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ABSTRACT

To better understand the impact of microarray preprocessing normalization techniques on
the analysis of biological pathways in the prediction of chronic fatigue (CF) following ra-
diation therapy, this study has compared the list of predictive genes found using the Robust
Multiarray Averaging (RMA) and the Affymetrix MAS5 method, with the list that is ob-
tained working with raw data (without any preprocessing). First, we modeled the spiked-in
data set where differentially expressed genes were known and spiked-in at different known
concentrations, showing that the precisions established by different gene ranking methods
were higher than working with raw data. The results obtained from the spiked-in experi-
ment were extrapolated to the CF data set to run learning and blind validation. RMA and
MAS5 provided different sets of discriminatory genes that have a higher predictive accuracy
in the learning phase, but lower predictive accuracy during the blind validation phase,
suggesting that the genetic signatures generated using both preprocessing techniques cannot
be generalizable. The pathways found using the raw data set better described what is a
priori known for the CF disease. Besides, RMA produced more reliable pathways than
MAS5. Understanding the strengths of these two preprocessing techniques in phenotype
prediction is critical for precision medicine. Particularly, this article concludes that bio-
logical pathways might be better unraveled working with raw expression data. Moreover,
the interpretation of the predictive gene profiles generated by RMA and MAS5 should be
done with caution. This is an important conclusion with a high translational impact that
should be confirmed in other disease data sets.
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1. INTRODUCTION

M icroarray data analysis is used to identify important genes to predict at-risk phenotypes, under-

stand biologic underpinning of health conditions, and identify therapeutic targets. However, micro-

array data are notorious for containing noise that historically contributed to issues around reproducibility,

especially as related to gene/clinical phenotype relationships (Kooperberg et al., 2002; Larsson et al., 2005;
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Jeffery et al., 2006; Dinu et al., 2007). The effect of noise in inverse and classification problems has been

theoretically analyzed by Fernandez-Martinez et al. (2014a,b). Furthermore, genomic noise also impedes

accurate mechanistic conclusions by partially falsifying the biological pathways that are involved in the

disease development (deAndrà-Galiana et al., 2016). To address this concern, it is common practice to apply

different kinds of preprocessing techniques to the microarray data to amplify the gene signal and limit the

noise caused by experimental factors (Irizarry et al., 2003). Noise might impact the results provided by the

bioinformatic techniques used to identify the most discriminatory genes in phenotype prediction problems.

Due to the high dimension and complexity of microarray data sets, filtering/ranking methods are often

applied as a first step to preselect the set of most discriminatory genes.

In this article, we compared the precision of identifying biologically relevant genes obtained from a raw

data set and preprocessed data sets using Robust Multiarray Average (RMA) and Affymetrix Microarray

Suite 5.0 algorithm (MAS5). For that purpose, we used the most common ranking methods, Fisher’s ratio

(FR) and Fold Change (FC), to measure their predictive accuracy using a leave-one-out cross-validation

approach. We first modeled the Affymetrix Latin Square Data for Expression Algorithm Assessment [Human

Genome U133 Data Set Affymetrix (2015)], where 42 different control genes are spiked-in at known

concentrations. This is commonly known as a spiked-in experiment. We observed that working with raw data

provided better results than using the RMA and MAS5 preprocessed data sets to locate the spiked-in genes.

To our knowledge, this is a novel observation that warrants confirmation in other disease data sets. In this

study, we also present the results obtained for a radiotherapy-related fatigue data set in patients with prostate

cancer (Saligan et al., 2014), obtaining some interesting and unexpected conclusions.

2. MICROARRAYS PREPROCESSING TECHNIQUES

Microarrays are manufactured using photolithographic techniques to attach hundreds of thousands of

different oligonucleotide sequences on the surface of a glass slide. These oligonucleotides correspond to

known DNA or RNA sequences that are arranged in different probe sets. Quantification of the levels of

transcripts in a sample is performed through hybridization to the specific probes and measurement of the

expression through fluorescence-based methods. Generally, raw data contain about 20 pairs of oligonu-

cleotides for each DNA or RNA target (gene) known as probe sets. The first component of these pairs is

referred to as the Perfect Match (PM) probe. Each PM probe is paired with a Mismatch (MM) probe that is

artificially created by changing the middle base with the intention of measuring nonspecific binding.

