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Abstract. The de Bruijn graph plays an important role in bioinformatics, especially in the context ofde novo
assembly. However, the representation of the de Bruijn graph in memory is a computational bottleneck for
many assemblers. Recent papers proposed a navigational data structure approach in order to improve memory
usage. We prove several theoretical space lower bounds to show the limitations of these types of approaches.
We further design and implement a general data structure (DBGFM) and demonstrate its use on a human whole-
genome dataset, achieving space usage of 1.5 GB and a 46% improvement over previous approaches. As part
of DBGFM, we develop the notion of frequency-based minimizers and show how it can be used to enumerate
all maximal simple paths of the de Bruijn graph using only 43 MB of memory. Finally, we demonstrate that
our approach can be integrated into an existing assembler bymodifying the ABySS software to useDBGFM.

1 Introduction

De novoassembly continues to be one of the fundamental problems in bioinformatics, with new datasets coming
from projects such as the Genome10K (Haussleret al., 2008). The task is to reconstruct an unknown genome
sequence from a set of short sequenced fragments. Most state-of-the-art assemblers (e.g. Gnerreet al. (2011);
Li et al.(2010); Bankevichet al.(2012); Zerbino and Birney (2008)) start by building a de Bruijn graph (dBG) (Pevzner,
1989; Idury and Waterman, 1995), which is a directed graph where each node is a distinctk-mer present in the in-
put fragments, and an edge is present between twok-mers when they share an exact(k−1)-overlap. The de Bruijn
graph is the basis of many steps in assembly, including path compression, bulge removal, graph simplification, and
repeat resolution (Milleret al., 2010). In the workflow of most assemblers, the graph must, atleast initially, reside
in memory; thus, for large genomes, memory is a computational bottleneck. For example, the graph of a human
genome consists of nearly three billions nodes and edges andassemblers require computers with hundreds of gi-
gabytes of memory (Gnerreet al., 2011; Liet al., 2010). Even these large resources can be insufficient for many
genomes, such as the 20 Gbp white spruce. Recent assembly required a distributed-memory approach and around
a hundred large-memory servers, collectively storing a4.3 TB de Bruijn graph data structure (Birolet al., 2013).

Several articles have pursued the question of whether smaller data structures could be designed to make large
genome assembly more accessible (Conway and Bromage, 2011;Ye et al., 2012; Pellet al., 2012; Chikhi and Rizk,
2012; Boweet al., 2012). Conway and Bromage (2011) gave a lower bound on the number of bits required to en-
code a de Bruijn graph consisting ofn k-mers:Ω(n lg n) (assuming4k > n). However, two groups independently
observed that assemblers use dBGs in a very narrow manner (Chikhi and Rizk, 2012; Boweet al., 2012) and
proposed a data structure that is able to return the set of neighbors of a given node but is not necessarily able
to determine if that node is in the graph. We refer to these asnavigational data structures(NDS). The naviga-
tional data structures proposed in Chikhi and Rizk (2012); Boweet al. (2012) requireO(n lg k) andO(n)1 bits
(respectively), beating the Conway-Bromage lower bound both in theory and in practice (Chikhi and Rizk, 2012).

What is the potential of these types of approaches to furtherreduce memory usage? To answer this question,
we first formalize the notion of a navigational data structure and then show that any NDS requires at least3.24n
bits. This result leaves a gap with the known upper bounds; however, even if a NDS could be developed to meet
this bound, could we hope to do better on inputs that occur in practice? To answer this, we consider a very simple
class of inputs: simple paths. We show that on these inputs (called linear dBGs), there are both navigational and
general data structures that asymptotically use2n bits and give matching lower bounds. While dBGs occurring
in practice are not linear, they can nevertheless be often decomposed into a small collection of long simple paths

∗A preliminary version of some of these results appeared in Chikhi et al. (2014).
†Corresponding author, pashadag@cse.psu.edu

1 The paper only showed the number of bits isO(n lgn). However, the authors recently indicated in a blog post (Bowe, 2013)
how the dependence onlg(n) could be removed, though the result has not yet been published.
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(where all the internal nodes have in- and out-degree of 1). Could we then take advantage of such a decomposition
to develop a data structure that can achieve close to2n bits on practical inputs?

We describe and implement a data structure (DBGFM) to represent de Bruijn graphs in low memory. The
first step of the construction uses existingk-mer counting software to transform, in constant memory, the input
sequencing dataset to a list ofk-mers (i.e. nodes) stored on disk (Rizket al., 2013). The second step is a novel
low memory algorithm that enumerates all the maximal simplepaths without loading the whole graph in memory.
We achieve this through the use of non-lexicographic minimizers, ordered based on their frequency in the data.
Finally, we use the FM-index (Ferragina and Manzini, 2000) to store the simple paths in memory and answer
membership and neighborhood queries.

We prove that as the number of simple paths decreases, the space utilization ofDBGFM approaches2n bits.
In practice,DBGFM uses4.76n bits on a human whole-genome dataset and3.53n bits on a human chr14 dataset,
improving the state-of-the-art (Salikhovet al., 2013) by 46% and 60%, respectively. We demonstrate the efficiency
of frequency-based minimizers by collapsing the dBG of the human whole-genome dataset using only43 MB of
memory. Finally, we show howDBGFM can be integrated into an existing assembler by modifying the ABySS
software (Simpsonet al., 2009) to useDBGFM instead of a hash table.

2 Previous Work

In the last three years, several papers and assemblers have explored novel data structures designed to reduce the
space usage of dBGs, and we provide a brief summary of the results here.

ABySS was one of the first genome assemblers capable of representing large dBGs (Simpsonet al., 2009). It
uses an open-addressing hash table that stores thek-mers of the graph in the keys. The edges can be inferred from
the nodes and do not need to be stored. For everyk-mer, ABySS uses2k bits to store thek-mer, plus an additional
43 bits of associated data (stored in 64 bits for ease of implementation). Therefore, in total, the space usage of the
dBG data structure in ABySS is(ℓ−1(2k + 64)) bits perk-mer, whereℓ is the load factor of the hash table (set to
0.8). In the following, we focus on the space needed to store just the dBG, since the type of associated data varies
greatly between different assemblers.

Conway and Bromage (2011) gave alg
(

4k

n

)

bits lower bound for representing a dBG and demonstrated a
sparse bit array data structure that comes close to achieving it. They used an edge-centric definition of the dBG
(where edges are all the(k + 1)-mers, and nodes are prefixes and suffixes of lengthk), but their results trivially
translate to node-centric dBGs by storingk-mers instead of(k + 1)-mers. For a dataset withk = 27 and12 · 109

edges (i.e. (k+1)-mers), their theoretical minimum space is 22 bits per edgewhile their implementation achieves
28.5 bits per edge.

