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ABSTRACT

In studying the strength and specificity of interaction between members of two protein families,
key questions center on which pairs of possible partners actually interact, how well they
interact, and why they interact while others do not. The advent of large-scale experimental
studies of interactions between members of a target family and a diverse set of possible
interaction partners offers the opportunity to address these questions. We develop here a
method, DgSpi (data-driven graphical models of specificity in protein:protein interactions), for
learning and using graphical models that explicitly represent the amino acid basis for inter-
action specificity (why) and extend earlier classification-oriented approaches (which) to predict
the DG of binding (how well). We demonstrate the effectiveness of our approach in analyzing
and predicting interactions between a set of 82 PDZ recognition modules against a panel of 217
possible peptide partners, based on data from MacBeath and colleagues. Our predicted DG
values are highly predictive of the experimentally measured ones, reaching correlation coef-
ficients of 0.69 in 10-fold cross-validation and 0.63 in leave-one-PDZ-out cross-validation.
Furthermore, the model serves as a compact representation of amino acid constraints un-
derlying the interactions, enabling protein-level DG predictions to be naturally understood in
terms of residue-level constraints. Finally, the model DgSpi readily enables the design of new
interacting partners, and we demonstrate that designed ligands are novel and diverse.
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1. INTRODUCTION

The molecular machinery of the cell is driven largely by protein:protein interactions. Traditional

high-throughput technologies (Fields and Song, 1989) provide evidence for the existence of interactions

that existing computational systems biology techniques utilize to build global networks of interacting pro-

teins. However, finer-grained methods are necessary in order to better understand, predict, and control these
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interactions. Fortunately, appropriate experimental methodologies are rapidly developing, for example, using

protein microarrays to isolate numerous pairs of possible partners, and fluorescence polarization to assess

their interaction strength (Fig. 1, left). Several large-scale studies have been conducted using such techniques

for particular families of interacting proteins, including PDZ domains and their peptide ligands (Chen et al.,

2008; Tonikian et al., 2008), and human basic-region leucine zippers (bZIPs) and their coiled-coil partners

(Fong et al., 2004; Grigoryan et al., 2009). In lieu of large-scale studies, the aggregation of a large number of

smaller-scale experiments can also yield extensive amounts of detailed binding data, for example, for major

histocompability complex (MHC) and ligands (Peters et al., 2005; Nielsen et al., 2007; Wang et al., 2008;

Bordner and Mittelmann, 2010; Zhang et al., 2012), and serine proteases and inhibitors (Lu et al., 2001; Li

et al., 2005).

As one particular example, consider the specific recognition between PDZ domains and their peptide

ligands. PDZs are small peptide recognition modules that bind specific C-terminal peptides of other

proteins (Fig. 1, right), in order to mediate protein:protein interactions (e.g., in signaling networks). Early

studies of PDZ:peptide recognition developed consensus motifs to capture the common amino acids

comprising the ligands of different PDZ ‘‘classes’’ (e.g., class I = S/T-X-F vs. class II = F-X-F, where F
is a hydrophobic residue). More recent studies yielded more refined statistical binary interaction predictors

(interact or not?), based on analysis of amino acid pairs (across the PDZ:peptide interface) in curated

datasets of experimentally identified PDZ:ligand partners (Brannetti et al., 2000; Thomas et al., 2009a).

MacBeath and colleagues then made the leap to large-scale quantitative data, determining the DG of

binding for 829 PDZ:peptide pairs from 96 PDZs (from mouse, fly, and worm) against a panel of 259

possible peptide partners in Stiffler et al. (2007). They used this data to develop a binary interaction

predictor, based on the constituent PDZ:peptide amino acid pairs like the predictors mentioned above, but

taking advantage of the quantitative and negative data in Chen et al. (2008). More recently, Bader and

coworkers used the MacBeath data to train a type of support vector regression model for predicting DG of

binding for PDZ:peptide pairs in Shao et al. (2010).

Motivated by the exciting growth in quantitative studies of protein:protein interactions, we have de-

veloped a data-driven, sequence-based model that directly and compactly reveals and represents the amino

acid interactions underlying experimentally measured DG values of binding (henceforth just DG) and

enables efficient, accurate, robust, and transparent prediction of DGs for new pairs of possible partners (Fig.

