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ABSTRACT

Protein–ligand docking can be formulated as a search algorithm associated with an accurate
scoring function. However, most current search algorithms cannot show good performance
in docking problems, especially for highly flexible docking. To overcome this drawback,
this article presents a novel and robust optimization algorithm (EDGA) based on the
Lamarckian genetic algorithm (LGA) for solving flexible protein–ligand docking problems.
This method applies a population evolution direction-guided model of genetics, in which
search direction evolves to the optimum solution. The method is more efficient to find the
lowest energy of protein–ligand docking. We consider four search methods—a tradition
genetic algorithm, LGA, SODOCK, and EDGA—and compare their performance in
docking of six protein–ligand docking problems. The results show that EDGA is the most
stable, reliable, and successful.

Key words: automated docking, drug design, evolutionary direction, genetic algorithm, protein–

ligand docking.

1. INTRODUCTION

Protein–ligand docking is a typical problem for computer-aided drug discovery and drug design

(Brooijmans and Kuntz, 2003; Moitessier et al., 2008; Huang and Zou, 2010; Jug et al., 2015). The aim of

the problem is to identify the best ligand conformation and orientation relative to the active site of a target

protein with the lowest energy. An efficient docking consists of a good scoring function and an efficient

search algorithm.

The scoring function is a free energy of binding interaction between protein and ligands. Scoring function

can help a docking to efficiently explore the binding space of a ligand. It is also responsible for evaluating the

binding affinity once the correct binding pose is identified (Bharatham et al., 2014; Li et al., 2015).

The search algorithm for solving the docking problem of flexible docking aims to identify the docked

conformation with the lowest energy. Some metaheuristics (Blum et al., 2011; López-Camacho et al., 2015)

have been successfully applied in the docking problem, and many researchers have tried improving the

optimization algorithm of protein–ligand docking. For instance, simulated annealing (SA) (Goodsell and

Olson, 1990) is a generic probabilistic metaheuristic for the global optimization problem of locating a good
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approximation to the global optimum of a given function in a large search space. Genetic algorithm (GA)

( Jones et al., 1997; Morris et al., 1998; Thomsen, 2003; Cao and Li, 2004) is a method to search the optimal

solution by simulating the natural evolution process. Lamarckian genetic algorithm (LGA) (Fuhrmann

et al., 2010) is a hybrid of GA and the local search, and it is more successful than SA and GA for the

docking problem. SODOCK (Chen et al., 2007; Jason et al., 2008) based on particle swarm optimization

(PSO) integrates with a local search, and it is designed for flexible docking.

There are two criteria used to verify the performance of different optimization algorithms: fitness

accuracy (energy based) and pose accuracy (root-mean-square deviation [RMSD] based) (Guo et al., 2014).

For fitness accuracy, the lower binding energy is the greater binding activity that can also provide better

FIG. 1. Block diagram of EDGA.

FIG. 2. Schematic diagram of GE.
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drug efficiency. RMSD is used to determine if two docked conformations are similar enough to be included

in the same cluster. A docked conformation with a smaller RMSD is considered as a more accurate solution

to the docking problem. Based on these two standards, the existing algorithms are proven to have obvious

shortcomings. Therefore, an efficient optimization algorithm that can find lower docking energy and RMSD

is desirable.

The novel algorithm is improved on the basis of LGA. LGA is proven to be efficient, but its search

direction is blind random. Because function evaluation of solving the lowest energy is the most

computational-intensive process in the search algorithms, such randomness is clearly a waste of compu-

tational resources. Furthermore, LGA has no effective use of feedback information, and so its search speed

is slow and it cannot obtain a more accurate solution. To improve LGA, a modified LGA that has

evolutionary direction is presented in this article to solve the aforementioned docking problem.

The implementation of EDGA adopts the environment and scoring function of AutoDock 4.2.6 (Morris

et al., 1996, 2009; Kitchen et al., 2004). AutoDock is the most widely used automated docking program. To

Table 1. Results of GA Energy (Kal Mol
-1

) and rmsd (Å)

PDB code Lowest energy Lowest energy Mean energy Mean rmsd Number of energy evaluations

3ptb -11.26 2.86 -8.81 7.57 1.50 · 106

2mcp -7.76 1.46 -4.36 5.50 1.50 · 106

1stp -11.03 2.84 -7.33 5.09 1.50 · 106

1hvr -31.28 4.28 -18.72 4.28 1.50 · 106

4hmg -8.44 1.69 -6.63 2.96 1.50 · 106

4dfr -10.27 3.49 -5.98 4.79 1.50 · 106

PDB, Protein Data Bank; rmsd, root-mean-square positional deviation.