Later work explored the trade-offs between the amount of information retained from the de Bruijn graph and
the space usage of the data structure. Yeet al. (2012) showed that a graph equivalent to the de Bruijn graph can
be stored in a hash table by sub-samplingk-mers. The values of the hash table record sequences that would
correspond to paths betweenk-mers in the de Bruijn graph. The theoretical memory usage ofthis approach is
Ω(k/g) bits perk-mer, whereg is the distance between consecutive sampledk-mers. Pellet al. (2012) proposed
a practical lossy approximation of the de Bruijn graph that stores the nodes in a Bloom filter (Bloom, 1970). They
found that a space usage of4 bits perk-mer provided a reasonable approximation of the de Bruijn graph for their
purpose (partitioning and down-sampling DNA sequence datasets). Yet, the structure has not yet been directly
applied tode novoassembly.

Chikhi and Rizk (2012) built upon the structure of Pellet al. (2012) by additionally storing the set of Bloom
filter false positives (false neighbors of true nodes in the graph). In this way, their structure is no longer lossy. They
obtained a navigational data structure that allowed the assembler to exactly enumerate the in- and out-neighbors
of any graph node in constant time. However, the structure does not support node membership queries, and also
does not support storing associated data tok-mers. The theoretical space usage is(1.44 lg( 16k

2.08 ) + 2.08) bits per
k-mer, under certain assumptions about the false positive rate of the Bloom filter. This corresponds to13.2 bits
perk-mer fork = 27.

The structure has recently been improved by Salikhovet al.(2013) with cascading Bloom filters, replacing the
hash table by a cascade of Bloom filters. In theory, if an infinite number of Bloom filters is used, this scheme would
require7.93 bits perk-mer independently ofk. The authors show that using only4 Bloom filters is satisfactory
in practice, yet they do not provide a formula for the theoretical space usage in this case. Fork = 27 and2.7 ·
109 nodes, they computed that their structure uses8.4 bits perk-mer. Boweet al. (2012) used a tree variant of
the Burrows-Wheeler transform (Burrows and Wheeler, 1994)to support identical operations. They describe a
theoretical navigational data structure for representingthe dBG of a set of input sequences that uses a space
4m+M lg(m)+o(m) bits, whereM is the number of input strings andm the number of graph edges. Note that the
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space is independent ofk. Another data structure based on a similar principle has been recently proposed (Rødland,
2013).

In addition to studying the representation of de Bruijn graphs, several articles have designed efficient algo-
rithms for constructing the graph. Liet al. (2013) proposed an algorithm based on minimizers that, given a set of
reads, outputs to the disk both the edges and the nodes of the de Bruijn graph (essentially performing ak-mer
counting step). Movahediet al.(2012) also used minimizers to reduce the memory usage of de Bruijn graph com-
paction. Their approach consists in partitioning the initial graph into disjoint components, assigning eachk-mer
to a slice via its minimizer. Slices are then compacted in no specific order, and the resulting compacted slices
are merged together into a final compacted graph. The improvement in terms of memory reduction achieved by
this two-stage compaction approach was not analyzed in Movahediet al. (2012). Finally, several methods have
been recently proposed to construct a compacted de Bruijn graph in linear time and memory from a suffix ar-
ray (Cazauxet al., 2014; Minkinet al., 2013) or a suffix tree (Marcuset al., 2014).

3 Preliminaries

We assume, for the purposes of this paper, that all strings are over the alphabetΣ = {A,C,G, T }. A string of
lengthk is called ak-mer andU is the universe of allk-mers, i.e.U = Σk. The binary relationu → v between
two strings denotes an exact suffix-prefix overlap of length(k − 1) betweenu andv. For a set ofk-mersS, the
de Bruijn graphof S is a directed graph such that the nodes are exactly thek-mers inS and the edges are given
by the→ relation. We defineS to be alinear dBG if there exists a stringx where all the(k − 1)-mers ofx are
distinct andS is the set ofk-mers present inx. Equivalently,S is a linear dBG if and only if the graph is a simple
path. The de Bruijn graph of a strings is the de Bruijn graph of all thek-mers ins. We adopt the node-centric
definition of the de Bruijn graph, where the edges are implicit given the vertices; therefore, we use the terms de
Bruijn graph and a set ofk-mers interchangeably.

For a nodex in the de Bruijn graph, let
←−
ext(x) be its four potential in-neighbors (i.e.

←−
ext(x) = {y : y ∈

Σk, y → x} ) and
−→
ext(x) be its four potential out-neighbors. Letext(x) =

−→
ext(x) ∪

←−
ext(x). For a given set of

k-mersS, let ext(S) = {ext(x), x ∈ S} (similarly for
−→
ext(S) and

←−
ext(S)).

We will need some notation for working with index sets, whichis just a set of integers that is used to select a
subset of elements from another set. DefineIDX (i, j) as a set of all index sets that selectj out of i elements. Given
a set ofi elementsY andX ∈ IDX(i, j), we then writeY [X ] to represent the subset ofj elements out ofY , as
specified byX . We assume that there is a natural ordering on the elements ofthe setY , e.g. ifY is a set of strings,
then the ordering might be the lexicographical one.

The families of graphs we will use to construct the lower bounds of Theorems 1 and 2 havek be a polyloga-
rithmic function of|S|, i.e.k = O(logc |S|) for somec. We note that in some cases, higher lower bounds could
be obtained using families of graphs withk = Θ(|S|); however, we feel that such values ofk are unrealistic given
the sequencing technologies. On one hand, the value ofk is a bounded from above by the read length, which is
experimentally independent of the number ofk-mers. On the other hand,k must be at leastlog4(|S|) in order for
there to be at least|S| distinctk-mers.

4 Navigational data structures

We use the termmembership data structureto refer to a way of representing a dBG and answeringk-mer mem-
bership queries. We can view this as a pair of algorithms:(CONST, MEMB). TheCONST algorithm takes a set of
k-mersS (i.e. a dBG) and outputs a bit string. We callCONSTa constructor, since it constructs a representation of
a dBG. TheMEMB algorithm takes as input a bit string and ak-merx and outputs true or false. Intuitively,MEMB

takes a representation of a dBG created byCONST and outputs whether a givenk-mer is present. Formally, we
require that for allx ∈ Σk, MEMB(CONST(S), x) is true if and only ifx ∈ S. An example membership data struc-
ture, as used in ABySS, is one where thek-mers are put into a hash table (theCONSTalgorithm) and membership
queries are answered by hashing thek-mer to its location in the table (theMEMB algorithm).

Recently, it was observed that most assemblers use theMEMB algorithm in a limited way (Chikhi and Rizk,
2012; Boweet al., 2012). They do not typically ask for membership of a vertex that is not inext(S), but, instead,
ask for the neighborhood of nodes that it already knows are inthe graph. We formalize this idea by introducing
the term navigational data structure (NDS), inspired by thesimilar idea of performing navigational queries on
trees (Ferraginaet al., 2009). An NDS is a pair of algorithms,CONST andNBR. As before,CONST takes a set of
k-mers and outputs a bit string.NBR takes a bit string and ak-mer, and outputs a set ofk-mers. The algorithms
must satisfy that for every dBGS and ak-merx ∈ S, NBR(CONST(S), x) = ext(x) ∩ S. Note that ifx /∈ S,
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Fig. 1. Example of lower bound construction fork = 4. The figure showsT along with some of the node labels. The four
nodes on the left formT0, the 16 nodes in the middle areT1, and the nodes on the right areT2. For space purposes, some of
the edges fromT1 to T2 are grouped together. An example of a member from the family is shown with shaded vertices. Note
that there are four vertices at each level, and together theyform a subforest ofT .

then the behavior ofNBR(CONST(S), x) is undefined. We observe that a membership data structure immediately
implies a NDS because aNBR query can be reduced to eightMEMB queries.

