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Abstract. The de Bruijn graph plays an important role in bioinformstiespecially in the context die novo
assembly. However, the representation of the de Bruijntgiapmemory is a computational bottleneck for
many assemblers. Recent papers proposed a navigatioaatdatture approach in order to improve memory
usage. We prove several theoretical space lower boundvo thie limitations of these types of approaches.
We further design and implement a general data struchuse M) and demonstrate its use on a human whole-
genome dataset, achieving space usage of 1.5 GB and a 46%venpent over previous approaches. As part
of DBGFM, we develop the notion of frequency-based minimizers awdvdiow it can be used to enumerate
all maximal simple paths of the de Bruijn graph using only 4B bf memory. Finally, we demonstrate that
our approach can be integrated into an existing assembleoolfying the ABySS software to UTEBGFM.

1 Introduction

De novoassembly continues to be one of the fundamental problemisiinférmatics, with new datasets coming
from projects such as the Genome10K (Haussleil, [2008). The task is to reconstruct an unknown genome
sequence from a set of short sequenced fragments. Mostottite-art assemblers (e dﬁ%
Li et all (2010); Bankevictet all (2012)] Zerbino and Birney (2008)) start by building a deiBrgraph (d Be)m
11989 Idury and Waterman, 1995), which is a directed grapéreseach node is a distinetmer present in the in-
put fragments, and an edge is present betweerktwmers when they share an exéket- 1)-overlap. The de Bruijn
graph is the basis of many steps in assembly, including matipcession, bulge removal, graph simplification, and
repeat resolution (Milleet all,2010). In the workflow of most assemblers, the graph musast initially, reside
in memory; thus, for large genomes, memory is a computdtloostdeneck. For example, the graph of a human
genome consists of nearly three billions nodes and edgeassainblers require computers with hundreds of gi-
gabytes of memory (Gneret all, [2011] Liet al,, [2010). Even these large resources can be insufficient fayma
genomes, such as the 20 Gbp white spruce. Recent assemiilyeceg distributed-memory approach and around
a hundred large-memory servers, collectively storidgdar B de Bruijn graph data structu, 2013).
Several articles have pursued the question of whether sntita structures could be designed to make large
enome assembly more accessible (Conway and Bromagé 9étlal, [2012] Pellet all,[2012] Chikhi and Rizk,
|g_0_Li Boweet al|,[2012)! Conway and Bromdde (2011) gave a lower bound on tiberof bits required to en-
code a de Bruijn graph consistingfk-mers:2(n1gn) (assumingt® > n). However, two groups independently
observed that assemblers use dBGs in a very narrow mannih{@hd Rizk, 2012| Bowet al,, [2012) and
proposed a data structure that is able to return the set ghbeis of a given node but is not necessarily able
to determine if that node is in the graph. We refer to theseaaggational data structure@NDS). The naviga-
tional data structures proposed.in Chikhi and Rlzk (2012weet all (2012) requireD(n1g k) and O(n )l bits
(respectively), beating the Conway-Bromage lower bourtd brotheory and in practice (Chikhi and Rizk, 2012).
What is the potential of these types of approaches to furédirce memory usage? To answer this question,
we first formalize the notion of a navigational data struetand then show that any NDS requires at |8a®&tn
bits. This result leaves a gap with the known upper boundsgher, even if a NDS could be developed to meet
this bound, could we hope to do better on inputs that occurantice? To answer this, we consider a very simple
class of inputs: simple paths. We show that on these inpateclinear dBGs), there are both navigational and
general data structures that asymptotically 2iséits and give matching lower bounds. While dBGs occurring
in practice are not linear, they can nevertheless be ofteardposed into a small collection of long simple paths
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(where all the internal nodes have in- and out-degree ofdyldwe then take advantage of such a decomposition
to develop a data structure that can achieve cloge toits on practical inputs?

We describe and implement a data structurB@rFm) to represent de Bruijn graphs in low memory. The
first step of the construction uses existiigner counting software to transform, in constant memony,ittput
sequencing dataset to a list ®fmers (i.e. nodes) stored on di, ). The second step is a novel
low memory algorithm that enumerates all the maximal sinpaliéas without loading the whole graph in memory.
We achieve this through the use of non-lexicographic minérsg, ordered based on their frequency in the data.
Finally, we use the FM-index (Ferragina and Manzini, 20@0store the simple paths in memory and answer
membership and neighborhood queries.

We prove that as the number of simple paths decreases, the sfilization ofDBGFM approache&n bits.

In practice DBGFM uses4.76n bits on a human whole-genome dataset &58n bits on a human chrl4 dataset,
improving the state-of-the-art (Salikhew al.,[2013) by 46% and 60%, respectively. We demonstrate théeeftiy
of frequency-based minimizers by collapsing the dBG of thenan whole-genome dataset using otyMB of
memory. Finally, we show howBGFM can be integrated into an existing assembler by modifyiegABySS

software |(Simpsoet al,,[2009) to us@BGFM instead of a hash table.

2 PreviousWork

In the last three years, several papers and assemblersxpveeel novel data structures designed to reduce the
space usage of dBGs, and we provide a brief summary of thiésésue.

ABySS was one of the first genome assemblers capable of esyiireg large dBGs (Simpsaet al, [2009). It
uses an open-addressing hash table that stordsriers of the graph in the keys. The edges can be inferred from
the nodes and do not need to be stored. For eiraner, ABySS use8k bits to store thé:-mer, plus an additional
43 bits of associated data (stored in 64 bits for ease of im@feation). Therefore, in total, the space usage of the
dBG data structure in ABySS {g!(2k + 64)) bits perk-mer, wheré is the load factor of the hash table (set to
0.8). In the following, we focus on the space needed to stetethe dBG, since the type of associated data varies
greatly between different assemblers.

Conway and Bromage (2011) gavd@(“:) bits lower bound for representing a dBG and demonstrated a
sparse bit array data structure that comes close to achiévifhey used an edge-centric definition of the dBG

(where edges are all tHé& + 1)-mers, and nodes are prefixes and suffixes of leh@jtbut their results trivially
translate to node-centric dBGs by storiligners instead ofk + 1)-mers. For a dataset with= 27 and12 - 10?
edges (i.e.X + 1)-mers), their theoretical minimum space is 22 bits per edgjée their implementation achieves
28.5 bits per edge.

Later work explored the trade-offs between the amount afrmftion retained from the de Bruijn graph and
the space usage of the data structureetyall @) showed that a graph equivalent to the de Bruijn graph c
be stored in a hash table by sub-samplingers. The values of the hash table record sequences thdd wou
correspond to paths betweérmers in the de Bruijn graph. The theoretical memor usagmlefapproach is

2(k/g) bits perk-mer, whergy is the distance between consecutive samplmers roposed
a practical lossy approximation of the de Bruijn graph thates the nodes in a Bloom filter (Bloom, 1970). They
found that a space usagebbits perk-mer provided a reasonable approximation of the de Bru@plyifor their
purpose (partitioning and down-sampling DNA sequencesgdtd. Yet, the structure has not yet been directly
applied tode novoassembly.

