genes or transcription factor–binding site clusters (Chen and

Karlin, 2007; Karlin and Chen, 2004; Ewens et al., 2006; Karlin and Brendel, 1992; Smith et al., 2005),

there is no gold standard for determining the optimal value of r for the Kr statistics, and actually, the

optimal value of r may really depend on the diseases of interest.

We may fix a prespecified value of r and use the statistic Kr as a test statistic. For a fixed type I error a,

we can find a threshold kr(a) to be the maximum c such that the p-value defined in Equation 2 is less than or

equal to a. We reject the null hypothesis that the two genetic diseases have no overlapping genes if the

observed Kr is less than or equal to kr(a). This test is valid in the sense that it has a controlled type I error

rate, and it should have reasonable power under the alternative hypothesis, since K1 should be small, and in

turn, all Kr’s should be smaller than expected under the null model.

In reality, we do not know the true number of overlapping disease genes, which makes it hard to fix r in

advance. In order to estimate r from the data rather than prespecifying it, we propose an alternative test

statistic as follows.

2.1.2. An alternative test statistic. Under the null hypothesis that the two diseases do not have

overlapping genes, we expect that the p-value using Kr, pr, will approximate a uniform distribution within

the unit interval [0, 1], although they are not independent for given diseases. On the other hand, under the

alternative hypothesis that the two diseases do have overlapping genes, the value of pr is expected to

decrease until r reaches the true number of overlaps. Thus, we can choose the smallest p-value among

p1‚ p2‚ � � � ‚ pM , where M is the maximum number of genes we consider. Let

RM = arg min
1prpM

pr: (3)

Note that RM is a random variable. The alternative statistic we use to test the null hypothesis versus the

alternative hypothesis is

SM = P(KRM
pkrM

)‚ (4)

where krM
is the observed value of KRM

for the real data.
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It is important to note that SM cannot be regarded as a p-value of the test though, since we are taking the

minimum of all pr for 1 £ r £ M. Instead it should be regarded as a test statistic.

Since SM follows the same distribution for a given total number of genes (n) and the maximum number of

genes to consider (M) under the null model, we may obtain the distribution of SM first using simulations as

described in section S2.3 in the Supplementary Material.

2.2. Testing whether genetic overlap exits using weighted sums

Section 2.1 proposed two sets of test statistics based on the number of overlapping genes up to a certain

position to gauge the overlap between two ranked lists. In this section, we will discuss a different set of test

statistics that take the complete overlapping pattern across two ranked lists into account. Yang et al. (2006)

proposed a similarity score (OrderedList), defined as the weighted sum of the number of overlapping genes

Xi on top of the lists up to each position i, with an exponentially decreasing weight e-bi, which we refer to

later as WeiSumO:

WeiSumO =
Xn

i = 1

e - biXi:

However, it is not clear how to choose parameter b for real studies.

Based on this idea, we proposed two weighted sums that normalize the number of overlapping genes Xi

by its expectation (WeiSumE) or by its standard deviation (WeiSumV):

WeiSumE =
Xn

i = 1

e - bi Xi

EXi

‚ (5)

WeiSumV =
Xn - 1

i = 1

e - bi Xi

r(Xi)
: (6)

where

EXi =
i2

n
and r(Xi) =

i(n - i)

n
ffiffiffiffiffiffiffiffiffiffi
n - 1
p ‚

since Xi follows a hypergeometric distribution Hyper(i; i, n).

Each of the three definitions of weighted sum statistics generates a weighted sum corresponding to a

certain b value, therefore giving three sets of statistics with respect to a set of possible b values. Simu-

lations can be used to obtain the null distributions and p-value pb for each b. Note that when b = 0,

WeiSumE simplifies to WeiSumE* as defined in Equation 11.

Similarly, as in section 2.1, for each of the three weighted sums we also propose one single statistic

across a series of b’s by choosing the minimum p-value:

Pm = min
b

pb‚

where pb is the p-value given by a weighted sum statistic with a specific b.