Typically, to define a measure of gene expression, probe intensities are summarized for each probe set into

a single value. Different studies have been performed to analyze the accuracy of these measurements and to

correct the effect of noise in microarrays (Benito et al., 2004; Scherer, 2009; Chen et al., 2011). Two

techniques of particular importance are RMA (Irizarry et al., 2003) and MAS5 (Affymetrix, 2001), and are

analyzed in this article.

2.1. MAS5

The Affymetrix Microarray Suite 5.0 (MAS5) algorithm uses both PM and MM probes to summarize

gene expression. The MAS5 signal of a probe set i is defined as the antilog of the Tukey’s biweight robust

mean (Huber and Ronchetti, 2009) of the following values:

uij = log(PMij - CTij)‚ j = 1‚ . . . ‚ N‚ (1)

where

CTij =

MMij if MMij < PMij‚

PMil - e2 if MMij > PMij‚

8>><
>>:

: (2)

being N the number of probes in the probe set (or gene) i and e2 a given positive amount that has to be

individually adjusted for each probe set. Therefore, the robust Tukey’s mean of a probe set i is
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2.2. RMA

Robust Multiarray Average (RMA) consists in three steps:

1. Background correction using the following additive probabilistic model:

PMij = sij + bgij‚ (5)

where PMij is the PM of the probe j in gene i, sij is the gene signal and it is supposed to follow an

exponential distribution sij*Exp(ki), and bgij is the background correction caused by the optical noise

and nonspecific binding and it is supposed to follow a normal distribution bgij*N(li‚ r2
i ). This

identification problem has three unknown parameters (ki, li, ri) and N different realizations for PMij.

This problem can be typically solved by least squares and the maximum likelihood estimation.

2. Normalization across all arrays to make all distributions the same. This task is performed by quantile

normalization and consists of normalizing the background corrected array to a common set of

quantiles. This process is aimed at correcting array biases and avoiding the effect of outliers. This

process provided a set of normalized probe values snij.

3. Probe set summarizing where the final expression is calculated separately for each gene i using the

following linear model in log
2

scale:

Yij = li + aij + eij‚ (6)

where Yij are the background corrected, normalized, log-transformed probe intensities (Yij = log2(snij)), li is

the log-expression level for gene i, aij is the probe affinity effect of probe j in the gene i, and eij is the

independent identically distributed error term with zero mean. The probe affinities aij should verify

PN
j = 1

aj = 0. This linear model is solved using the median polish algorithm and provides the final summarized

gene intensity value li, commonly used in phenotype prediction problems.

3. MATERIALS AND METHODS

The methodology shown herein has two main parts as follows. (A) Analysis of the precision of the

ranking methods using a synthetic data set for both raw and preprocessed data sets. (B) Analysis of the

accuracy of predictive genes by inspecting the biological pathways for the cancer-related fatigue raw and

preprocessed data sets.

In part A, we used the Affymetrix Latin Square Data for Expression Algorithm Assessment. Knowing the

genes that are differentially expressed, we first ranked the genes according to a combination of FC and FR

and then analyzed the precision of the generated gene ranking using raw and preprocessed data. Subse-

quently, we performed gene selection to study the discrimination power of the selected genes in both cases

(raw and preprocessed). In part B, we used a cancer-related fatigue data set. In this case, we did not know

the differentially expressed genes, and therefore, we performed gene selection based on the same ranking
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methods used in the synthetic data set, identified the predictive genes, and conducted correlation networks

and pathway analysis to understand the biological pathways that are associated with these selected genes.

Then, we compared the biological pathways and correlation networks associated with the selected genes

from the raw and preprocessed data. A flow chart of this methodology is shown in Figure 1.

3.1. Ranking methods and gene selection

To alleviate the high underdetermined character of the genomic phenotype prediction problem, filter

methods were applied to reduce the dimensionality of the genomic data to select the most discriminatory

genes. Filter methods rank the different genes according to different measures of their discriminatory power in

the phenotype prediction problem. In this study, we analyzed the precision on the selection of the differentially

FIG. 1. Flow chart of the methodology.
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expressed genes using a combination between the most common and well-known ranking methods as follows:

FC and FR. The Precision P was defined as follows:

P =
jfDE genesg \ fSelected genesgj

jfSelected genesgj ‚ (7)

where DE genes is the set of differentially expressed genes and Selected genes is the set of selected genes/

probes.