IChikhi and Rizk [(2012) built upon the structurelof Retliall (2012) by additionally storing the set of Bloom
filter false positives (false neighbors of true nodes in tfag@h). In this way, their structure is no longer lossy. They
obtained a navigational data structure that allowed theraBker to exactly enumerate the in- and out-neighbors
of any graph node in constant time. However, the structuss et support node membership queries, and also
does not support storing associated data-toers. The theoretical space usagélid4 lg(g%"é) + 2.08) bits per
k-mer, under certain assumptions about the false positieeafathe Bloom filter. This corresponds 18.2 bits
perk-mer fork = 27.

The structure has recently been improved by Salikéioad, (2013) with cascading Bloom filters, replacing the
hash table by a cascade of Bloom filters. In theory, if an itdinumber of Bloom filters is used, this scheme would
require7.93 bits perk-mer independently of. The authors show that using onlyBloom filters is satisfactory
in practice, yet they do not provide a formula for the theioedtspace usage in this case. Foe= 27 and2.7 -
10° nodes, they computed that their structure usesbits perk-mer. Boweet all (2012) used a tree variant of
the Burrows-Wheeler transform_(Burrows and Wheeler, 1984upport identical operations. They describe a
theoretical navigational data structure for representiregdBG of a set of input sequences that uses a space
4m+ M 1g(m)+o(m) bits, whereM is the number of input strings amd the number of graph edges. Note that the




space is independentkf Another data structure based on a similar principle has besently proposemm,
).

In addition to studying the representation of de Bruijn drapseveral articles have designed efficient algo-
rithms for constructing the gradﬁ;e%_aﬂ ) proposed an algorithm based on minimizers thathgiveet of
reads, outputs to the disk both the edges and the nodes o&tBeuin graph (essentially performingkamer
counting step). Movahedit al. (2012) also used minimizers to reduce the memory usage ofulgBraph com-
paction. Their approach consists in partitioning the @higiraph into disjoint components, assigning eaainer
to aslice via its minimizer. Slices are then compacted in no specifttegrand the resulting compacted slices
are merged together into a final compacted graph. The imprergin terms of memory reduction achieved by
this two-stage compaction approach was not analyzed in Mewliat all (2012). Finally, several methods have
been recently proposed to construct a compacted de Bruajphgin linear time and memory from a suffix ar-

ray (Cazawet al, (2014 Minkinet al, [2013) or a suffix tree_ (Marcies al, [2014).

3 Preliminaries

We assume, for the purposes of this paper, that all strirgeer the alphabel = {A, C,G,T}. A string of
lengthk is called ak-mer andU is the universe of alk-mers, i.eU = X*. The binary relation: — v between
two strings denotes an exact suffix-prefix overlap of ler{@th- 1) betweenu andv. For a set ofc-mersS, the

de Bruijn graphof S is a directed graph such that the nodes are exactly-tmers inS and the edges are given
by the — relation. We defineS' to be alinear dBG if there exists a string where all the(k — 1)-mers ofz are
distinct andS is the set ofc-mers present in. Equivalently,S is a linear dBG if and only if the graph is a simple
path. The de Bruijn graph of a stringis the de Bruijn graph of all thé-mers ins. We adopt the node-centric
definition of the de Bruijn graph, where the edges are impijitien the vertices; therefore, we use the terms de
Bruijn graph and a set df-mers interchangeably.

For a nodet in the de Bruijn graph, Ieﬂ ) be its four potential in-neighbors (i.éﬁf(m) ={y : y€
YFy —z)) andea:t( ) be its four potential out neighbors. Lett(z) = (5%(:5) U fﬁt(m). For a given set of
k-mersS, letext(S) = {ext(x),x € S} (similarly fore_>:rt(S) anda?t(S)).

We will need some notation for working with index sets, whigljust a set of integers that is used to select a
subset of elements from another set. Defime(7, j) as a set of all index sets that sel¢cut ofi elements. Given
a set ofi elementsy” and X <€ DX (i, j), we then writeY [ X] to represent the subset pelements out ot’, as
specified byX . We assume that there is a natural ordering on the elemetits eét’, e.g. ifY is a set of strings,
then the ordering might be the lexicographical one.

The families of graphs we will use to construct the lower higiof TheoremBl1 arid 2 hakebe a polyloga-
rithmic function of|S|, i.e.k = O(log® |S|) for somec. We note that in some cases, higher lower bounds could
be obtained using families of graphs with= ©(|S|); however, we feel that such valueskoére unrealistic given
the sequencing technologies. On one hand, the valkei®f bounded from above by the read length, which is
experimentally independent of the numbetkefners. On the other hand,must be at leadbg,(|.S|) in order for
there to be at leas$p| distinctk-mers.

4 Navigational data structures

We use the terrmembership data structute refer to a way of representing a dBG and answekiflger mem-
bership queries. We can view this as a pair of algorithfoseINST, MEMB). The cONST algorithm takes a set of
k-mersS (i.e. a dBG) and outputs a bit string. We cathNSTa constructor, since it constructs a representation of
a dBG. ThemeEmB algorithm takes as input a bit string and-anerx and outputs true or false. IntuitivelyemBs
takes a representation of a dBG createdCclonsT and outputs whether a giveénmer is present. Formally, we
require that for all: € ¥, MEMB(CONST(S), ) is true if and only ifz € S. An example membership data struc-
ture, as used in ABYSS, is one where theers are put into a hash table (thensTalgorithm) and membership
queries are answered by hashing thmer to its location in the table (theemB algorithm).

Recently, it was observed that most assemblers useiws algorithm in a limited way!(Chikhi and Rizk,
12012 Boweet al,,[2012). They do not typically ask for membership of a verteat is not inext(S), but, instead,
ask for the neighborhood of nodes that it already knows atkdrgraph. We formalize this idea by introducing
the term navigational data structure (NDS), inspired bydineilar idea of performing navigational queries on
trees|(Ferraginat all, [2009). An NDS is a pair of algorithms,oNsTandNBR. As before consTtakes a set of
k-mers and outputs a bit stringBR takes a bit string and &mer, and outputs a set étmers. The algorithms
must satisfy that for every dBG and ak-merxz € S, NBR(CONST(S), z) = ext(xz) N S. Note that ifz ¢ S,




Fig. 1. Example of lower bound construction fér= 4. The figure showd" along with some of the node labels. The four
nodes on the left fornTy, the 16 nodes in the middle ai&, and the nodes on the right dfe. For space purposes, some of
the edges fronT; to 7% are grouped together. An example of a member from the famishown with shaded vertices. Note
that there are four vertices at each level, and togetherftitaya subforest of".

then the behavior afiBR(CONST(S), ) is undefined. We observe that a membership data structurediately
implies a NDS becausensR query can be reduced to eighEmMB queries.

