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ABSTRACT

A key aim of systems biology is the reconstruction of molecular networks. We do not yet,
however, have networks that integrate information from all datasets available for a par-
ticular clinical condition. This is in part due to the limited scalability, in terms of required
computational time and power, of existing algorithms. Network reconstruction methods
should also be scalable in the sense of allowing scientists from different backgrounds to
efficiently integrate additional data. We present a network model of acute myeloid leukemia
(AML). In the current version (AML 2.1), we have used gene expression data (both mi-
croarray and RNA-seq) from 5 different studies comprising a total of 771 AML samples and
a protein–protein interactions dataset. Our scalable network reconstruction method is in
part based on the well-known property of gene expression correlation among interacting
molecules. The difficulty of distinguishing between direct and indirect interactions is ad-
dressed by optimizing the coefficient of variation of gene expression, using a validated gold-
standard dataset of direct interactions. Computational time is much reduced compared to
other network reconstruction methods. A key feature is the study of the reproducibility of
interactions found in independent clinical datasets. An analysis of the most significant
clusters, and of the network properties (intraset efficiency, degree, betweenness centrality,
and PageRank) of common AML mutations demonstrated the biological significance of the
network. A statistical analysis of the response of blast cells from 11 AML patients to a
library of kinase inhibitors provided an experimental validation of the network. A combi-
nation of network and experimental data identified CDK1, CDK2, CDK4, and CDK6 and
other kinases as potential therapeutic targets in AML.
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1. INTRODUCTION

The knowledge of genomic changes and of other ‘‘omic’’ alterations in patients with acute myeloid

leukemia (AML) has increased significantly over the last decade (Hoffman et al., 2012; Lawrence et al.,

2014). This has not, however, resulted in the development of new effective therapies and AML still has an

unfavorable prognosis for most patients (Hoffman et al., 2012). Robert Weinberg, one of the pioneers of the

reductionist molecular approach to cancer research (Weinberg, 2014), recently suggested that new data-rich

approaches are needed to address the complexity and heterogeneity of cancer. He, however, also pointed out

that systems biology has not yet led to major advances in the understanding and treatment of malignant

neoplastic disease.

A key aim of systems biology is the reconstruction of informative molecular networks, and it is be-

coming clear that only cell-specific and disease-specific networks are potentially able to benefit medical

practice (Lefebvre et al., 2010, 2012). These networks could be used, for example, to obtain actionable

information from the complex and often unique mutational cancer profiles that sequencing data provide

(Lawrence et al., 2014).

More than one million gene expression datasets are available in public repositories (Baker, 2012) and

biology is clearly ready for the big data computational approaches that are increasingly used in other fields

of science and technology (Editorial, 2008; Schadt et al., 2010). We do not yet, however, have disease-

specific networks that integrate information from most available datasets. This is in part due to the limited

scalability, in terms of required computational time and power, of existing algorithms.

It is also becoming clear that integrating the growing number of datasets and the increasing amount of

knowledge for a particular pathology is not a realistic task for individual research groups or even com-

panies. Network reconstruction methods should therefore also be scalable in another sense: they should

allow scientists from different groups and background to efficiently integrate additional data and pro-

gressively increase the network accuracy.

Several reviews have discussed the increasing literature on biological network reconstruction (Margolin

and Califano, 2007; Marbach et al., 2012a; Csermely et al., 2013; Furlong, 2013). Among many notable

articles using expression data, Basso et al. (2005) introduced ARACNE, an advanced method based on

mutual information; Marbach et al. (2012b) suggested, among other components, the use of Spearman

correlation for coexpression networks; and Cahan et al. (2014) very recently used a method including

Pearson correlation to reconstitute stem cell regulatory networks. Other published methods, which we also

use in comparisons, are TIGRESS (Haury et al., 2012), based on least angle regression, and GENIE3

(Huynh-Thu et al., 2010), which uses tree-based ensemble methods. In regard to previous AML work, Lee

at al. (2009) have also used a network approach. They did not, however, provide an AML network but

extracted dysregulated subnetworks (Lee et al., 2009).

In the version of the AML network we describe here (version 2.1), we have used gene expression data

(both microarray and RNA-seq) from five different studies (Valk et al., 2004; Metzeler et al., 2008; Eppert

et al., 2011; Macrae et al., 2013; The Cancer Genome Atlas, 2013) comprising a total of 771 AML samples.

We also integrate a human protein–protein interactions dataset (Schaefer et al., 2012).

The method we present is in part based on the well-known property of gene expression correlation

among interacting molecules in biological networks (Marbach et al., 2012a). A potential problem is the

difficulty of distinguishing between direct and indirect interactions. We suggest a solution based on the

optimization of a statistical property, the coefficient of variation, using a validated ‘‘gold-standard’’ dataset

of direct interactions. We show that computational time is much reduced compared to other network

reconstruction methods and that adding new datasets is especially easy because most computations already

performed do not need to be repeated. We also suggest statistical measures that can provide the optimal

correlation coefficient cutoff for the selection of significant interactions. A key feature of the method is

‘‘overlap analysis,’’ which is based on the study of reproducibility of interactions found in two or more

independent clinical datasets.

An analysis of the most important clusters and of network properties indicated that common AML

mutations have a central role in the network and that they are much closer than average to each other. This

demonstrates the biological significance of the network. The network properties of kinases are consistent

with a statistical analysis of the experimental response of AML primary patient cells to a kinase inhibitor

library and can be combined to identify potential targets for therapeutic interventions.
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2. MATERIALS AND METHODS

The methods are described in Figures 1, 2, and 3 and in the Supplementary Materials (available online at

www.liebertonline.com/cmb).

3. RESULTS

3.1. Methodological results

The details of the datasets we used and the corresponding numbers of genes are shown in Table 1.

Supplementary Table 3S also shows the number of interactions included in AML 2.1 obtained from each of

the five gene expression datasets. As expected from the more quantitative nature of RNA-seq, the datasets

obtained with this technique were more informative, providing more reproducible interactions compared to

the three microarray datasets, even when the number of samples was comparable or lower.

Table 2 shows that the optimized CV cutoff increased the number of validated TRANSFAC interaction

(TI) hits identified in almost all cases and specifically in every case where Pearson Correlation was used.

Interactions were ordered according to the measurements provided by each method, and the significance of

the CV cutoff was tested using the two-tailed Student t-test of the top 100 and top 1000 interactions, before

and after CV cutoff. The CV cutoff in both top 100 and top 1000 resulted in significant increases in TI hits

with p < 0.0001.