We work with binary classification problems, first knowing the gene expression in the different samples

of each class. Our ranking algorithm is a combination of FC (Schena et al., 1996) and FR (Fisher, 1936).

The algorithm first preselected the most differentially expressed genes above a certain absolute FC value,

and then, the preselected genes are ranked according to their FR. The reason to first preselect with FC is to

avoid low dispersions in both classes, which could provide high FR values, when in fact, the centers of both

distributions in expressions are very close.

Once we rank the preselected genes, we identify the most discriminatory genes. The selection of the most

predictive genes followed the same procedure that was described in Saligan et al. (2014) as follows: the shortest list

of genes with the highest predictive accuracy was selected through the backward feature elimination (BFE) and a

distance-based nearest-neighbor classifier. To measure the discriminatory power of the different embedded lists,

we used the leave-one-out cross-validation (LOOCV) predictive accuracy. For comparison purposes, the same

procedure was used for raw and preprocessed data through MAS5 and RMA preprocessing techniques.

3.2. The spike-in experiment

To check the precision of the above described ranking method using both raw and preprocessed data, we needed

a data set where we know the genes that are differentially expressed. In such case, we used the Affymetrix Latin

Square Data for Expression Algorithm Assessment (Human Genome U133 Data Set) that consists of 3 technical

replicates of 14 separate hybridization of 42 spiked transcripts in a complex human background at concentrations

ranging from 0.125 to 512 pM. The concentrations in the first experiment, composed by three replicas, were

0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 pM (Supplementary Material). Each subsequent experiment

and its three replicas rotated the spiked-in concentrations by one group; that is, experiment 2 and its three replicas

began with 0.125 pM and ended at 0 pM, up to experiment 14 and its three replicas, which began with 512 pM and

ended at 256 pM. Further details can be consulted in Affymetrix (2015).

3.3. The cancer-related fatigue data set

The cancer-related fatigue microarray data set was obtained from men who were 18 years or older,

diagnosed with nonmetastatic prostate cancer, with or without a history of prostatectomy, and scheduled to

receive External Beam Radiation Treatment (EBRT) with or without concurrent androgen deprivation therapy

(ADT). A total of 44 men with nonmetastatic prostate cancer were enrolled in an NIH IRB-approved study.

Data from 27 subjects were used in the training set and data from 17 subjects were included in the validation

blind set, Saligan et al. (2014). The training set was from the array outputs of 27 subjects, 18 high-fatigue

(HF) and 9 low-fatigue subjects, phenotyped using a 3-point decline in fatigue score measured by the

Functional Assessment of Cancer Therapy-Fatigue (Cella et al., 2002). We managed a raw microarray data

set with 604,258 probes and the preprocessed data set with 54,675 different probes in both cases, using RMA

and MAS5 preprocessing techniques.

Once the most discriminatory genes from raw and preprocessed data were selected, pathway analysis was

performed using gene analytics software (Stelzer et al., 2009). Furthermore, we built correlation networks

(Lastra et al., 2011) to understand how the expressions of the most discriminatory genes are interrelated.

Correlation networks were generated using Pearson correlation coefficient (Pearson, 1895) and Kruskal’s

algorithm (Kruskal, 1956) to find the minimum spanning tree.

4. RESULTS AND DISCUSSION

4.1. The spike-in experiment

Using the Affymetrix Latin Square Data for Expression Algorithm Assessment (Human Genome U133

Data Set), we checked the precision of the FC/FR ranking algorithm described in Section 3. There were 42
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differentially expressed probes, and we selected the first 42 probes in the ranking. We compared the first

group with the rest of the groups to cover all the possible concentration comparisons. In the first com-

parison (group 1 vs. group 2), the difference in concentration between all the differentially expressed

probes was 0.125 pM. In the second comparison (group 1 vs. group 3), the difference was 0.5 pM up to the

12 comparisons (group 1 vs. group 13), which was 256 pM. Due to the rotation of the concentration, the last

comparison (group 1 vs. 14) had again a difference of 0.125 pM in concentration among all the differ-

entially expressed probes.

Table 1 shows the precision for each comparison using raw, RMA, and MAS5 data sets, showing the

mean precision of the different comparisons. In almost all the comparisons, we obtained better results in

terms of precision working with raw data than with RMA and MAS5 data sets. Also, the higher mean

precision was achieved with raw data.

