
dipSPAdes:

Assembler for Highly Polymorphic Diploid Genomes

YANA SAFONOVA,1 ANTON BANKEVICH,1,2 and PAVEL A. PEVZNER1,3

ABSTRACT

While the number of sequenced diploid genomes have been steadily increasing in the last few
years, assembly of highly polymorphic (HP) diploid genomes remains challenging. As a
result, there is a shortage of tools for assembling HP genomes from the next generation
sequencing (NGS) data. The initial approaches to assembling HP genomes were proposed in
the pre-NGS era and are not well suited for NGS projects. To address this limitation, we
developed the first de Bruijn graph assembler, dipSPAdes, for HP genomes that signifi-
cantly improves on the state-of-the-art assemblers for HP diploid genomes.

Key words: de Bruijn graphs, diploid genomes, genome assembly, SPAdes assembler.

1. INTRODUCTION

While the number of sequenced diploid genomes have been steadily increasing in the last few

years, assembly of highly polymorphic (HP) diploid genomes remains challenging. The lion’s share

of diploid genomes (probably most) feature much higher polymorphism rates than the human genome

(&0.1%). Since assembly of HP diploid genomes is challenging, inbreeding is often a necessary step

to enable high-quality assemblies (Barriere et al., 2009). This strategy allows one to breed organisms with

&10–fold reduction in polymorphism rates after sufficient number of generations. However, the inbreeding

approach is time-consuming and often fails to generate viable offspring due to the high death rates of inbred

organisms (Barriere et al., 2009).

Assembly of HP diploid genomes is a complex computational problem. When two haplomes are very

similar, for example, as human haplomes that differ from each other by only &0.1% of nucleotides, both

haplomes are usually assembled as a single reference genome (with further analysis of SNPs). Assembling

SNPs into human haplomes is a difficult but well studied problem (Aguiar and Istrail, 2012; Xie et al.,

2008; He et al., 2010; Zhao et al., 2005; Bansal et al., 2008).

This article addresses an even more challenging problem of assembling haplomes that differ from each

other by 0.4–10% (e.g., like in HP sea squirt genomes). The standard assembly approaches fail to re-

construct individual haplomes in HP genomes; moreover, it is not clear whether the algorithms proposed

for human haplome assembly can contribute to assembling HP genomes.

1Algorithmic Biology Laboratory, St. Petersburg Academic University, Russian Academy of Sciences, St. Petersburg,
Russia.

2St. Petersburg State University, St. Petersburg, Russia.
3Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California.
A preliminary version of this article appeared in Safonova et al. (2014).

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 22, Number 6, 2015

Mary Ann Liebert, Inc.

Pp. 528–545

DOI: 10.1089/cmb.2014.0153

528

Assembly of a diploid genome can result in two types of contigs: haplocontigs (contigs representing

individual haplomes) and consensus contigs (contigs representing a consensus of both haplomes for the

orthologous regions) (Fig. 1). Consensus contigs do not adequately represent haplomes but are rather a

mosaic of segments from both haplomes. Thus, in each polymorphic site of a diploid genome, the alleles

present in a consensus contig are somewhat arbitrarily chosen from one of haplomes. In practice, since

some regions of HP genome are less polymorphic than others, conventional assemblers generate a mixture

of haplocontigs and consensus contigs while assembling HP genomes. We also define double contigs, a pair

of haplocontigs representing both haplomes for the same genomic region (Fig. 1).

Two approaches were proposed for assembling HP genomes (referred to as HP assemblies below). The

first approaches for HP assemblies (applied to fish F. rubripes and sea squirt S. intestinalis) were proposed

in the pre-NGS era and were based on constructing the overlap graph and generating consensus contigs by

intentionally ignoring differences between haplomes (Aparicio et al., 2002; Dehal et al., 2002). A similar

approach was applied to genome assembly of the sea squirt S. intestinalis (Dehal et al., 2002). The resulting

assemblies were further used as a reference to align reads and restore both haplomes. This approach, while

feasible with Sanger reads, is not very practical in the case of NGS reads that are more amenable to the de

Bruijn graph approaches.

The second approach (Huang et al., 2012; Vinson et al., 2005) is to generate haplocontigs using a

conventional assembly algorithm and to further reconstruct allelic relationships between haplotypes based

on pairwise contig alignments (recently, an advanced algorithm for generating haplocontigs based on the

overlap graph approach was proposed in Donmez and Brudno, 2011). In reality, such approaches generate a

mixture of haplocontigs and consensus contigs since the degree of polymorphism varies along the HP

genomes, and it is often difficult to generate haplocontigs in genomic regions with low polymorphism rates.

As the result, assemblies generated by this approach tend to be fragmented since they represent a mosaic of

consensus contigs and haplocontigs.

We present dipSPAdes, a new algorithm for assembling HP genomes, which takes advantage of the de

Bruijn graph constructed by SPAdes assembler (Bankevich et al., 2012) to generate both consensus contigs

and haplocontigs (Fig. 1). dipSPAdes uses the de Bruijn graph to mask polymorphisms in contigs and to

produce a more comprehensive representation of the genome by both consensus contigs and haplocontigs.

Each attempt to sequence HP diploid genomes faces a difficult question of how accurate are the resulting

assemblies. This question often remains open (both for the previous studies conducted in the pre-NGS era

and for recent studies) since there is no gold standard for checking the validity of HP assemblies. Thus,

benchmarking of HP assemblies is an important goal of this article. To provide the first comprehensive

benchmarking of HP assemblies, we took advantage of a unique dataset generated in the course of a recent

massive effort to sequence 40 genomes of S. commune conducted in Dr. Alexey Kondrashovs laboratory at

Moscow State University.

S. commune is a model organism (wood-degrading mushroom) whose genome is ideally suited for

benchmarking HP genome assemblers. The unique feature of the widely distributed haploid S. commune is

that genomes of two different organisms differ by 7–12% even if collected on the same continent (and up to

FIG. 1. Two approaches to assem-

bling highly polymorphic (HP) diploid

genomes (two haplomes are shown on

top as solid and dotted segments):

conventional assemblers (black ar-

rows) and dipSPAdes (green arrows).

Conventional assemblers generate hap-

locontigs from both haplomes that are

shown in red and blue (colors of hap-

locontigs are unknown in practice).

dipSPAdes uses the de Bruijn graph to

generate consensus contigs by com-

bining and extending haplocontigs.

Afterward, dipSPAdes restores allelic

relations using alignment of haplo-

contigs to the consensus contigs.

DIPSPADES: ASSEMBLER FOR HIGHLY POLYMORPHIC DIPLOID GENOMES 529

25% if collected on different continents). Thus, combining reads from two S. commune genomes perfectly

models an HP genome, yet allowing one to test the quality of assembly, the bottleneck in previous studies

of assembly algorithms for diploid genomes.

Benchmarking of dipSPAdes on both simulated and real fungi datasets (with polymorphism rate varying

from 0.4 to 10 percent) demonstrated that dipSPAdes significantly improves assemblies of HP genomes.

dipSPAdes is also a comparative assembler that can be used to generate a consensus assembly of multiple

similar genomes (see Appendix D).