To illustrate how such a data structure can be useful, consider a program that can enumerate nodes using exter-
nal memory (e.g. a hard drive or a network connection). Usingexternal memory to navigate the graph by testing
node membership would be highly inefficient because of long random access times. However, it is acceptable to
get a starting node from the device and access the other nodesusing the proposed data structure.

There are several important aspects of both a navigational and membership data structures, including the space
needed to represent the output of the constructor, the memory usage and running time of the constructor, and the
time needed to answer either neighborhood or membership queries. For proving space lower bounds, we make no
restriction on the other resources so that our bounds hold more generally. However, adding other constraints (e.g.
query time oflg n) may allow us to prove higher lower bounds and is an interesting area for future work.

5 Navigational data structure lower bound for de Bruijn graphs

In this section, we prove that a navigational data structureon de Bruijn graphs needs at least 3.24 bits perk-mer
to represent the graph:

Theorem 1. Consider an arbitrary NDS and letCONST be its constructor. For any0 < ǫ < 1, there exists ak
andx ⊆ Σk such that|CONST(x)| ≥ |x| · (c− ǫ), wherec = 8− 3 lg 3 ≈ 3.25.

We will first present a high level overview of the proof strategy followed by the formal proof afterwards.

5.1 Proof strategy overview

Our proof strategy is to construct a family of graphs, for which the number of navigational data structures is at
least the size of the family. The full proof of the theorem is in the Section 5.2, however, we will describe the
construction used and the overall outline here. Our first step is to construct a large dBGT and later we will choose
subsets as members of our family. Fix an evenk ≥ 2, let ℓ = k/2, and letm = 4ℓ−1. T will be defined as the
union ofℓ+ 1 levels,T = ∪0≤i≤ℓTi. For0 ≤ i ≤ ℓ, we define theith level asTi = {“A ℓ−iTα” : α ∈ Σi+ℓ−1}.
Observe thatTi =

−→
ext(Ti−1), for 1 ≤ i ≤ ℓ. See Figure 1 for a small example.

We focus on constructing dBGs that are subsets ofT becauseT has some desirable properties. In fact, one can
show that the set ofk-mersT induces a forest in the dBG ofΣk (Lemmas 1 and 2 in the Appendix). Each member
of our family will be a subforest ofT that containsm vertices from every level.

Formally, suppose we are given a sequence of index setsX = X1, . . . , Xℓ where every index set is a member
of IDX(4m,m). Each index set will define the subset of vertices we select from a level, and we defineLX

0 = T0

andLX
i =

−→
ext(LX

i−1)[Xi], for 1 ≤ i ≤ ℓ. Note thatLX
i ⊆ Ti. In this manner, the index sets define a set ofk-mers

s(X) = ∪0≤i≤ℓL
X
i . Finally, the family of graphs which we will use for our proofis given by:

Sk = {s(X1, . . . , Xℓ) : ℓ = k/2,m = 4ℓ−1, Xi ∈ IDX (4m,m)}
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To prove Theorem 1, we first show that each of the dBGs of our family have the same amount ofk-mers:

Property 1. For all x ∈ Sk, |x| = 4ℓ−1(ℓ+ 1).

Next, we show that each choice ofX leads to a unique graphs(X) (Lemma 3) and use it to show that the
numbers of graphs in our family is large, relative to the number ofk-mers in each set:

Property 2. |Sk| =
(

4m
m

)ℓ
≥ 2(c−ǫ0)ℓm, wherec = 8− 3 lg 3 andǫ0 = lg(12m)/m.

Finally, we need to show that for any two graphs in the family,there is at least onek-mer that appears in both
graphs but with different neighbors:

Property 3. Letx = s(X) ∈ Sk andy = s(Y ) ∈ Sk be two distinct elements inSk. Then, there exists ak-mer
u ∈ x ∩ y such that

−→
ext(u) ∩ x 6=

−→
ext(u) ∩ y.

The proof of Theorem 1 now follows by using the pigeonhole principle to argue that the number of navigational
data structures must be at least the size of our family, giving a lower bound on the bits perk-mer.

5.2 Proof details

We now give a formal proof of the three Properties and the Theorem.

Lemma 1. Lety ∈ T . There exists a unique0 ≤ i ≤ ℓ such thaty ∈ Ti.

Proof. Take two arbitrary levelsi1 < i2 and two arbitrary vertices in those levels,x1 ∈ Ti1 andx2 ∈ Ti2 . Let
z ∈ {1, 2}. Thek-mer represented byxz is “A ℓ−iz+1Tαz”, whereαz is some string. At positionℓ − i1 + 1, x1

has a T, whilex2 has an A. Therefore,x1 6= x2 and the lemma follows.

Lemma 2. For all distinctx1 andx2 in T that are not in the last level (Tℓ),
−→
ext(x1) ∩

−→
ext(x2) = ∅.

Proof. By Lemma 1, there exist unique levelsi1 andi2 such thatx1 ∈ Ti1 andx2 ∈ Ti2 . We first observe that
−→
ext(xz) ∈ Tiz+1, for z ∈ {1, 2}. If it is the case thati1 6= i2, then Lemma 1 applied to the vertices in the
extensions prove the lemma. Now suppose thati1 = i2, and we writei = i1. Then, forz ∈ {1, 2}, thek-mer
represented byxz is “A ℓ−iTαz”, whereαz is a (ℓ + i − 1)-mer andα1 6= α2. We can then write the extensions
as
−→
ext(xz) = {“A ℓ−i−1Tαzβ” : β ∈ {A,C,G, T }}. Becauseα1 6= α2, the sets

−→
ext(x1) and

−→
ext(x2) share no

common elements.

Property 1 now follows directly from Lemmas 1 and 2. To prove Property 2, we need the following two
lemmas:

Lemma 3. LetX = X1, . . . , Xℓ andY = Y1, . . . , Yℓ be two sequences of index sets. Thens(X) = s(Y ) if and
only if X = Y .

Proof. Since the construction is fully deterministic and depends only on the index sets, thenX = Y immediately
impliess(X) = s(Y ). For the other direction, suppose thatX 6= Y . Let i > 0 be the smallest index such that
Xi 6= Yi. Then there exists a vertexy such thaty ∈ LX

i but y /∈ LY
i . Sincey is in Ti but not inLY

i , Lemma 1
implies thaty /∈ s(Y ).

Lemma 4. For all m > 0,
(

4m
m

)

≥ 2(c−ǫ0)m, wherec = 8− 3 lg 3 andǫ0 = lg(12m)/m.

Proof. Follows directly from an inequality of Sondow and Stong (2007):
(

rm
m

)

> 2cm

4m(r−1) .

Property 2. |Sk| =
(

4m
m

)ℓ
≥ 2(c−ǫ0)ℓm, wherec = 8− 3 lg 3 andǫ0 = lg(12m)/m.