We also calculated the empirical cumulative distribution functions (CDFs) of the positions of the

differentially expressed genes. A perfect CDF would be a straight line reaching the value of 1 at position

42, corresponding to the total number of differentially expressed genes. These curves served to visualize

how many genes we have to select to locate all the differentially expressed genes. Figure 2 shows these

CDF curves for each comparison and type of data. As the raw data obviously have more genes/probes

(248,152 for raw data and 22,300 for preprocessed data, see Affymetrix (2015)), the positions given by the

ranking method were divided by a correction factor as follows: C = nR=nP where nR is the number of raw

probes/genes equal to 248,152 and nP is the number of preprocessed probes/genes equal to 22,300.

Therefore, C = 11:13, for the spiked-in experiment.

In this figure, the x-axis represents the positions of the genes/probes given by the ranking method and the

y-axis represents the percentage of differentially expressed genes that were located. Therefore, in the first

comparison, we were able to find all the differentially expressed genes (42) selecting less than 5000 (0.5e4

in the x-axis of the graph) while working with preprocessed data, as we needed almost all the probes/genes

(2.23e4). In all the comparisons, we were able to find all the differentially expressed genes selecting rather

less number of genes with raw data than with preprocessed data.

4.2. The chronic fatigue data set

The aim of this study is to find the list of most discriminatory genes that serve to differentiate between

high and low chronic fatigue (CF) induced by the radiotherapy in prostate cancer patients (Saligan et al.,

Table 1. Precision on the Selection of the Differentially

Expressed Genes Using Raw Data or Preprocessed

Data with RMA and MAS5

Group comparison raw RMA MAS5

1 vs. 2 7.14 9.52 4.76

1 vs. 3 26.19 16.67 16.67

1 vs. 4 38.10 11.90 14.29

1 vs. 5 28.57 28.57 16.67

1 vs. 6 26.19 28.57 28.57

1 vs. 7 40.48 26.19 23.81

1 vs. 8 35.71 21.43 30.95

1 vs. 9 40.48 23.81 23.81

1 vs. 10 35.71 19.05 21.43

1 vs. 11 38.10 14.29 21.43

1 vs. 12 23.81 16.67 9.52

1 vs. 13 23.81 23.81 14.29

1 vs. 14 7.14 4.76 9.52

Mean precision 28.57 18.86 18.13

The data are the Affymetrix Latin Square Data for Expression Algorithm

Assessment. The selection is performed between the first group and the rest to

include all the differences among the spike-in concentrations. The best result for

each case (raw data, RMA preprocessed data, and MAS5 preprocessed data) is

shown in boldface.

RMA, Robust Multiarray Average.
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2014). The differences on the selection of most discriminatory genes using raw and preprocessed data are

shown. For the sake of clarity, we show the first 50 most discriminatory genes in each case.

Table 2 shows the LOOCV accuracy of the first 50 most discriminatory probes/genes in each case. The

highest predictive accuracy we obtained was 92.59% of accuracy with only the first 3 probes/genes. However,

using RMA and MAS5, we achieved 100% with 6 and 44 probes/genes, respectively. Obviously, the di-

mensionality of the raw data set is 11:05 times higher than the preprocessed data sets, that is, using the raw

data, the probe sets have not been summarized in one gene such as in the preprocessed data. For that reason,

the repetition of a probe in the raw data indicates the importance of the corresponding gene. This is the case of

TUBB2A, HLA-DQA1, TUBB3, HLA-DQB1, and BTNL3. It can be observed that RMA also found these genes

within the most discriminatory set, but not using MAS5.

In addition, a blind validation of these results has been performed using the set of 17 subjects,

independent of the training set, originally used in Saligan et al. (2014) to assess the validity of the learned

predictive model. The result of this blind validation using raw data was 76:47% accurate, while using

MAS5 and RMA, the accuracy dropped to 58:82% and 64:7%, respectively. This result is very important and

shows that RMA and MAS5 increase the accuracy in the learning process at the price of decreasing

the accuracy in blind validation. Therefore, this implies that the biological pathways associated with

the predictive genes found using raw data are more meaningful, and both preprocessing techniques (RMA

and MAS5) highly impact the biological pathway analysis and the corresponding phenotype predic-

tion problem.