2. DEFINITIONS

Let DB(Genome, k) be the de Bruijn graph (Compeau et al., 2011) of a genome, Genome, and its reverse

complement, Genome
0, where vertices and edges correspond to (k–1)-mers and k-mers, respectively. Each

chromosome in Genome and Genome
0 corresponds to a path in this graph; a set of these paths represents

the genome traversal of the graph. In this article, we will work with condensed de Bruijn graphs (Bank-

evich et al., 2012), where each edge is assigned a length (in k-mers) and the length of a path is the sum of its

edge lengths (rather than the number of edges in the condensed de Bruijn graph). Let DB(Reads, k) be the

de Bruijn graph constructed from a set, Reads, of reads from Genome and their reverse complements. For

simplicity we first consider an idealized case with full coverage of Genome and error-free reads. In this

case, the graphs DB(Reads, k) and DB(Genome, k) coincide. In reality, dipSPAdes analyzes error-prone

reads and gaps in coverage.

A diploid genome, Genome = (Genome1 W Genome2), can be viewed as two similar double-stranded

haplomes, Genome1 and Genome2. Typically, differences between haplomes are represented as a col-

lection of SNPs and short indels. Given a pairwise alignment, we use percent identity (percent of matches

among all columns of the alignment) to measure similarity between sequences. Correspondingly, diver-

gence is 100 minus percent identity. For example, analysis of an alignment of two Schizophyllum commune

genomes demonstrates that &88% of genome have divergence below 20% (Fig. 2).

3. METHODS

3.1. Motivation

Consider an imaginary genome, Genome = aRbRcRd, with a perfectly conserved long repeat R of

multiplicity 3 and four unique regions a, b, c, and d (Fig. 3a). The de Bruijn graph DB(Genome, k) has five

edges: R, a, b, c, and d (Fig. 3b). Now imagine that Genome evolved into two haplomes in such a way that

in the first haplome Genome1, 1st and 3rd copy of repeat R significantly diverged, resulting in unique

regions R1 and R3. Similarly, in the second haplome, Genome2, the 2nd copy of repeat R significantly

diverged resulting in a unique region R2. The resulting haplomes can be represented as aR1bRcR3d and

FIG. 2. Divergence of segments of length 55 nt

in the alignment of two Schizophyllum commune

genomes.

530 SAFONOVA ET AL.

aRbR2cRd (Fig. 3c). The de Bruijn graph DB(Genome1 W Genome2, k) (Fig. 3f) can be constructed as a

union of the de Bruijn graphs DB(Genome1, k) (Fig. 3d) and DB(Genome2, k) (Fig. 3e). While the

genomic traversal in the de Bruijn (assembly) graph is unknown, SPAdes and other assemblers generate a

set of subpaths of this traversal referred to as contigs. For example, consider an edge R1 in DB(Ge-

nome1 W Genome2, k). Note that the only edge that can follow R1 in genome traversal is b. Similarly, the

only edge that can precede R1 in genome traversal is a. Thus, aR1b and similarly bR2c and cR3d are

substrings of either Genome1 or Genome2. Moreover, analysis of these contigs reveals that aR1b overlaps

a b

c

d e

f

g h

i

FIG. 3. (a) A genome that contains a repeat R with multiplicity 3. (b) The de Bruijn graph DB(Genome, k). (c) Highly

polymorphic haplomes Genome1 and Genome2. In the first haplome, the first and the third copy of the repeat R

diverged, resulting in unique regions R1 and R3. In the second haplome, the second copy of the repeat R diverged,

resulting in a unique region R2. (d and e) Two haplomes (top) and the de Bruijn graphs DB(Genome1, k) and

DB(Genome2, k) (bottom). (f) The de Bruijn graph DB(Genome1 W Genome2, k) that is a union of DB(Genome1, k)

and DB(Genome2, k). (g) Overlaps between contigs obtained from DB(Genome1 W Genome2, k) allowing one to

construct the consensus as a single contig. (h) ConsensusGraph. (i) Contigs (red, blue, and green paths) that map to

graph in (f).

DIPSPADES: ASSEMBLER FOR HIGHLY POLYMORPHIC DIPLOID GENOMES 531

with bR2c that in turn overlaps with cR3d and thus would lead to the assembly of the entire genome into a

consensus contig aR1bR2cR3d (Fig. 3g).

In other words, the endpoints of haplocontigs from different haplomes do not match since the breakpoints

of haplocontigs are often located at different positions on different haplomes. As a result, overlaps between

these haplocontigs allow one to assemble them into longer sequences. The example above illustrates how

divergence in diploid genomes helps to improve the assembly of HP genomes but presents a highly

idealized case. In practice, this approach will not work for a variety of reasons, for example, fragment b in

two haplomes may be highly diverged, preventing one from detecting an overlap between aR1b and bR2c.

To address this problem, dipSPAdes uses a polymorphism masking algorithm described below that es-

sentially suppresses differences between b in aR1b and b in bR2c (subsection 3.2). We refer to the resulting

contigs as masked haplocontigs and acknowledge that such polymorphism masking may produce a version

of b that belongs to neither Genome1 nor Genome2.

Thus, dipSPAdes consists of three parts. First, it masks polymorphisms to reveal overlaps between

contigs in graph DB(Genome1 W Genome2, k) (subsection 3.2). Second, it searches for overlaps in masked

contigs and extends them, thus improving the quality of assembly (subsection 3.3). Third, it reconstructs

double contigs in both haplomes (subsection 3.4).

3.2. Polymorphism masking

Below we describe how dipSPAdes implements the transformations shown in Figure 3.

3.2.1. De Bruijn graphs of diploid genomes. Since haplomes Genome1 and Genome2 are similar,

the de Bruijn graphs DB(Genome1, k) and DB(Genome2, k) are also similar. Figure 4a and 4b show two

imaginary haplomes with low and high polymorphism rates, respectively. Polymorphic sites are shown by

red in one haplome and blue in another. We color a k-mer (edge in the de Bruijn graph) as red, blue, or

black, depending on whether it belongs only to the first genome, only to the second genome, or to both

genomes, respectively. Red/blue edges in DB(Genome1 W Genome2, k) often aggregate into red/blue paths

as illustrated in Figure 4c, and d. A red and a blue path between the same vertices form a bulge. We refer to

paths forming a bulge as alternative paths.

The average bulge length depends on the polymorphism rate: bulges are short in the case of low

polymorphism rate (Fig. 4e) and long in the case of of high polymorphism rate (Fig. 4f). Distributions of

bulge lengths for C. albicans (low polymorphism rate) and A. protococcarum (high polymorphism rate)

genomes show that average bulge lengths (for k-mers of size 56) are &139 nt and &833 nt, respectively

(Fig. 5a and 5b). Bulges are very prominent in HP genomes; for example, in the de Bruijn graph of

A. protococcarum genome, 99.2% of the total length of edges in the graph belongs to bulges of length less

than 25,000 (for k-mers size 56).

We distinguish between bulges caused by sequencing errors and bulges caused by polymorphisms. The

former type of bulges are artifacts that are removed by existing fragment assembly algorithms while the

later type of bulges are important for HP genome assembly. We assume that bulges caused by errors in

a b

c d

e f

FIG. 4. Low (left) and high (right) rates of polymorphisms result in short and long bulges in the de Bruijn graphs for

k = 4. Genomes (a and b), uncondensed de Bruijn graphs (c and d), and condensed de Bruijn graph (e and f).

532 SAFONOVA ET AL.

reads have been removed by SPAdes [e.g., by removing alternative paths with lower coverage as described

in (Bankevich et al., 2012)] before dipSPAdes even starts analyzing later type of bulges.