Proof. Lemma 3 tells us that the size ofSk is the number of possible ways one could chooseX1, . . . , Xℓ during
the construction of each elements(X1, . . . , Xℓ). The choice for eachXi is independent, and there are

(

4m
m

)

possibilities. Hence, there are
(

4m
m

)ℓ
total choices. The inequality follows from Lemma 4.

We can now prove Property 3 and Theorem 1:

Property 3. Letx = s(X) ∈ Sk andy = s(Y ) ∈ Sk be two distinct elements inSk. Then, there exists ak-mer
u ∈ x ∩ y such that

−→
ext(u) ∩ x 6=

−→
ext(u) ∩ y.
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Proof. By Lemma 3,X 6= Y . Let i be the smallest index such thatXi 6= Yi, and letv be an element inLX
i but

not inLY
i . By construction, there exists a vertexu ∈ LX

i−1 (and hence inLY
i−1) such thatv ∈

−→
ext(u). Lemma 1

tells us thatv is not iny and henceu satisfies the condition of the lemma.

Theorem 1. Consider an arbitrary NDS and letCONST be its constructor. For any0 < ǫ < 1, there exists ak
andx ⊆ Σk such that|CONST(x)| ≥ |x| · (c− ǫ), wherec = 8− 3 lg 3 ≈ 3.25.

Proof. Assume for the sake of contradiction that for allx, |CONST(x)| < |x|(c−ǫ). Letk be a large enough integer
such thatk > 2cǫ−1 andǫ0 < (ǫ(ℓ + 1) − c)/ℓ holds (withm, ℓ, ǫ0 as defined above). The second inequality
is verified for any large value ofk, sinceǫ0 = Θ(ℓ/4ℓ) converges to0 and(ǫ(ℓ + 1) − c)/ℓ converges toǫ. Let
n = 4k/2−1(k/2+ 1). Consider the outputs ofCONSTon the elements ofSk. When the input is constrained to be
of sizen, the output must use less than(c − ǫ)n bits (by Lemma 1). Hence the range ofCONST over the domain
Sk has size less than2(c−ǫ)n. At the same time, Lemma 2 states that there are at least2(c−ǫo)ℓm elements inSk.

From the inequalityǫ0 < (ǫ(ℓ+1)−c)/ℓwe derive that(c−ǫ0)ℓ > (c−ǫ)(ℓ+1) and thus2(c−ǫo)ℓm > 2(c−ǫ)n.
Therefore, there must exist distincts1, s2 ∈ Sk such thatCONST(s1) = CONST(s2). We can now apply Lemma 3
to obtain an elementy ∈ s1 ∩ s2 that is a valid input toCONST(s1) and toCONST(s2). Since the two functions are
the same, the return value must also the same. However, we know that the out-neighborhoods ofy are different
in s1 and in s2, hence, one of the results ofNBR on y must be incorrect. This contradicts the correctness of
CONST.

6 Linear de Bruijn graphs

In this section, we study data structures to represent linear de Bruijn graphs. Though a linear dBG will never occur
in practice, it is an idealized scenario which lets us capture how well a data structure can do in the best case. The
bounds obtained here also serve as motivation for our approach in later sections, where we build a membership
data structure whose space usage approaches our lower boundfrom this section the “closer” the graph is to being
linear.

We can design a naive membership data structure for linear dBGs. A linear dBG withn k-mers corresponds to
a string of lengthn+ k − 1. The constructor builds and stores the string from thek-mers, while the membership
query simply does a linear scan through the string. The spaceusage is2(n + k − 1) bits. The query time is
prohibitively slow, and we show in Section 7 how to achieve a much faster solution at the cost of a space increase.

We now prove that a NDS on linear de Bruijn graphs needs at least 2n bits to represent the graph, meaning one
cannot do much better than the naive representation above. We will first give a proof strategy overview, followed
by the formal proof details.

6.1 Proof strategy overview

In general, representing all strings of lengthn + k − 1 would take2(n+ k − 1) bits, however, not all strings of
this length correspond to linear dBGs. Fortunately, we can adapt a probabilistic result of Gagie (2012) to quantify
the number of strings of this length that have no duplicatek-mers (Lemma 5). Our strategy is similar to that of
Section 5. We construct a large family of linear dBGs such that for any pair of members, there is always ak-mer
that belongs to both but whose neighborhoods are different.We build the family by taking the set of all strings
without duplicate(k−1)-mers and identifying a large subset having the same startingk-mer. We then show that by
increasing the length of the strings andk, we can create a family of size arbitrarily close to4n (Lemma 6). Finally,
we show that because each string in the family starts with thesamek-mer, there always exists a distinguishingk-
mer for any pair of strings. Using the pigeonhole principle,this implies that number of navigational data structures
must be at least the number of distinct strings:

Theorem 2. Consider an arbitrary NDS for linear de Bruijn graphs and letCONST be its constructor. Then, for
any0 < ǫ < 1, there exists(n, k) and a set ofk-mersS of cardinalityn, such that|CONST(S)| ≥ 2n(1− ǫ).

Note that our naive membership data structure of2(n+k−1) bits immediately implies a NDS of the same size.
Similarly, Theorem 2’s lower bound of2n bits on a NDS immediately implies the same bound for membership
data structures. In practice,k is orders of magnitude less thann, and we view these results as saying that the space
usage of membership and navigational data structures on linear dBGs is essentially2n and cannot be improved.

These results, together with Theorem 1, suggested that the potential of navigational data structures may be
dampened when the dBG is linear-like in structure. Intuitively, the advantage of a linear dBG is that all thek-
mers of a path collapse together onto one string and require storing only one nucleotide perk-mer, except for the
overhead of the firstk-mer. If the dBG is not linear but can still be decomposed intoa few paths, then we could
still take advantage of each path while paying an overhead ofonly a singlek-mer per path. This in fact forms the
basis of our algorithm in Section 7.
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Fig. 2. Illustration of the proof of Lemma 5, showing the definition of the setS of strings of lengthm containing identical
k-mers at positions1 ≤ i < j ≤ (m− k+1). Panel A illustrates the case when(j− i) ≥ k: thek-merss[i . . . i+ k− 1] and
s[j . . . j + k − 1] do not overlap. When(j − i) < k (Panel B), thek-mers[i . . . i+ k − 1] (also equal tos[j . . . j + k − 1])
consists of repetitions of the strings[i . . . j − 1].

6.2 Proof details

Lemma 5. The number of DNA strings of lengthmwhere eachk-mer is seen only once is at least4m(1−
(

m
2

)

4−k).