1). We employ a graph-structured model (which we refer to simply as a graphical model) that explicitly

models amino acid interactions and provides a probabilistic interpretation for them. Sequence-based

graphical models of protein families have been used to capture amino acid interactions in order to predict

protein structure (Morcos et al., 2011; Jones et al., 2012; Kamisetty et al., 2013) and function (Thomas

et al., 2008; Balakrishnan et al., 2011) and design new proteins (Thomas et al., 2009b; Kamisetty et al.,

2011b). We build here on our sequence-based models of interacting protein families for binary prediction

FIG. 1. Data-driven Graphical models of Specificity in Protein:protein Interactions (DgSpi). A graphic model of

PDZ:peptide interactions encapsulates the amino acid constraints conferring the strength and specificity of the inter-

actions in an input dataset. (Left) The dataset has DG values (shades of green) or ‘‘noninteracting’’ indications (X’s) for

some PDZ (blue)–peptide (red) pairs. (Middle) We learn a graphical model with bipartite nodes for some residues in the

PDZ (blue) and peptide (red), with edges (green) encapsulating and providing a probabilistic interpretation for amino

acid constraints. (Right) We use the model to predict novel interactions as well as to design novel peptide partners for

PDZs.
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of interaction developed in Thomas et al. (2009a), significantly extending that approach to incorporate

quantitative data and thereby predict DG.

We call our approach DgSpi, for data-driven graphical models of specificity in protein:protein inter-

actions. Using the PDZ data from MacBeath and coworkers, we demonstrate that DgSpi is highly predictive

of DG, obtaining predicted-experimental correlation coefficients of up to 0.69 in a ten-fold cross-validation

and 0.63 in leave-one-PDZ-out cross-validation. This performance is essentially equivalent to that obtained

by Shao et al. (2010), but importantly, our approach provides a readily interpretable model of the amino

acid contributions underlying specific interactions. Furthermore, since our graphical models can be used in

designing new interacting partners (again, interpretable in terms of the amino acid contributions), and we

show that there is a diversity of novel peptides that are predicted to bind well against any given PDZ and

thus provide worthwhile hypotheses for experimental testing.

2. METHODS

DgSpi takes as input (Fig. 1, left) two sets of protein sequences; for simplicity but without impli-

cations about function, we refer to one set as the ‘‘receptor’’ and the other as the ‘‘ligand’’; for example,

the PDZ protein recognition modules as receptors and corresponding peptides as ligands. In addition to

the sequences, there are experimental binding measurements for some of the pairs (one from each set);

the measurement is either a DG value or an indication of ‘‘noninteracting’’ within the sensitivity of the

experiment. Our goal is to be able to predict the DG of interaction for a previously untested recep-

tor:ligand pair and to design new ligand partners for a specified receptor (Fig. 1, right). To do this, we

seek a method that admits explanation of predictions in terms of the underlying amino acid-level

interactions conferring specificity of interaction. Thus we employ a graph-structured, or graphical, model

(Fig. 1, middle) with nodes for the receptor and ligand residues, and bipartite edges capturing the amino

acid constraints between receptor and ligand residues. We first summarize a graphical model to predict

DG from a pair of sequences, and then the algorithms to construct a model from training data of

sequence pairs with observed DG.

2.1. A graphical model of binding free energy

We assume the receptors have been multiply aligned to p informative (nongappy) columns, and the

ligands likewise to q residues. Let X = fX1‚ X2‚ . . . ‚ Xpg be a set of p random variables representing the

receptor amino acid composition, with Xi a discrete random variable for the amino acid type at position i.

Each Xi takes values in A = fala‚arg‚ . . . ‚val‚ - g, corresponding to the 20 amino acid types and an

additional ‘‘-’’ for a gap in the multiple sequence alignment. Similarly, let Y = fY1‚ Y2‚ . . . ‚ Yqg be a set of q

random variables representing the ligand composition.