3.2.2. Haplocontigs versus consensus contigs. HP genomes represent a mosaic of regions with

varying degrees of polymorphisms. Conventional assemblers consider the nonpolymorphic regions of HP

genomes as repeats, attempt to resolve them (e.g., by using read-pairs), and output the resulting haplocontigs.

As was advocated in Bankevich et al., (2012), for regions with low polymorphism rate, it makes sense to

intentionally collapse short bulges rather than retain information about polymorphisms. The resulting

consensus contigs represent a mixture of haplomes Genome1 and Genome2 since parts of a genome that

contain deleted polymorphic variations are not represented in the assembly. We refer to such a mixture of

haplomes as ConsensusGenome; that is, in each polymorphic site of a diploid genome, the alleles present

in the ConsensusGenome are somewhat randomly chosen from one of haplomes (Fig. 6a). For the sake of

simplicity, we assume that there are no rearrangements between Genome1 and Genome2. In practice,

dipSPAdes processes micro-inversions and micro-transpositions (inversions and transpositions with short

span) as polymorphisms. The breakpoints of genome rearrangements with longer span usually turn into

breakpoints within contigs output by dipSPAdes.

3.2.3. Polymorphism masking algorithm. Polymorphisms in a diploid genome form bulges of

varying lengths in the de Bruijn graph DB(Genome1 W Genome2, k). While existing assemblers typically

analyze rather short bulges (e.g., less than 250 nt long), dipSPAdes collapses bulges that may be two orders

FIG. 5. Distributions of the bulge lengths and divergence depend on the polymorphism rate. We compared Candida

albicans and Amoeboaphelidium protococcarum genomes with low (0.4%) and high (10%) polymorphism rates,

respectively. Histograms (a) and (b) show the distribution of the bulge lengths for the de Bruijn graph of C. albicans

and A. protococcarum, respectively. The average bulge lengths for C. albicans and A. protococcarum are &139 nt and

&833 nt, respectively. Histograms (c) and (d) show the distribution of the bulge divergence for the de Bruijn graph of

C. albicans and A. protococcarum, respectively.

DIPSPADES: ASSEMBLER FOR HIGHLY POLYMORPHIC DIPLOID GENOMES 533

of magnitude longer (since bulges formed by highly diverged regions tend to be long). Below we describe

an algorithm for bulge collapsing in dipSPAdes (compare with aggressive bulge collapsing in Bankevich

et al., 2012).

For a bulge (P1, P2) formed by alternative paths P1 and P2 in the de Bruijn graph, we define diver-

gence(P1, P2) as the divergence between these paths. We collapse bulge (P1, P2) if divergence(P1,P2) is

below a threshold, maxDivergence. Distributions of divergence in bulges for C. albicans (low polymorphic

rate) and A. protococcarum (high polymorphic rate) illustrate that the vast majority of bulges have di-

vergence below 20% for both low and high polymorphism rates (Fig. 5c and 5d). We thus used the

divergence threshold maxDivergence = 20% for the tests described in the Results section.

We refer to the graph after the aggressive bulge collapsing as the ConsensusGraph and represent the

ConsensusGenome as a traversal in this graph. Figure 4b shows two bulges corresponding to two poly-

morphic sites. When these bulges are collapsed (Fig. 6c) parts of the genome that correspond to edges 2 and

6 are no longer present in the ConsensusGraph.

Note that this procedure sometimes collapses bulges that do not represent orthologous regions of a

diploid genome but instead collapses nonorthologous regions with spurious similarities. On the other hand,

it does not collapse some highly diverged orthologous regions. Also some subgraphs of the de Bruijn graph

are so tangled that it is difficult to find and collapse bulges in these subgraphs. Effective algorithms for

bulge finding and collapsing are described in Appendices A and B. For simplicity, we assume below that all

orthologous regions were collapsed correctly.

3.2.4. Polymorphism masking in contigs. Most fragment assembly algorithms discard information

about the alternative paths removed during the bulge collapsing. In contrast, dipSPAdes capitalizes on a

unique feature of SPAdes and projects k-mers from the removed alternative path to the retained alterna-

tive paths (Bankevich et al., 2012). Thus, the projection procedure defines mapping of every path in

DB(Genome1 W Genome2, k) to a path in ConsensusGraph; for example, one can map haplocontigs and

even haplomes Genome1 and Genome2 (if they were known) to ConsensusGraph. Both Genome1 and

Genome2 map to the same path that corresponds to ConsensusGenome (Fig. 6d).

We apply the described polymorphism masking procedure to haplocontigs to obtain masked haplo-

contigs. Since haplocontigs are substrings of either Genome1 or Genome2, masked haplocontigs are

substrings of ConsensusGenome. It is much easier to analyze overlaps of masked haplocontigs (as

compared to overlaps of haplocontigs) since in most cases the overlapping segments of masked haplo-

contigs are 100% similar and thus are easy to detect.

Consider again the example shown in Figure 3f. After extracting contigs aR1b, bR2c, and cR3d from the

de Bruijn graph, we collapse bulges, eventually transforming this graph into a graph shown in Figure 3h.

For example, after projecting the edge R1 (in the bulge formed by four edges that include edges R1 and R)

and after projecting the edge R3 (in the bulge formed by four edges that include edges R3 and R), we arrive

to the graph shown in Figure 3h.

For the sake of simplicity, Figure 3c assumes an unrealistic case when regions a, b, c, and d have not

diverged at all. However, even if these regions were diverged, dipSPAdes would mask polymorphisms

a

b

c

d

FIG. 6. (a) ConsensusGenome of haplomes Genome1 and Genome2. Red/blue segments show highly diverged re-

gions, while black segments show similar regions. (b) The de Bruijn graph DB(Genome1 W Genome2, k). The di-

rections of green arrows match the direction of the bulge collapsing in the polymorphism masking algorithm. (c)

ConsensusGraph generated by the polymorphism masking algorithm. (d) Haplocontigs representing Genome1 and

Genome2 that map to the same paths in ConsensusGraph.

534 SAFONOVA ET AL.

between these regions. We remark that while the graph in Figure 3h is merely a different drawing of the

graph in Figure 3b, it also contains information about contigs that map to this graph (red, blue, and green

paths in Fig. 3i). In particular, the contigs aR1b, bR2c, and cR3d in Figure 3g have collapsed to paths aRb,

bRc, and cRd in Figure 3i. As a result, the collapsed bulges in Figure 3f turn into superpaths in the de Bruijn

graph shown in Figure 3i (Pevzner et al., 2001). This transformation allows us to extend the described

approach from the idealized (Fig. 3g) to real and complex de Bruijn graphs. Below we describe how

dipSPAdes benefits from this observation to generate superpaths.

3.3. Consensus overlap graph

Edges of the ConsensusGraph represent the consensus contigs that are typically rather fragmented.

Moreover, even when we use paired reads to resolve repeats in this graph [e.g., using the exSPAnder

(Prjibelski et al., 2014), the read-pair analysis tool in SPAdes], the resulting assembly remains fragmented (see

Results). Below we show how divergence between haplomes can be used to improve the consensus assembly.