To illustrate how such a data structure can be useful, cenaigrogram that can enumerate nodes using exter-
nal memory (e.g. a hard drive or a network connection). Usixtgrnal memory to navigate the graph by testing
node membership would be highly inefficient because of l@mglom access times. However, it is acceptable to
get a starting node from the device and access the other nsotesthe proposed data structure.

There are several important aspects of both a navigatiowialeembership data structures, including the space
needed to represent the output of the constructor, the measage and running time of the constructor, and the
time needed to answer either neighborhood or membershieguEor proving space lower bounds, we make no
restriction on the other resources so that our bounds hoté generally. However, adding other constraints (e.qg.
query time ofign) may allow us to prove higher lower bounds and is an intargstrea for future work.

5 Navigational data structure lower bound for de Bruijn graphs

In this section, we prove that a navigational data struotirele Bruijn graphs needs at least 3.24 bits/perer
to represent the graph:

Theorem 1. Consider an arbitrary NDS and letoNST be its constructor. For any < ¢ < 1, there exists &
andz C Y* such thaiconsT(z)| > |z| - (c — €), wherec = 8 — 31g 3 ~ 3.25.

We will first present a high level overview of the proof st@gtdollowed by the formal proof afterwards.

5.1 Proof strategy overview

Our proof strategy is to construct a family of graphs, for eththe number of navigational data structures is at
least the size of the family. The full proof of the theoremnistiie Sectiofi 512, however, we will describe the
construction used and the overall outline here. Our firgt istéo construct a large dBG and later we will choose
subsets as members of our family. Fix an eken 2, let/ = k/2, and letm = 4=, T will be defined as the
union of ¢ + 1 levels, T = Ug<;<,T;. For0 < i < £, we define the'" level asT; = {"A‘~'Ta” : a € Xiti-1Y,
Observe that; = e_ﬁt(Ti,l), for1 < < £. See Figurgll for a small example.

We focus on constructing dBGs that are subsets bécausd” has some desirable properties. In fact, one can
show that the set df-mersT induces a forest in the dBG of* (Lemmag]L andl2 in the Appendix). Each member
of our family will be a subforest df’ that containsn vertices from every level.

Formally, suppose we are given a sequence of index$ets Xy, ..., X, where every index set is a member
of IDX (4m, m). Each index set will define the subset of vertices we selea fa level, and we define = T,
andL¥ = e—m%(Lfil)[Xi], for 1 <4 < ¢. Note thatZ;* C T;. In this manner, the index sets define a set-ofiers
s(X) = Uo<i<¢L:X. Finally, the family of graphs which we will use for our prasfgiven by:

Sk = {S(Xlw--aXé) = k/27m:4eil7Xi € IDX(4m7m)}



To prove Theorerml1, we first show that each of the dBGs of ouilyamave the same amount éfmers:
Property 1. Forall 2 € S*, || = 471 (¢ 4 1).

Next, we show that each choice &f leads to a unique grapt{X) (Lemmal8) and use it to show that the
numbers of graphs in our family is large, relative to the nendf k-mers in each set:

Property 2. |S*| = (47:?)2 > 2(e=<o)fm wherec = 8 — 31g3 andey = 1g(12m)/m.

Finally, we need to show that for any two graphs in the fantligre is at least onle-mer that appears in both
graphs but with different neighbors:

Property 3. Letx = s(X) € S¥ andy = s(Y) € S* be two distinct elements i§*. Then, there exists &-mer
— —
u € x Ny such thatext(u) Na # ext(u) Ny.

The proof of Theorem]1 now follows by using the pigeonholagiple to argue that the number of navigational
data structures must be at least the size of our family, gigitower bound on the bits pérmer.

5.2 Proof details
We now give a formal proof of the three Properties and the Térao
Lemmal. Lety € T'. There exists a unique< i < ¢ such thaty € T;.

Proof. Take two arbitrary level$; < i, and two arbitrary vertices in those levels, € T;, andzs € T;,. Let
z € {1,2}. Thek-mer represented hy, is “A‘~=+1Ta.”, wherea. is some string. At positioi — i; + 1, z;
has a T, whiler; has an A. Therefore;; # x5 and the lemma follows. O

Lemma 2. For all distinctz; andz» in T that are not in the last levelly), ext (1) N ext(a2) = 0.

Proof. By Lemma[1, there exist unique levelsandi, such thate; € T;, andxs € T;,. We first observe that
e_>xt(xz) € T;.41, for z € {1,2}. If it is the case thai; # i,, then Lemmdll applied to the vertices in the
extensions prove the lemma. Now suppose that i, and we writei = i;. Then, forz € {1,2}, the k-mer
rep@)sented by. is “A‘""Ta.”, wherea, is a (¢ + i — 1)-mer ando; # as. Wega;n then Wﬂ? the extensions
asext(z,) = {"A*"""'Ta,B" : B € {A C,G,T}}. Becausey # as, the setexrt(x;) andext(x;) share no
common elements. ([

Property(1 now follows directly from Lemmé&s 1 ahH 2. To provegerty[2, we need the following two
lemmas:

Lemma3. LetX = X;,...,X,andY =Y,...,Y, be two sequences of index sets. TheX) = s(Y) if and
onlyif X =Y.

Proof. Since the construction is fully deterministic and depenuyg on the index sets, theki = Y immediately
implies s(X) = s(Y). For the other direction, suppose thét# Y. Let: > 0 be the smallest index such that
X; # Y;. Then there exists a vertexsuch thaty € L:X buty ¢ LY. Sincey is in T; but notin LY, Lemma[l
implies thaty ¢ s(Y). O

Lemma4. Forall m > 0, (*™) > 2(c=<)™ wherec = 8 — 31g3 andey = lg(12m)/m.
Proof. Follows directly from an inequality of Sondow and Stong (2Pq"") > 72— O

Property 2. |S*| = (47’:)2 > 2(e=<o)fm \wherec = 8 — 31g3 andey = 1g(12m)/m.

Proof. Lemmd3 tells us that the size 8f is the number of possible ways one could cho&se. . ., X, during
the construction of each elemestX,,..., X,). The choice for eaclX; is independent, and there a(é;fn”)

possibilities. Hence, there a(é;:)é total choices. The inequality follows from Lemifa 4. O
We can now prove Properffy 3 and Theofdm 1:

Property 3. Letx = s(X) € S¥ andy = s(Y) € S* be two distinct elements i#*. Then, there exists &mer
u € z Ny such thatfa—xz>f(u) Nz # (3—$1>5(u) Ny.