Given a receptor sequence x = fx1‚ x2‚ . . . ‚ xpg (i.e., amino acid values for the random variables in X),

along with a ligand sequence y = fy1‚ y2‚ . . . ‚ yqg, we want to predict the strength of a possible interaction

between the two proteins, DGpred(x, y). Our goal here is to develop a robust predictive model that is

interpretable in terms of the amino acid interactions driving specific protein:protein recognition. Therefore,

we model DGpred with a bipartite graphical model, with nodes for X and Y representing the amino acids

and edges E � X · Y representing their dependencies. Nodes xi, yj have associated jAj · 1 vectors Vi[a],

Vj[b] to capture position-specific environment effects to binding. Edge (i, j), between nodes xi and yj, has an

associated jAj · jAj matrix Wi,j[a, b] of weights for a‚ b 2 A, holding the position-specific contributions to

binding for each possible pair of amino acids, intended to capture electrostatics, van der Waals, hydrogen

bonding, and other such interactions, which depend on the composition of the amino acids involved. We

point out that these physical justifications for the parameters of our model are descriptive rather than

prescriptive: they guide the intuition for learning and interpreting the model, but we make no assumptions

on sources of these interactions beyond what we can learn from data.

In summary, then, given two protein sequences x and y, we predict their binding free energy as:

DGpred(x‚ y) =
Xp

i = 1

Vi[xi] +
Xq

j = 1

Vj[yj] +
X

(i‚ j)2E
Wi‚ j[xi‚ yj] (1)
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2.2. Training objective

Our data-driven approach to modeling protein:protein interaction specificity uses experimental data to learn

the parameters V and W that define the model in Equation 1. We assume that the experimental data is partitioned

into interactions I + , with DG values, and noninteractions I - , where the binding was weaker than DGmax, a

maximum experimentally detectableDG value. Thus each member of I + is of the form (x, y,DG), giving a pair

of sequences and the measured DG value, while each member of I - is simply an (x, y) pair.

We take as our primary objective minimizing the squared error between the observed and predicted DG

values for members of I + . For the noninteractions in I - , we incorporate a penalty for an incorrect

prediction, that is, for DGpred better than DGmax. In particular, we use a one-sided squared penalty for

noninteractions predicted as interactions. Compared with the hinge-loss commonly used in SVMs, this

tends to penalize small differences to a lesser extent, which is a desirable property in cases such as ours

where the focus is on the regression error and not the misclassification cost. The one-sided square error has

no points of discontinuity, making optimization easier as well.

Thus our objective function for a specific set of parameters V, W is:

L(V‚ W) =
X

(x‚ y‚DG)2I +

(DGpred(x‚ y; V‚ W) -DG)2

+
X

(x‚ y)2I- s:t:
DGpred (x‚ y;V‚ W)<DGmax

c - � (DGpred(x‚ y; V‚ W) -DGmax)2 (2)

where we emphasize the dependence of DGpred in Equation 1 on V and W by including them as

parameters. The parameter c- sets the relative weighting between the contributions from interactions

and non-interactions.

2.3. Block-sparse regularization

A suitable model can be learned from the data by minimizing the objective function in Equation 2.

However, directly optimizing this function is likely to lead in overfitting as there are usually far more

parameters in the model than there are data points available with which to fit them. To circumvent this

problem, we instead optimize a regularized objective function. Regularization is usually described as a

penalty to the objective function; an alternate but equivalent view of the regularization is that it is a

Bayesian prior on the models that biases the learning method toward models consistent with the prior.

Protein:protein interactions can be reasonably expected to display structural sparsity—due to spatial re-

strictions, only a few of all possible bipartite interactions between the partners are likely to be important in

biochemical interactions. Motivated by this prior belief, we employ block-L1 regularization, a form of

regularization that penalizes the number of nonzero edges (or ‘‘blocks’’), so that each edge (i, j) is

penalized unless all parameters within the edge, Wi,j, are zero. This promotes a sparser structure promoting

interpretability; furthermore, by reducing the number of nonzero parameters in the model, it helps avoid

overfitting. For our model, the block-L1 regularization term is:

R1‚ 2(V‚ W) =
1ffiffiffiffiffiffiffi
jAj

p Xp

i = 1

kVik +
Xq

j = 1

kVjk
 !

+
X

(i‚ j)2E
kWi‚ jk (3)

where k$k refers to the vector two-norm of the corresponding set of parameters and the fraction 1ffiffiffiffiffi
jAj
p

(number of amino acids plus gap) is a correction factor to account for the different degrees of freedom in V and W.

Our learning objective is then:

arg min
V‚ W

(L(V‚ W) + k1‚ 2 � R1‚ 2(V‚ W)) (4)

where k1,2 sets the relative weight between the learning objective and the regularization term.