The run times of our optimized Pearson correlation method and of three previously published network

reconstruction methods, ARACNE (Basso et al., 2005; Meyer et al., 2008), TIGRESS (Haury et al., 2012),

and GENIE3 (Huynh-Thu et al., 2010), were estimated using the same hardware and datasets and are shown

in Supplementary Figure 2S. The comparison shows a speed advantage of several orders of magnitude for

the optimized Pearson correlation method we present here. Adding another method after optimized cor-

relation identifies 11–15% more interactions (Table 3). As shown in Supplementary Table 2S, however,

these interactions are not the same for every method added. Supplementary Figure 4S shows an example of

a nonlinear relationship that has been identified as a network interaction by the three additional methods

listed in Table 3, but not by our method. As indicated in Table 3, these methods can miss an even larger

number (14–60%) of validated interactions found by optimized correlation.

3.2. Reproducibility results (overlap)

Table 4 shows that the reproducibility of our method (measured by the number of interactions found in

more than one expression dataset) is much higher than that of randomly generated TFG and PPI subnet-

works. The probability of finding the number of interactions reported 2 or more times is much lower than

0.01 for both the TFG and the PPI subnetworks. Random simulations and the exact method described in the

reproducibility analysis section of the Supplementary Methods provide similar estimates. None of the

interactions found in only one gene expression dataset are included in the AML 2.1 network.

In addition to the reproducibility (overlap) of interactions, the TI ratio, defined as the number of TI/

number of interactions, was also examined, as shown in Supplementary Table 4S, for the TFG subnetwork.

This ratio was increased compared to the initial dataset (before the application of the optimized correlation

selection) even for interactions present in only one dataset and increased progressively for those appearing

in two or more datasets.

The full lists of overlapping interactions for the TFG and PPI subnetworks are shown in Supplementary

Tables 4S and 5S. These tables also show that the average correlation is generally higher when the re-

producibility increases (we show separately interactions found in 1, 2, 3, 4, or 5 datasets) but the distri-

butions of these correlation values are not sufficient to separate the groups. In conjunction with the data

already referred to in the Materials and Methods section, these findings are consistent with the rationale we

have used in the optimization of the network.

We also analyzed 7 more AML microarray datasets (GSE15434, 24006, 33223, 34860, 21261, 6891, and

22845), which will be included in future version of the network, and measured the reproducibility of the

interactions using all 12 datasets. The data are shown in Supplementary Table 10S.

Using the 12 datasets, we also measured the TI ratio for the first 10 overlap groups (the number of

interactions was too small in groups 11 and 12). The data are presented in Supplementary Table 12S and
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show a monotonic (exponential) increase of the TI ratio with the number of overlaps, and therefore with the

reproducibility of the interactions. We found a significant Spearman’s correlation between the group

number and the TI ratio with p < 0.0001.

Remarkably, a similar increase as a function of the group number is also obtained when we measure, as a

ratio, the interactions that, for each of the 10 overlap groups obtained from an analysis of 10 datasets, were

found again twice when two more datasets were added. This ratio is a measure of the probability of

reproducibility, and therefore of validity, for interactions in each group, and was found to increase

monotonically from overlap group 1 to overlap group 10 (Spearman correlation had p < 0.0001) (Supple-

mentary Table 12S). This probability was found to be well approximated by a single-parameter sigmoid

function of the form (1 + ez-x) - 1, where x is the overlap group and the fitting parameter z = 6.15609

(R2 = 0.9986). (See Fig. 4A.)

Reproducibility can also be studied within the groups shown in Figure 4A and Supplementary Table 12S.

The reproducibility of interactions in the overlap 2 group, ordered by an average rank obtained from their

correlation coefficient, declined monotonically. We measured the interactions in this overlap 2 group that

Table 1. Expression Datasets Used for the Study, for Both the TFG and the PPI Subnetworks

Dataset Technique GSE ID

Number

of samples

Full-size

expression

profile (number

of genes)

Test

expression

profile (number

of genes)

CV optimized

expression

profile (number

of genes)

Eppert Microarray GSE30377 93 12,495 1208 3663

Metzeler Microarray GSE12417 163 12,495 1208 4535

Valk Microarray GSE1159 293 12,496 1208 3388

Macrae RNA-seq GSE49642 43 11,737 785 3154

TCGA RNA-seq NA 179 12,917 881 4332

Three microarray and one RNA-seq datasets were downloaded from GEO. The TCGA RNA-seq LAML dataset was downloaded

from the TCGA Data Portal.

Table 2. Number of TRANSFAC Interaction Hits for the Top 100 and the Top 1000 Interactions

Network inference

method

Data

source Data type

Top 100

TI hit pre-CV

Top 100

TI hit post-CV

Top 1000

TI hit pre-CV

Top 1000

TI hit post-CV

Pearson correlation Eppert Microarray 10 13 61 67

Pearson correlation Macrae RNA 9 14 44 63

Pearson correlation Metzeler Microarray 11 19 23 62

Pearson correlation TCGA RNA 5 18 56 60

Pearson correlation Valk Microarray 12 22 35 72

Aracne Eppert Microarray 6 8 45 43

Aracne Macrae RNA 7 7 28 35

Aracne Metzeler Microarray 3 14 30 47

Aracne TCGA RNA 9 11 56 46

Aracne Valk Microarray 11 17 50 61

GENIE3 Eppert Microarray 13 16 53 57

GENIE3 Macrae RNA 11 13 53 59

GENIE3 Metzeler Microarray 18 18 43 64

GENIE3 TCGA RNA 13 17 67 61

GENIE3 Valk Microarray 18 19 54 74

TIGRESS Eppert Microarray 9 13 43 60

TIGRESS Macrae RNA 5 8 52 55

TIGRESS Metzeler Microarray 16 17 38 56

TIGRESS TCGA RNA 14 15 58 54

TIGRESS Valk Microarray 14 19 42 70

Interactions were ordered by the values provided by the different inference methods, before and after the correlation coefficient of

variation (CV) cutoff. The data were obtained using the test datasets. The table shows the increase after the CV cutoff. TI, TRANSFAC

interaction.
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were found again after adding all possible combinations of two more datasets. Each of the interactions

originally found in two datasets could now therefore remain in overlap group 2 or could be found in overlap

group 3 or 4. Assigning a value of 1 to those that progressed one step to group 3 and a value of 2 to those

that progressed two steps to group 4, the average score for the top 6000 interactions was 0.268, while for

the remaining interactions in the group it was only 0.068, a decrease of almost 4-fold. This difference

was highly statistically significant, using both a parametric and a nonparametric test ( p < 0.0001 with the

Mann–Whitney test).