Proof. By Lemma[3,X # Y. Leti be the smallest index such th&t # Y;, and letv be an element i:* but
not in LY. By construction, there exists a vertexc L:;* ; (and hence inl)" ;) such that € (ﬁ(u). Lemmdl
tells us that is not iny and hence: satisfies the condition of the lemma. O

Theorem 1. Consider an arbitrary NDS and letONST be its constructor. For an < € < 1, there exists &
andx C Y% such thaiconsT(z)| > |z| - (c — €), wherec = 8 — 31g 3 ~ 3.25.

Proof. Assume for the sake of contradiction that forgl|CONST(z)| < |x|(c—e€). Letk be a large enough integer
such thatt > 2ce=! andeg < (e(¢ + 1) — ¢)/¢ holds (withm, £, ¢, as defined above). The second inequality
is verified for any large value df, sincee, = ©(£/4") converges td) and(e(¢ + 1) — ¢)/¢ converges ta. Let
n = 4F/2=1(k /2 4 1). Consider the outputs @fonsTon the elements o8*. When the input is constrained to be
of sizen, the output must use less than— ¢)n bits (by Lemmad1l). Hence the range@dNsTover the domain
Sk has size less thati“=)". At the same time, Lemnia 2 states that there are at¥#&ast)” elements inS*.
Fromthe inequalityy < (e(¢/-+1)—c)/¢ we derive thatc—eg)¢ > (c—e)(£+1) and thu(e—ce)tm > olc=e)n,
Therefore, there must exist distingt, s; € S* such thaCoNsT(s;) = CONST(s2). We can now apply Lemnid 3
to obtain an element € s; N s9 that is a valid input tacONST(s; ) and toCONST(s3). Since the two functions are
the same, the return value must also the same. However, we tkiat the out-neighborhoods gfare different
in s; and inso, hence, one of the results aBR on y must be incorrect. This contradicts the correctness of
CONST. O

6 Linear deBruijn graphs

In this section, we study data structures to representriis@®ruijn graphs. Though a linear dBG will never occur
in practice, it is an idealized scenario which lets us caphaw well a data structure can do in the best case. The
bounds obtained here also serve as motivation for our appriodater sections, where we build a membership
data structure whose space usage approaches our lower tooomttis section the “closer” the graph is to being
linear.
We can design a naive membership data structure for line@sdB linear dBG withn k-mers corresponds to
a string of lengtln + k£ — 1. The constructor builds and stores the string fromitireers, while the membership
query simply does a linear scan through the string. The spaage i2(n + k — 1) bits. The query time is
prohibitively slow, and we show in Secti@h 7 how to achieveurmfaster solution at the cost of a space increase.
We now prove that a NDS on linear de Bruijn graphs needs at2easits to represent the graph, meaning one
cannot do much better than the naive representation abayv&vilfirst give a proof strategy overview, followed
by the formal proof details.

6.1 Proof strategy overview

In general, representing all strings of length- £ — 1 would take2(n + k — 1) bits, however, not all strings of
this length correspond to linear dBGs. Fortunately, we ciapta probabilistic result @@12) to quantify
the number of strings of this length that have no duplidateers (Lemm&l5). Our strategy is similar to that of
Sectior{b. We construct a large family of linear dBGs such fiaany pair of members, there is alwayé-aner
that belongs to both but whose neighborhoods are diffeW#atbuild the family by taking the set of all strings
without duplicate k — 1)-mers and identifying a large subset having the same sgdrtmer. We then show that by
increasing the length of the strings aindve can create a family of size arbitrarily closeito(Lemmd®). Finally,

we show that because each string in the family starts witlsaineek-mer, there always exists a distinguishing
mer for any pair of strings. Using the pigeonhole princifiés implies that number of navigational data structures
must be at least the number of distinct strings:

Theorem 2. Consider an arbitrary NDS for linear de Bruijn graphs and &bNSTbe its constructor. Then, for
any0 < e < 1, there existgn, k) and a set of-mersS of cardinalityn, such thajCoNST(S)| > 2n(1 — ¢).

Note that our naive membership data structurg{ef- £ — 1) bits immediately implies a NDS of the same size.
Similarly, TheoreniR2’s lower bound @& bits on a NDS immediately implies the same bound for memligrsh
data structures. In practickjs orders of magnitude less thapand we view these results as saying that the space
usage of membership and navigational data structures earloiBGs is essentialBn and cannot be improved.

These results, together with TheorEin 1, suggested thataie@tml of navigational data structures may be
dampened when the dBG is linear-like in structure. Inteltiythe advantage of a linear dBG is that all the
mers of a path collapse together onto one string and recoir@g only one nucleotide pérmer, except for the
overhead of the firsk-mer. If the dBG is not linear but can still be decomposed afew paths, then we could
still take advantage of each path while paying an overheadlyfa singlek-mer per path. This in fact forms the
basis of our algorithm in Sectidn 7.
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Fig.2. lllustration of the proof of Lemm@l5, showing the definitiohtioe setS of strings of lengthm containing identical
k-mers at positiond < i < j < (m —k+ 1). Panel Aillustrates the case wheh— ) > k: thek-merss[i...i+ k — 1] and
s[j...j+ k— 1] do not overlap. Whelj — i) < k (Panel B), thek-mersli...i + k — 1] (also equal ta[j...5 + k — 1])

consists of repetitions of the string .. . j — 1].

6.2 Proof details

Lemma5. The number of DNA strings of lengthiwhere eactk-mer is seen only once is at lea$t (1 — (73)4*’9).

Proof. This Lemma was expressed in a probabilistic setti@@), but we provide a deterministic proof
here. We define a set of stringsand show that it contains all strings with at least one regzblatmer. Lets*
be the string obtained by repeating the patteas many times as needed to obtain a string of length exagctly
possibly truncating the last occurrence. Let

S={s€X™[(i,j)1<i<j<(m—k+1),
I, |t = (m — k),
sll...j—1]=t[1...5—1]

——k
slj..jrk—1=50...j-1],
slj+k...oml=t[j...m—k]if j <m—k+1},

as illustrated in Figurgl 2. Let be a string of lengthn which contains at least one repeatecher. Without loss
of generality, there exists two starting positians j of identicalk-mers ¢'[j...j+k—1] = s'[i...i+k—1]).