2.4. Learning algorithms

Schmidt et al. (2009) developed a limited-memory projected quasi-newton (PQN) approach suitable for

squared error objectives. We customize their method for our graphical models of protein–protein
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interactions. A constrained optimization to incorporate the block-L1 regularization is performed by a

projected gradient method that iterates between unconstrained gradient descent updates to the parameter

values, and constrained projections of the parameter values onto the constrained space.

While this approach can be used to learn the structure and parameters of the model (i.e., which vertices

and edges, along with their weights), in practice, the resulting procedure can result in biased weights for the

nonzero parameters, despite identifying the correct structure (Meinshausen and Bühlmann, 2006; Ba-

lakrishnan et al., 2011). To avoid this, after learning the structure of the model, we relearn the nonzero

parameters with L2 regularization. That is, in a second stage, we restrict the optimization to the vertices and

edges contributing in the first stage, but reoptimize their weights using a modified version of Equation 4,

replacing R1,2 with:

R2(V‚ W) =
Xp

i = 1

kVik2 +
Xq

j = 1

kVjk2 +
X

(i‚ j)2E
kWi‚ jk2

‚ (5)

weighted by a corresponding k2. Since R2(V, W) penalizes the square of the vector 2-norms, each element

of each parameter vector is penalized independent of any group membership; the regularization is thus

independent of the degrees of freedom in the corresponding groups. This two-stage approach finds sparse

models with small edge weights, regularizing a pseudo-likelihood objective similarly to the approach of

Balakrishnan et al. (2011). We find in practice that this approach yields models that are both interpretable

and predictive of DG.

3. RESULTS

Our goal is to make quantitative predictions of the DG of PDZ:peptide interactions, interpretable in terms

of underlying amino acid constraints. This is in contrast to the approach of Chen et al. (2008), who studied

the ability of a computational method to classify interaction vs. noninteraction. [A graphical model ap-

proach to do that has been previously described in Thomas et al. (2009a); we have found that classifying

based on predicted DG is not as robust.] It is also in contrast to the support vector regression approach of

Shao et al. (2010), in that while our method achieves comparable predictive accuracy, it has the added

benefit of being able to automatically identify the amino acid-level interactions with the greatest impact,

and directly characterize their contributions. These interactions not only allow us to characterize the

sequence determinants of binding affinity and specificity, but also allow us to design new interacting

partners based on the derived ‘‘rules’’ of good interactions.

We apply DgSpi to the extensive PDZ dataset collected by Stiffler et al. (2007) and Chen et al. (2008).

To enable appropriate comparison of results, we use the processed version of the dataset provided by Shao

et al. (2010). The dataset includes 82 mouse PDZs and 217 peptides, with a reported 560 interactions and

1167 noninteractions. We obtained a structure- and sequence-based multiple sequence alignment of 225

columns where the peptides were represented by five C-terminal residues. We then removed highly con-

served and highly gap-ful columns, reducing the alignment to 114 PDZ positions and 5 peptide positions.

3.1. DG prediction

3.1.1. 10-fold cross-validation. To test the ability of our model to predict the affinity of PDZ-

peptide interaction, we first performed a ten-fold cross-validation (i.e., we learned the model with 90% of

the data and tested it on the left-out 10%, doing this with each 10% left out). This represents the scenario in

which data are available for some interactions, and we want to make predictions for others.

Our learning approach has three main parameters: c - , a parameter trading off the relative importance of

positive and negative interactions in the objective function; k1,2, the strength of the block-L1 regularization

used to determine the nonzero parameters of the model, and k2, the regularization weight used to estimate the

values of the nonzero parameters. The c - and k2 were set to 0.05 and 1, respectively, based on our initial

experiments using one train-test split. The small value of c - reflects the relative abundance of noninteractions

in our dataset and our emphasis on modeling interactions comprehensively since they are biologically more

interesting. For each training split, we varied k1,2 generating multiple models spanning the spectrum from

models with no interactions to models where nearly all possible interactions were allowed.

478 KAMISETTY ET AL.



FIG. 2. Trends with varying reg-

ularization weight (parameter k1,2),

with higher values yielding sparser

models. (Top) Number of edges in

models learned with varying k1,2.

(Middle) Regularization path, show-

ing each edge’s strength as a function

of k1,2. The star indicates a model

with edges fixed according to con-

tacts in a crystal structure. (Bottom)

Test correlation coefficient as a

function of the average number of

edges in trained model.