We also studied this behavior in additional overlap 2 groups for datasets 6–10 and identified an expo-

nential fitting that can be used to predict the distribution of the probability of reproducibility after the

addition of two more datasets, as a function of the rank of an interaction within a group (Supplementary

Data 11S and Fig. 4B). The probability distribution is well approximated by P(R,k) = ae - R/Q(k), where R is

the rank of the interaction within the group, and Q(k) is a characteristic decay rank that depends on the

number of datasets k. Factor a takes into account the probability distribution normalization. We found that

Table 3. Additional Information Provided by the Indicated Methods Compared

with Optimized Correlation

Method

TI shared

with

correlation

TI unique

to correlation

TI discovery

unique to

correlation (ratio)

TI unique

to other

method

TI discovery

unique to other

method (ratio)

ARACNE 49 35 0.60 9 0.11

GENIE3 72 12 0.14 13 0.15

TIGRESS 65 19 0.24 13 0.15

The last column shows the ratio of newly identified TI to those found with the correlation method. This column shows that adding an

additional method increases the number of validated interactions (TI) already found with optimized correlation only by 11–15%. The

third data column shows the same ratio when optimized correlation is added to one of the other three methods.

Table 4A. The Number of TFG Subnetwork Interactions That Are Found in One or More

Datasets Is Compared to Those Found in Randomly Generated Subnetworks

Number of datasets

where an interaction

is present

Avg. interactions

in random

simulations

Interactions

in random

model

Interactions

in TFG

subnetwork

Interactions

included

in AML 2.1

Significance

of number

of reproducible

interactions

1 179,574 179,579 129,943 0 NA

2 612 611 17,817 6117 p < 10 - 10

3 1 1 2505 2505 p < 10 - 10

4 0 0 1183 1183 p < 10 - 10

5 0 0 596 596 p < 10 - 10

None of the interactions listed in the 1 dataset row were included in AML2.1. Only part of the interactions found two times were

included.

Table 4B. The Number of PPI Subnetwork Interactions That Are Found in One or More

Datasets Is Compared to Those Found in Randomly Generated Subnetworks

Number of datasets

where an interaction

is present

Avg. interactions

in random

simulations

Interactions

in random

model

Interactions

in PPI

subnetwork

Interactions

included

in AML 2.1

Significance

of number

of reproducible

interactions

1 45,836 45,825 13,754 0 NA

2 3 9 6794 6794 p < 10 - 10

3 0 0 2487 2487 p < 10 - 10

4 0 0 1705 1705 p < 10 - 10

5 0 0 844 844 p < 10 - 10

None of the interactions listed in the 1 dataset row were included in AML2.1.
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the characteristic decay rank scales with the number of possible interactions contained in each group and is

well approximated by the relation Q(k) = 515:04 k
2

� �
(R2 = 0.998). Figure 4B shows that the correlation-

based ranking within group 2 contains less information and is less significant when more datasets are

added, since the top-ranking interactions in this group become less reproducible.

These models and analyses can assist the choice of which interactions to select when the number of

datasets increases and could also be used to build weighted networks.

3.3. Biological results

3.3.1. Properties, visualization, and gene ontology cluster analysis of AML 2.1. The full list of

TFG and PPI interactions in AML 2.1 is shown in Supplementary Table 6S. The global network properties

of AML 2.1 are shown in Table 5 (Newman, 2010). The AML 2.1 network contains the TFG and PPI

subnetworks and is partially directed. MCODE clustering analysis found a total of 101 clusters. The

complete list of clusters is shown in Supplementary Table 7S. Table 6A also shows the differences between

normal human hematopoietic cells and AML patients for the top 13 clusters, with corresponding gene

ontology (GO) functional terms, and the p-values for these differences. The Fisher’s exact test and false

discovery rate were performed on the clusters and 4 clusters were found to be expressed with a

p-value < 0.1 in either normal subjects or AML patients. Two clusters related to immune response and cell

cycle were found to be highly expressed in AML patients. On the other hand, one cluster related to

translation and biosynthetic process was found to be highly expressed in normal human hematopoietic

cells. Figure 5 shows the AML 2.1 network with the top MCODE clusters. Figure 5 also shows several

FIG. 2. Coefficient of variation (CV) optimization. Panels (A) and (B) show an example of a retained gene target

(LCK) and of an eliminated gene target (GP5) of the same transcription factor (ETS1). GP5 was eliminated from the

network because of the low coefficient of variation. It is clear that the transcription factor is not likely to increase the

expression of the target. Panel (C) shows an example, for one of the datasets (Eppert), of the CV optimization. The CV

value is optimized to give the highest TI percentage in the top 100 interactions ranked by Pearson correlation.

272 ONG ET AL.



273



other functions that are relevant to the cells of origin of AML, for example, ‘‘leukocyte and lymphocyte

activation.’’ Table 6B shows similar comparisons using Fisher’s exact test with RECON2 (Thiele et al.,

2013) metabolic pathway clustering. Eight RECON2 pathways were found to be differentially expressed.

3.3.2. Receptors. We also examined the number of interactions for specific functional classes, in-

cluding cellular receptors. The two most connected receptors, with degree (number of connections) higher

than 200, were vitamin D receptor (VDR) and retinoid X receptor, alpha (RXRA) (Supplementary Table

8S). As we mention in the Discussion section, these are known to have important roles in AML cells. We

have also analyzed the two human AML RNA-seq datasets we use in this study (Macrae et al., 2013; The

Cancer Genome Atlas, 2013) and found that the coefficient of variation of receptors expression between

different patients is in both cases approximately double that of other genes ( p < 0.0001).

FIG. 3. TFG and PPI interactions ranked by correlation values. (A) Poisson statistic used for the selection of TFG

interactions. The panel shows the TI hits used for the Poisson distribution selection in the case of the CV-optimized

Eppert dataset. Bins are ranked by correlation values, decreasing from left to right. The red line indicates the cutoff.

Only interactions with correlation values above (to the left of) the cutoff were selected. These correspond to bins with a

higher number of TIs, which are the validated TRANSFAC interactions. See Supplementary Figure 5S (Eppert) for the

complete version of this figure, spanning all correlation values. (B) PPI interactions and HIPPIE hits. The panel shows

the number of HIPPIE interaction hits within 15,000,000 random interactions from the Eppert dataset. (C) PPI

interactions and HIPPIE hits. The panel shows HIPPIE interaction hits within the first bin (50,000 interactions) in (A),

with finer resolution. Bins are ranked by correlation values decreasing from left to right. The analysis is from a

randomly selected subset corresponding to about 10% of all possible correlations of the Eppert dataset. As for the TFG

subnetwork shown in (A), also for the PPI subnetwork bins corresponding to interactions with a higher correlation

coefficient contain a higher number of validated interactions obtained from the HIPPIE database.