Proof. This Lemma was expressed in a probabilistic setting in Gagie(2012), but we provide a deterministic proof
here. We define a set of stringsS and show that it contains all strings with at least one repeatedk-mer. Letsk

be the string obtained by repeating the patterns as many times as needed to obtain a string of length exactlyk,
possibly truncating the last occurrence. Let

S = {s ∈ Σm |∃ (i, j), 1 ≤ i < j ≤ (m− k + 1),

∃ t, |t| = (m− k),

s[1 . . . j − 1] = t[1 . . . j − 1],

s[j . . . j + k − 1] = s[i . . . j − 1]
k
,

s[j + k . . .m] = t[j . . .m− k] if j < m− k + 1},

as illustrated in Figure 2. Lets′ be a string of lengthm which contains at least one repeatedk-mer. Without loss
of generality, there exists two starting positionsi < j of identicalk-mers (s′[j . . . j+ k− 1] = s′[i . . . i+ k− 1]).
Settingt to be the concatenation ofs′[1..j − 1] ands′[j + k . . .m], it is clear thats′ is in S. ThusS contains all
strings of lengthm having at least one repeatedk-mer. Since there are

(

m−k+1
2

)

choices for(i, j), i.e. less than
(

m
2

)

, and4m−k choices fort, the cardinality ofS is at most
(

m
2

)

4m−k, which yields the result.

Lemma 6. Given0 < ǫ < 1, let n = ⌈3ǫ−1⌉ andk = ⌈1 + (2 + ǫ) log4(2n)⌉. The number of DNA strings of
length(n+k−1) which start with the samek-mer, and do not contain any repeated(k−1)-mer, is strictly greater
than4n(1−ǫ).

Proof. Note thatk < n, thusk > (1+(2+ ǫ) log4(n+k−1)) and4−k+1 < (n+k−1)(−2−ǫ). Using Lemma 5,
there are at least(4n+k−1(1−

(

n+k−1
2

)

4−k+1)) > (4n+k−1(1− 1
2(n+k−1)ǫ )) strings of length(n+ k− 1) where

each(k − 1)-mer is unique. Thus, each string has exactlyn k-mers that are all distinct. By binning these strings
with respect to their firstk-mer, there exists ak-merk0 such that there are at least4n−1(1 − 1

2(n+k−1)ǫ ) strings

starting withk0, which do not contain any repeated(k − 1)-mer. The following inequalities hold:4−1 > 4−nǫ/2

and(1− 1
2(n+k−1)ǫ ) >

1
2 > 4−nǫ/2. Thus,4n−1(1− 1

2(n+k−1)ǫ ) > 4n(1−ǫ).

Lemma 7. Two different strings of length(n + k − 1) starting with the samek-mer and not containing any
repeated(k − 1)-mer correspond to two different linear de Bruijn graphs.

Proof. For two different stringss1 ands2 of length(n + k − 1), which start with the samek-mer and do not
contain any repeated(k − 1)-mer, observe that their sets ofk-mers cannot be identical. Suppose they were, and
consider the smallest integeri such thats1[i . . . i+ k− 2] = s2[i . . . i+ k− 2] ands1[i+ k− 1] 6= s2[i+ k− 1].
Thek-mers1[i . . . i+ k− 1] appears ins2, at some positionj 6= i. Thens2[i . . . i+ k− 2] ands2[j . . . j + k− 2]
are identical(k − 1)-mers ins2, which is a contradiction. Thus,s1 ands2 correspond to different sets ofk-mers,
and therefore correspond to two different linear de Bruijn graphs.

Theorem 2. Consider an arbitrary NDS for linear de Bruijn graphs and letCONST be its constructor. Then, for
any0 < ǫ < 1, there exists(n, k) and a set ofk-mersS of cardinalityn, such that|CONST(S)| ≥ 2n(1− ǫ).
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Proof. Assume for the sake of contradiction that for all linear de Bruijn graphs, the output ofCONSTrequires less
than2(1− ǫ) bits perk-mer. Thus for a fixedk-mer length, the number of outputsCONST(S) for sets ofk-mersS
of sizen is no more than22n(1−ǫ). Lemma 6 provides values(k, n, k0), for which there are more strings starting
with ak-merk0 and containing exactlyn k-mers with no duplicate(k−1)-mers (strictly more than22n(1−ǫ)) than
the number of outputsCONST(S) for n k-mers.

By the pigeonhole principle, there exists a navigational data structure constructorCONST(S) that takes the
same values on two different stringss1 ands2 that start with the samek-merk0 and do not contain repeated(k−1)-
mer. By Lemma 7,CONST(S) takes the same values on two different sets ofk-mersS1 andS2 of cardinalityn.
Let p be the length of longest prefix common to both strings. Letk1 be thek-mer at position(p − k + 1) in s1.
Note thatk1 is also thek-mer that starts at position(p − k + 1) in s2. By construction ofs1 ands2, k1 does
not appear anywhere else ins1 or s2. Moreover, thek-mer at position(p − k) in s1 is different to thek-mer at
position(p − k) in s2. In a linear de Bruijn graph corresponding to a string where no (k − 1)-mer is repeated,
each node has at most one out-neighbor. Thus, the out-neighbor of k1 in the de Bruijn graph ofS1 is different to
the out-neighbor ofk1 in the de Bruijn graph ofS2, i.e. NBR(CONST(S1), k1) 6= NBR(CONST(S2), k1), which is
a contradiction.

7 Data structure for representing a de Bruijn graph in small space (DBGFM)

Recall that a simple path is a path where all the internal nodes have in- and out-degree of 1. Amaximalsimple
path is one that cannot be extended in either direction. It can be shown that there exists a unique set of edge-
disjoint maximal simple paths that completely covers the dBG, and each pathp with |p| nodes can be represented
compactly as a string of lengthk+ |p| − 1. We can thus represent a dBGS containingn k-mers as a set of strings
corresponding to the maximal simple paths, denoted byspk(S). Let ck(S) = |spk(S)| be the number of maximal
simple paths, and lets to be the concatenation of all members ofspk(S) in arbitrary order, separating each element
by a symbol not inΣ (e.g. $). Using the same idea as in Section 6, we can representa dBG usings in

2|s| =
∑

p∈spk(S)

2(|p|+ k)

≤ 2(n+ (k + 2)ck(S)) bits.

However, this representation requires an inefficient linear scan in order to answer a membership query.
We propose the use of the FM-index ofs to speed up query time at the cost of more space. The FM-

index (Ferragina and Manzini, 2000) is a full-text index which is based on the Burrows-Wheeler transform (Burrows and Wheeler,
1994; Adjerohet al., 2008) developed for text compression. It has previously been used to map reads to a ref-
erence genome (Li and Durbin, 2009; Langmead and Salzberg, 2012; Li et al., 2009), performde novoassem-
bly (Simpson and Durbin, 2010, 2012; Li, 2012), and represent the dBG for the purpose of exploring genome
characteristics prior tode novoassembly (Simpson, 2013).