FIG. 3. Example prediction results, combined across 10 splits in one repetition at k1,2 = 20. (Left) Scatterplots of

experimental vs. predicted DG. Pearson correlation coefficient across entire test-split was 0.67. (Right) Histogram of

prediction errors.
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Figure 2 summarizes trends over values of k1,2. The top panel characterizes the increase in number of

interactions with decreasing k1,2, and the middle panel the corresponding increase in the average Pearson

correlation coefficient, from 0.49 when there are no edges in the model and all contributions are due to the

Vi, Vj, to 0.66 when *60 interactions are included, to a maximum of 0.69 when *300 interactions are

included. The relatively large increase in model accuracy when the number of edges increases from 0 to 60

suggests that these edges make important contributions to binding affinity and specificity. In contrast, the

relatively small increase in accuracy of the model as the number of edges increases beyond 60 to being a

completely connected model suggests that the edges introduced later have relatively low importance. The

bottom panel shows the average strength of each edge, calculated as the norm of Wi,j, as a function of k1,2.

Each line represents a separate unique interacting pair of residues; interactions that have high weight at

k = 25 are highlighted in color, while the remaining interactions are shown in black. When the model is

sparse (high k1,2), there are few, strong interactions; as the density of the model increases (low k1,2), most

interactions have nonzero strength but are very weak.

Figure 3 shows the prediction results for one 10-fold repetition at k1,2 = 20. The overall correlation

coefficient across the dataset was 0.67 while the root mean square error between experiment and

prediction was 0.62. Most errors were equally distributed around zero, and actually within typical

experimental error. However, there were a few clear outliers where the model under-predicted binding

energies.

3.1.2. Contact-based model structure. When an experimentally determined 3D structure of the

protein–protein interface is available, an alternate approach to determining the structure (edges) of the

graphical model could be to restrict the nonzero interactions to the pairs of residues close to each other in

the 3D structure. The parameters of this model with fixed structure can then be readily learned with L2

regularization, as before. Chen et al. (2008) identified 38 contacts between 16 PDZ residues and 5 peptides.

We repeated our 10-fold cross-validation experiments, using these 21 positions and 38 contacting residues

Table 1. Leave-One-PDZ-Out Cross-Validation

PDZ sequence DgSpi-dense DgSpi-sparse SemiSVR

CHAPSYN-110-2/3 0.91 0.93 0.94

CHAPSYN-110-3/3 0.68 0.67 0.88

GM1582-2/3 0.61 0.69 0.58

G1-SYNTROPHIN-1/1 0.22 0.16 0.13

HTRA3-1/1 0.60 0.53 0.65

LIN7C-1/1 0.61 0.61 0.68

MAGI-2-2/6 0.73 0.73 0.77

MAGI-2-6/6 0.77 0.84 0.69

MAGI-3-1/5 0.77 0.80 0.88

MALS2-1/1 0.32 0.37 0.61

OMP25-1/1 0.61 0.56 0.50

PDZK3-1/1 0.06 0.07 0.04

PDZ-RGS3-1/1 0.14 0.16 0.03

PSD95-2/3 0.91 0.91 0.92

PSD95-3/3 0.86 0.90 0.88

PTP-BL-2/5 0.35 0.41 0.40

SAP97-1/3 0.68 0.70 0.76

SAP97-2/3 0.96 0.95 0.95

SAP102-2/3 0.94 0.95 0.94

SCRB1-3/4 0.76 0.82 0.69

SHANK1-1/1 0.83 0.92 0.98

SHANK3-1/1 0.67 0.68 0.51

ZO-1-1/3 0.01 0.09 0.65

Average 0.63 0.61 0.65

Leave-one-PDZ-out cross-validation following Bader and colleagues (Shao

et al., 2010) with the published performance of their method (their Table 3)

reproduced in the ‘‘SemiSVR’’ column.
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as the set of vertices and edges in the model (instead of identifying them using the block-L1 penalty), and

estimated their parameters with L2 regularization. The average correlation coefficient of the contact-based

models is 0.60, which, while good, is lower than the 0.66 correlation obtained by models with about 60

interactions. Could the difference in accuracy be due to the difference in the number of interactions? The

middle panel in Figure 2 highlights the accuracy of this model (shown as a star), compared to the

correlation coefficients obtained by varying k1,2. We see that the models with learned structure can achieve

accuracy similar to the contact-structure model but using fewer interactions; alternativeely, a model with

learned structure and a comparable number of interactions to that of the contact structure achieves higher

correlation. Thus, our data-driven approach to learning model structure can identify important interactions

beyond those that might be inferred by inspection of the 3D structure.