‰

FIG. 4. Reproducibility analysis. (A)

Reproducibility probability in 10 groups.

The figure shows the probability that a TFG

interaction found in overlap group x (hori-

zontal axis) using 10 datasets is found in

group x + 2 when 12 datasets are used. This

probability gives an estimate of reproduc-

ibility for group 1 to group 10. The 10

points were found to be well approximated

by a single-parameter sigmoid function of

the form 1/[1 + Exp(z – x)], where x is the

overlap group and the fitting parameter

z = 6.15609 (R2 = 0.9986). (B) Reprodu-

cibility probability distribution within

group 2. The figure shows the distribution

of the probability of reproducibility (after

the addition of two more datasets) as a

function of the rank R of an interaction

within group 2 with k = 5 to 10 datasets.

The fitting to the probability distribution is

of the form P(R,k) = a Exp[ - R/Q(k)],

where R is the rank of the interaction within

the group, and Q(k) is a characteristic decay

rank that depends on the number of datasets

k. The factor a takes into account the

probability distribution normalization. This

figure indicates that the correlation-based

ranking within group 2 contains less infor-

mation and is less significant when more

datasets are added, since the top-ranking

interactions in this group become less re-

producible.
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3.3.3. AML mutations. The network is significantly enriched for common known AML mutated

genes. It contains 21 out of 26 significantly mutated AML genes (Lawrence et al., 2014) even though it is

composed of only 5667 genes/proteins ( p = 2.3 · 10 - 8 for the enrichment). This shows that the network

reconstruction method enriches for functionally relevant genes. Figure 6 shows the 21 common AML

mutations included in the network and their first neighbors. This subnetwork is highly connected with a

total of 5 clusters and with the largest cluster containing 16 AML mutated genes. Figure 7 shows the

mutations and their first neighbors within the AML 2.1 network. Comparing Figures 5 and 7 shows that the

mutations co-localize with functional clusters of known relevance to cancer, including ‘‘cell cycle’’ and

‘‘DNA replication.’’

To examine the statistical significance of these measures, random subnetworks were generated. Random

subnetworks consisting of 21 random genes and their first neighbors were less connected than the mutation

subnetwork. They had an average of 16.2 clusters and an average size of 3.5 genes from the group of 21 in

the largest cluster ( p < 0.0001 compared to the mutation subnetwork). Other network measurements were

Table 5. Network Properties of AML 2.1

Nodes 5667

Edges 22,218

Global efficiency 0.1215

Average clustering coefficient 0.1983

Transitivity 0.2043

Betweenness centrality 0.00054

Table 6A. Top 13 MCODE Clusters (p < 0.10)

Cluster ID Representative GO term Higher expression in p

5 Immune response; defense response AML 7.07E-18

2 Translation; biosynthetic process Normal 8.46E-06

7 Cell cycle AML 0.00017

1 Transcription; biosynthetic process Normal 0.012

3 Immune system; leukocyte, lymphocyte activation AML 0.031

20 Negative, positive regulation of ligase activity AML 0.038

9 Dna metabolic, replication process Normal 0.038

25 Translation; biosynthetic process Normal 0.039

10 Heme biosynthetic process Normal 0.061

6 Negative, positive regulation of ligase activity AML 0.062

12 Regulation of actin polymerization AML 0.069

28 Cell cycle, division AML 0.069

30 mRNA metabolic, transport Normal 0.087

The Fisher’s exact test was used to compare the expression profile of AML and normal hematopoietic cells.

Table 6B. Top 8 RECON2 Pathways (p < 0.10)

RECON2 pathways Higher expression in p

Oxidative phosphorylation AML 0.0070

Heme synthesis Normal 0.011

Glycolysis/gluconeogenesis AML 0.016

Transport, lysosomal AML 0.032

N-glycan synthesis Normal 0.034

NAD metabolism AML 0.038

Selenoamino acid metabolism Normal 0.061

Pentose phosphate pathway AML 0.065

The Fisher’s exact test was used to compare the expression profile of AML and normal

hematopoietic cells.
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also computed with the same random subnetwork simulation, as shown in Table 7 and Supplementary

Figure 7S. The 21 mutations also had significantly higher values of 3 network centrality measures: degree

( p = 0.015), betweenness centrality ( p = 0.02), and PageRank ( p = 0.01) (Newman, 2010).

A similar conclusion, with stronger statistical significance, is obtained by examining the intraset effi-

ciency for the 21 mutations and for random sets of 21 genes. The intraset efficiency was clearly higher for

the set of 21 mutations. Figure 8 shows that a skew normal probability distribution was fitted to a histogram

of the randomized sets with R2 = 0.99, and an approximate right-tailed p-value of 7.3 · 10 - 8 was obtained.

This measure indicates that the paths among the mutations are much shorter than for control sets. In other

words, the mutations can more easily exchange information.

As shown by visual inspection and comparison of Figures 5 and 7 and by calculating the clustering

coefficient (Table 7 and Supplementary Fig. 7S), the mutations do not, however, form a tight cluster. That

is, they do not interact mainly among themselves.

Table 8 shows a summary of the GO functional enrichment analysis of the mutation subnetwork,

obtained using DAVID (Huang da et al., 2009). The full analysis is shown in Supplementary Table 8S. The

mutation subnetwork is composed of 21 common AML mutations and of their first neighbors, for a total of

257 genes, but a very similar list of GO terms is obtained by analyzing the first neighbors only (Supple-

mentary Table 8S), showing that the functional information is contained in the network and not only in the

mutations. These functions are those commonly associated with cancer mutations, including DNA repli-

cation, cell cycle, and cell death.

3.3.4. Experimental validation using kinase inhibitors and AML primary samples. Centrality

measures can be used to rank kinases in AML 2.1. These results were compared to the response of AML

primary cells to a library of 244 kinase inhibitors. A method we have recently developed, based on elastic

FIG. 5. AML Network 2.1 with the 13 main clusters. AML 2.1 is shown with 13 functional clusters highlighted. The

clusters had significant differences between AML patients and controls. See Table 8 for a detailed description of the

functions associated with each cluster.
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net regression applied to kinase inhibitors, the KIEN method (Tran et al., 2014), was used to identify and

rank according to a score bk (see Materials and Methods), the kinases responsible for the effects of the

kinase inhibitors in primary AML cells from 11 patients.

