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ABSTRACT

Highly designable structures can be distinguished based on certain geometric graphical
features of the interactions, confirming the fact that the topology of a protein structure and
its residue–residue interaction network are important determinants of its designability. The
most designable structures and least designable structures obtained for sets of proteins
having the same number of residues are compared. It is shown that the most designable
structures predicted by the graph features of the contact diagrams are more densely packed,
whereas the poorly designable structures are more open structures or structures that are
loosely packed. Interestingly enough, it can also be seen that the highly designable identified
are also common structural motifs found in nature.
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1. INTRODUCTION

Natural proteins are known to fold only to a limited number of folds. Some of these folds are

frequently occurring and often referred to as highly designable, whereas some others are rarely observed

and are referred to as less designable. Studies have been carried out in the past to understand what makes

some protein folds more designable than others and what gives rise to the distribution of designabilities. This

concept of protein designability was first introduced by Li et al. (1996). In that lattice model study they

defined the designability of a structure as the number of sequences folding to the structure. They found that

highly designable protein structures show ‘‘protein-like’’ properties. Another interesting aspect of their study

is that the structures in the pool differed drastically in their designabilities and the highly designable

structures were only a small fraction of all structures. Protein structures are complex systems, and so usually

complete enumerations of sequence and structure are not possible. However, with lattice models all con-

formations can be exactly enumerated. Designability studies do not necessarily require going into atomistic

details of structures. Ken Dill demonstrated the utility of lattice models for the study of protein designability

(Dill, 1999). That study also showed that despite the simplicity of lattice models, they nonetheless resemble

real proteins in many ways.
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Many studies on designability using lattice models have been reported in the past (Melin et al., 1999;

Tang, 2000; Helling et al., 2001; Cejtin et al., 2002; Yang et al., 2007). To simplify the models, two types

of residues—hydrophobic and polar (H/P)—are often used with lattice models. Here, the residues in lattice

space are characterized as only hydrophobic or polar. All other atomic details of proteins are neglected, and

the most important driving force of protein folding is taken to be hydrophobic interactions. The polar side

chains are usually directed toward and interact with water, whereas the hydrophobic core of the folded

protein consists of nonpolar side chains.

A number of studies have been performed using off-lattice models of proteins as well (Emberly et al.,

2002; Miller et al., 2002; Hao-Jun and Yuan-Yuan, 2002). The designability principle not only applies for

lattice models of protein folds but also holds for real proteins as well. Wong and Frishman (2006) defined

fold designability as the number of families belonging to a particular fold. Interestingly, they also found

that many genetic-disease-related proteins have folds that are poorly designable, presumably meaning that

these proteins are more susceptible to deleterious conformational changes arising from mutations. In our

study we used small real protein structures from the PDB and employed interaction network representations

of these structures to predict their designabilities.

We used the interaction networks of proteins and extracted graph theory features from these networks.

Network representation of protein structures has been employed in the past in many studies (Kloczkowski

and Jernigan, 1997; Dokholyan et al., 2002; Greene and Higman, 2003; Atilgan et al., 2004; Bagler and

Sinha, 2005; Brinda and Vishveshwara, 2005; Meyerguz et al., 2007; Milenkovic et al., 2009; Soundar-

arajan et al., 2010; Doncheva et al., 2012; Yan et al., 2014). Krishan et al. (2008) showed the importance,

feasibility, and the utility of looking at proteins as networks. Protein systems can be represented as a set of

nodes linked by edges (Krishnan et al., 2008). In a study by Doncheva et al. (2012), they used topological

network parameters such as connected components, degree of distributions, neighborhood-related param-

eters, shortest paths, clustering coefficients, and topological coefficients. Brinda and Vishveshwara (2005)

represented each amino acid in a protein structure by a node, and the noncovalent interaction strength

between two amino acids was considered in the determination of edges. The constructed representations

were called protein structure graphs. Sistla et al. (2005) converted the three-dimensional structure defined

by the atomic coordinates of proteins into a graph and presented a method for the identification of structural

domains of proteins. Jha et al. (2009) showed how topological parameters derived from protein structures

can be used for the sequence design for a given set of structures. They used edge-weighted connectivity

graphs for ranking residue sites and used optimization techniques to find energy-minimized sequences.