Table 2. Results of LGA Energy (Kal Mol
-1

) and rmsd (Å)

PDB code Lowest energy Lowest rmsd Mean energy Mean rmsd Number of energy evaluations

3ptb -11.56 2.02 -10.81 3.90 1.50 · 106

2mcp -8.22 1.33 -8.05 1.31 1.50 · 106

1stp -13.41 2.55 -12.66 2.14 1.50 · 106

1hvr -30.85 0.62 -16.64 4.94 1.50 · 106

4hmg -10.09 1.70 -8.94 2.97 1.50 · 106

4dfr -11.50 4.79 -9.66 4.77 1.50 · 106

Table 3. Results of EDGA Energy (Kal Mol
-1

) and rmsd (Å)

PDB code Lowest energy Lowest energy Mean energy Mean rmsd Number of energy evaluations

3ptb -12.18 1.95 -11.80 2.12 1.50 · 106

2mcp -9.25 1.23 -8.65 1.33 1.50 · 106

1stp -13.67 1.25 -13.21 1.93 1.50 · 106

1hvr -28.10 0.75 -16.50 3.89 1.50 · 106

4hmg -10.47 4.58 -9.15 3.32 1.50 · 106

4dfr -12.74 5.91 -10.01 4.97 1.50 · 106

Table 4. Results of SODOCK Energy (Kal Mol
-1

) and rmsd (Å)

PDB code Lowest energy Lowest rmsd Mean energy Mean rmsd Number of energy evaluations

3ptb -11.57 2.00 -10.74 3.95 1.50 · 106

2mcp -7.72 1.42 -5.98 3.30 1.50 · 106

1stp -13.52 1.00 -11.41 2.45 1.50 · 106

1hvr -30.01 0.68 -24.59 2.42 1.50 · 106

4hmg -10.08 1.36 -8.85 3.02 1.50 · 106

4dfr -11.50 3.60 -10.14 5.25 1.50 · 106
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evaluate the method, we perform six protein–ligand docking problems from the Brookhaven Protein Data

Bank (PDB) (Berman et al., 2000, 2002). In this article, we compared the performance SA, GA, SODOCK,

and EDGA. Computer simulation results reveal that EDGA is superior to the other methods in terms of

convergence performance, robustness, and obtained energy, especially for highly flexible ligands. Simulation

results also reveal that EDGA can yield more accurate results than the other methods in terms of RMSD.

2. SCORING FUNCTION

AutoDock 4.2.6 uses a semiempirical free-energy force field to evaluate a docked conformation. The

force field includes six pair-wise evaluations (V) and an estimate of the conformational entropy lost upon

binding (D Sconf):

DG = VL L
bound - VL L

unbound

� �
+ VP - P

bound - VP - P
unbound

� �
+ VP L

bound - VP L
unbound +DSconf

� �

FIG. 3. Convergence diagram of

3ptb.

FIG. 4. Convergence diagram of

2mcp.
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where L represents the ligand and P represents the protein. Each of the pair-wise energetic terms is

expressed as the sum of dispersion/repulsion in which the parameters are based on the Amber force field,

hydrogen bonding, electrostatics, and desolvation.

V = Wvdw

X
i; j

Aij

r12
ij

Bij

r6
ij

 !
+ Whbond

X
i; j

E(t)
Cij

r12
ij

Dij

r10
ij

 !
+ Welec

X
i‚ j

qiqj

e(rij)rij

+ Wsol

X
i‚ j

SiVj + SjVi

� �
e - r2

ij=2r2ð Þ

3. METHODS

3.1. Hybrid search of EDGA

In this article, we propose a novel algorithm to high protein–ligand docking. The new algorithm based on

LGA integrates with a guided evolutionary direction mechanism so that solutions are in a better direction.

The algorithm will be abbreviated as EDGA, which stands for a Population Evolution Direction-Guided

Genetic Algorithm. EDGA is considered as a genetic algorithm module (GAM) cooperating with the

FIG. 6. Convergence diagram of

1hvr.