The implementation of the FM-index stores the Huffman-coded Burrows-Wheeler transform ofs along with
two associated arrays and someo(1) space overhead. Our software, calledDBGFM2, follows the implementation
of Ferragina and Manzini (2000), and we refer the reader there for a more thorough description of how the FM-
index works. Here, we will only state its most relevant properties. It allows us to count the number of occurrences
of an arbitrary patternq in s in O(|q|) time. In the context of dBGs, we can test for the membership ofak-mer inS
in timeO(k). Two sampling parameters (r1 andr2) trade-off the size of the associated arrays with the query time.
For constructing the FM-index, there are external memory algorithms that do not use more intermediate memory
than the size of the final output (Ferragina and Manzini, 2000). The space usage ofDBGFM is

|s|(H0(s) + 96r−1
1 + 384r−1

2 ) + o(1)

≤ n(H0(s) + 96r−1
1 + 384r−1

2 )(1 +
k + 2

n
ck(S)) + o(1) bits,

whereH0 is the zeroth order entropy (Adjerohet al., 2008):H0(s) = −
∑

c∈Σ∪{$} fc lg fc, andfc is the fre-
quency of characterc in s. Note that for our five character alphabetH0 is at mostlg 5.

As the value ofck(S) approaches one,f$ approaches0 and hence the upper bound onH0 approaches2. If
we further set the sampling parameters to be inversely proportional ton, the space utilization approaches at most
2n bits. However, this results in impractical query time and, more realistically, typical values for the sampling
parameters arer1 = 256 andr2 = 16384, resulting in at most2.32n bits asck(S) approaches 1. For the error-free

2 Source code available athttp://github.com/jts/dbgfm
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human genome withk = 55, there arec55(S) = 12.9 · 106 maximal simple paths andn = 2.7 · 109 k-mers. The
resultingH0(S) is at most2.03, and the space utilization is at most 2.43 bits perk-mer.

An additional benefit of the FM-index is that it allows constant-time access to the in-neighbors of nodes —
every edge is part of a simple path, so we can query the FM-index for the symbols preceding ak-merx. Thus,
DBGFM is a membership data structure but supports faster in-neighbor queries. However we note that this is not
always the case when reverse complementarity is taken into account.

We wanted to demonstrate how theDBGFM data structure could be incorporated into an existing assembler.
We chose ABySS, a popularde novosequence assembly tool used in large-scale genomic projects (Simpsonet al.,
2009). In modifying ABySS to look upk-mer membership usingDBGFM, we replace its hash table with a simple
array.DBGFM associates eachk-mer with an integer called a suffix array index (SAI), which could be used to
index the simple array. However, some of thek-mers of theDBGFM string include a simple path separator symbol,
$, and, hence, not every SAI corresponds to a node in the dBG. We therefore use a rank/select data structure
(Gonzálezet al., 2005) to translate the SAIs into a contiguous enumeration of the nodes, which we then use to
index our simple array. We also modified the graph traversal strategy in order to maximize the number of in-
neighborhood queries, which are more efficient than out-neighborhood or membership queries.

8 Algorithm to enumerate the maximal simple paths of a de Bruijn graph in low
memory (BCALM)

TheDBGFM data structure of Section 7 can construct and represent a dBGin low space from the set of maximal
simple paths (spk(S)). However, constructing the paths (called compaction) generally requires loading thek-mers
into memory, which would require large intermediate memoryusage. Because our goal is a data structure that is
low-memory during both construction and the final output, wedeveloped an algorithm for compacting de Bruijn
graphs in low-memory (BCALM ) 3.

8.1 Algorithm description

Our algorithm is based on the idea of minimizers, first introduced by Robertset al. (2004a,b) and later used
by Li et al. (2013). Theℓ-minimizer of a stringu is the smallestℓ-mer that is a sub-string ofu (we assume there
is a total ordering of the strings, e.g. lexicographical). We define Lmin(u) (respectively, Rmin(u)) to be theℓ-
minimizer of the(k − 1)-prefix (respectively suffix) ofu. We refer to these as the left and right minimizers ofu,
respectively. We use minimizers because of the following observation:

Observation 1. For two stringsu andv, if u→ v, then Rmin(u) = Lmin(v).

We will first need some definitions. Given a set of stringsS, we say that(u, v) ∈ S2 arecompactablein a set
V ⊆ S if u → v and,∀w ∈ V , if w → v thenw = u and if u → w thenw = v. The compaction operation is
defined on a pair of compactable stringsu, v in S. It replacesu andv by a single stringw = u · v[k + 1 . . . |v|]
where ’·’ is the string concatenation operator. Two strings(u, v) arem-compactablein V if they are compactable
in V and if m = Rmin(u) = Lmin(v). Them-compaction of a setV is obtained fromV by applying the
compaction operation as much as possible in any order to all pairs of strings that arem-compactable inV . It is
easy to show that the order in which strings are compacted does not lead to differentm-compactions. Compaction
is a useful notion because a simple way to obtain the simple paths is to greedily perform compaction as long as
possible. In the following analysis, we identify a stringu with the pathp = u[1 . . . k]→ u[2 . . . (k+1)]→ . . .→
u[(|u| − k + 1) . . . |u|] of all thek-mers ofu in consecutive order.

We now give a high-level overview of Algorithm 1. The input isa set ofk-mersS and a parameterℓ < k
which is the minimizer size. For eachm ∈ Σℓ, we maintain a fileFm in external memory. Each file contains a
set of strings, and we will later prove that at any point during the execution, each string is a sub-path of a simple
path (Lemma 9). Moreover, we will show that at any point of execution, the multi-set ofk-mers appearing in the
strings and in the output does not change and is alwaysS (Property 4).

At line 5, we partition thek-mers into the files, according to theirℓ-minimizers. Next, each of the files is
processed, starting from the file of the smallest minimizer in increasing order (line 6). For each file, we load the
strings into memory andm-compact them (line 7), with the idea being that the size of each of the files is kept
small enough so that memory usage is low. The result of the compaction is a new set of strings, each of which is
then either written to one of the files that has not been yet processed or output as a simple path. A step-by-step
execution of Algorithm 1 on a toy example is given in Figure 3.

3 Source code available athttp://github.com/Malfoy/bcalm
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Algorithm 1 BCALM : Enumeration of all maximal simple paths in the dBG
1: Input: Set of k-mersS, minimizer sizeℓ < k

2: Output: Sequences of all simple paths in the de Bruijn graph ofS

3: Perform a linear scan ofS to get the frequency of allℓ-mers (in memory)
4: Define the ordering of the minimizers, given by their frequency inS
5: PartitionS into filesFm based on the minimizerm of eachk-mer
6: for each fileFm in increasing order ofm do
7: Cm ←m-compaction ofFm (performed in memory)
8: for each stringu of Cm do
9: Bmin ←min(Lmin (u),Rmin (u))

10: Bmax ← max(Lmin (u),Rmin (u))
11: if Bmin ≤ m andBmax ≤ m then
12: Outputu
13: else if Bmin ≤ m andBmax > m then
14: Writeu toFBmax

15: else if Bmin > m andBmax > m then
16: Writeu toFBmin

17: DeleteFm
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Output
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G(Fm)
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Fig. 3. An execution of Algorithm 1 on a toy example. (Panel A) The setS = {ACA,AAC,CAA,CAG} of k-mers is
represented as a de Bruijn graph (k = 3). (Panel B) The frequencies of eachℓ-mer present in thek-mers is given in increasing
order (ℓ = 2). (Panel C) Steps of the algorithm; initially, each setFm contains allk-mers having minimizerm. For each
minimizerm (in order of frequency), perform them-compaction ofFm and store the result inCm; the grey arrows indicate
where each element ofCm is written to, either the file of a higher minimizer or the output. The rowG(Fm) shows a graph
where solid arrows indicatem-compactable pairs of strings inFm. The dash-dot arrow in Step 3 indicates that the two strings
are compactable inFm but notm-compactable; in fact, they are not compactable inS.
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The rule of choosing which file to write to is based on the left and right minimizers of the string. If both
minimizers are no more thanm, then the string is output as a simple path (line 12). Otherwise, we identifym′,
the smallest of the two minimizers that is bigger thanm, and write the string to the fileFm′ . Finally, the fileFm

is discarded, and the next file is processed. We will show thatthe rule for placing the strings into the files ensures
that as each fileFm is processed (line 6), it will contain everyk-mer that hasm as a minimizer (Lemma 8). We
can then use this to prove the correctness of the algorithm (Theorem 3).