They were able to minimize the sequence space for a given target conformation. Lai et al. (2009) used an

energy-weighted network of structures in conformation space to study a hydrophobic/hydrophilic model.

The energy parameters to weight the vertices were obtained from the Boltzmann factor of each confor-

mation. These parameters represented the importance of each conformation in the conformation space.

It is important to identify structurally and functionally important residues, and binding pockets for drug

discovery. However, it is not always possible to find homologs to protein structures in order to make such

predictions. Even with a homolog it is still not easy to do this prediction. In work done by Amitai et al.

(2004), they were able to identify functional residues of proteins using network analysis. They traced the

protein structure in a residue–residue interaction network and used a residue closeness measure in order to

predict functionally important residues. The use of graph theory in protein structure studies is discussed in

detail in a review by Vishveshwara and coworkers (Patra and Vishveshwara, 2000; Kannan et al., 2001;

Vishveshwara et al., 2002).

In general studies of networks, Albert et al. (2000) found that there are highly connected nodes in

networks that are crucial for the stability of the network, and these nodes are termed hub-nodes. It is known

that real proteins have such crucial residues for stability. Pabuwal and Li (2009) studied these hub-residues

specifically for helical membrane and soluble proteins. They concluded that the highly connected amino

acid residues in membrane proteins differ from soluble proteins as residues in membrane proteins are

exposed to the membrane. They further concluded that the structure–function model of membrane proteins

must differ from that of soluble proteins. In a study by Dokholyan et al. (2002) it was shown that

topological properties of protein conformations determine their kinetic folding ability. Shakhnovich in his

study of designability of conformations found that proteins with larger numbers of residue–residue contacts

were more designable (Shakhnovich, 1998).

In our earlier study performed on lattice proteins, all possible compact conformations within a set of 2D

and 3D lattice spaces were explored, and we found that complementary interaction graph features can be
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used to predict protein designabilities (Leelananda et al., 2011). It was suggested that the topologies of

lattice conformations are important determinants of the extent of their designability. Because those findings

were encouraging, the same approach was used to address similar questions for real proteins: What makes

some protein structures more designable than others? Could interaction graph features be used to answer

this question? This study is an extension of our work on lattice models.

2. METHODS

2.1. Selection of datasets

Designability is defined for fixed lengths or a set of structures having the same ‘‘molecular weight.’’ It is

still an open question of how this can be extended to proteins having different sizes, but this remains a

future investigation. Here we utilized a set of conformations having a fixed length. Two sets of data were

obtained from the PDB and analyzed. One set consisted of proteins that are all exactly 40 amino acids

in length (40-mer set), and the other set consisted of proteins that are all exactly 50 amino acids in length

(50-mer set). Because of the high computational cost of calculating designabilities, larger protein sizes

were not considered. These sets were further examined manually to carefully remove proteins with missing

residues and proteins that have multiple reported occupancies. For NMR structures, only the first of the

reported models was considered. The list of proteins used is given in Tables 1a and 1b.

It is important to note that these structures were selected in such a way that they have diversity in the way

structural elements are arranged because designability of a structure is measured in relation to all other

competing structures. The secondary structure content of these protein chains is shown in Figure 1a and b.

The DSSP program was used to identify self-consistently defined secondary structural elements in the

datasets (Kabsch and Sander, 1983). There are 8 classes of secondary structure assignments. These 8

classes were contracted into only 3 groups, helix, beta sheet, and coil, for this study as follows: helix (H):

H, G, I; sheet (B): E, B; coil (C): S, C, T. The chains were diverse in terms of their secondary structural

arrangements.

The pairwise RMSD values were calculated for each set using the CE alignment method. The average

RMSD for the two sets of chains were 5.04 and 5.34, respectively, and indicates that the two sets have

significant structural diversity. The pairwise variations of the RMSD values for the 40-mer and 50-mer sets

of protein chains are shown in Figure 2a and b, respectively. Both average RMSD values and secondary

structural content of chains show significant structural diversity in the sets. We used these sets of structures

to do the designability calculations.

2.2. Calculating designabilities of structures using binary energy functions

After obtaining the structure sets the sequences were generated. One million random H/P sequences of 40

amino acids and 50 amino acids in length were generated for the 40-mer and 50-mer sets, respectively. Each

sequence was threaded on all the C-alpha coarse-grained structures in the structure set (Fig. 3). The contact

energies were then calculated using a binary energy function. A contact cutoff distance of 6 Å was used.