We then calculated Pearson correlation and Spearman rank correlation on a set of 101 kinases present

both in AML 2.1 and in the drug response dataset (see Materials and Methods). Table 9A shows the

correlation coefficients and significance values of betweenness centrality, degree, and PageRank with

the KIEN parameter bk, using Pearson, and Table 9B shows the same three correlations using Spearman

rank correlation. Betweenness centrality is significantly correlated with bk according to both methods,

while degree and PageRank were significant only with Pearson correlation.

The top 10 kinases identified by the combined use of betweenness centrality and PageRank with KIEN

are shown in Tables 10 and 11. The most remarkable finding is the presence of a group of four kinases,

CDK1, CDK2, CDK4, and CDK6, at the top of the independent analyses based on AML 2.1 centrality

measures and on experimental data analyzed by KIEN (with significance of p < 10 - 7 for betweenness

centrality, PageRank, and also degree; the details of the degree analysis are shown in the Supplementary

data). The other kinases shown in Tables 10 and 11 are strong candidate targets for further experimental

studies.

Specific literature support for the involvement of these targets in AML is analyzed in more depth in the

Discussion section, but an additional level of statistical confirmation of our approach is obtained by

showing that the number of relevant citations for each of the 101 kinase targets mentioned above in this

section (obtained by searching PubMed for the gene name and the term AML) is significantly correlated

(using Spearman) with the combined average rank of the kinases obtained as shown in Tables 10 and 11.

The p-value is lower than 0.0003 for ranks obtained from all three centrality measures (betweenness

centrality, degree, and PageRank).

FIG. 6. Mutation subnetwork. This subnetwork is composed of 21 common AML mutations and their first neighbors.

The red dots are the mutations, the blue dots are their first neighbors, the blue edges are TFG interactions, and the green

edges are PPI interactions.
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3.3.5. An additional set of networks. We have built eight additional networks based on the alter-

native methods of either selecting only interaction above a certain threshold (e.g., ‘‘overlap 3 + ’’) or using the

reproducibility of every group (e.g., overlap 1, 2, 3, etc.) to assign a score to each interaction. These networks

use 12 AML gene expression datasets. An analysis of these networks is shown in Tables 12 and 13.

The networks of Table 12 are obtained using different cutoffs, as indicated by their names. For

example, 2up includes only interaction found in 2 or more datasets; 2up_5k includes only the first 5000

FIG. 7. AML Network 2.1 with the mutation subnetwork. AML 2.1 is shown with the 21 common AML mutations and

their first neighbors highlighted. The red dots are the mutations and the blue dots are their first neighbors. The mutation

subnetwork overlaps the region where in Figure 5 we see the clusters for cell cycle, translation, and DNA replication.

Table 7. Network Measures of the 21 AML Mutations Set Compared to Controls

(Random Gene Sets of the Same Size)

Measurements Mutations mean Control mean Control median Control STD p

Clustering coefficient 0.130 0.198 0.193 0.0664 0.846

Local efficiency 0.202 0.233 0.229 0.0723 0.648

Degree 27.952 11.799 10.619 5.338 0.015

In-degree 13.476 5.894 5.476 2.169 0.0087

Out-degree 14.476 5.905 4.952 3.753 0.0392

Betweenness centrality 0.00206 0.0005 0.0004 0.0005 0.0207

Eigen centrality 0.0027 0.0017 0.0003 0.0028 0.228

PageRank 10.942 5.313 5.0266 1.631 0.0125
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interactions of group 2, ordered by their correlation coefficient, and all the groups with reproducibility of

3 or more.

The networks of Table 13 are either unweighted or weighted according to reproducibility with two

different levels of stringency. There is no cutoff in these networks. Reproducibility is assessed analyzing

two additional independent networks and the weight of each group is assigned according to the probability

of each interaction being replicated in both these additional datasets (more stringent, indicated as just 2 in

the name of the network shown in Table 13) or in at least one of them (less stringent, indicated as 1 and 2 in

the name of the network shown in Table 13). The weights are shown in Supplementary Table 12S.

In this analysis we have also analyzed all the drugs that are currently in active AML clinical trials, as

shown in clinicaltrials.gov, and obtained a list of 175 drug targets. As can be seen from Tables 12 and 13,

the drug targets have values for the three centrality measures, which are almost always significantly higher

than the control values, but, in every network, never as high as the set of common AML mutations.

The analysis shows that adding the weights or using a higher cutoff often increases the significance of the

p-values. Specifically, in two cases the degree of the drug targets only becomes significant using a higher

cutoff or adding weights. It must be observed that using cutoffs decreases the size of the network and the

coverage for the mutations and drug targets sets, which can be a disadvantage when there is an interest in a

specific gene.

FIG. 8. Intraset efficiency. The

intraset efficiency of the 21 genes

commonly mutated in AML cells

as well as 10 million randomly

generated sets of 21 nodes for a

control. The vertical axis shows

the probability density. The his-

togram was built using 50 bins of

uniform width. The red curve is

the right-skewed normal distribu-

tion fitted to the random data,

which has R2 = 0.999982. The

mutation intraset efficiency is

greater than the intraset efficiency

of all random sets examined.

Table 8. GO Enrichment Analysis for the Mutation Subnetwork of AML 2.1 (Composed

of 21 Common AML Mutations and Their First Neighbors, for a Total of 257 Genes)

GO term Description Count p

Fold

enrichment

False

discovery rate

GO:0006259 DNA metabolic process 43 4.28E-16 4.47 7.55E-13

GO:0051276 Chromosome organization 42 5.06E-16 4.56 9.44E-13

GO:0006396 RNA processing 42 3.00E-14 4.04 5.08E-11

GO:0006974 Response to DNA damage stimulus 33 7.17E-13 4.66 1.22E-09

GO:0007049 Cell cycle 47 3.29E-12 3.19 5.58E-09

GO:0033554 Cellular response to stress 39 8.55E-12 3.63 1.45E-08

GO:0006281 DNA repair 27 2.79E-11 5.00 4.73E-08

GO:0016568 Chromatin modification 23 1.16E-08 4.42 1.97E-05

GO:0006260 DNA replication 18 1.20E-07 4.99 2.03E-04

GO:0016570 Histone modification 14 5.17E-07 6.04 8.77E-04

GO:0010941 Regulation of cell death 37 1.69E-06 2.39 0.0029

GO:0034621 Cellular macromolecular complex subunit

organization

22 4.39E-06 3.24 0.0074

GO:0045934 Negative regulation of nucleobase, nucleoside,

nucleotide, and nucleic acid metabolic process

27 4.67E-06 2.78 0.0079
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It is possible to argue that we should not aim for a ‘‘perfect’’ network, but instead should focus on the

best network for a specific use. We therefore encourage users to test which network works best for their

respective applications, as these networks are clearly abstract representations, still quite distant from the

physical reality of the cell.