For the choice of b’s we adopt the default series of b values in the R package OrderedList (Yang et al.,

2006; Lottaz et al., 2006). There they set a minimum weight to 10 - 5, and the magnitude of b determines up

to what position of the list the assigned weight e - bi = 10 - 5. Then they set a series of positions i = 100,

150, 200, 300, 400, 500, 750, 1000, 1500, 2000, 2500, and take the corresponding b = - log(10 - 5)/i as the

default b series. In addition, we also add b = 0, imposing no exponential decay.

To determine pb’s and the p-value of the single statistic pm for each weighted sum (denoted as Wei-

SumX) out of WeiSumO, WeiSumE, and WeiSumV for a given list pair, we follow the procedure described

in section S2.4 in the Supplementary Material.

2.3. Estimating the number of overlapping disease genes

To determine the number of overlapping associated genes, we may look at RM as defined in Equation 3,

which gives the minimum p-value, and take the number of overlaps on top of the lists up to KRM
as an estimator:
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ô1 = XKRM
: (7)

Note that ô1 might not always equal RM since the number of overlaps actually observed in the top KRM

genes may be larger than RM. In addition, we propose a few alternative approaches to determine the number

of overlapping genes.

For any gene g, define the Bernoulli trial Bg = 1 if the gene ranks among the top Kr genes for both

diseases, and Bg = 0 otherwise:

O =
Xn

g = 1

Bg‚

where O is the number of overlapping genes in the top Kr of the ranked lists.

Let P0
n = P0(Bg = 1), the probability of a gene ranked among top Kr among both lists of length n, under the

null hypothesis H0 that the two diseases do not overlap. Then:

EH0
O = nP0

n = n
Kr

n

� �2

:

Also, the expected position on the list where the first overlap occurs under the null model is:

EH0
K1 =

Xn

k = 1

P0(K1qk): (8)

Intuitively, a true overlapping gene associated with both diseases is more likely to occur as an overlap

before a random overlap occurs, as we scroll down the lists. Therefore, we can estimate the maximum

position on the list where there is expected to be less than one random overlap, and take the number of

overlaps observed up to that position as an estimator of the number of overlapping genes:

ô2 = min
1prp100

fr : EH0
O = K2

r =n > 1g - 1

= min
1prp100

fr : Kr >
ffiffiffi
n
p
g - 1‚

(9)

or the number of overlaps observed earlier than the position in which a first random overlap is expected to

occur under the null model:

ô3 = min
1prp100

fr : Kr > EH0
K1g - 1: (10)

3. RESULTS

3.1. Simulation results summary

We conduct simulation studies to evaluate the performance of our methods under different conditions

and compare the best performing statistic from each category with one another in Table 1. The simulation

procedures and results are in Supplementary Material section S1.3. (Supplementary material is available

online at www.liebertonline/cmb)

Table 1. Comparison of Different Statistics in Simulation Studies

n 1000 6000 11000 25000

K1 32 56 63 63

S1 32 56 63 63

WeiSumE* 27 46 66 94

pm 32 53 64 73

For each length of gene list n, the number of parameter settings out of a total of 144 different settings

of a method shows the highest power, including ties, taking p-value threshold of 0.05.
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We find that one of our proposed statistics, WeiSumE*, excels in detecting genetic overlap between

longer gene lists, especially for n = 25000, which is about the number of genes in the full human genome,

therefore is most suitable for the study of human diseases:

WeiSumE� = n
Xn

i = 1

Xi

i2
‚ (11)

where Xi is the number of overlapping genes between two ranked gene lists among the top i ranked genes,

and n is the total number of genes in a list. This is a special case of the set of WeiSumE statistics as

explained in the Methods section. However, we will refer to it as WeiSumE in the Results section for

convenience.

Table 2 gives an example of the mean squared error of different estimators of the number of overlapping

genes in one parameter setting. It shows that ô3 gives the most reliable estimation of the number of disease

genes, especially for human data (n* 25, 000).

3.2. Genetic overlap of OMIM diseases

We apply our proposed genetic similarity measures to study diseases from the OMIM database online

and use ENDEAVOUR (2.44) (Aerts et al., 2006; Tranchevent et al., 2008) to rank the human genes.