Table 1A. PDB IDs of the 45 Proteins Used to Extract the 40-Amino-Acid-Long Chains (40-mer set)

1ADX 1C56 2E3G 1FSB 2NZ3 1ADX 1C56 2E3G 1FSB

1AFO 1D2J 2E5U 1GP8 2RMF 1AFO 1D2J 2E5U 1GP8

1AML 1EDX 2ERL 1HN3 2YSF 1AML 1EDX 2ERL 1HN3

1AOO 1LMM 2GP8 1ICA 2YSG 1AOO 1LMM 2GP8 1ICA

1AQQ 1M7L 2KOE 1JJO 2YSH 1AQQ 1M7L 2KOE 1JJO

Table 1B. PDB IDs of the 36 Proteins Used to Extract the 50-Amino-Acid-Long Chains (50-mer set)

1BK8 1SJU 2CPS 1BK8 1SJU 2CPS 1BK8 1SJU 2CPS

1E8R 1SS3 2DK1 1E8R 1SS3 2DK1 1E8R 1SS3 2DK1

1FDM 1TFI 2EQP 1FDM 1TFI 2EQP 1FDM 1TFI 2EQP

1IFD 1TPM 2FC6 1IFD 1TPM 2FC6 1IFD 1TPM 2FC6
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There are different energy parameters that could be used for the binary alphabet in order to calculate

contact energy. We have used the simplest energy parameter set EP1, in which each H-H nonbonded

contact interaction is given an energy of -1.0 and all other nonbonded interactions (H-P and P-P) an energy

of 0 (arbitrary energy units). This binary energy function has also been used by others (Lau and Dill,

1989; Lipman and Wilbur, 1991). We have also seen that designabilities obtained with EP2 (H-H = -2.3,

H-P = -1, and P-P = 0) energy parameter set was comparable with EP1 and designabilities converge even

when different energy parameters were used (data not shown). The highly and poorly designable structures

obtained in both cases were the same for the two sets of energies as well. The basis for choosing these

energies follows from the observation that the most important driving forces for protein folding originate

from hydrophobic interactions (Dill, 1999). Hydrophobic residues prefer to be shielded from water, and so

they tend to be located inside the core of the protein. Additionally, residues that interact favorably with

water (hydrophilic) tend to reside on the surface of the protein in contact with water.

After the threading was carried out for a sequence on all structures in the structure set, the lowest energy

structure was identified for this sequence. If a sequence gave the lowest contact energy for two or more structures

(degenerate), then that sequence was disregarded (Li et al., 1996). Following this procedure the total number

of sequences folding to each structure was obtained, which gives the relative designability of the structure.

2.3. Generation of contact graphs and the use of graph features

After obtaining designabilities, residue–residue interaction networks (contact diagrams) of the structures

were generated. Residues are different in sizes but a cutoff distance of 6–7 Å (for distances between Ca atoms)

usually includes most of the closest neighbors. Different cutoff distances have been used in the past. For

example, Vendruscolo et al. (2002) used 8.5 Å as their interaction cutoff distance, whereas Atilgan et al.

(2004) used 7 Å as theirs. In our study, the contact graphs were generated using a cutoff distance of 6 Å,

focusing on the closest set of interactions and the most densely packed part of the structure. First, the coarse-

grained alpha carbon representations were obtained for each chain (Fig. 4). The contact diagram was obtained

by marking contacts between each Ca within the cutoff distance and removing all the bonded interactions.

In these contact diagrams, each graph node represents an amino acid residue and the edges connecting

the nodes represent the close contacts between amino acids. Each of these interaction graphs was described

using a set of graph features. In other words, the topology of each structure and its interaction network were

described using graph features. The graph features used in this analysis were the same features used in our

earlier study with the lattice models (Leelananda et al., 2011).

FIG. 1. Secondary structure con-

tent: beta sheets (red), alpha helices

(green), and coil (blue) for the two

protein sets—(a) 40-mer set; (b)

50-mer set. The two sets are fairly

diverse with respect to secondary

structural elements.