4. DISCUSSION

We have developed a fast, reproducible, and scalable network reconstruction method, which is able to

integrate biological datasets of different types. In the AML 2.1 network version we present here, both

microarray and RNA-seq gene expression data and protein–protein interaction data were included.

Only interactions derived from at least two independent clinical datasets were selected for the network

and some of the interactions found twice underwent further filtering. This is the only strategy that can

correct for all possible types of noise, including biological, clinical, and experimental variation. As can

be seen from Table 4, this led to pruning of a large number of interactions, and, most likely, to a higher

quality AML network. The alternative approach of pooling all the data and performing a single analysis

would be much less tractable computationally, would be less efficient when a new dataset is added,

would pose severe problems of normalization among studies, and would be more prone to artifacts,

because a small number of data points can greatly affect the correlation coefficient. Even in fields as

diverse as particle physics (Brumfiel, 2012; Tonelli, 2013) and clinical drug development (Ioannidis,

2005; Moonesinghe et al., 2007; Casadevall and Fang, 2010; Guidance, 2010), performing multiple

Table 9A. Pearson Correlation of Three Centrality Measures

from AML 2.1 with Experimentally Obtained bk for 101 Kinases

Centrality measures Pearson correlation coefficient p

Betweenness centrality 0.266 0.007

Degree 0.401 0.000032

PageRank 0.375 0.0001

Table 9B. Spearman Rank Correlation of Three Centrality Measures

from AML 2.1 with Experimentally Obtained bk for 101 Kinases

Centrality measures Spearman rank correlation coefficient p

Betweenness centrality 0.234 0.018

Degree 0.178 0.075

PageRank 0.158 0.11

Table 10. The Top 10 Kinase Targets Identified Using

the Betweenness Centrality Measure from AML 2.1

and the KIEN Analysis of Experimental Data

Kinase

targets

Average

rank

Betweenness

centrality rank

KIEN

rank

CDK2 2.5 1 4

CDK1 4 7 1

CDK4 6 4 8

CDK6 9 12 6

LCK 10.5 19 2

LYN 17.5 20 15

CHEK1 18 15 21

MAP2K2 18.5 24 13

RPS6KA1 18.5 6 31

CSK 19 14 24
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studies is considered a source of stronger evidence compared to pooling all resources in a single

giant study.

Supplementary Figure 6S shows that networks obtained from individual datasets tend to behave similarly

to the combined networks, but for several measures statistical significance was not reached at the individual

level, showing the benefit of data integration.

The analysis of reproducibility in different datasets, which we call ‘‘overlap analysis,’’ can also provide a

quantitative estimate of the probability of an interaction, based on the number of datasets in which it has

Table 11. The Top 10 Kinase Targets Identified

Using the PageRank Measure from AML 2.1

and the KIEN Analysis of Experimental Data

Kinase

targets

Average

rank

PageRank

rank

KIEN

rank

CDK1 2 3 1

CDK2 2.5 1 4

CDK4 5 2 8

CDK6 5.5 5 6

TYRO3 11 13 9

CHEK1 13.5 6 21

LYN 14.5 14 15

CSK 19.5 15 24

RPS6KA1 23.5 16 31

CHUK 24 23 25

Table 12. Dimensions and Centrality Measures for Networks Derived from 12 AML

Gene Expression Datasets, with Different Cutoffs

STD p
Average

2.2_2up

Median

23/26 mutations 125/175 drug targets

Degree(All) 18.8 7.0 44.6

Degree(DrugTargets) 21.2 9.0 32.1 0.24817

Degree(Mutations) 58.0 18.0 126.5 0.00300

PageRank(All) 3.3 1.7 5.3

PageRank(DrugTargets) 5.3 3.1 6.8 0.00315

PageRank(Mutation) 8.3 3.6 13.7 0.00499

Bcent(All) 0.0002 0.0000 0.0013

Bcent(DrugTargets) 0.0008 0.0000 0.0023 0.00723

Bcent(Mutations) 0.0025 0.0000 0.0095 0.00276

Nodes 9205

Edges 71,101

2.2_2up_5k 23/26 mutations 119/175 drug targets

Degree(All) 14.2 6.0 31.2

Degree(DrugTargets) 19.0 8.0 31.7 0.06341

Degree(Mutations) 45.6 14.0 99.6 0.00161

PageRank(All) 3.8 2.2 5.9

PageRank(DrugTargets) 5.8 3.3 7.3 0.00691

PageRank(Mutation) 8.7 3.8 14.5 0.00743

Bcent(All) 0.0003 0.0000 0.0017

Bcent(DrugTargets) 0.0010 0.0001 0.0028 0.00832

Bcent(Mutations) 0.0032 0.0000 0.0114 0.00322

Nodes 7882

Edges 40,787

(continued)
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been found. Figure 4B shows that, within a group with the same reproducibility measure (that is containing

interactions found in the same number of datasets), the value of the correlation coefficient for an interaction

could predict the probability of being identified again when additional datasets were analyzed. As shown in

Figure 4A, the same was true when comparing different groups. It is therefore clear that determining which

interactions to include in the network is a trade-off between maximizing the confidence in the included

interactions and building a network too sparse to have sufficient statistical power for meaningful analysis.

The use of a weighted network is an alternative strategy that might allow the appropriate inclusion of a

larger number of links (Barrat et al., 2004).

The clustering analysis identified gene functions that are consistent with the tissue of origin of AML. The

differences of AML versus normal cells gene expression for these clusters were also in the expected

direction; for example, glycolysis is well known to be upregulated in cancer cells.