ENDEAVOUR is a gene prioritization tool with various options of data sources. To ensure the reliability of

ranking, we consider diseases with at least five associated genes recorded in the OMIM database, which

gives a total of 89 diseases. Then for each disease, we take its corresponding OMIM genes as the training

genes to input into ENDEAVOUR, including all data sources provided, and rank all the human genes.

3.2.1. Consistency among different phenotype similarities. Before we move on to studying the

genetic relationships among the 89 OMIM diseases, it would be interesting to look at their phenotype

similarity first. We investigate three phenotype similarity measures: HPO (Robinson et al., 2008), Mim-

Miner (van Driel et al., 2006) and another similarity matrix provided in Lage et al. (2007). Supplementary

Figure S1 shows the rank of one similarity measure score versus another. Note that for each pair of

similarity measures, we only display disease pairs available in both phenotype similarity matrices. As is

shown in the figure, the three phenotype similarity measures weakly correlate with each other, demon-

strating the lack of consistency in such produced disease relationships.

3.2.2. Explaining phenotype similarity with genetic similarity. Seeing that consistency among

different phenotype similarities is low, we proceed to ask how well the genetic similarity measure Wei-

SumE can explain the phenotype similarity, taking MimMiner as an example. For comparison, we also

consider two other simpler measures of genetic similarity to see if the phenotype similarity can be ex-

plained with them as well. The first one (#OMIM) is simply the number of genes present in the OMIM

database for both diseases. Another measure (HyperP) is the p-value of a hypergeometric test using a fixed

cutoff, which is the probability of observing at least the number of overlapping genes between the two lists

up to a fixed cutoff position under the null hypothesis that the two lists are random permutation of each

Table 2. The Mean Squared Error of Different Estimators of the Number

of Overlapping Genes When r2 = 0.1

r2 0.1

n( · 1000) 1 6 11 25

ô1 (M = 5) 7.92 9.76 10.61 11.78

ô1 (M = 10) 9.46 12.68 13.88 15.79

ô1 (M = 20) 26.62 30.39 33.17 36.65

ô2 2.52 3.47 4.09 5.03

ô3 2.67 3.44 3.74 4.35

The r2 is a parameter describing the accuracy of the ranking algorithm; the higher r2 is, the less accurate the

ranking algorithm is. In addition, n · 1000 is the total number of genes in the genome, and M is the cutoff

position for a ô1, where only up to M overlapping genes are considered.
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other. We rank the WeiSumE genetic similarity, #OMIM similarity, HyperP similarity, and the MimMiner

phenotype similarity of all disease pairs, and compare all three genetic overlap measures with MimMiner to

obtain the average density fold change of each method, as shown in Figure 2. It shows that WeiSumE

performs the best out of the three methods from a genetic point-of-view to explain the MimMiner phe-

notype similarity without having to set a cutoff threshold as in HyperP.

Next we look into the disease pairs, where the genetic similarity and phenotype similarity disagree. For

example, the disease pair peeling skin syndrome and hypotrichosis 2 (HYPT2) displays very low Mim-

Miner phenotype similarity but very high genetic similarity. According to OMIM description, both diseases

are caused by mutations in the CDSN gene, where peeling skin syndrome is caused by a homozygous

mutation and HYPT2 is caused by a heterozygous mutation. Therefore, despite the lack of phenotype

similarity, this pair of diseases do share a common genetic basis. A contrary example is the pair of

maturity-onset diabetes of the young (MODY) and noninsulin-dependent diabetes mellitus (NIDDM),

which shows high MimMiner phenotype similarity but very low genetic similarity. MODY is an autosomal

dominant form of diabetes caused by insulin secretion defects, while NIDDM is a polygenic disease

characterized by insulin resistance. Therefore, these two subtypes of diabetes must be treated differently

despite their resemblance in phenotypes. These examples of discrepancy between genetic and phenotype

similarity demonstrate the importance of relating diseases based on their genetic mechanisms, since ef-

fective drug treatments and therapeutic interventions shall address the underlying mechanisms of diseases,

rather than phenotypic symptoms.