FIG. 2. Pairwise RMSD varia-

tions from the CE alignments for

the (a) 45 structures of the 40-mer

set (average RMSD is 5.04) and (b)

36 structures of the 50-mer set

(average RMSD value is 5.34).
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Fifteen graph features (or protein conformation interaction graph invariants) were used in this analysis

(Fig. 5). These graph features were maximum degree (max_d), average degree (avg_d), maximum shortest

path (max_sp), minimum shortest path (min_sp), average shortest path (avg_sp), number of components

(compt), number of nodes with minimum degree (n_min_d), number of nodes with maximum degree

(n_max_d), number of nodes with average degree (n_avg_d), number of nodes with minimum shortest path

(n_min_sp), number of nodes with maximum shortest path (n_max_sp), number of nodes with average

shortest path (n_avg_sp), number of nodes with zero degree (zeros), number of nodes with degree one

(ones), and number of nodes with degree two (twos). Here, the degree of a node is the number of edges

(connections) it has, and the shortest path distance between any two nodes (vertices) is the minimum

number of visited edges connecting the two vertices in the interaction graph. The number of components of

a graph is the number of maximal connected subgraphs.

2.4. Regression analysis

A numerical value for each of the above features can be found directly from each conformation’s interaction

graph. Subsequently, a regression curve was obtained for each conformation’s designability using the above

features. A linear regression curve provides a linear combination of the weighted features that describes the

designability of a conformation in terms of the weighted combination of the numerical representation of the

graph features. If a nonlinear regression function was used, a slightly better fitting regression function could be

obtained. The fit of the regression function was calculated based on the correlation of its output with the actual

number of sequences that fold onto the conformation being examined. Regression analysis was carried out

using the Weka software (Hall et al., 2009). Regression functions were constructed using all of the features and

taking each feature individually. Going further, a designability range for which each structure folded to was

predicted instead of predicting the exact designability using linear regression. Better correlations were

FIG. 3. Schematic diagram showing

how the sequences are threaded

to calculate contact energies of

structures.

FIG. 4. Schematic description of the method employed to generate the contact graph: (a) the protein structure used,

(b) Ca representation of the protein structure derived by connecting all consecutive Ca atoms, and (c) the contact graph

obtained from (b) by marking contacts between each Ca within the cutoff distance (6 Å) and removing all the bonded

interactions. The contact graphs or networks are described using numerical values for graph features.
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obtained when ranges were predicted instead of the exact numerical designabilities as shown in our previous

study using lattice models (Leelananda et al., 2011).

The number of sequences folding to a particular conformation is given by Ns, and this is also designated

as the designability of that structure. First, the distribution of designabilities for all the possible confor-

mations for a particular model was obtained. A naı̈ve Bayes (NB) classifier was then used to see if the

features describing each fold could be used to predict its designability range. In order to do this, the

designability distribution was first discretized into three bins using the Weka software (Figs. 6 and 7) such

that the overall distribution of designability was preserved. This process of binning simplifies the calcu-

lations. We have also obtained results for larger numbers of discretized bins and saw that results were

comparable with those obtained by using just three bins. In the case of the 50-mer set, there were two

extremely highly designable structures that stood out from the rest of the structures. Therefore, logarithms

of the values of the designability, instead of the designability values themselves, were used in order to

obtain better binning. Machine learning algorithms (NB) were then used to find the range of designability

of a structure by using graph features describing it, and if the actual range fell within the range predicted,

then the prediction was considered correct. Ten-fold cross-validation of data was used for predictions.

2.5. Naı̈ve Bayes prediction

Bayes’ theorem states that given a hypothesis h and data D that bears on the hypothesis,

P(hjD) = [P(Djh) · P(h)]=P(D) (1)

where P(h) is independent probability of h; P(D), independent probability of D; P(Djh), conditional

probability of D for given h; and P(hjD), conditional probability of h for given D.