3.1.3. Leave-one PDZ out. To test the scenario where the model is applied to make predictions for a

new PDZ, we performed ‘‘leave-one-PDZ-out’’ cross-validation following the approach of Shao et al.

(2010). We held out data for each of the 23 PDZ domains with at least 10 interactions, training the model

on the remaining data and testing on the held-out domain. Since the effect of k1,2 on the sparsity of the

model depends on the number of sequences in the training set, instead of choosing the same value of as

selected by ten-fold cross-validation, we performed a grid search on k1,2 and used the value that gives a

model of similar sparsity as the cross-validated models. This process allows us to parameterize the model

by the number of edges as opposed to the less natural k1,2. Using this procedure we obtained an average

correlation coefficient of 0.61 across the 23 PDZs that had at least 10 interactions. Again, allowing for

denser models by changing the regularization weight slightly improved the average correlation coefficient

to 0.63, which is comparable to the 0.65 obtained by Shao et al. (2010) using support vector regression.

Table 1 summarizes the correlation coefficient by domain. When restricting to contact edges, we obtain

0.54, about the same as the 0.56 of Bader and colleagues (domain-level details not shown).

FIG. 4. Model analysis. (Top) Average strength of the vector 2-norms for the PDZ positions (i.e., Vi), peptide

positions (i.e., Vj), and potentially interacting pairs (i.e., Wi,j) in the model trained at k1,2 = 25. (Bottom left) Strong

interactions highlighted in top panel, displayed on the NMR structure of the alpha syntropin PDZ (pdb id: 2PDZ). Color

scheme same as above. (Bottom right) Average edge strength across 10 training splits plotted against distance in the 3D

structure.
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FIG. 5. Average weights for amino acid pairs for the top three interacting residue pairs.
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3.2. Model analysis

A key feature of DgSpi is that a model can be easily ‘‘opened up’’ to characterize the amino acid

determinants of binding. To illustrate, we characterized the models trained at k1,2 = 25 across the 10 folds,

computing the average strength of the vector 2-norms for the protein positions (i.e., Vi), peptide positions

(i.e., Vj), and potentially interacting pairs (i.e., Wi,j). Figure 4 (top) shows these values: The strengths of the

vertex terms appear along the axes (x-axis for PDZ positions and y-axis for peptide positions), while the

strengths of the PDZ:peptide edge terms appear in the heat map. As might be expected for interaction

affinities, the position-based terms are relatively weaker, with most being less than 0.2. In contrast, more than

40 interaction terms have norms larger than this value, with a large fraction of them between position 4 of the

peptide and the protein. Figure 4 (bottom left) overlays these strong interactions on the structure of the murine

al-syntrophin PDZ (colored blue to light pink according to position) complexed with the peptide KESLV

(colored in red). Figure 4 (bottom right) plots the edge strength (y-axis) against the distance of the corre-

sponding residue pairs (x-axis). Interestingly, while most of the strong edges tend to be between positions less

than 15 Å apart in the crystal, there are a few edges that are at a longer range that appear consistently.

Despite the fact that no 3D structure information was used in learning the model, our method identifies

several contacting residues as important for determining interaction specificity. This suggests that our data-

driven approach might be capturing physically important interactions. To test this hypothesis further, we

determined the average weight assigned to each possible amino acid pair for the top three interacting

residue pairs across the models for the 10 training folds at k1,2 = 25. Figure 5 shows these weights with

strong negative energies (i.e., favoring binding) in shades of blue and strong positive energies in shades of

red. Darker shades correspond to stronger effects in both cases. The strongest interacting residue pair (PDZ

position 54:peptide position 2) strongly favors interactions between oppositely charged arginine/lysine in

the PDZ and glutamate in the peptide, while strongly penalizing aspartate/glutamate:glutamate between

pairs of negatively charged residues, suggesting a strong electrostatic effect between these positions.