Settingt to be the concatenation ef{1..; — 1] ands’[j + k...m], itis clear thats’ is in S. ThusS contains all
strings of lengthn having at least one repeatéemer. Since there ar(é”}k“) choices for(i, ), i.e. less than
("), and4™~* choices fott, the cardinality ofS is at most("y ) 4™~*, which yields the result. O

Lemma 6. Given0 < ¢ < 1, letn = [3¢7!] andk = [1 + (2 + €) log,(2n)]. The number of DNA strings of
length(n + k — 1) which start with the samk-mer, and do not contain any repeat@ed- 1)-mer, is strictly greater
than4n(1—¢),

Proof. Note thatk < n, thusk > (1+ (2+¢€)log,(n+k—1)) and4=**+1 < (n+k —1)(=279, Using Lemm&b,
there are at leagtt" 51 (1 — ("Th=1)4-k+1)) > (4n+h=l(1 - m)) strings of length(n + k — 1) where
each(k — 1)-mer is unique. Thus, each string has exagatly-mers that are all distinct. By binning these strings
with respect to their firsk-mer, there exists &-merk, such that there are at leagt—*(1 — m) strings

starting withkg, which do not contain any repeatéd — 1)-mer. The following inequalities hold:—" > 4-"¢/2

and(1 — > 4> 472 Thus4n~1(1 — ) > 4n(1=o),

1 ) 1
2(n+k—1)¢ 2(n+k—1)¢

O

Lemma 7. Two different strings of lengtfn + k& — 1) starting with the samé&-mer and not containing any
repeated k — 1)-mer correspond to two different linear de Bruijn graphs.

Proof. For two different strings; ands» of length(n + & — 1), which start with the sam&-mer and do not
contain any repeated — 1)-mer, observe that their sets Bfmers cannot be identical. Suppose they were, and
consider the smallest integesuch thatsy [i...i + k — 2] = safi...i +k — 2] andsy[i + k — 1] # soi + k — 1].
Thek-mersy[i...i+ k — 1] appears ik, at some position # . Thenss[i...i+k —2] andsg[j...J5 +k — 2]

are identicalk — 1)-mers insy, which is a contradiction. Thus; ands, correspond to different sets bfmers,
and therefore correspond to two different linear de Bruijpdps. O

Theorem 2. Consider an arbitrary NDS for linear de Bruijn graphs and &bNSTbe its constructor. Then, for
any0 < e < 1, there existgn, k) and a set of-mersS of cardinalityn, such thajCoNST(S)| > 2n(1 — ¢).



Proof. Assume for the sake of contradiction that for all linear daifrgraphs, the output afoNSTrequires less
than2(1 — ¢) bits perk-mer. Thus for a fixed-mer length, the number of output®NsT(S) for sets ofk-mersS
of sizen is no more thare?"(1=<). Lemmd®$ provides valuds, n, ko), for which there are more strings starting
with ak-merkq and containing exactly k-mers with no duplicaték — 1)-mers (strictly more thag?*(!1 =) than
the number of outputsonsT(.S) for n k-mers.

By the pigeonhole principle, there exists a navigationahddructure constructaronsT(S) that takes the
same values on two different stringisands. that start with the samiemerk, and do not contain repeatéie—1)-
mer. By LemmaT/cONST(S) takes the same values on two different sets-ofiersS; and.S, of cardinalityn.
Let p be the length of longest prefix common to both strings.&elbe thek-mer at positionp — k + 1) in s;.
Note thatk; is also thek-mer that starts at positiofp — k& + 1) in so. By construction ofs; andsq, k1 does
not appear anywhere else én or so. Moreover, thek-mer at positionp — k) in s; is different to thek-mer at
position(p — k) in s2. In a linear de Bruijn graph corresponding to a string wheyéin— 1)-mer is repeated,
each node has at most one out-neighbor. Thus, the out-r@ighk; in the de Bruijn graph of; is different to
the out-neighbor of; in the de Bruijn graph ob5, i.e. NBR(CONST(S1), k1) # NBR(CONST(S2), k1), which is
a contradiction. O

7 Datastructurefor representing ade Bruijn graph in small space (DBGFM)

Recall that a simple path is a path where all the internal ad@®e in- and out-degree of 1.rAaximalsimple
path is one that cannot be extended in either direction.ntlEmshown that there exists a unique set of edge-
disjoint maximal simple paths that completely covers th&dBnd each pathwith |p| nodes can be represented
compactly as a string of length+ |p| — 1. We can thus represent a dBGcontainingn k-mers as a set of strings
corresponding to the maximal simple paths, denotegphyS). Letc,(S) = |spr(S)| be the number of maximal
simple paths, and latto be the concatenation of all memberspf (S) in arbitrary order, separating each element
by a symbol not in¥ (e.g. $). Using the same idea as in Sedfibn 6, we can reprasiB® usings in

2sl= > 2(lpl +k)
pEspr(S)

<2(n+ (k+2)ck(S9)) bits.

However, this representation requires an inefficient lirsean in order to answer a membership query.
We propose the use of the FM-index efto speed up query time at the cost of more space. The FM-
index YFerragina and Manzihi, 2(}00) is a full-text index ehis based on the Burrows-Wheeler transfdrm (Burrows andeidn,

[1994; Adjerohet all, [2008) developed for text compression. It has previousinhesed to map reads to a ref-
erence genome (Li and Durbin, 2009; zb8igd; 2 i et all, 2009), performde novoassem-

bly (Simpson and Durbin, 2010, 2012] 12), and represtem dBG for the purpose of exploring genome
characteristics prior tde novoassemblyl(Simpsb 13).

The implementation of the FM-index stores the Huffman-ebBarrows-Wheeler transform afalong with
two associated arrays and sowié) space overhead. Our software, caltemtFMA, follows the implementation
of [Ferragina and Manzini (2000), and we refer the readeetf@ra more thorough description of how the FM-
index works. Here, we will only state its most relevant pmbies. It allows us to count the number of occurrences
of an arbitrary patternin s in O(|q|) time. In the context of dBGs, we can test for the membershéremer in.S
in time O(k). Two sampling parameters;(andr) trade-off the size of the associated arrays with the querg.t
For constructing the FM-index, there are external memaggrithms that do not use more intermediate memory

than the size of the final output (Ferragina and Manzini, 2000e space usage DBGFM is

|s|(Ho(s) +96r7 " 4+ 384r; 1) + o(1)
k+2

< n(Ho(s) +96r; " 4 384ry 1)(1 +

ck(S)) + o(1) bits,

where Hj, is the zeroth order entropy (Adjerel al, 2008): Ho(s) = — 3" .c v sy felg fe, and f. is the fre-
guency of characterin s. Note that for our five character alphaldéj is at mosiig 5.