In the previous subsection we described how to mask polymorphisms in haplocontigs. Though the

masked haplocontigs represent substrings of ConsensusGenome and cover ConsensusGenome, each

position in the ConsensusGenome is covered twice by masked haplocontigs (e.g., in Fig. 6d, each edge of

the ConsensusGraph is covered by two haplocontigs with masked polymorphisms). In such assembly,

some masked haplocontigs may become redundant (i.e., contained within other masked haplocontigs), and

thus can be removed. In Figure 6d, contigs corresponding to Genome1 and Genome2 are the same and one

contig from each pair can be safely removed.

dipSPAdes generates the consensus contigs that significantly improve the consensus assembly. This

method utilizes superpaths and uses a strategy illustrated in Figure 3. We apply the overlap graph technique

(Batzoglou et al., 2002) to utilize information about the overlaps between the masked haplocontigs.

3.3.1. The overlap graph of masked haplocontigs. dipSPAdes constructs an overlap graph on the

set of masked haplocontigs. A set of strings, Strings, is called proper if no string in this set is a substring

of another string. Given a proper set of strings, Strings, we construct the overlap graph as follows. The

vertices of the overlap graph are strings from Strings. We connect vertices string1 and string2 by a directed

edge if a sufficiently long (longer than a default value minOverlap = 1500) suffix of string1 coincides with a

prefix of string2. The overlap graph is obtained from this graph after removing all transitive edges, that is,

we remove an edge (string1, string2) if there is an alternative directed path from string1 to string2 in the

graph. The nonbranching paths in the overlap graph are reported as consensus contigs. In reality some of

the polymorphisms are not collapsed in ConsensusGraph. In such cases, a more advanced algorithm is

used for overlap detection (see Appendix C).

3.4. Haplotype assembly

Each consensus contig C corresponds to regions C1 and C2 in haplomes that are similar to C. Below we

describe how dipSPAdes reconstructs sequences of C1 and C2 based on the projection of haplocontigs to the

consensus contigs. Since each haplocontig is projected to a masked haplocontig and masked haplocontigs are

assembled into consensus contigs, each haplocontig is aligned to a substring of a consensus contig.

3.4.1. Conflict graph. For a consensus contig C, let Haplo(C) denote the set of haplocontigs that are

projected to C. Ideally each contig from Haplo(C) is a substring of either C1 or C2. Thus, our goal is to split

Haplo(C) into disjoint subsets D1 and D2 such that contigs from D1 correspond to C1 and contigs from D2

correspond to C2. Afterwards, we reconstruct C1 and C2.

In order to split Haplo(C) into two sets, we construct an undirected graph ConflictGraph(C) with

vertices representing contigs in Haplo(C). Contigs contig1 and contig2 are overlapping if their projections

to C overlap. The substrings of overlapping contigs contig1 and contig2 that project to their overlapping

regions can be either identical or diverged. In the former (latter) case, we call such contigs nonconflicting

(conflicting). Consider overlapping contigs contig1 and contig2 that differ from each other in the over-

lapping part. Obviously, these contigs belong to different haplomes, and we connect vertices corresponding

to these contigs by an edge in the ConflictGraph.

Ideally, ConflictGraph(C) is a connected bipartite graph with parts corresponding to the split of

Haplo(C) into disjoint subsets D1 and D2. In practice, repeats in the genome may result in some unrelated

DIPSPADES: ASSEMBLER FOR HIGHLY POLYMORPHIC DIPLOID GENOMES 535

contigs aligned to C. Thus, they form a separate part of the conflict graph that differ from contigs from both

D1 and D2. Also in the case when a genome contains a long highly conserved region (i.e., region with no

polymorphisms), ConflictGraph(C) can be disconnected. Thus, splitting vertices of ConflictGraph(C)

into two parts may be ambiguous, preventing us from uniquely restoring haplotype in this region of Genome.

To address this ambiguity, we consider C as a path formed by edges C1‚ C2‚ . . . ‚ Cn in the

ConsensusGraph. We separately construct ConflictGraph(Ci) for each subcontig from the haplocontigs

aligned to Ci. Based on the structure of ConflictGraph(Ci), we attempt to reconstruct parts of

the haplomes that are aligned to Ci: subsequence Ci such that ConflictGraph(Ci) is not a bipartite

graph is reported as a repeat (haplome reconstruction is not possible). Subsequence Ci such that

ConflictGraph(Ci) does not contain any edges is reported as conservative region (since haplomes are

not diverged in this region, haplome reconstruction is trivial). If ConflictGraph(Ci) is a connected graph

then there is a unique way to split all contigs in ConflictGraph(Ci) into two nonconflicting groups (Fig.

7a and b). If ConflictGraph(Ci) is not connected, the haplotypes can not be restored (Fig. 7c). In this

case, we consider the connected components of ConflictGraph(Ci). Each connected component repre-

sents a subregion of Genome (Fig. 7c and d). Each nontrivial component is a connected bipartite graph.

Thus, in each of these subregions, we restore haplotypes and report all parts of Ci that do not intersect with

subregions with restored haplotypes (e.g., the region covered by the violet contig in Fig. 7c) as conservative

regions. Figure 7d shows an example of the conflict graph for an edge that is divided into three regions: two

regions with restored haplotype and one conservative region.

3.5. dipSPAdes Algorithm

The dipSPAdes pseudocode is given below. While the default version of dipSPAdes uses SPAdes for

computing contigs, a user can substitute it by any assembly tool.

Algorithm 1: dipSPAdes workflow

1: procedure dipSPAdes(Reads, k, maxDivergence, minOverlap)

2: Graph) DeBruijnGraph(Reads, k)

3: HaploContigs) Contigs(Graph, Reads)

4: ConsensusGraph) MaskPolymorphismsInGraph(Graph), maxDivergence)

5: MaskedHaploContigs) MaskPolymorphismsInContigs(ConsensusGraph, HaploContigs)

6: ConsensusContigs) ConsensusContigs(MaskedHaploContigs, minOverlap)

7: DoubleContigs) HaplotypeAssembly(ConsensusContigs, MaskedHaploContigs)

8: return ConsensusContigs, DoubleContigs

9: procedure MaskPolymorphismsInGraph(Graph, maxDivergence)

10: for each bulge formed by alternative paths P1 and P2 in Graph do

11: if Divergence(P1, P2) £ maxDivergence then

12: CollapseBulge(P1, P2)

13: return Graph

a b c d

FIG. 7. Construction of the conflict graph for five haplocontigs corresponding to ‘‘red’’ and ‘‘blue’’ haplomes and

mapped to the consensus graph shown in black (a). Blue and red contigs represent the blue and red haplomes. Contigs 1

and 4 have overlapping alignments (shown by gray dashed lines) but belong to different haplomes and thus are likely to

have differences in the overlapping regions (connected by an edge in the conflict graph). Contigs 1 and 5 also have

overlapping alignments but coincide in the overlapping region of the alignment. Thus, vertices 1 and 5 in (b) are not

connected by an edge. (c) Contigs that are aligned to an edge and that form several intersecting groups. Since it is not

possible to separate the haplomes in the entire region, we perform it independently in each region. (d) Contigs from

each region forming a connected bipartite subgraph.