Similar effects are seen in the other two interactions with glutamate:lysine favored between 48:1 and

aspartate:threonine penalized between 12:4. Our method can thus provide structural information as well as

insights into the biochemical determinants of binding affinity.

In summary, our results suggest that a large fraction of the binding affinity is due to interactions between

a relatively small set of positions, not all spatially adjacent to the binding pocket. A larger set of weak

interactions might have an additional small effect on binding; these might effect particular subfamilies of

PDZs or might reflect allosteric affects related to alternate conformational states of the protein previously

described in this family by Lockless and Ranganathan (1999).

3.3. From sequence determinants to sequence design

The accuracy and simplicity of our model allows us to rapidly evaluate the binding affinity of any PDZ–

peptide pair. We demonstrate the utility of this approach by ‘‘designing’’ optimal binders for a given PDZ

FIG. 6. (Left) Density of predicted PDZ–peptide DG for designed peptides (blue) and experimental DG for natural

PDZ–peptide pairs (red). (Right) Sequence logos for the top 10 peptide designs for SHANK1, CHAPSYN, and PSD95

(top, middle, and bottom).
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sequence. Using a model learned from the entire training set with k1,2 = 25, we searched all 5 residue

peptides and determined the top 10 peptides by their predicted DG for each PDZ sequence. Figure 6 (left)

shows the density of predicted binding energies of these PDZ:peptide pairs in blue and that of natural PDZ–

peptide pairs binding energies in our training dataset in red. The predicted binding affinities of designed

sequences are considerably lower than those of the natural sequences.

While the designed sequences include the natural substrates (at close to their predicted affinities, as

discussed above), they also include a diverse array of alternatives. Figure 6 (right) shows sequence logos of

the top 10 designed peptides for 3 different PDZs. Even among these sets of top predicted binders, we see

interesting diversity among the peptides, suggesting novel designs potentially worthy of experimental

evaluation.

4. DISCUSSION AND CONCLUSION

We have developed a graphical model that is highly predictive of the DG of binding in protein:protein

interactions, while providing an interpretable and designable basis for its predictions. The notion of

modularity is fundamental to the idea of a graphical model. Hence these models form a powerful and

natural tool to solve problems involving complex probability distributions over many random variables,

like the ones here. Due to the natural equivalence between the graph structure of a model and the structure

of spatial interactions in proteins, graphical models have seen considerable use in modeling various aspects

of proteins: in recognizing structural motifs (Liu et al., 2009; Menke et al., 2010; Moitra et al., 2012), in

protein structure alignments (Xu et al., 2006), and in modeling dynamics (Razavian et al., 2012). A growing

body of work using graphical models to capture correlated mutations in protein families has also seen

substantial success in predicting residue–residue contacts in the protein structure (Marks et al., 2011;

Morcos et al., 2011; Nugent and Jones, 2012; Jones et al., 2012; Kamisetty et al., 2013), highlighting the

power of these models.

While basing the modeling of DG on sequence and data is fundamentally different from structure-based

predictors, which employ physics-based models and analysis of side-chain (and potentially backbone)

conformations to assess interactions [e.g., Guerois et al. (2002); Kortemme and Baker (2002); Smith and

Kortemme (2010)], we note that structure-based undirected graphical models have been used to predict DG

(Kamisetty et al., 2008, 2011a). The integration of the structure-based approach and the sequence + data-

based approach provides an interesting future direction. Our preliminary work on such integration for

individual proteins (Kamisetty et al., 2009) provides evidence that the two viewpoints can be comple-

mentary and enable better prediction than either alone.

The method we developed here could be applied to any pair of interacting protein families with a

similar extent of quantitative binding data. Due to their size and easy availability, PDZ domains form a

‘‘model system’’ for studying protein–protein interactions (Sheng and Sala, 2001; Kurakin et al., 2007;

Tonikian et al., 2008; Chen et al., 2008). They are involved in formation of protein complexes that are

involved in cellular signal transduction and neural circuitry (Sheng and Sala, 2001) and so make an

interesting test case from the point of view of protein engineering (Fuh et al., 2000) and drug design (Saro

et al., 2007).

We demonstrated that our models can be used to design novel peptides that interact strongly with a given

PDZ domain. This approach could be extended using sampling or other inferential techniques to design a

desired interaction, rather than only the peptide, and to scale up to larger sets of involved residues.
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