As the value ofe, (S) approaches ongg approache$ and hence the upper bound éfy approacheg. If
we further set the sampling parameters to be inversely ptiopal ton, the space utilization approaches at most
2n bits. However, this results in impractical query time andyrenrealistically, typical values for the sampling
parameters are = 256 andry = 16384, resulting in at mos2.32n bits ascy (S) approaches 1. For the error-free

2 Source code available/at T p: /7 gi t hub. cont | t s/ dbgf m


http://github.com/jts/dbgfm

human genome witk = 55, there are:s5(S) = 12.9 - 10 maximal simple paths and = 2.7 - 10° k-mers. The
resultingH, (.S) is at most2.03, and the space utilization is at most 2.43 bits jpener.

An additional benefit of the FM-index is that it allows congtiime access to the in-neighbors of nodes —
every edge is part of a simple path, so we can query the FMkifatethe symbols preceding/amer 2. Thus,
DBGFM is a membership data structure but supports faster in-hergiueries. However we note that this is not
always the case when reverse complementarity is taken Gotouat.

We wanted to demonstrate how theGFm data structure could be incorporated into an existing akksm
We chose ABYSS, a populde novesequence assembly tool used in large-scale genomic mmgﬁ
) In modifying ABySS to look up-mer membership usingBGFM, we replace its hash table with a simple
array.DBGFM associates eactrmer with an integer called a suffix array index (SAl), whiatuld be used to
index the simple array. However, some of fheners of thebBGFM string include a simple path separator symbol,
$, and, hence, not every SAI corresponds to a node in the dBGthérefore use a rank/select data structure
(Gonzalezt all, [2005) to translate the SAls into a contiguous enumeratichenodes, which we then use to
index our simple array. We also modified the graph traveitsategyy in order to maximize the number of in-
neighborhood queries, which are more efficient than oughi®rhood or membership queries.

8 Algorithm to enumerate the maximal simple paths of a de Bruijn graph in low
memory (BCALM)

TheDpBGFM data structure of Sectidid 7 can construct and represent amlB® space from the set of maximal
simple paths{p(S)). However, constructing the paths (called compactionggey requires loading the-mers

into memory, which would require large intermediate memassge. Because our goal is a data structure that is
low-memory during both construction and the final output,degeloped an algorithm for compacting de Bruijn
graphsin Iow-memoryE(CALM)E.

8.1 Algorithm description

Our aliorlthm is based on the idea of minimizers, first introet byl Robertst all (20044,b) and later used

Li et all (2013). Ther-minimizer of a stringu is the smallest-mer that is a sub-string af (we assume there
|s a total ordering of the strings, e.g. lexicographicalg Wéfine Lmirju) (respectively, Rmifw)) to be the/-
minimizer of the(k — 1)-prefix (respectively suffix) of.. We refer to these as the left and right minimizers.pf
respectively. We use minimizers because of the followingpogation:

Observation 1. For two stringsu andv, if u — v, then Rmifu) = Lmin(v).

We will first need some definitions. Given a set of strisgsve say thatu, v) € S? arecompactablén a set
V CSifu—vandvVw € V,if w — vthenw = w and ifu — w thenw = v. The compaction operation is
defined on a pair of compactable strings in S. It replacesu andv by a single stringe = w - v[k + 1...|v|]
where *' is the string concatenation operator. Two strifigsv) arem-compactablén V' if they are compactable
in V and if m = Rmin(u) = Lmin(v). The m-compaction of a seV is obtained fromV" by applying the
compaction operation as much as possible in any order taah pf strings that are:.-compactable if/. It is
easy to show that the order in which strings are compactesimoidead to different:-compactions. Compaction
is a useful notion because a simple way to obtain the simptesps to greedily perform compaction as Iong as
possible. In the following analysis, we identify a striagvith the pathp = w[1... k] > u[2... (k+1)] — ... —
u[(Ju| — k+ 1) ... |u|] of all the k-mers ofu in consecutive order.

We now give a high-level overview of Algorithd 1. The inputdsset ofk-mersS and a parametef < k
which is the minimizer size. For each € X*, we maintain a fileF,, in external memory. Each file contains a
set of strings, and we will later prove that at any point dgtime execution, each string is a sub-path of a simple
path (Lemma&). Moreover, we will show that at any point of@xen, the multi-set of-mers appearing in the
strings and in the output does not change and is alsairoperty#).

At line [B, we partition thek-mers into the files, according to theiminimizers. Next, each of the files is
processed, starting from the file of the smallest minimireincreasing order (linl 6). For each file, we load the
strings into memory aneh-compact them (lin€l7), with the idea being that the size cheaf the files is kept
small enough so that memory usage is low. The result of thepection is a new set of strings, each of which is
then either written to one of the files that has not been yetge®ed or output as a simple path. A step-by-step
execution of AlgorithniL on a toy example is given in Figure 3.

% Source code available/at t p: /7 gi t hub. coni Mal f oy/ bcal m


http://github.com/Malfoy/bcalm

Algorithm 1 BcALM: Enumeration of all maximal simple paths in the dBG
1: Input: Set of k-mersS, minimizer sizel < k
2: Output: Sequences of all simple paths in the de Bruijn graph of
3: Perform alinear scan ¢f to get the frequency of al-mers (in memory)
4: Define the ordering of the minimizers, given by their fregay inS
5: PartitionsS into files F},, based on the minimizen of eachk-mer
6: for each fileF,, in increasing order ofn do
7. Cp + m-compaction ofF’,, (performed in memory)
8. for each string. of C), do

9: Bimin < min(Lmin (u),Rmin (u))
10: Binaa + max(Lmin @),Rmin ())
11: if Bnin < mandBqa. < m then
12: Outputu
13: eseif Byin < mandBna: > m then
14: Writeu to F'g, ..
15: elseif Bpin > m andBpaz > m then
16: Writeu to Fip

min

17: DeleteF,,

A B I-mer | frequency

Step 1 2 3 4
m AG AA AC CA
AAC ACA [ CAG
Fm CAG CAA — > CAAC —> CAACA

(AAC) €A%
(Fm) D S

CAACA — Output
CAG

Cm CAG CAAC — CAACA

Fig.3. An execution of AlgorithnIL on a toy example. (Panel A) The Set= {ACA, AAC,CAA, CAG} of k-mers is
represented as a de Bruijn gragh=t 3). (Panel B) The frequencies of eaélimer present in thé-mers is given in increasing
order ¢ = 2). (Panel C) Steps of the algorithm; initially, each &t contains allk-mers having minimizefn. For each
minimizerm (in order of frequency), perform the-compaction off;,, and store the result i@, ; the grey arrows indicate
where each element df,, is written to, either the file of a higher minimizer or the autpThe rowG(F,,) shows a graph
where solid arrows indicate:-compactable pairs of strings #,,. The dash-dot arrow in Step 3 indicates that the two strings
are compactable ifr,,, but notm-compactable; in fact, they are not compactabl&'in
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The rule of choosing which file to write to is based on the leftl aight minimizers of the string. If both
minimizers are no more than, then the string is output as a simple path ([lné 12). Othsawive identifym’,
the smallest of the two minimizers that is bigger thanand write the string to the fil&},,.. Finally, the file F,,,
is discarded, and the next file is processed. We will showttteatule for placing the strings into the files ensures
that as each filé,, is processed (lingl 6), it will contain evekymer that hasn as a minimizer (Lemmial 8). We
can then use this to prove the correctness of the algorittimadiieniB).