536 SAFONOVA ET AL.

4. RESULTS

4.1. Datasets

We benchmarked dipSPAdes and other assembly tools on simulated and real datasets (Table 1). To

simulate a diploid genome we used a single haplome of the diploid fungus Candida dubliniensis (haplome size

14.6 Mbp). We generated a polymorphic copy of each chromosome with divergence 10% using the uniform

random distribution of SNPs and indels and simulated error-free paired-end reads with read length 100, insert

size 270, and 11 · coverage. It results in the perfect coverage of the genome by 56-mers. We limited analysis

to error-free reads because the results for error-free and error-prone reads (with realistic error profiles) are

nearly the same. In Appendix F, we also benchmark dipSPAdes on a simulated dataset with more realistic,

nonuniform distribution of SNPs and indels. We also analyzed three datasets of Illumina reads for genomes of

Schizophyllum commune, Candida albicans, and recently sequenced (unpublished) fungus Amoeboaphelidium

protococcarum, strain X–5. Sequencing data for S. commune and A. protococcarum were provided by the

Laboratory of Evolutionary Genomics at Moscow State University, directed by Dr. Alexey Kondrashov.

Sequencing data for Candida albicans were obtained from NCBI (accession number SRX113442).

S. commune (Ohm et al., 2010) is a haploid fungus exhibiting high divergence between genomes of any

two S. commune organisms (‡ 7%). A. protococcarum is a diploid fungus with extremely high rate of

divergence between haplomes (&10%). Candida albicans is a diploid fungus with a rather low rate of

divergence between haplomes (&0.4%).

4.2. Assembly tools

Currently, HaploMerger (Huang et al., 2012) is the only available (and practical) tool for assembling

HP genomes from short reads. Thus, we benchmarked the performance of dipSPAdes and HaploMerger

in generating consensus contigs (HaploMerger build 20120810 was used). We also benchmarked the

performance of SPAdes 3.1 (Bankevich et al., 2012) and Velvet 1.2.10 (Zerbino and Birney, 2008) in

generating haplocontigs. In addition, we benchmarked SPAdes*, a modified version of SPAdes (which

includes aggressive bulge collapsing in dipSPAdes followed by the repeat resolution algorithm exSPAnder).

We introduced SPAdes* in our benchmarking to illustrate advantages of dipSPAdes as compared to

standard assemblers run in the mode of the aggresive bulge collapsing.

We ran Velvet and HaploMerger with default parameters. While dipSPAdes and HaploMerger can be

applied to any set of haplocontigs, in this study we applied them to SPAdes haplocontigs [as shown in an

independent benchmarking study (Magoc et al., 2013)], SPAdes typically improves on other assemblers in

the case of relatively small genomes). To generate results for SPAdes, we turned off the bulge removal

procedure in SPAdes and removed all edges with low coverage instead. We expect Velvet and SPAdes to

produce assemblies with total length close to the double length of a haplome, and SPAdes*, dipSPAdes,

and HaploMerger to produce assemblies with total length close to the length of haplome. In each row of the

benchmarking tables we highlighted the entries with the best results. Only contigs of length ‡ 500 bp were

used for generating all tables.

4.3. Assembly errors

Analysis of the assembly errors is a nontrivial task in the case of HP genomes. While there are excellent

tools for analyzing assemblies [e.g., QUAST (Gurevich et al., 2013) and GAGE (Salzberg et al., 2012)],

Table 1. Information About Genomes and Sequencing Data

Dataset name

Estimated genome

size (Mbp)

Average

divergence (%)

Insert

size (bp)

Average

coverage

Simulated HP diploid genome 14.6 · 2 10.0 270 11

S. commune (4 strains) 38.9 7.0 233 34

A. protococcarum (1st library) 11.0 · 2 10.0 270 667

A. protococcarum (2nd library) 11.0 · 2 10.0 170 166

C. albicans 14.5 · 2 0.4 196 43

For S. commune, the coverage of 4 strains varied from 15 to 34. All datasets were sequenced using Illumina technology with read

length 100 bp.

DIPSPADES: ASSEMBLER FOR HIGHLY POLYMORPHIC DIPLOID GENOMES 537

neither of them is designed for HP genomes since they implicitly assume that the assembled contigs and the

reference genome are highly similar. For example, QUAST often reports misassemblies that represent

alignment artifacts specific for HP genomes rather than assembly errors. We thus resorted to manual analysis

of all misassemblies reported by QUAST in assemblies of simulated HP diploid genome. For each contig that

was reported as misassembled we found the best fitting alignment between this contig and the genome. A

contig was considered misassembled only if the divergence within the fitting alignment exceeded 20%. This

manual analysis revealed 2, 1, 1, 1, and 0 misassemblies for HaploMerger, SPAdes, SPAdes*, dipSPAdes,

and Velvet, respectively (for SPAdes and Velvet we analyzed errors in haplocontigs while for SPAdes*,

dipSPAdes, and HaploMerger we analyzed errors in consensus contigs). We also analyzed errors in the con-

sensus assembly of S. commune and found very few potential misassemblies (see Appendix E). Thus, all tested

tools generate rather accurate assemblies for both simulated and real data. However, as we show below, there

are great variations in the quality of assemblies (e.g., with respect to N50 statistics) across various assemblers.

4.4. Evaluating assemblies

Our benchmarking revealed that various assemblers generate assemblies with highly variable total

assembly, length, and that the standard NG50 assembly evaluation metric (the length L such that contigs

longer than L cover at least 50% of the reference genome) is not well suitable for HP diploid assemblies.

For example, one of the key challenges in the HP diploid assembly is to distinguish between haplocontigs

and consensus contigs. Thus, assemblers that mix together haplocontigs and consensus contigs (and often

output contigs with total length that nearly doubles the genome size) may have unfair advantages over

accurate HP diploid assemblers with respect to both NG50 and NGA50 metrics.

When NG50 metric is not suitable, QUAST and GAGE offer an alternative N50 metric (the length L

such that contigs longer than L cover at least 50% of the total length of contigs). That is why we

benchmarked the HP diploid assemblies using N50 metric. In the case when the correct genome is known

(like in the case of the simulated datasets), we used the NA50 metric instead (NA50 metric is applied after

all incorrectly assembled contigs are broken along the breakpoints). For additional information about

shorted contigs we also provided N75/NA75 metrics [see QUAST (Gurevich et al., 2013) for details].

4.5. Benchmarking

Table 2 illustrates that HaploMerger generates rather short contigs for simulated C. dubliniensis data

(N50 equal to only 5392 as compared to 117381 for dipSPAdes). This disappointing performance reflects

Table 2. Assembly of Simulated HP Diploid Genome Based on C. dubliniensis Haplome

with Simulated 10% Divergence

Velvet SPAdes HaploMerger SPAdes* dipSPAdes

Expected total length (Mbp) 29.2 29.2 14.6 14.6 14.6

Total length (Mbp) 28.41 28.11 14.64 16.30 14.45

No. contigs 7626 7973 3739 525 391

Largest contig 29486 29488 29488 491990 491969

N50 5378 5392 5876 88380 117381

N75 3085 3094 3345 40720 50981

Table 3. Assembly of Two S. commune (A8 and B3) Genomes

Velvet SPAdes HaploMerger SPAdes* dipSPAdes

Expected total length (Mbp) 77.8 77.8 38.9 38.9 38.9

Total length (Mbp) 39.15 60.33 N/A 45.91 38.36

No. contigs 34406 26820 N/A 5721 3764

Largest contig 37580 44596 N/A 231443 239371

N50 1219 3598 N/A 24931 27245

N75 761 1694 N/A 8477 11330

Haplocontigs were obtained from the assembly graph that was constructed from a mixed library of A8 and B3 reads. HaploMerger

failed to produce results on these haplocontigs since it typically requires haplocontigs with N50 exceeding tens of kbp.