3.2.3. Identifying common genes underlying the genetic overlap. Having studied the ability of

our proposed genetic similarity measure to explain the phenotype similarity, we attempt to further identify

the common genes underlying the respective genetic mechanisms of the two diseases. For this purpose we

propose several estimators of the number of common disease genes based on ranked gene lists in the

Methods section, and take the estimated number of overlapping genes from the top of the lists to be the

common genes underlying the two disease mechanisms. From simulation study results shown in Table 2,

we will use the ô3 estimator.

HyperP_10

HyperP_20

HyperP_50

HyperP_100

HyperP_200

HyperP_500

HyperP_1000

WeiSumE

Average Density Fold Change

0.0 0.5 1.0 1.5 2.0 2.5

#OMIM HyperP

WeiSumE

#OMM

FIG. 2. Performance of WeiSumE explaining the MimMiner phenotype similarity, compared with two other simpler

methods, #OMIM and HyperP, with different cutoff positions. The average fold change is used as a measure for

performance here; detailed definitions and explanations are in the Supplementary Material section S1.1.1. In particular,

HyperP similarity performance is listed with varying cutoff positions 10, 20, 50, 100, 200, 500, 1000.
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In views of the genetic overlap sizes of disease pairs, as shown in Supplementary Figure S2, the majority

of disease pairs share genetic overlap to some extent, mostly around 1 to 16 overlapping genes. The

pleiotropy of genes, on the other hand, are moderate: Out of the full human genome that we ranked, 2920

genes are considered pleiotropic by our method. The distribution of pleiotropy extent of the genes is shown

in Supplementary Figure S3. We find that the extent of pleiotropy varies significantly. Some genes are

extremely pleiotropic and relate to a vastly diverse set of diseases, the most of which being the CREBBP

(CREB binding protein) gene. This gene plays important roles in many biological activities. For instance,

CREBBP may function as tumor suppressor gene or oncogene in prostate cancer, and may serve as

potential therapeutic target (Shaikhibrahim et al., 2011). Mutations in CREBBP result in neural tube defects

in mice (Bhattacherjee et al., 2009) and modest associations were also observed in humans (Lu et al., 2010).

Both results were reconfirmed in our study.

Next we take five eye-related diseases—Leber optic atrophy, macular degeneration (age-related, 1;

ARMD1), cataract (autosomal dominant), retinitis pigmentosa (RP), and colorblindness (partial, Deutan

series; CBD)—as examples and demonstrate how our genetic overlap measures explain their common

genetic basis. We plot in Figure 3 a heat map showing the dissimilarity quantile matrix of the five diseases

measured by WeiSumE dissimilarity measure, where each value is the fraction of the WeiSumE distri-

bution shown in Supplementary Figure S4 among all disease pairs that is less than the dissimilarity value of

the given disease pair. This figure provides clear evidence that cataract (autosomal dominant), RP and CBD

(partial, Deutan series) share a substantial common genetic basis, while Leber optic atrophy and ARMD1

appear to be genetically more distant to any other of the five diseases.

To further investigate the genes that contribute to their genetic overlap, Figure 4 shows a Venn diagram

of the number of genes underlying the genetic overlap among the five diseases. There is no gene underlying

all five eye-related diseases, conforming to the pattern shown in Figure 3 that Leber optic atrophy and

Genetic Dissimilarity of 5 Eye−related Diseases

LEBER OPTIC ATROPHY

ARMD1

CATARACT

RP

CBD

LE
BER O

PTIC
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TROPHY
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D1
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CBD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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FIG. 3. A heatmap of the WeiSumE dissimilarity quantile matrix among five eye-related diseases.
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ARMD1 are genetically distant to the other three diseases. However, it is interesting that two genes are

identified to be underlying the genetic overlap among four diseases, each contributing to Leber optic

atrophy or ARMD1 and the closely related three diseases, despite the low genetic overlap of Leber optic

atrophy or ARMD1 and the three. Under close investigation, we find that these two genes are CDH23

(cadherin-related 23) and COL7A1 (collagen, type VII, alpha 1), both widely pleiotropic, residing within

the very tail of the pleiotropy extent distribution in Supplementary Figure S3. CDH23, contributing to

Leber optic atrophy and the three close diseases, is underlying the genetic overlap of 171 disease pairs;

COL7A1, contributing to ARMD1 and the three close diseases, is underlying the genetic overlap of 1085

disease pairs. Mutations within both genes are shown in the literature (Schultz et al., 2011; Dighiero et al.,

2004) to potentially cause vision loss. In contrast, the 32 genes underlying the genetic overlap of cataract,

RP, and CBD include genes that are more specific to the three diseases, therefore contributing more

significantly to their genetic overlap. One example is the gene PDE6A (phosphodiesterase 6A, cGMP-

specific, rod, alpha), contributing to the genetic overlap among the three diseases exclusively. According to

NCBI records, this gene encodes a subunit of a key phototransduction enzyme and participates in processes

of transmission and amplification of the visual signal.