There are several implementation details that make theritiigo practical. First, reverse complements are
supported in the natural way by identifying edetmer with its reverse complement and letting the minimizer b
the smallest-mer in both of them. Second, we avoid creatitidiles, which may be more than the file system
supports. Instead, we use virtual files and group them tegétto a smaller number of physical files. This allowed
us to use/ = 10 in our experiments. Third, when we load a file from disk ([evé only load the first and last
k-mer of each string, since the middle part is never used bgdhgpaction algorithm. We store the middle part in
an auxiliary file and use a pointer to keep track of it withie gtrings in the’},, files.

Consequently, the algorithm memory usage depends on theeruwhstrings in each filé},,, but not on the
total size of those files. For a fixed inp$if the number of strings in a fil&,,, depends on the minimizer length
and the ordering of minimizers. Whérincreases, the number ¢f — 1)-mers inS that have the same minimizer
decreases. Thus, increasifgields less strings per file, which decreases the memoryeud&lg also realized
that, when highly-repeateimers are less likely to be chosen as minimizers, the segses® more evenly
distributed among files. We therefore perform in-meméiyer counting (lind13) to obtain a sorted frequency
table of all/-mers. This step requires an arraysdf X|* bits to store the count of ea¢hmer in64 bits, which is
negligible memory overhead for small valuegd8 MB for ¢ = 10). Each/-mer is then mapped to its rank in the
frequency array, to create a total ordering of minimizerse(#8). Our experiments showed a drastic improvement
over lexicographic ordering (results in Sectidn 9).

8.2 Proof of correctness
In this subsection we give a formal proof of the correctné&@ALM.

Property 4. At any point of execution after lifié 5, the multi sekafers present in the files and in the output is
S.

Proof. We prove by induction. Itis trivially true after the partiti step. In general, note that the compaction oper-
ation preserves the multi set Bfmers. Because the only way the strings are ever changewisgihn compaction,
the property follows. O

Lemma 8. For each minimizern, for eachk-merw in S such that Lmifu) = m (resp. Rmiiu) = m), v is the
left-most (resp. right-most)-mer of a string inF;,, at the timef;,, is processed.

Proof. We prove this by induction om. Letmg be the smallest minimizer. Ak-mers that haven as a left or
right minimizer are strings i, thus the base case is true. ketbe a minimizer and, be ak-mer such that
Lmin(u) = m or Rmin(u) = m, and assume that the induction hypothesis holds for alllsmalinimizers. If
min(Lmin(u), Rmin(u)) = m, thenu is a string inF,,, after execution of lingl5. Else, without loss of generality,
assume thatn = Rmin(u) > Lmin(u). Then, after lindJby is a string iNF min(y). Let Fyi1, ..., Fye be all
the files, in increasing order of the minimizers, which haginaple path containing before the maximal-length
simple path containing is outputted by the algorithm. Let! be the largest of these minimizers strictly smaller
thanm. By the induction hypothesis and Propdrtyw4s at the right extremity of a unique string in F,,,:. After
the m‘-compactions, since: = Rmin(s,,) > m‘, s, does not go into the output. It is thus written to the next
larger minimizer. Sincen = Rmin(u) < mi*?, then it must be that**! = m, ands,, is written to F,,, which
completes the induction. O

Lemma 9. In Algorithm[d, at any point during execution, each stringfip, corresponds to a sub-path of a
maximal-length simple path.

Proof. We say that a string isorrectif it corresponds to a sub-path of a maximal-length simplia pé/e prove
the following invariant inductively: at the beginning ofethoop at lind B, all the fileg},, contain correct strings.
The base case is trivially true as all files contain okHgners in the beginning. Assume that the invariant holds
before processing;,, . It suffices to show that no wrong compactions are madef it@oistrings from#F;,, arem-
compactable, then they are also compactabke ifihe contrapositive is proven. Assume, for the sake of abitgi

a contradiction, that two stringa:, v) are not compactable i, yet arem-compactable inF,,, at the time it
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is processed. Without loss of generality, assume that teestsw € S such thatu — w andw # v. Since
u — v andu — w, m = Rmin(u) = Lmin(v) = Lmin(w). Hence, by Lemm@&l &y is the left-most:-mer of a
string in F;,, at the timeF,,, is processed. This contradicts ti{at v) arem-compactable irF},, at the time it is
processed. Thus, all compactions of string#’jinyield correct strings, and the invariant remains true aftgris
processed. O

Theorem 3. The output of Algorithfal1 is the set of maximal simple pathbefle Bruijn graph of.

Proof. By contradiction, assume that there exists a maximal-tesghple pathp that is not returned by Algo-
rithm . Every inputk-mer is returned by Algorithril1 in some string, and by Lenithav&ry returned string
corresponds to a sub-path of a maximal-length simple pdténTwithout loss of generality, assume that a simple
path ofp is split into sub-pathg:, p2, ..., p; in the output of Algorithni L. Let: be the last-mer of p; andv

be the firstk-mer of p;. Let m = Rmin(u) = Lmin(v) (with Observatiori]l). By Lemmia 8, andv are both
present inf;,, when it is processed. As andv are compactable il (to form p), they are also compactable in
F,, and thus the strings that includeandv in F;,, are compacted at lifé 7. This indicates thandv cannot be
extremities ofp; andp,, which yields a contradiction. O

9 Results

We tested the effectiveness of our algorithms on the de Bgrgphs of two sequencing datasets. Experiments in
Tabled1[2 anf]3 were run on a single core of a desktop comeqtgpped with an Intel i7 3.2 GHz processor,
8 GB of memory and a 7200 RPM hard disk drive. Experiments biegad and b were run on a single core of a
cluster node with 24 GB of memory and 2.67 GHz cores. In alkexpents, at most 300 GB of temporary disk
space was used. The first dataset is 36 million 155bp Illutimaan chromosome 14 reads (2.9 GB compressed
fastq) from the GAGE benchmark (Salzbexgal, [2012). The second dataset is 1.4 billion lllumina 100bpisea
(54 GB compressed fastq) from the NA18507 human genome ($BX31). We first processed the reads with
mer counting software, which is the first step of most assgpipklines. We used a value bf= 55 as we found

it gives reasonably good results on both datasets. We uséd (BEKk et all, [2013), a software that is designed
specifically for low memory usage and can also filter out lawstt k-mers as they are likely due to sequencing
errors (we useg: 5 for chrl4 and< 3 for the whole genome).