538 SAFONOVA ET AL.

limitations of HaploMerger in the case when the original assembly is fragmented. One can see that in this

case, HaploMerger hardly improved on the original fragmented assembly by SPAdes (slightly increasing

N50 from 5392 to 5876). This limitation [acknowledged in (Huang et al., 2012)] often prevents application

of HaploMerger for NGS data where N50 is typically small.

To further benchmark various assemblers, we mixed two libraries of S. commune and computed contigs

from the graph that was constructed from the resulting mixed library. Such assembly tends to be very

fragmented due to the very tangled de Bruijn graph structure (Table 3). Table 3 illustrates the difficulties of

the diploid assembly. As expected, SPAdes generates rather short contigs (N50 = 3598) since S. commune

strains represent a mosaic of highly diverged and conserved regions. For this reason, HaploMerger failed to

produce any results on this dataset. In contrast, dipSPAdes was able to significantly improve on SPAdes

(N50 = 27625). Table 3 also shows some shortcomings of SPAdes* that generated assembly with excessive

total length due to its inability to collapse some polymorphisms.

In the case of A. protococcarum, we had two Illumina paired-end libraries (see Table 1). dipSPAdes

allows one to mix haplocontigs and consensus contigs from assemblies of different libraries and thus utilize

multiple libraries. To obtain haplocontigs we assembled two libraries separately and mixed the computed

contigs. Table 4 benchmarks performance of dipSPAdes and other tools on real HP diploid genome and

illustrates that dipSPAdes greatly improved on SPAdes assembly (N50 increased from 28942 for SPAdes

to 130702 for dipSPAdes).

Table 5 illustrates that even in the case of the low polymorphism rate (&14 times lower than in

S. commune but &5 times higher than in human), dipSPAdes allows one to significantly improve assembly

(N50 increased from 8788 for SPAdes to 27961 for dipSPAdes). In contrast, HaploMerger generated a very

poor assembly that covers only &20% of the genome. Table 6 shows running times and memory con-

sumption of dipSPAdes on A. protococcarum, C. albicans, and S. commune datasets.

5. DISCUSSION

While HaploMerger remains the only practical NGS assembler for HP genomes, it relies on standard

assembly tools and is primarily designed for analyzing long contigs produced by these tools. However, in

the case of HP genomes, the contigs produced by these tools are often short and are not well suited for

further analysis by HaploMerger. Moverover, HaploMerger is optimized for genomes with a very high rate

of polymorphisms. For example, we observed that HaploMerger produces low-quality assemblies of

Table 4. Assembly of A. protococcarum

Velvet SPAdes (IS = 170) SPAdes (IS = 270) HaploMerger SPAdes* dipSPAdes

Expected total length (Mbp) 22.0 22.0 22.0 11.0 11.0 11.0

Total length (Mbp) 19.57 23.25 24.45 12.24 16.50 11.44

No. contigs 13926 4620 1902 742 1490 242

Largest contig 90937 138704 200276 200276 205337 433161

N50 1656 8760 28942 38265 30393 141203

N75 994 4689 14470 19842 12787 91307

Columns ‘‘SPAdes (IS = 170)’’ and ‘‘SPAdes (IS = 270)’’ illustrate results of assemblies of libraries with corresponding insert

sizes. For obtaining consensus contigs we used a mixture of contigs from these runs.

Table 5. Assembly of C. albicans

Velvet SPAdes HaploMerger SPAdes* dipSPAdes

Expected total length (Mbp) 29.0 29.0 14.5 14.5 14.5

Total length (Mbp) 11.28 17.37 2.84 14.85 13.16

Number of contigs 6731 4007 337 1540 1119

Largest contig 34870 112388 92126 116985 116985

N50 2276 8788 23529 25691 28039

N75 1155 3300 8115 10639 12809

DIPSPADES: ASSEMBLER FOR HIGHLY POLYMORPHIC DIPLOID GENOMES 539

genomes with relatively low polymorphism rates (Table 5). Thus, there is plenty of room for further

improvement of assemblies of HP genomes. dipSPAdes is the first de Bruijn graph assembly tool for NGS

data that is optimized for HP genomes (both medium and high divergence). We have shown that dip-

SPAdes generates consensus assemblies that significantly improve on the state-of-the-art tools.

6. APPENDIX A: FINDING BULGES

Let L be the upper bound for the length of bulges we search for (the default value L = 25000). For each

vertex v of the de Bruijn graph we search for bulges that start at v. We run the Dijkstra shortest path

algorithm to find the set of vertices R(v) that are reachable from v with the path of length at most L. Let

P(w) be a shortest path from v to w for each w 2 R(v). For each vertex w 2 R(v) we check if w represents

the end of a bulge starting in v. First, there should be at least two incoming edges (w1, w) and (w2, w) into

vertex w (presumably, the last edges of the alternative paths forming the bulge) whose start vertices w1 and

w2 belong to R(v). Afterward, we construct a pair of alternative paths P(w) and P(w2) + (w2, w) from v to w

as a bulge candidate (and compute their divergence).

This procedure finds a bulge in the case when (i) there are only two paths in the de Bruijn graph of length

less than L that connect v and w, and (ii) the bulge consists of the two shortest paths between v and w. We

run this procedure iteratively until no more bulges can be found. As the bulges in graph are collapsed, the

number of paths between v and w typically reduces, increasing our chances to identify bulges at the

subsequent iterations.

7. APPENDIX B: COLLAPSING COMPLEX BULGES

Graph constructed from diploid data often contains complex bulges (i.e., bulges formed by more than two

regions in the genome). Thus, alternative paths of a complex bulge contain more than a single edge in the

collapsed de Bruijn graph.

Table 6. The Running Time of dipSPAdes for Datasets Described in the Results Sec-

tion (Without Counting the Running Time of SPAdes)

Dataset name

Genome

size

Polymorphism

rate (%)

Running time

(min)

Maximal

memory (Gb)

A. protococcarum 11.0 · 2 10 20 2

S. commune (A8 and B3) 38.9 · 2 7 35 2

C. albicans 14.5 · 2 0.4 6 1

a

b

c

FIG. 8. (a) An example of a complex

bulge formed by repeats in the genome.

(b and c) Procedure of collapsing such a

bulge.

540 SAFONOVA ET AL.

Figure 8a presents such a bulge (genome fragment a - b - c contains a repeat b that is shared with the

bulge). We project each inner vertex of the bulge on the opposite alternative path, thus forming a one-to-

one relation between vertices on the alternative paths of a bulge (Fig. 8b and c).

8. APPENDIX C: FINDING INEXACT OVERLAP OF TWO PATHS

The polymorphisms collapsing procedure does not necessarily collapse all bulges in the de Bruijn graph.