FIG. 5. Convergence diagram of

1stp.
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standard GA operators such as population initialization, crossover operator, and selection operator, while

evolution direction module (EDM) consists of the mutation, the guided evolutionary direction, and ap-

plying the local search. Figure 1 shows the block diagram of EDGA.

EDGA starts with initializing the population. Afterward, the offspring population is generated by genetic

operators such as crossover and mutation. The new population is then selected from the parent population

and the offspring population. The reproduction process and the selection process are repeated until the

number of iterations exceeds a predetermined value.

3.2. Evolutionary direction

In the original algorithm, the mutation is random and the search direction is blind random. In the early

stage, the randomness plays a very good guide effect for the global search. The direction of the optimal

solution is not known. With the development of the algorithm, the search experience is accumulated, the

direction is gradually clear, the search space begins to converge, and the difference between each solution is

FIG. 7. Convergence diagram of

4hmg.

FIG. 8. Convergence diagram of

4dfr.
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getting smaller, which means inevitably that the abandoned solution is the current best—even the best. When

the algorithm search space reduces to a very small range, if you continue to take the random pattern of the

original algorithm, then it is possible to lead away from the search target. At this time, the search strategy

needs to be adjusted. Therefore, a new mutation method is introduced.

In the method, an equilibrium factor b is introduced. When the random factor / < b, the random

mutation is used; otherwise, the ‘‘mixed mutation’’ is used. This new mutation combines the information

provided by the optimal solution and the suboptimal solution of the history.

In the improved algorithm, the mutation operator will be generated according to the following formula:

xij = xmin + / xmax - xminð Þ ifj/j < b
xij + / xoptimum - xsub

� �
+ d xoptimum - xij

� �
otherwise

�

where xij is the solution vector of the current value, / is a random number between 0 and 1, b is a particular

adjustable parameter (the range is 0 to 1), xoptimum represents the solution vector of the historic optimal

solution, and xsub represents the solution vector of the historic suboptimal solution.

FIG. 10. Box plot of 2mcp.

FIG. 9. Box plot of 3ptb.
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In the formula, the purpose of introducing the current solution and the second best solution is to keep the

search direction to the optimal solution as far as possible. In principle, as shown in Figure 2, A is the current

optimal solution, B is the historic suboptimal solution, and C is the historic optimal solution. Thus, / (C - A) +
/ (C - B) = / AD + AC = AE, where / is 0 to 1. As a result, the search direction will be closer to the AE

direction because the historic optimum solution is in the vicinity of the direction, and so the possibility of

finding the global optimal solution becomes larger. On the other hand, if the current optimal solution is the

historic optimal solution, that is, when C and A coincide in the schematic diagram, the AE direction is

coincident with the BC direction. The actual moving direction of the search is changed into AD. In this case,

the optimal solution of the group is abandoned, but it can also guarantee the correctness of the direction.

4. EXPERIMENTS AND DISCUSSION

Six protein–ligand complexes (Hu et al., 2004) were chosen from the Brookhaven PDB (Berman et al.,

2000, 2002) to compare the performance of the docking techniques. The six docking problems are sum-

marized in the following:

FIG. 11. Box plot of 1stp.

FIG. 12. Box plot of 1hvr.
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(1) b-Trypsin/Benzamidine (3ptb)

Benzamidine is a reversible competitive inhibitor of trypsin, trypsin-like enzymes, and serine proteases.

The recognition of benzamidine by b-trypsin is mainly because of the polar amidine moiety and the

hydrophobic benzyl ring.

(2) McPC-603/Phosphocholine (2mcp)

Phosphocholine is an intermediate in the synthesis of phosphatidylcholine in tissues. The recognition of

Phosphocholine by FabMcPC-603 is mainly because of the influence of ArgH52.

(3) Streptavidin/Biotin (1stp)

Biotin, also known as vitamin H or coenzyme R, is a water-soluble B vitamin. Streptavidin/biotin is one

of the most tightly binding noncovalent complexes.

4) HIV-1 Protease/XK263 (1hvr)

The cyclic urea HIV-protease inhibitor, XK-263, has 10 rotatable bonds, excluding the cyclic urea’s

flexibility.

5) Influenza Hemagglutinin/Sialic Acid (4hmg)

The recognition of sialic acid by influenza hemagglutinin is chiefly because of hydrogen bonding.