An NB classifier is a simple probabilistic classifier based on Bayes’s theorem with the independence

assumption. In other words, such a classifier assumes that the presence (or absence) of a particular feature

of a class is unrelated to the presence (or absence) of any other feature. In the training step, for each

conformation described by 15 vectors or features, P(featureijrangej), where 1 £ i £ 15 and 1 £ j £ 3 for the

FIG. 5. Examples of a few graph

features using a simple contact map:

(a) maximum degree of connectivi-

ty = 3; (b) the maximum shortest path

distance = 3; (c) the number of nodes

with degree zero = 3; (d) the number

of separate compartments = 6.
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three selected bins, was calculated along with P(rangej) and P(featurei). In the testing step, the

P(rangejjfeaturei) was calculated using Bayes’s theorem. This way all of the features that define a con-

formation can be used together to predict the most probable range for its designability. A range for the

designability value or a confidence interval was predicted for each structure, and the prediction was

considered ‘‘correct’’ if the actual designability value lies in that range of maximum probability. The total

energy of all sequences folding to each structure was also calculated and averaged over all the sequences

folding to the structure to get the average energy of sequences folding to the structure (note that the

energies are negative values). In order to calculate the contact density of each structure, the number of

nonbonded contacts of each structure is found and averaged over the chain length.

3. RESULTS

Figures 6 and 7 show the discretization of the designability distribution into bins. For the 40-mer set,

more structures have designabilities of less than 20,000 in contrast to only a few structures having des-

ignabilities of more than 10,000. These structures are identified as the most designable and have total

designabilities greater than 140,000. For the 50-mer set, clearly two structures stand out for their desig-

nabilities. Highly designable structures show higher average energies (Fig. 8). These structures also have

higher contact densities (Fig. 9). There are some poorly designable structures that also show high contact

densities and high energies. However, highly designable structures always have higher average energies

and contact densities.

FIG. 7. Discretizing the design-

ability (Ns) distribution of the 50-mer

set into three bins: (a) the desig-

nability distribution; (b) the distribu-

tion of the logarithm of designability;

(c) the discretized designability dis-

tribution of (b) using the Weka soft-

ware (red, most designable; green,

intermediate; blue, least designable,

where the designability ranges are

shown at the bottom). The number of

structures in each bin is shown inside

the bin.

FIG. 6. Discretizing the designability (Ns) distribution for the 40-mer set into three bins: (a) the designability

distribution; (b) discretized distribution using the Weka software (red, most designable; green, intermediate; blue, least

designable, with designability ranges shown along the bottom). The number of structures in each bin is shown inside the

colored bars.
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A positive correlation between the topological arrangement of conformation and its designability is

observed from linear regression analysis. Linear regression analysis for the 40-mer set gives a correlation

coefficient of 0.70. The relationship that gives the best fit to designability is as follows:

Designability = [2 · 103 · (maximum degree)] + [4 · 103 · (average degree)] - [3 · 105]

The correlation coefficient for linear regression for the 50-mer set is 0.85 but the best-fit equation for this

case is more complex and more features are involved. When NB 10-fold cross-validation is used for

predictions, a prediction accuracy of 93% (AUC = 0.86) is obtained for the 40-mer set. The prediction

accuracy for the 50-mer set is 59.3% (AUC = 0.62). The corresponding AUC values for the 3 ranges—the

lowest designable, intermediately designable, and the most designable—are shown in Table 2. The highly

designable range prediction AUC values are 0.92 for both the 40-mer and the 50-mer set (Table 2). The

least designable range is predicted with AUCs of 0.89 for the 40-mer set and 0.62 for the 50-mer set. As

expected, the intermediate range is not well distinguishable from highly and poorly designable structures.

However, the two extreme ranges are sharply distinguishable.

According to the regression analysis, the most important feature in predicting the designability of the 40-

mer set is the maximum degree and the average degree of connectivity of structure nodes. For the 50-mer

set, in addition to the maximum degree of connectivity and the average degree of connectivity, the number

with the average shortest path and the number with the maximum shortest path are also found to be

important for predicting designability.

The most designable structures obtained are found to be popular structural motifs found in nature (Figs. 10a

and 11a). One of the motifs for the 40-mer set is a helix-loop-helix motif and the other is a beta-hairpin-loop

helix–like motif. The least designable structures are more extended-type structures (Figs. 10b and 11b). For

the 50-mer set the most designable structures are an up-down helix bundle structure and a ribbon-like

structure. Highly designable structures always show higher maximum degrees and higher average degrees of

connectivity (Fig. 12a and b). More designable structures always have higher values for these two degree

measures, but not exclusively so. There are some poorly designable structures with high values.

FIG. 9. Relationship between the

designability and contact density

for the 40-mer set. Highly desig-

nable structures have higher contact

densities.