4.3. Pathway analysis and correlation networks

In this section, we provide the main pathways associated with the discriminatory genes that can predict

the CF phenotype using raw, RMA, and MAS5 data sets. These genes are shown in Table 2.

The raw data generated predictive genes associated with pathways mainly related to pathogenic

infections (HLA-DQX genes), as well as pathways associated with oligomerization of connexins into

connexons (TUBB2A and TUBB3) involved in intercellular signals and metabolic communication

(Koval, 2006). These are crucial mechanisms in the development of many human diseases (Kelsell

et al., 2001).

FIG. 2. Empirical CDF of the positions of the differentially expressed genes ranked by the FC/FR methods

for each comparison and different types of data. CDF, cumulative distribution function; FC, fold change; FR,

Fisher’s ratio.
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Table 2. Probe/Gene Name and Accuracy (Acc%) of the Selected Genes/Probes for Raw

Data and Preprocessed Data with RMA and MAS5

raw RMA MAS5

Probe/gene Acc(%) Probe/gene Acc(%) Probe/gene Acc(%)

TUBB2A 85.19 TUBB2A 88.89 SOCS3 85.19

HLA-DQA1 96.3 C11orf1 88.89 TMEM194A 92.59

TUBB2A 92.59 PPOX 96.3 1561478_at 92.59

TUBB2A 92.59 TTC2 92.59 CIB3 96.3

TUBB2A 88.89 NRIP3 96.3 ESYT2 92.59

TUBB2A 85.19 SCAMP4 100 ABHD1 92.59

TUBB2A 85.19 HLA-DQA1 100 JTB 92.59

HLA-DQA1 88.89 234253_at 100 1556412_at 92.59

TUBB2A 88.89 223313_s_at 96.3 207371_at 96.3

TUBB2A 88.89 BTNL3 100 LOC100131756 92.59

BTNL3 88.89 YSK4 96.3 CDK6 92.59

TUBB2A 88.89 236963_at 100 ALS2CR8 96.3

HLA-DQA1 92.59 ZCCHC2 100 SEL1L2 96.3

TUBB2A 88.89 DSG3 100 FLJ35220 96.3

TUBB3 88.89 TMEFF2 100 215626_at 96.3

HLA-DQB1 85.19 1566585_at 100 SPAM1 96.3

HLA-DQB1_LOC101060835 85.19 231141_at 100 FTCD 96.3

HLA-DQA1 88.89 SPATA20 100 1570285_at 96.3

IMMP1L 85.19 CSN1S2A 100 216795_at 96.3

BTNL3 85.19 RAB11FIP3 100 MAP3K2 96.3

_at 85.19 239587_at 100 MTSS1L 96.3

ZFPL1 85.19 RIMS3 100 GMEB1 96.3

GNRHR2 85.19 234548_at 100 SOCS7 96.3

DR1 88.89 C20orf103 100 GNA12 96.3

DOCK11 88.89 AGR2 100 244274_at 96.3

HLA-DQB1 88.89 SAT1 100 PLP2 96.3

FMR1 88.89 RGS18 100 ATG9B 96.3

ACAP2 85.19 1570044_at 100 1564056_at 96.3

HLA-DQB1 85.19 TUBB3 100 PCCB 96.3

ZEB1_LOC100996668 85.19 HDLBP 100 239370_at 96.3

FLJ32790 85.19 560087_a_at 100 ANK1 96.3

LOC100505812 88.89 AVL9 100 SCAND2 96.3

DENND4C 88.89 241238_at 100 1564872_at 96.3

PREPL 88.89 PHLDB3 100 SMAD2 96.3

LOC100505812 85.19 PIGK 100 CMTM3 96.3

FAM63B 88.89 F11 100 INSR 96.3

LYSMD3 85.19 C1orf21 100 PSG1 96.3

RP11-727A23.11_OTTHUMG00000183952 85.19 IL9 100 1560169_at 96.3

HIPK3 85.19 229733_s_at 100 MAP3K1 96.3

POLR2J4 85.19 241776_at 100 KCNRG 96.3

PHF17 85.19 WDR27 100 DOCK7 96.3

SP3 85.19 D21S2091E 100 1560995_s_at 96.3

MRGBP 85.19 239632_at 100 WNT5A 96.3

NAP1L1 85.19 HGSNAT 100 1562673_at 100

FAM126A 85.19 242839_at 100 GSK3B 100

EPS15P1 85.19 KCTD4 100 NCKIPSD 100

SMCR8 85.19 MECOM 100 215439_x_at 100

HLA-DQA1_LOC100509457 85.19 LOC257152 100 CDHR3 96.3

ZMYM2 85.19 MLH3 100 PCGEM1 96.3

EIF1AX_LOC101060318 85.19 DDX60 100 GNG13 96.3

Genes with the best accuracy are shown in boldface.
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The main pathways associated with predictive genes generated by RMA are related to mitotic prome-