There are several implementation details that make the algorithm practical. First, reverse complements are
supported in the natural way by identifying eachk-mer with its reverse complement and letting the minimizer be
the smallestℓ-mer in both of them. Second, we avoid creating4ℓ files, which may be more than the file system
supports. Instead, we use virtual files and group them together into a smaller number of physical files. This allowed
us to useℓ = 10 in our experiments. Third, when we load a file from disk (line 7) we only load the first and last
k-mer of each string, since the middle part is never used by thecompaction algorithm. We store the middle part in
an auxiliary file and use a pointer to keep track of it within the strings in theFm files.

Consequently, the algorithm memory usage depends on the number of strings in each fileFm, but not on the
total size of those files. For a fixed inputS, the number of strings in a fileFm depends on the minimizer lengthℓ
and the ordering of minimizers. Whenℓ increases, the number of(k− 1)-mers inS that have the same minimizer
decreases. Thus, increasingℓ yields less strings per file, which decreases the memory usage. We also realized
that, when highly-repeatedℓ-mers are less likely to be chosen as minimizers, the sequences are more evenly
distributed among files. We therefore perform in-memoryℓ-mer counting (line 3) to obtain a sorted frequency
table of allℓ-mers. This step requires an array of64|Σ|ℓ bits to store the count of eachℓ-mer in64 bits, which is
negligible memory overhead for small values ofℓ (8 MB for ℓ = 10). Eachℓ-mer is then mapped to its rank in the
frequency array, to create a total ordering of minimizers (line 4). Our experiments showed a drastic improvement
over lexicographic ordering (results in Section 9).

8.2 Proof of correctness

In this subsection we give a formal proof of the correctness of BCALM.

Property 4. At any point of execution after line 5, the multi set ofk-mers present in the files and in the output is
S.

Proof. We prove by induction. It is trivially true after the partition step. In general, note that the compaction oper-
ation preserves the multi set ofk-mers. Because the only way the strings are ever changed is through compaction,
the property follows.

Lemma 8. For each minimizerm, for eachk-meru in S such that Lmin(u) = m (resp. Rmin(u) = m), u is the
left-most (resp. right-most)k-mer of a string inFm at the timeFm is processed.

Proof. We prove this by induction onm. Letm0 be the smallest minimizer. Allk-mers that havem0 as a left or
right minimizer are strings inFm0

, thus the base case is true. Letm be a minimizer andu be ak-mer such that
Lmin(u) = m or Rmin(u) = m, and assume that the induction hypothesis holds for all smaller minimizers. If
min(Lmin(u),Rmin(u)) = m, thenu is a string inFm after execution of line 5. Else, without loss of generality,
assume thatm = Rmin(u) > Lmin(u). Then, after line 5,u is a string inFLmin(u). Let Fm1 , . . . , Fmt be all
the files, in increasing order of the minimizers, which have asimple path containingu before the maximal-length
simple path containingu is outputted by the algorithm. Letmi be the largest of these minimizers strictly smaller
thanm. By the induction hypothesis and Property 4,u is at the right extremity of a unique stringsu in Fmi . After
themi-compactions, sincem = Rmin(su) > mi, su does not go into the output. It is thus written to the next
larger minimizer. Sincem = Rmin(u) ≤ mi+1, then it must be thatmi+1 = m, andsu is written toFm, which
completes the induction.

Lemma 9. In Algorithm 1, at any point during execution, each string inFm corresponds to a sub-path of a
maximal-length simple path.

Proof. We say that a string iscorrect if it corresponds to a sub-path of a maximal-length simple path. We prove
the following invariant inductively: at the beginning of the loop at line 6, all the filesFm contain correct strings.
The base case is trivially true as all files contain onlyk-mers in the beginning. Assume that the invariant holds
before processingFm. It suffices to show that no wrong compactions are made; i.e. if two strings fromFm arem-
compactable, then they are also compactable inS. The contrapositive is proven. Assume, for the sake of obtaining
a contradiction, that two strings(u, v) are not compactable inS, yet arem-compactable inFm at the time it
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is processed. Without loss of generality, assume that thereexistsw ∈ S such thatu → w andw 6= v. Since
u → v andu → w, m = Rmin(u) = Lmin(v) = Lmin(w). Hence, by Lemma 8,w is the left-mostk-mer of a
string inFm at the timeFm is processed. This contradicts that(u, v) arem-compactable inFm at the time it is
processed. Thus, all compactions of strings inFm yield correct strings, and the invariant remains true afterFm is
processed.

Theorem 3. The output of Algorithm 1 is the set of maximal simple paths ofthe de Bruijn graph ofS.

Proof. By contradiction, assume that there exists a maximal-length simple pathp that is not returned by Algo-
rithm 1. Every inputk-mer is returned by Algorithm 1 in some string, and by Lemma 9,every returned string
corresponds to a sub-path of a maximal-length simple path. Then, without loss of generality, assume that a simple
path ofp is split into sub-pathsp1, p2, . . . , pi in the output of Algorithm 1. Letu be the lastk-mer ofp1 andv
be the firstk-mer of p2. Let m = Rmin(u) = Lmin(v) (with Observation 1). By Lemma 8,u andv are both
present inFm when it is processed. Asu andv are compactable inS (to form p), they are also compactable in
Fm and thus the strings that includeu andv in Fm are compacted at line 7. This indicates thatu andv cannot be
extremities ofp1 andp2, which yields a contradiction.

9 Results

We tested the effectiveness of our algorithms on the de Bruijn graphs of two sequencing datasets. Experiments in
Tables 1, 2 and 3 were run on a single core of a desktop computerequipped with an Intel i7 3.2 GHz processor,
8 GB of memory and a 7200 RPM hard disk drive. Experiments in Tables 4 and 5 were run on a single core of a
cluster node with 24 GB of memory and 2.67 GHz cores. In all experiments, at most 300 GB of temporary disk
space was used. The first dataset is 36 million 155bp Illuminahuman chromosome 14 reads (2.9 GB compressed
fastq) from the GAGE benchmark (Salzberget al., 2012). The second dataset is 1.4 billion Illumina 100bp reads
(54 GB compressed fastq) from the NA18507 human genome (SRX016231). We first processed the reads withk-
mer counting software, which is the first step of most assembly pipelines. We used a value ofk = 55 as we found
it gives reasonably good results on both datasets. We used DSK (Rizk et al., 2013), a software that is designed
specifically for low memory usage and can also filter out low-countk-mers as they are likely due to sequencing
errors (we used< 5 for chr14 and< 3 for the whole genome).