Among the findings supporting the biological relevance of AML 2.1 are the observations that the

network is significantly enriched for common known AML driver-mutated genes (Lawrence et al., 2014)

and that the mutation subnetwork is enriched for important cancer-related functions. Most notable among

Table 12. (Continued)

Average Median
STD p

2.2_3up 22/26 mutations 118/175 drug targets

Degree(All) 13.6 5.0 29.7

Degree(DrugTargets) 18.8 8.0 31.6 0.04567

Degree(Mutations) 44.5 16.5 89.8 0.00162

PageRank(All) 4.0 2.4 6.1

PageRank(DrugTargets) 5.9 3.4 7.5 0.00875

PageRank(Mutation) 9.3 3.8 15.1 0.00689

Bcent(All) 0.0004 0.0000 0.0019

Bcent(DrugTargets) 0.0010 0.0001 0.0029 0.00935

Bcent(Mutations) 0.0036 0.0000 0.0124 0.00308

Nodes 7483

Edges 35787

2.2_3up_5k 21/26 mutations 114/175 drug targets

Degree(All) 12.9 5.0 27.4

Degree(DrugTargets) 18.9 8.0 31.9 0.02201

Degree(Mutations) 43.7 14.0 87.7 0.00126

PageRank(All) 4.2 2.6 6.3

PageRank(DrugTargets) 6.2 3.8 7.7 0.00990

PageRank(Mutation) 9.8 3.9 15.6 0.00710

Bcent(All) 0.0004 0.0000 0.0020

Bcent(DrugTargets) 0.0011 0.0002 0.0030 0.00685

Bcent(Mutations) 0.0036 0.0000 0.0135 0.00332

Nodes 7086

Edges 30,391

2.2_4up 21/26 mutations 111/175 drug targets

Degree(All) 12.2 4.0 25.8

Degree(DrugTargets) 19.1 7.0 32.2 0.01088

Degree(Mutations) 39.7 13.0 73.7 0.00211

PageRank(All) 4.5 2.9 6.5

PageRank(DrugTargets) 6.4 4.2 8.0 0.01241

PageRank(Mutation) 10.1 4.0 16.2 0.00774

Bcent(All) 0.0004 0.0000 0.0021

Bcent(DrugTargets) 0.0012 0.0002 0.0031 0.00669

Bcent(Mutations) 0.0036 0.0001 0.0130 0.00369

Nodes 6674

Edges 25,390
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these are cell cycle-related genes, presently one of the most active fields of drug development in many

cancer types (Malumbres and Barbacid, 2009; Diaz-Moralli et al., 2013).

The network properties of AML mutations we report are potentially useful for the understanding and

therapy of cancer. It seems that mutated cancer genes not only are related to the functional categories we

know well (Vogelstein et al., 2013) but also have network properties of efficient communication among the

set and of centrality, therefore being able to influence many other cell functions. They do not form a close

cluster, where the genes preferentially interact only among themselves. The centrality findings we obtained

are consistent with previous reports of the relevance of PageRank network measures to the identification of

cancer biomarkers (Winter et al., 2012).

The targets shown in Tables 10 and 11 were identified using both the AML 2.1 network properties and

the KIEN analysis of experimental drug response data from AML primary cells. The four targets with

higher statistical significance were CDK1, CDK2, CDK4, and CDK6. CDK 4/6 inhibitors have been shown

to be effective in phase II cancer clinical trials, some of which were presented at the ASCO and AACR

2014 meetings (Brower, 2014). One of these CDK 4/6 inhibitors, palbociclib, has received the ‘‘break-

through therapy’’ designation by the FDA (Sherman et al., 2013), which is intended to lead to accelerated

Table 13. Dimensions and Centrality Measures for Networks Derived

from 12 AML Gene Expression Datasets, Either Unweighted or Weighted

According to Reproducibility, with Two Different Levels of Stringency

Average Median STD

2.3 unweighted 26/26 mutations 157/175 DrugTargets p

Degree(All) 41.4 14.0 105.0

Degree(Mutations) 141.3 42.5 326.2 0.00095

Degree(DrugTargets) 43.7 24.0 65.6 0.36579

PageRank(All) 2.0 0.8 3.7

PageRank(Mutations) 7.3 3.2 12.4 0.00180

PageRank(DrugTargets) 4.3 2.7 5.5 0.00010

Bcent(All) 0.00011 0.00000 0.00072

Bcent(Mutations) 0.00210 0.00006 0.00906 0.00014

Bcent(DrugTargets) 0.00044 0.00009 0.00121 0.00259

2.3 1and2 26/26 mutations 157/175 DrugTargets

Degree(All) 5.8 1.5 15.8

Degree(Mutations) 28.7 8.3 65.5 0.00015

Degree(DrugTargets) 9.7 3.4 16.3 0.00640

PageRank(All) 2.0 0.8 3.9

PageRank(Mutations) 7.8 3.2 13.9 0.00177

PageRank(DrugTargets) 4.3 2.3 5.7 0.00006

Bcent(All) 0.00018 0.00000 0.00120

Bcent(Mutations) 0.00310 0.00009 0.01181 0.00006

Bcent(DrugTargets) 0.00075 0.00009 0.00233 0.00054

2.3 Just2 26/26 mutations 157/175 DrugTargets

Degree(All) 0.7 0.0 3.7

Degree(Mutations) 4.0 0.4 10.6 0.01069

Degree(DrugTargets) 1.5 0.1 4.0 0.03101

PageRank(All) 2.0 0.7 4.4

PageRank(Mutations) 8.6 3.3 17.7 0.00154

PageRank(DrugTargets) 4.2 1.9 6.1 0.00022

Bcent(All) 0.00035 0.00000 0.00295

Bcent(Mutations) 0.00573 0.00003 0.02251 0.00016

Bcent(DrugTargets) 0.00144 0.00007 0.00731 0.00156

Nodes 15,055

Edges 285,200

The number of nodes and edges is the same for these three networks.
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approval. Several articles have also shown that CDK inhibitors are effective in AML cells (Wang et al.,

2007; Walsby et al., 2011; Keegan et al., 2014; Placke et al., 2014).

The other targets shown in Tables 10 and 11 have also all been previously linked to AML and, in some

cases, to cell cycle genes. LCK and LYN are part of the SRC family, and CSK is a kinase acting on SRC.

SRC family kinases have been implicated in AML by several authors (Robinson et al., 2005; Okamoto

et al., 2007) and are targets of Dasatinib, which has been shown to be active on AML cells (Dos Santos

et al., 2013). LCK is also known to interact with and being phosphorylated by CDK1 (Pathan et al.,

1996). TYRO3 expression has been associated with AML (Linger et al., 2008) and the expression of his

ligand identifies high-risk AML patients (Whitman et al., 2014). CHEK1 is another important cell cycle

gene and suggested target for cancer therapy (Lapenna and Giordano, 2009), which has been shown to

sensitize AML cells to cytarabine action in an RNAi screen (Tibes et al., 2012). CHUCK (also known as

IKK-alpha) is part of the cell cycle regulatory network together with CHEK1 (Barre and Perkins, 2007)

and also contributes to the regulation of cell death in AML cells (Grosjean-Raillard et al., 2009).