FIG. 8. The relationship between

designability and average energy

for the 40-mer set. Here, it is seen

that the highly designable structures

appear to be energetically more

favorable. (Note: Negative energies

plotted, so high values are favored.)
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4. DISCUSSION

The graphical features that describe the topology of a protein structure are important determinants of its

designability. Most designable and least designable structures can clearly be distinguished based on certain

interaction network features. The most important features in predicting the designability for the 40-mer set

were found to be the maximum degree and the average degree of connectivity of structure nodes, as could

be seen in the regression equation. However, for the 50-mer set the regression analysis was more complex

and more features were need for the prediction of the designabilities. As the size of the protein sets

increases, the predictions require more structural features. This is true for both regression analysis and NB

10-fold cross validation. Further analysis of the predicted highly and poorly designable structures showed

interesting properties of these structures.

Highly designable structures were found to be energetically more favorable and more stable than poorly

designable structures. It is expected that frequently occurring structures should be more stable than other

structures. These highly designable structures were also more densely packed structures and have more

interactions. Highly designable structures always had higher maximum degrees and higher average degrees

of connectivity. More designable structures always have higher values for these two measures, but not

exclusively so. There are also some poorly designable structures with high values for connectivity

FIG. 10. The most designable and least designable chains for the 40-mer set: (a) Most designable: helix-loop-helix

motifs 1GP8 and 2GP8, and beta-hairpin-loop-helix motif 1ZFU. These structures are popular structural motifs found in

nature. The number of sequences folding to each of these structures is shown within parentheses. (b) Least designable:

2BBG and 2YAS. These structures are more extended and have more open types of structures.

Table 2. AUC Values of Prediction of Desig-

nability Ranges for the 40-mer and 50-mer Sets

Designability range 40-mer set 50-mer set

Highly designable 0.92 0.92

Intermediate 0.21 0.55

Poorly designable 0.89 0.62

The highly designable structures in both sets are predicted

with high AUC.
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measures. The contact densities of structures showed that there is clearly a distinction between highly and

poorly designable structures. These results also agree with England et al. (2003), who compared thermo-

philic and mesophilic protein analogs and found that, based on the contact densities of these proteins, these

functional analogs could be distinguished.

Interestingly, highly designable structures obtained were also popular and more abundant structural

motifs found in nature for both the 40-mer and the 50-mer cases (Figs. 10 and 11). Recurring motifs in

FIG. 12. Number of cases falling into each of the (a) maximum degree bin and (b) average degree bin (red, intermediate;

light blue, most designable; dark blue, poorly designable). Highly designable structures always have higher maximum

degrees and higher average degrees of connectivity. More designable structures always have higher values for these two

measures, but not exclusively so. There are also some poorly designable structures with high values.

FIG. 11. The most designable and least designable chains for the 50-mer set. (a) The most designable motifs 1FDM

and 3TGF. These structures take an up-down helix bundle and a ribbon-like structure, which are common structural

motifs. (b) The least designable motifs 1IFD, 1IFI, and 1IP. Two of these structures are extended single alpha helical

structures, whereas the other is a more distorted ribbon structure.
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nature must be able to accommodate a wide range of sequences and our results are in good agreement with

this theory. On the other hand, least designable structures are more extended and open structures with more

loop segments. Although these structures certainly often occur, they are not expected to be highly desig-

nable or frequently occurring.

Finding what makes some protein folds more designable than others has many implications ranging from

computer-aided drug design to predicting properties of proteins of unknown function. Graph features may

be used to pick out these most designable motifs and to sample structure space as well. Graph features may

also be used in protein design or for the inverse protein folding problem to identify the compatible

sequences that can fold to a particular structure of interest. Algorithms can be developed to satisfy the

feature constraints and design particular structures.

There is a high demand for improving protein structure prediction methods because the gap between the

number of experimentally solved protein structures and the number of known sequences continues to

accelerate. The knowledge of protein structure is also critical for comprehending their function. Also, the

design of completely new proteins with desired properties that have not yet been found in nature is

becoming increasingly important. In the last decade we have witnessed the rise of synthetic biology,

including de novo design of proteins that were first theoretically conceived and were then synthesized. Our

work has implications that can be used as inputs in computer-aided design of protein drugs and protein

structure prediction. The important graph features we obtained could be used to sample structure space and

algorithms could be developed to satisfy the feature constraints. These could then be used in designing

structures of interest and for identifying the compatible sequences that can fold into a particular structure.
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