taphase (BIRC5, CLIP1, STAG2, TUBB3) that controls the nuclear membrane breaking apart into numerous

membrane vesicles, cytoskeleton remodeling neurofilaments (EEPK1, KRT6A, TUBB2A, and TUBB3), and

mitotic metaphase and anaphase (BIRC5, CLIP1, TUBB2A, and TUBB3). The beta-tubulin gene family

controls the tubulin protein superfamily of globular proteins. Beta-tubulins polymerize into microtubules,

which is a major component of the cytoskeleton formation. Microtubules function in many essential cellular

processes, including mitosis. For instance, tubulin-binding drugs serve to kill cancerous cells by inhibiting

microtubule dynamics that are required for DNA segregation and cell division. The main pathways associated

FIG. 3. Pearson correlation coefficient minimum spanning tree of the 50 first selected probes using raw data.
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with predictive genes generated by MAS5 are GADD45 pathway, EGFR1 signaling pathway, and interferon

type I related to the MAP3KX genes (McKean et al., 2001; Jordan and Wilson, 2004).

We also provide the correlation graphs for the 50 most discriminatory genes for each data set.

Figures 3–5 show the correlation graphs for raw, RMA, and MAS5, respectively. In the case of raw

data, we can observe one main tree connecting the tubulin genes to the major histocompatibility

complex gene and other genes that serve to expand the tree. RMA privileges the connection between the

beta-tubulin genes and two probes (241238_at and 1566585_at) whose gene name is unknown. MAS5

privileges the role of SOCS3. This gene encodes a member of the STAT-induced STAT inhibitor (SSI),

also known as suppressor of cytokine signaling (SOCS), family. SSI family members are cytokine-

inducible negative regulators of cytokine signaling. The expression of SOCS3 gene is induced by

various cytokines, including interleukin (IL)6, IL10, and interferon-gamma (Masuhara et al., 1997;

Minamoto et al., 1997).

FIG. 4. Pearson correlation coefficient minimum spanning tree of the 50 first selected probes using preprocessed data

with RMA.
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5. CONCLUSIONS

We analyzed the impact of the main preprocessing microarray techniques (MAS5 and RMA) in iden-

tifying the biological pathways that are associated with discriminatory genes that can accurately predict the

cancer-related fatigue phenotype. For such purpose, we first model a synthetic data set, the Affymetrix

Latin Square Data for Expression Algorithm Assessment where 42 control genes are spiked-in at known

concentrations; and a real case of radiotherapy-related fatigue data set (learning and validation) in patients

with prostate cancer. We found that in the case of the Affymetrix synthetic data set, the mean precision

along all the comparisons was higher using raw data than using preprocessed data. This difference is even

more remarkable in the CDF curves for all the comparisons. We were able to find all the differentially

expressed genes selecting rather less number of genes with raw data than with preprocessed data.

Regarding the cancer-related fatigue data set, we evaluated the goodness of the selected genes through

BFE and a distance-based nearest-neighbor classifier through the LOOCV predictive accuracy. In addition,

we built correlation networks and performed pathway analysis to understand how the expression of the

most discriminatory genes is biologically relevant. With RMA and MAS5 data sets, we got better accuracy

results in the learning phase than using raw data. However, in the blind validation, working with RAW data

allowed us to generalize better than using preprocessed data (RMA and MAS5). Besides, the pathway

analysis and the correlation networks were significantly different among raw, RMA, and MAS5. This

would explain why some genetic signatures found in real practice fail to predict unseen samples. Conse-

quently, it can be concluded that interpreting results from predictive gene profiles generated by RMA and

MAS5 should be done with caution. This is an important conclusion with a high translational impact that

should be confirmed in other disease data sets.
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