FIG. 13. Box plot of 4hmg.

FIG. 14. Box plot of 4dfr.
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Table 5. Hypothesis Test of 3ptb

EDGA LGA GA SODOCK

EDGA — 0.991 0.996 0.953

LGA 0.009 — 0.997 0.500

GA 0.004 0.003 — 0.004

SODOCK 0.047 0.500 0.996 —

Table 6. Hypothesis Test of 2mcp

EDGA LGA GA SODOCK

EDGA — 0.992 0.995 0.995

LGA 0.008 — 0.995 0.995

GA 0.005 0.005 — 0.232

SODOCK 0.005 0.005 0.768 —

Table 7. Hypothesis Test of 1stp

EDGA LGA GA SODOCK

EDGA — 0.992 0.996 0.963

LGA 0.008 — 0.995 0.624

GA 0.004 0.005 — 0.004

SODOCK 0.037 0.376 0.996 —

Table 8. Hypothesis Test of 1hvr

EDGA LGA GA SODOCK

EDGA — 0.962 0.995 0.992

LGA 0.038 — 0.913 0.377

GA 0.005 0.087 — 0.038

SODOCK 0.008 0.623 0.962 —

Table 9. Hypothesis Test of 4hmg

EDGA LGA GA SODOCK

EDGA — 0.996 0.997 0.996

LGA 0.004 — 0.997 0.583

GA 0.003 0.003 — 0.003

SODOCK 0.004 0.417 0.997 —

Table 10. Hypothesis Test of 4dfr

EDGA LGA GA SODOCK

EDGA — 0.995 0.995 0.996

LGA 0.005 — 0.995 0.664

GA 0.005 0.005 — 0.004

SODOCK 0.004 0.336 0.996 —
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6) Dihydrofolate Reductase/Methotrexate (4dgr)

Methotrexate is an antimetabolite that attacks proliferating tissue and selectively induces remissions in

certain acute leukemias.

We compared the performance of GA, LGA, SODOCK, and EDGA. The semiempirical free-energy

force field presented above was used for energy evaluation in all cases. The main goal was to find the

lowest energy in each docking problem. We also compared the root-mean-square positional deviation

(rmsd) between the lowest energy docked structures. The rmsd tolerance was used to determine if two

docked conformations were similar enough.

It is important to ensure that different search methods are treated equally. Therefore, in the three GAs,

the population was 50, the number of generations was 27,000, and the energy evaluations was 1.5 · 106 in a

docking. Therefore, the dockings were terminated by reaching the maximum number of generations. In

SODOCK, the number of particle was 50, the number of immediate neighbors was 5, and the maximal

number of function evaluation was 1.5 · 106. Five times were tested and each time consisted of 10 runs, and

so there were 50 results.

The results of GA, LGA, EDGA, and SODOCK docking experiments are summarized in Tables 1–4,

respectively. Through these tables, we concluded that EDGA found the lowest energy in five of the six

protein–ligand docking problems. The number of the lowest energy corresponding to the lowest rmsd was

1, 1, 2, and 2 for GA, LGA, EDGA, and SODOCK, respectively. Thus, EDGA performed best in finding the

lowest energy docked structure and the lowest rmsd. Furthermore, the number of the lowest mean energy

was 0, 0, 4, and 2, using GA, LGA, EDGA, and SODOCK, respectively. However, the number of the

lowest mean rmsd found by each of the four search methods was 1, 2, 2, and 1. In conclusion, considering

their average performance, the best search method was EDGA.

Figures 3–8 are convergence diagrams, and these figures show that EDGA also had the best convergence

performance among all methods. Figures 9–14 are box plots, and the median of EDGA was the lowest in

five of the six docking problems and the data of EDGA were the most concentrated. Tables 5–10 are

hypothesis tests. Through these tables, it can be seen that EDGA performed significantly better than LGA,

GA, and SODOCK.

5. CONCLUSIONS

We have shown that, of the four search methods tested—GA, LGA, EDGA, and SODOCK—the most

efficient, reliable, and successful is EDGA. We defined efficiency of search in terms of lowest energy found

in a given number of energy evaluations, and reliability in terms of reproducibility of finding the lowest

energy structure in independent dockings. The introduction of the EDGA search method extends the power

and applicability of AutoDock to docking problems compared with the earlier versions of search methods.
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