RPS6KA1 has been suggested as one of the mediators of the anti-apoptotic action of FLT3, one of the

main AML mutations (Yang et al., 2005). Finally, MAP2K2 (also known as MEK2) has a very important

role in regulating CDK4/6 activity (Ussar and Voss, 2004) and is often activated in AML cells (Morgan

et al., 2001).

The potential of the combined use of AML 2.1 analysis and KIEN is not simply to provide a list of a few

targets to be completely inhibited. We can actually identify the optimal amount of inhibition of each target,

which corresponds to the coefficients of the KIEN regression equation, for a large number of kinases. This

can potentially lead to the type of precise and robust distributed control that is common in biology [e.g., by

transcription factors or microRNAs (Feala et al., 2012)] but until now not in pharmacology. The kinase

response in vitro of primary cells is, however, in part influenced by the culture conditions, which differ

from the in vivo microenvironment (Tiziani et al., 2013), and obtaining additional independent confirmation

using the AML 2.1 network properties is extremely useful.

This combined approach can also be used for personalized therapy. We show that useful data using

hundreds of kinase inhibitors can be obtained using primary cells, and even more precise individual

targeting information could be obtained using the larger libraries [composed of up to thousands profiled

kinases (Feala et al., 2012)] that several pharma companies have at their disposal. This would represent a

dynamic molecular profiling of leukemic cell response, potentially much more valuable than the static

snapshot of present omics techniques. The network could also be personalized further, for example, by

using individual gene expression data to prune not significantly expressed gene and by giving a greater

weight to mutations from a single patient and to their first neighbors within the network. An optimal kinase

inhibitor combination could therefore be designed computationally (Tran et al., 2014), even in cases when

the mutations would not be actionable, and then verified further by appropriate systematic testing using

patient’s cells (Feala et al., 2010; Kang et al., 2014).

While our increasing appreciation of the heterogeneity of cancer mutations (Wheeler and Wang, 2013),

both between and within patients, is a cause of concern for the development of generally effective ther-

apies, the identification of their shared pattern of connections raises the hope that sufficiently large and

precisely calibrated combinatorial therapies designed along the principles we have discussed might benefit

a wide range of patients.

The network could also be used to identify the receptors likely to have the largest effects on AML cell

viability. The most connected receptors include some with well-known effects in AML cells, supporting the

relevance of the network model. Among these are several interleukin receptors and the interferon gamma

receptor. The top two receptors for connectivity (degree) and other network properties are VDR and

RXRA. The ligands for these receptors, vitamin D3 and retinoic acid, have in fact well-known effects on

AML cell proliferation and differentiation (Nowak et al., 2009; Hughes et al., 2010).

As we mentioned in the Introduction, we suggest that network reconstruction should also be socially

scalable, in the sense of facilitating the integration of information from scientists of different backgrounds.

This would be made easier by the adoption of the open-source model for the continuous improvement of

the networks and of the related software. Open-source software is written by many (up to thousands)

volunteer computer programmers publicly sharing and reviewing their work in real time as part of a self-

organized community (Weber, 2004). Several fields of software development have seen the emergence of

very successful open-source approaches (Weber, 2004), for example, the operating system Linux and the

web server application Apache (Weber, 2004).
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We report data comparing the method used for AML 2.1 with other common methods for network re-

construction (Basso et al., 2005; Meyer et al., 2008; Huynh-Thu et al., 2010; Haury et al., 2012). It is

reasonable to conclude that, since all methods share most validated interactions found in our test, they might be

considered as roughly equivalent, and it is certainly possible that combining multiple methods might be useful

(Seni and Elder, 2010; Marbach et al., 2012a). We would need to understand more about the biological

significance of the interactions that are uniquely found by each method to do a more precise comparison.

Additionally, it is also possible that after adding more data all methods will eventually find essentially the same

set of interactions. It is clear, however, from the run-time analysis (see also Supplementary Materials) and from

considering the computational steps each method performs that the method described here is much faster. It has

also been designed to be especially scalable, because most calculations do not need to be repeated when a new

dataset is added. In addition, the portion of the method based on reproducibility in multiple datasets (the

‘‘overlap analysis’’) is also applicable to other network reconstruction strategies.

It has been stated by leaders in artificial intelligence and data mining that ‘‘invariably, simple models and a

lot of data trump more elaborate models based on less data’’ (Halevy et al., 2009; Mayer-Schonberger and

Cukier, 2013). Thus, a case might be made for considering as our top priority the analysis of all existing gene

expression datasets with the fastest and most scalable method that gives a reasonable performance in network

reconstruction. We have shown that very useful information can be obtained in a study using only five

datasets and it seems that we are not doing all we can for cancer patients if we leave existing data unutilized.

The present versions of the networks do not indicate if targets should be inhibited or stimulated to achieve a

therapeutic effect. In the case of the kinases shown in Tables 10 and 11, we have been able to establish this

using further experimental tests. The networks are, however, a framework that can be integrated with

additional information derived, for example, from pathways databases like KEGG or from algorithms based

on differential expression data. Examples of algorithms integrating differential expression information are

MARINa (Lefebvre et al., 2010) and attractor-based signaling methods (Szedlak et al., 2014).

Planned future additions to the network include the use of HIPPIE (Schaefer et al., 2012), with the same

optimization role for PPI as that played by TRANSFAC (Wingender, 2008) for TFG (expected in version 3)

and the addition of microRNA–target interactions and of metabolic networks (Thiele et al., 2013) (expected in

version 4). We also intend to use more AML datasets (potentially all published ones) and to explore subtypes

of this acute leukemia, including pediatric AML. We then plan to extend the approach to other leukemias and

eventually to other cancers and to other diseases. It will also be important to develop network models for

normal cell types to assist the design of selective therapies with reduced toxicity. This will allow the

development of comparative network analysis. For example, the evaluation of the general relevance of the

network properties we describe for the AML mutations will be possible only when networks for many

different cancer types are reconstructed using comparable methods.

We therefore present a fast and scalable method for the reconstructions of intracellular networks that

can contribute to the understanding of the network role of cancer mutations and to the identification of

targets for therapeutic interventions, also in combination with complementary statistical analyses of

experimental data.
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