4. DISCUSSION

The traditional disease classification system groups diseases with similar clinical symptoms and phe-

notypic traits. Thus, diseases with entirely different underlying pathologies could be grouped together,

leading to similar treatment design. Such problems may be avoided if diseases can be classified based on

their genetic mechanisms. In fact, recent research showed that multiple diseases could share the same set of

malfunctional genes. Grouping diseases with similar pathogenesis mechanisms could inspire novel strat-

egies for effective repositioning existing drugs and therapies. The key challenge is how to assess the genetic

similarity between two diseases, and how to identify the contributing genes.

In this article, we aim to detect and identify genetic overlaps among different diseases. Two groups of

statistics and three estimators of the number of overlapping genes are developed. The first group is based on

scan statistics considering the number of overlapping top ranked genes between two lists. The second group

is based on the weighted sum of the numbers of overlapping top ranked genes between two lists. We

evaluate the effectiveness of these statistics by comparing their power in detecting genetic overlaps under a

variety of scenarios. We also study the effects of various parameters such as the reliability of the ranking,

the number of associated genes, the number of overlapping associated genes, and the total number of genes

under study. As expected, the reliability of the ranking significantly affects the power of these statistics.

In addition, the two groups of statistics have different merits. The scan-based statistics can be applied to

situations in which only a fraction of the top ranked genes are available for each disease, which is the case

FIG. 4. This Venn diagram shows the number of overlapping genes among any subset of diseases from the five eye-

related diseases.
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for the NIH catalog of GWAS, where only associations with p-value less than 10 - 5 are reported. Among

this group, the statistic K1 performs reasonably well in most situations. However, these statistics are

generally less powerful than the weighted sum statistics that consider all the elements in the lists. Among

the weighted sum statistics, WeiSumE performs very well in most scenarios we studied. Moreover, it

overcomes the difficulty of choosing weights for different diseases.

For applications, we use WeiSumE to measure genetic overlap among diseases in the OMIM database

based on ranked gene lists produced by ENDEAVOUR. We show that our method demonstrates superior

performance relative to other simpler methods in explaining the phenotype similarity. Furthermore, we look

into disease pairs displaying major discrepancy between their genetic and phenotypic similarity. For

disease pairs high in genetic similarity but low in phenotypic similarity, the known common genetic

variants responsible for these disease pairs support their common genetic basis. On the other hand, some

disease pairs show high phenotype similarity but low genetic similarity since mutations responsible for

these diseases may be involved in different pathways. In addition, we show the overall pattern of genetic

overlap sizes between disease pairs that we study, and the pattern of pleiotropy extent of genes. Finally we

demonstrate in a specific example of five vision-related diseases how our methods can provide important

biological insights into their genetic mechanisms.

Despite these significant findings, this study has some limitations. First, the similarity measures depend

purely on the ranked gene lists without explicitly considering their reliability. When experimental data from

multiple studies for each disease are available, we may be able to associate with each gene a confidence

score that describes quantitatively how the gene is related to the disease. Instead of transforming the

confidence score to a rank, which may reduce the power of detecting the genetic overlaps, we can use the

confidence score directly to study the disease relationships. Second, the statistics in this article depend on

the number of overlapping genes among the top genes for both lists. They have the advantages of being

simple and easy to compute. Nevertheless we may also consider statistics depending on the number of

overlapping genes among different numbers of top genes in the first list and the second list. Finally, we use

simulations to approximate the distributions of several statistics studied in this article. Theoretical results

on their distributions will help to compute the statistical significance more accurately and efficiently. These

are the topics for future studies.
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