Thus, at the stage of overlap graph construction, overlapping segments of the consensus contigs are not

identical. In order to address this problem we search for inexact overlaps. Each contig C represents a path

PC in ConsensusGraph with the set of vertices VC. In order to check whether contigs C1 and C2 overlap,

we construct longest common subsequence P = (p1‚ p2‚ . . . ‚ pn) of PC1
and PC2

. Then we use two criteria:

the bulge criterion and the tail criterion. For a path Q let Q[u, v] be a segment of path Q between vertices u

and v. Also let Q[u, -] (Q[- ,v]) be the suffix (prefix) of path Q starting at vertex u (ending at vertex v). The

bulge criterion: For each pair of consecutive vertices a, b in P, we check whether the pair of paths

(PC1
[a‚ b]‚ PC2

[a‚ b]) represents a bulge that satisfies weakened relative length difference and relative

coverage thresholds. Bulge criterion is considered satisfied if all such checks are successfull. Tail criterion:

let PC1
[pn‚ -] be longer than PC2

[pn‚ -]. We check whether there exists a vertex u in PC1
[pn‚ -] and a path

Q from pn to u such that PC2
[pn‚ -] is a prefix of Q and (PC1

[pn‚ u]‚ Q) is a bulge that satisfies the same

conditions as in bulge criterion. Tail criterion is considered satisfied if this check and analogous check for

p1 are successful. An example of overlapping pair of paths is shown in Figure 9.

9. APPENDIX D: DIPSPADES AS A COMPARATIVE ASSEMBLER—
ASSEMBLING MULTIPLE S. COMMUNE GENOMES

Below we show that dipSPAdes can be used as a comparative assembler to significantly improve on

S. commune assembly and produce contigs with N50 as large as 0.68 Mbp, even from short reads with

relatively short insert sizes. First, we assembled S. commune datasets, A8 and B3, separately and obtained

high-quality contigs (Table 7). Then we ran dipSPAdes using mixed contigs from computed separate

assemblies as haplocontigs. Table 7 shows that the quality of consensus assembly of two S. commune

FIG. 9. Search overlap between two

haplocontigs P1 and P2 with masked poly-

morphisms. Longest common subsequence

P of PC1 and PC2 is highlighted in green.

Consecutive vertices of P correspond to

either edges of graph or bulges and thus

satisfy bulge criterion. Tail criterion is also

met: last vertex of P1 matches with the last

vertex of P. First vertex of P2 lies on a path

that forms a bulge with subpath of P1. Thus,

we report that P1 and P2 overlap.

Table 7. Separate Assemblies of Two S. commune Libraries,

A8 and B3, Using SPAdes and Velvet

A8 B3

Velvet SPAdes Velvet SPAdes

Total length (Mbp) 35.37 36.47 35.37 36.53

No. contigs 3886 1893 4472 1804

Largest contig 186960 524070 162349 780644

N50 23509 98988 16744 104280

N75 11217 44666 8656 46746

DIPSPADES: ASSEMBLER FOR HIGHLY POLYMORPHIC DIPLOID GENOMES 541

genomes improves on the quality of separate assemblies. As Table 8 shows, both HaploMerger and

dipSPAdes show improved results and increase the length of the SPAdes contigs (from N50 82 kbp to N50

386 kbp and 375 kbp). We further extended the described approach to combine five more S. commune

libraries: Mi1, B1, FL, A4, and A5 by iteratively mixing previously computed consensus contigs with

separate assemblies of S. commune individuals (Table 9). This approach can be generalized to any number

of individual genomes that differ from each other by less than 10%. Table 10 shows that assembly of

reads from seven different S. commune genomes significantly improves on the assembly of a reference

S. commune. Note that the resulting reference assembly does not represent any of the seven S. commune

genomes but rather represents a consensus of their genomes.

10. APPENDIX E: S. COMMUNE ASSEMBLY QUALITY ANALYSIS

We performed additional analysis to check the potential errors in dipSPAdes assemblies. We compared

contigs produced by SPAdes on separate (SEP) S. commune datasets, A8 and B3 (Table 7), with the

consensus contigs produced by dipSPAdes on mixed (MIX) S. commune datasets (Table 3). Both MIX and

SEP contigs represent the S. commune genome. Since SPAdes was previously shown to produce rather

accurate assemblies (Bankevich et al., 2012), we assume that SEP contigs are accurate. Further we describe

how we detected misassemblies in MIX contigs by matching them against SEP contigs.

We calculated and manually analyzed alignments between SEP and 150 MIX contigs (all contigs of

length at least 50 kbp) using MAUVE tool (Darling et al., 2004). We observed three possible types of

alignments between MIX and SEP contigs (illustrated in Fig. 10). Since SEP contigs have much higher N50

than MIX contigs (&100 kbp versus &27 kbp, see Tables 3 and 7), most MIX contigs match to segments

of SEP contigs (Fig. 10a). We classify such MIX contigs as correctly assembled. Some MIX contigs that

Table 8. Joint Assembly of Two S. commune (A8 and B3) Genomes

HaploMerger Velvet SPAdes dipSPAdes

Expected total length (Mbp) 38.9 77.8 77.8 38.9

Total length (Mbp) 36.00 70.75 73.26 37.99

No. contigs 981 8358 4289 969

Largest contig 1677298 186960 510594 1568684

N50 386031 19416 82552 375236

N75 141045 9707 34743 104312

Haplocontigs in SPAdes were generated as a mixture of contigs from separate assemblies of A8 and B3.

Table 9. Libraries of S. commune Used in the Consensus Assembly

Mi1 B1 FL A4 A5

Total length (Mbp) 36.30 37.00 36.10 36.70 36.70

No. contigs 1795 1838 1974 1928 1998

Largest contig 524292 592920 400383 519910 454167

N50 99854 94872 80125 87625 88650

N75 42380 40825 37159 39017 38977

Table 10. Assembly of Consensus S. commune Genome from Multiple Libraries

Used libraries Total length (Mbp) No. contigs Largest contig N50 N75

A8-B3 37.99 969 1568684 375236 104312

A8-B3-Mi1 36.20 500 1568684 454899 214922

A8-B3-Mi1-B1 39.50 440 1568684 551577 258782

A8-B3-Mi1-B1-FL 38.50 488 2113559 552311 229777

A8-B3-Mi1-B1-FL-A4-A5 37.30 289 2113291 680068 351673

542 SAFONOVA ET AL.

match to suffixes and prefixes of SEP contigs (Fig. 10b) do not necessarily represent assembly errors and

thus remain unclassified. The third type of alignment represents misassembled MIX contig that aligns to

internal segments of two or more SEP contigs (Fig. 10c).

This analysis applied to S. commune contigs revealed only one potentially misassembled MIX contig

with a single assembly breakpoint. Thus, using unique features of the S. commune datasets, we were able to

evaluate the accuracy of contigs in the assembly of an HP genome even without a reference genome.

11. APPENDIX F. ADDITIONAL BENCHMARKING

In order to check dipSPAdes performance in a more realistic setting, we simulated two datasets with

medium (5%) and high (10%) polymorphism rates and uneven distribution of SNPs. First we simulated a

polymorphic reference genome using one of C. dubliniensis haplomes as a base genome and constructed two

Markov models to generate polymorphisms in the base genome. Each MM had two states ‘‘low’’ and

‘‘high’’ corresponding to low and high polymorphism rates, respectively. For the first, MM has the emission

probabilities of mismatches, and indels were set to 0.005 for ‘‘low’’ state and 0.06 for ‘‘high’’ state. For the

second MM the emission probabilities of mismatches and indels were set to 0.01 for ‘‘low’’ state and 0.12

a

b

c

FIG. 10. (a) MIX contig that fully aligns to a

single SEP contig. (b) MIX contig that aligns to the

suffix of contig SEP1 and the prefix of contig SEP2.

(c) A likely assembly error.