Dataset DSK BCALM DBGFM

Chromosome 14
43 MB 19 MB 38 MB
25 mins 15 mins 7 mins

Whole human genome
1.1 GB 43 MB 1.5 GB
5 h 12 h 7 h

Table 1. Running times (wall-clock) and memory usage of DSK,BCALM andDBGFM construction on the human chromosome
14 and whole human genome datasets (k = 55 andℓ = 10 for both).

First, we ranBCALM on the ofk-mers computed by DSK. The output ofBCALM was then passed as input to
DBGFM, which constructed the FM-index. Table 1 shows the resulting time and memory usage of DSK,BCALM ,
andDBGFM. For the whole genome dataset,BCALM used only 43 MB of memory to take a set of2.5 ·109 55-mers
and output 40 million sequences of total length 4.6 Gbp.DBGFM represented these paths in an index of size 1.5
GB, using no more than that memory during construction. The overall construction time, including DSK, was
roughly 24 hours. In comparison, a subset of this dataset wasused to construct the data structure of Salikhovet al.
(2013) in 30.7 hours.

We compared the space utilization of ourDBGFM representation with that of other low space data struc-
tures, Salikhovet al. (2013) and Conway and Bromage (2011) (Table 2). Another promising approach is that of
Boweet al. (2012), but they do not have an implementation available. Weuse3.53 bits perk-mer (38.0 MB total)
for chr14 and 4.76 bits perk-mer (1462 MB total) for the whole-genome. This is a60% and46% improvement
over the state-of-the art, respectively.

During algorithm development, we experimented with different ways to order the minimizers and the effect
on memory usage (Table 3). Initially, we used the lexicographical ordering, but experiments with the chromosome
14 dataset showed it was a poor choice, resulting in 804 MB memory usage withℓ = 8. The lexicographically
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DBGFM Salikhovet al. Conway & Bromage

chr14 38.0 MB 94.9 MB > 875 MB
Full human dataset 1462 MB 2702 MB > 22951 MB

Table 2. Memory usage of de Bruijn graph data structures, on the humanchromosome 14 and whole human genome datasets
(k = 55 for both). We did not run the algorithm of Conway and Bromage because our machine does not have sufficient memory
for the whole genome. Instead, we report the theoretical size of their data structure, assuming that it would be constructed from
the output of DSK. As described in Conway and Bromage (2011),this gives a lower bound on how well their implementation
could perform.

Ordering type Lexicographical Uniformly Random ℓ-mer frequency

Memory usage 804 MB 222 MB 19 MB

Table 3. Memory usage ofBCALM with three different minimizer orderings: lexicographical, uniformly random, and according
to increasingℓ-mer frequencies. The dataset used is the human chromosome 14 with k = 55 andℓ = 8.

smallestℓ-mer ism0 = Aℓ, which is overly abundant in human chromosomes forℓ ≤ 10, resulting in a large
file Fm0

. In a second attempt, we created a uniformly random orderingof all theℓ-mers. WhileAℓ is no longer
likely to have a small value, it is still likely that there is ahighly repeatedℓ-mer that comes early in the ordering,
resulting in 222 MB memory usage. Finally, we ordered theℓ-mers according to their frequency in the dataset.
This gave a memory usage of 19 MB, resulting in a 40-fold improvement over the initial lexicographical ordering.
The running times of all three orderings were comparable. Wealso evaluated the effect that the minimizer sizeℓ
has on memory usage and running time (Table 4). Largerℓ will generally lead to smaller memory usage, however
we did not see much improvement pastℓ = 8 on this dataset.

Minimizer sizeℓ 2 4 6 8 10

Memory usage 9879 MB 3413 MB 248 MB 19 MB 19 MB
Running time 27m19s 22m2s 20m5s 18m39s 21m4s

Table 4. Memory usage and wall-clock running time ofBCALM with increasing values of minimizer sizesℓ on the chr14 data.
By grouping files into virtual files, these values ofℓ require respectively 4, 16, 64, 256 and 1024 physical files ondisk. The
ordering of minimizers used is the one based onℓ-mer counts.

Finally, we evaluated the performance of ABySS usingDBGFM compared with that of the hash table implemen-
tation (Table 5). Note, however, that only the graph traversal and marking steps were implemented in theDBGFM

version, and none of the graph simplifications steps of ABySS. TheDBGFM version used70% less memory, al-
beit the hash version was33% faster, indicating the time/space trade-off inherent in the FM-index. In addition to
storing the graph, ABySS associates data with eachk-mer: the count of eachk-mer and its reverse complement
(two 16 bits counters), the presence or absence of the four possible in- and out-edges (8 bits), three boolean flags
indicating whether thek-mer and its reverse complement have been visited in graph traversal (2 bits), and whether
they have been removed (1 bit). While in the hash implementation, the graph structure takes 54% of the memory,
in theDBGFM version it only used 6% of memory. This indicates that further memory improvements can be made
by optimizing the memory usage of the associated data.

10 Conclusion

This paper has focused on pushing the boundaries of memory efficiency of de Bruijn graphs. Because of the
speed/memory trade-offs involved, this has come at the costof slower data structure construction and query times.
Our next focus will be on improving these runtimes through optimization and parallelization of our algorithms.

We see several benefits of low-memory de Bruijn graph data structures in genome assembly. First, there are
genomes like the 20 Gbp white spruce which are an order of magnitude longer than the human which cannot
be assembled by most assemblers, even on machines with a terabyte of RAM. Second, even for human sized
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Data structure Memory usage Bytes/k-mer dBG (B/k-mer) Data (B/k-mer) Overhead (B/k-mer) Run time

sparsehash 2429 MB 29.50 16 8 5.50 14m4s
DBGFM 739 MB 8.98 0.53 8 0.44 21m1s

Table 5. Memory usage and run time (wall clock) of the ABySS hash tableimplementation (sparsehash) and of theDBGFM

implementation, using a single thread to process the human chromosome 14 data set. The dBG bytes/k-mer column corresponds
to the space taken by encodedk-mers for sparsehash, and the FM-index forDBGFM. The Data bytes/k-mer column corresponds
to associated data. The Overhead bytes/k-mer corresponds to the hash table and heap overheads, as well as the rank/select bit
array. The run time of theDBGFM row does not include the time to construct theDBGFM representation.

genomes, the memory burden poses unnecessary costs to research biology labs. Finally, in assemblers such as
ABySS that store thek-mers explicitly, memory constraints can prevent the use oflargek values. WithDBGFM,
the memory usage becomes much less dependent onk, and allows the use of largerk values to improve the quality
of the assembly.

Beyond genome assembly, our work is also relevant to manyde novosequencing applications where large de
Bruijn graphs are used, e.g. assembly of transcriptomes andmeta-genomes (Grabherret al., 2011; Boisvertet al.,
2012), andde novogenotyping (Iqbalet al., 2012).
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