Dataset DSK BCALM DBGFM
43 MB 19 MB 38 MB
Chromosome 14 25 mins 15 mins 7 mins
Whole human genome 1L1GB 43 MB L5GB
g 5h 12h 7h

Tablel. Running times (wall-clock) and memory usage of DSKALM andDBGFM construction on the human chromosome
14 and whole human genome dataséts=(55 and¢ = 10 for both).

First, we ranBCALM on the ofk-mers computed by DSK. The output®EALM was then passed as input to
DBGFM, which constructed the FM-index. Talple 1 shows the resyitiime and memory usage of DSKCALM,
andpBGFM. For the whole genome dataset,ALM used only 43 MB of memory to take a setd§ - 10 55-mers
and output 40 million sequences of total length 4.6 GigGFM represented these paths in an index of size 1.5
GB, using no more than that memory during construction. TWexail construction time, including DSK, was
roughly 24 hours. In comparison, a subset of this datasetg@d to construct the data structurm

) in 30.7 hours.

We compared the space utilization of cDBGFM representation with that of other low space data struc-
tures, Salikhoet all (2013) and|_Conway and Bromage (2011) (TdBle 2). Another fmiamapproach is that of
Boweet all (2012), but they do not have an implementation availableu¥s.53 bits perk-mer (38.0 MB total)
for chrl4 and 4.76 bits pér-mer (1462 MB total) for the whole-genome. This i$@% and46% improvement
over the state-of-the art, respectively.

During algorithm development, we experimented with déferways to order the minimizers and the effect
on memory usage (TaHlg 3). Initially, we used the lexicobiegl ordering, but experiments with the chromosome
14 dataset showed it was a poor choice, resulting in 804 MB ongmsage witl = 8. The lexicographically
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DBGFM Salikhovet al. Conway & Bromage

chr14 38.0 MB 94.9 MB > 875 MB
Full human dataset 1462 MB 2702 MB > 22951 MB

Table 2. Memory usage of de Bruijn graph data structures, on the husheomosome 14 and whole human genome datasets
(k = 55 for both). We did not run the algorithm of Conway and Bromageguse our machine does not have sufficient memory
for the whole genome. Instead, we report the theoreticaldizheir data structure, assuming that it would be constrliftom

the output of DSK. As describedlin Conway and Bromage (2ahig gives a lower bound on how well their implementation
could perform.

Ordering type Lexicographical Uniformly Random  ¢-mer frequency
Memory usage 804 MB 222 MB 19 MB

Table3. Memory usage o8cALM with three different minimizer orderings: lexicograpHjamiformly random, and according
to increasing-mer frequencies. The dataset used is the human chromosbmighli = 55 and/ = 8.

smallest/-mer ismy = A’, which is overly abundant in human chromosomesffat 10, resulting in a large
file F,,,. In a second attempt, we created a uniformly random ordexfragl the -mers. WhileA* is no longer
likely to have a small value, it is still likely that there ishaghly repeated-mer that comes early in the ordering,
resulting in 222 MB memory usage. Finally, we ordered #fraers according to their frequency in the dataset.
This gave a memory usage of 19 MB, resulting in a 40-fold improent over the initial lexicographical ordering.
The running times of all three orderings were comparablealsle evaluated the effect that the minimizer dize
has on memory usage and running time (Table 4). Latgéll generally lead to smaller memory usage, however
we did not see much improvement péast 8 on this dataset.

Minimizer sizel 2 4 6 8 10
Memory usage 9879 MB 3413 MB 248 MB 19 MB 19 MB
Running time 27m19s 22m2s 20m5s 18m39s 21md4s

Table4. Memory usage and wall-clock running time®EtALM with increasing values of minimizer sizésn the chrl4 data.
By grouping files into virtual files, these values ofequire respectively 4, 16, 64, 256 and 1024 physical filedisk. The
ordering of minimizers used is the one basedaner counts.

Finally, we evaluated the performance of ABySS usisgFM compared with that of the hash table implemen-
tation (Tabldb). Note, however, that only the graph traslemad marking steps were implemented in tesFm
version, and none of the graph simplifications steps of ABySf® DBGFM version used0% less memory, al-
beit the hash version wa8% faster, indicating the time/space trade-off inherent mfM-index. In addition to
storing the graph, ABySS associates data with éaater: the count of each-mer and its reverse complement
(two 16 bits counters), the presence or absence of the fasile in- and out-edges (8 bits), three boolean flags
indicating whether thé-mer and its reverse complement have been visited in grapérsal (2 bits), and whether
they have been removed (1 bit). While in the hash implememtathe graph structure takes 54% of the memory,
in thepBGFM version it only used 6% of memory. This indicates that furthemory improvements can be made
by optimizing the memory usage of the associated data.

10 Conclusion

This paper has focused on pushing the boundaries of memficierty of de Bruijn graphs. Because of the
speed/memory trade-offs involved, this has come at theof@dbwer data structure construction and query times.
Our next focus will be on improving these runtimes througtirojzation and parallelization of our algorithms.
We see several benefits of low-memory de Bruijn graph datetstres in genome assembly. First, there are
genomes like the 20 Gbp white spruce which are an order of malgnlonger than the human which cannot
be assembled by most assemblers, even on machines withbgteecf RAM. Second, even for human sized
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Data structure Memory usage Bytesher dBG (Bk-mer) Data (Bk-mer) Overhead (B/-mer) Run time

sparsehash 2429 MB 29.50 16 8 5.50 14m4s
DBGFM 739 MB 8.98 0.53 8 0.44 21mils

Table 5. Memory usage and run time (wall clock) of the ABySS hash tablglementation (sparsehash) and of t&GFM
implementation, using a single thread to process the humammsome 14 data set. The dBG bykesier column corresponds
to the space taken by encodedners for sparsehash, and the FM-indexdeGFM. The Data byteg-mer column corresponds
to associated data. The Overhead bytasér corresponds to the hash table and heap overheads,|@s e rank/select bit
array. The run time of theBGFM row does not include the time to construct th&GFMm representation.

genomes, the memory burden poses unnecessary costs tocheiedogy labs. Finally, in assemblers such as
ABYSS that store thé-mers explicitly, memory constraints can prevent the udargie . values. WithDBGFM,
the memory usage becomes much less dependéntaord allows the use of largénvalues to improve the quality
of the assembly.
Beyond genome assembly, our work is also relevant to nd@nyovosequencing applications where large de
Bruijn graphs are used, e.g. assembly of transcriptomesata-genomes (Grabhetall,[2011{ Boisveret all,
), andde novogenotypmgm_%ﬂ, @)
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