Table 11. Assembly of Simulated HP Diploid Genome with Moderate Polymorphism Rate (5%)

and Uneven SNP Distribution Based on C. dubliniensis Haplome

Velvet SPAdes HaploMerger dipSPAdes

Expected total length (Mbp) 29.2 29.2 14.6 14.6

Total length (Mbp) 13.91 28.29 14.26 13.73

No. contigs 18136 2506 1146 97

Largest contig 3415 91821 91821 1301944

NA50 765 19823 21288 397065

NA75 612 10897 11821 169301

No. misassemblies 0 0 0 2

Table 12. Assembly of Simulated HP Diploid Genome with High Polymorphism Rate (10%)

and Uneven SNP Distribution Based on C. dubliniensis Haplome

Velvet SPAdes HaploMerger dipSPAdes

Expected total length (Mbp) 29.2 29.2 14.6 14.6

Total length (Mbp) 24.21 28.79 14.55 14.75

No. contigs 18996 991 392 60

Largest contig 8751 278131 278131 1482039

NA50 1502 57039 65415 777890

NA75 954 33859 38399 389623

No. misassemblies 0 0 1 2

DIPSPADES: ASSEMBLER FOR HIGHLY POLYMORPHIC DIPLOID GENOMES 543

for ‘‘high’’ state. For both MMs the transition probability from ‘‘low’’ to ‘‘high’’ (‘‘high’’ to ‘‘low’’) states

were set to 0.01 (0.002). Heterozygous haplomes generated by such MMs yield average polymorphism rates

close to 5% and 10%. Thus, DNA sequences emitted by these MMs provide simulations of diploid genomes

with 5% and 10% polymorphism level. This simulation resulted in two diploid copies with high rate of SNPs

and indels grouped into polymorphic islands separated by conservative regions with low polymorphism rate.

We simulated error-free reads in the same way as described in the Results section. Tables 11 and 12 show

that dipSPAdes significantly improved on SPAdes contigs and outperformed HaploMerger.

ACKNOWLEDGMENTS

We are indebted to Drs. Alexey Kondrashov, Sergey Naumenko, Maria Baranova, and Yegor Bazykin

for many helpful discussions. The work of Y.S., A.B., and P.A.P. was supported by the Government of the

Russian Federation, grant 11.G34.31.0018. P.A.P. was partially supported by the National Institutes of

Health, grant 3P41RR024851-02S1. We would like to thank Dr. Alexey Kondrashev for providing se-

quencing data of S. commune and A. protococcarum that were generated with support of the Government of

the Russian Federation, grant 11.G34.31.0008. We are grateful to Dr. Shengfeng Huang and Dr. Anton

Korobeynikov for help with HaploMerger benchmarking. We are also grateful to Dr. Alla Lapidus for help

with preparing this article.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Aguiar, D., and Istrail, S. 2012. Hapcompass: a fast cycle basis algorithm for accurate haplotype assembly of sequence

data. J. Comput. Biol. 19, 577–590.

Aparicio, S., Chapman, J., Stupka, E., et al. 2002. Whole-genome shotgun assembly and analysis of the genome of Fugu

rubripes. Science 297, 1301–1310.

Bankevich, A., Nurk, S., Antipov, D., et al. 2012. SPAdes: a new genome assembly algorithm and its applications to

single-cell sequencing. J. Comput. Biol. 19, 455–477.

Bansal, V., Halpern, A.L., Axelrod, N., et al. 2008. An MCMC algorithm for haplotype assembly from whole-genome

sequence data. Genome Res. 18, 1336–1346.

Barriere, A., Yang, S., Pekarek, E., et al. 2009. Detecting heterozygosity in shotgun genome assemblies: lessons from

obligately outcrossing nematodes. Genome Res. 19, 470–480.

Batzoglou, S., Jaffe, D., Stanley, K., et al. 2002. ARACHNE: a whole-genome shotgun assembler. Genome Res. 12,

177–189.

Compeau, F., Pevzner, P., and Tesler, G. 2011. How to apply de bruijn graphs to genome assembly. Nat. Biotechnol. 29,

987–991.

Darling, A., Mau, B., Blattner, F., et al. 2004. Mauve: multiple alignment of conserved genomic sequence with

rearrangements. Genome Res. 14, 1394–1403.

Dehal, P., Satou, Y., Campbell, R., et al. 2002. The draft genome of Ciona intestinalis: insights into chordate and

vertebrate origins. Science 298, 215767.

Donmez, N., and Brudno, M. 2011. Hapsembler: an assembler for highly polymorphic genomes. Research in Com-

putational Molecular Biology—15th Annual International Conference, RECOMB 2011, Vancouver, BC, Canada,

March 28–31, 2011, LNCS, volume 6577, pp. 38–52.

Gurevich, A., Saveliev, V., Vyahhi, N., et al. 2013. QUAST: quality assessment tool for genome assemblies. Bioin-

formatics 29, 1072–1075.

He, D., Choi, A., Pipatsrisawat, K., et al. 2010. Optimal algorithms for haplotype assembly from whole-genome

sequence data. Bioinformatics 26, i183–i190.

Huang, S., Chen, Z., Huang, G., et al. 2012. HaploMerger: reconstructing allelic relationships for polymorphic diploid

genome assemblies. Genome Res. 22, 1581–1588.

Magoc, T., Pabinger, S., Canzar, S., et al. 2013. GAGE-B: An evaluation of genome assemblers for bacterial organiss.

Bioinformatics 29, 1718–1725.

544 SAFONOVA ET AL.

Ohm, R., de Jong, J., Lugones, L., et al. 2010. Genome sequence of the model mushroom Schizophyllum commune.

Nature 28, 95763.

Pevzner, P., Tang, H., and Waterman, M. 2001. An Eulerian path approach to DNA fragment assembly. Proc. Natl.

Acad. Sci. USA 98, 9748–9753.

Prjibelski, A., Vasilinetc, I., Bankevich, A., et al. 2014. ExSPAnder: a universal repeat resolver for DNA fragment

assembly. Bioinformatics 30, i293–i301.

Safonova, Y., Bankevich, A., and Pevzner, P.A. 2014. Research in Computational Molecular Biology—18th Annual

International Conference, RECOMB 2014, Pittsburgh, PA, April 2–5, 2014, LNCS, volume 8394, pp. 265–279.

Salzberg, S.L., Phillippy, A., Zimin, A., et al. 2012. GAGE: A critical evaluation of genome assemblies and assembly

algorithms. Genome Res. 22, 557–567.

Vinson, J.P., Jaffe, D.B., O’Neill, K., et al. 2005. Assembly of polymorphic genomes: algorithms and application to

Ciona savignyi. Genome Res. 15, 1127–1135.

Xie, M., Wang, J., and Chen, J. 2008. A model of higher accuracy for the individual haplotyping problem based on

weighted SNP fragments and genotype with errors. Bioinformatics 24, i105–i113.

Zerbino, D., and Birney, E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome

Res. 18, 821–829.

Zhao, Y.Y., Wu, L.Y., Zhang, J.H., et al. 2005. Haplotype assembly from aligned weighted SNP fragments. Comput.

Biol. Chem. 29, 281–287.

Address correspondence to:

Mr. Yana Safonova

Algorithmic Biology Laboratory

St. Petersburg Academic University

Russian Academy of Sciences

8/3 Khlopina Str.

St. Petersburg 194021

Russia

E-mail: safonova.yana@gmail.com

DIPSPADES: ASSEMBLER FOR HIGHLY POLYMORPHIC DIPLOID GENOMES 545

