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ABSTRACT

Ability to quantify dissimilarity of different phylogenetic trees describing the relationship
between the same group of taxa is required in various types of phylogenetic studies. For
example, such metrics are used to assess the quality of phylogeny construction methods, to
define optimization criteria in supertree building algorithms, or to find horizontal gene
transfer (HGT) events. Among the set of metrics described so far in the literature, the most
commonly used seems to be the Robinson–Foulds distance. In this article, we define a new
metric for rooted trees—the Matching Pair (MP) distance. The MP metric uses the concept
of the minimum-weight perfect matching in a complete bipartite graph constructed from
partitions of all pairs of leaves of the compared phylogenetic trees. We analyze the prop-
erties of the MP metric and present computational experiments showing its potential ap-
plicability in tasks related to finding the HGT events.

Keywords: matching pair distance, minimum-weight perfect matching, phylogenetic tree com-

parison, phylogenetic tree metric.

1. INTRODUCTION

Ability to quantify dissimilarity of different phylogenetic trees describing the relationship between

the same group of taxa is required in various types of phylogenetic studies (Boc et al., 2010; Koonin

et al., 2011; Smith et al., 2013; Whidden et al., 2014; Chaudhary et al., 2013). The most common application

of such distances is measuring the difference of trees inferred from the same data but using different methods,

for example, the distance between the ‘‘true’’ tree and a tree reconstructed using a particular method can be

used as an indicator of the particular method’s accuracy [see Bogdanowicz et al. (2012)].

Metrics are also used directly in some of phylogenetic tree construction methods, for example, in super

trees construction, whereby the sum of distances in a particular metric between input trees, whose leaf sets

overlap partially, and a super tree (containing all the taxa) is an object of minimization [see Lin et al.

(2009); Bansal et al. (2010); Chaudhary et al. (2013); Whidden et al. (2014)]. Quantifying similarities

between phylogenies is also useful in an analysis and visualization of a group of phylogenetic trees (Hillis

et al., 2005).

The values of some metrics are defined as a minimum number of operations of a particular type needed

to transform one phylogenetic tree into another, for example, nearest neighbor interchange, subtree prune
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and regraft (SPR), and tree bisection and reconnection operations. In particular, SPR metric can be used in

modeling and analyzing horizontal gene transfers (HGTs) (Section 5). Unfortunately, the computation of

the value of all three metrics is proven to be NP-hard (DasGupta et al., 1997; Allen and Steel, 2001;

Bordewich and Semple, 2005; Hickey et al., 2008). Fortunately, there are methods for the analysis of HGTs

that incorporate other polynomially computable distances (Boc et al., 2010). As metrics are important tools

in phylogenetics, properties of the metric spaces are often subjects of ongoing research (Gordon et al.,

2013; Humphries and Wu, 2013).

Recently (Bogdanowicz and Giaro, 2012), we described a general framework for defining phylogenetic

metrics, which is based on computing a minimum-weight perfect matching in bipartite graphs. Each

partition of such a graph describes one of the compared trees. The weights of the edges of the graph

represent the distance between the elements (e.g., splits and clusters) used to describe analyzed trees. Using

this framework, we described two metrics: the Matching Split (MS) distance for unrooted trees (Bogda-

nowicz and Giaro, 2012) and the Matching Cluster (MC) distance for rooted trees (Bogdanowicz and

Giaro, 2013). Both metrics are polynomially computable and can be regarded as generalizations of the

Robinson–Foulds (RF) metric (Robinson and Foulds, 1981). Recently, another generalization of RF metric

was formulated (Böcker et al., 2013). This metric is also based on the concept of matchings similar to MC,

but with additional assumptions related to the phylogenetic information that, unfortunately, makes com-

putation NP-hard (Böcker et al., 2013).

Although the concept of matching metrics is relatively new, the MS distance constructed based on this idea

has already been found useful in biological studies (Smith et al., 2013). Both the MS and MC metrics have some

advantages in comparison with the RF metric (despite the fact that they operate on the same tree representation,

i.e., splits or clusters). They are more discriminative. Both metrics have a property that a relocation of a small

subtree results in a relatively small distance increase (Bogdanowicz and Giaro, 2012, 2013). Note that the RF

metrics do not have such a feature (Bogdanowicz and Giaro, 2012), because it is possible for two trees to have a

maximum RF distance although they only differ in the position of a single leaf. It should also be noted that there

is no simple answer to the question about ‘‘the best’’ phylogenetic metric in general. Depending on application,

some of the phylogenetic metric’s features can be more or less desired, for example, if the main criterion is

computational efficiency, then most probably the RF distance will be the most suitable, but if discriminative

power is considered, then other metrics (e.g., MS) might be a better choice.

In this article, we define and analyze the properties of a new phylogenetic metric based on the already

mentioned matching concept—the Matching Pair (MP) distance (Section 3). We show that the MP distance

has many interesting features (Section 4), for example, similarly to MC, a small change in a tree structure

results in a small change in the MP distance, which does not hold for instance for the RF metric, but in

contrast to MC (and MS), average MP distance between random trees grows as fast as its diameter.

Moreover, MP performs very well in comparison with five other metrics, known in the literature, when

applied to the detection of HGTs (Section 5).

2. BASIC DEFINITIONS AND NOTATION

For sets A, B let A� B = (AnB) [ (BnA) be their symmetric difference, jAj denote the cardinality of set A,

and 2A = fB : B � Ag. Let G = (V‚ E) be a graph with a set of vertices V and a set of edges E. A family of

nonempty sets A1‚ . . . ‚ Ak such that
Sk

i = 1 Ai = A and Ai \ Aj = ; for i 6¼ j is a partition of the set A. A

bipartite graph G(V1‚ V2‚ E) has vertices partitioned into two disjoint sets V1 [ V2 = V such that no two

vertices within the same set are adjacent. A bipartite graph is complete if every two vertices v1 2 V1 and

v2 2 V2 are adjacent. A tree is a connected acyclic graph.

A matching M � E in a graph G = (V‚ E) is a set of pairwise nonadjacent edges; that is, no two edges

share a common vertex. A perfect matching covers all vertices of the graph. If we assign a weight function

w : E! Z�0 to the edges of G, then a minimum-weight perfect matching is defined as a perfect matching,

where the sum of the weights of its edges has a minimum value. Minimum-weight perfect matchings in

bipartite graphs can be computed efficiently in time O(jEj
ffiffiffiffiffiffi
jVj

p
log (jVjmaxe2E w(e))) (Gabow and Tarjan,

1989; Orlin and Ahuja, 1992).

A rooted phylogenetic tree T = (V‚ E) is a tree whose leaves, that is, vertices (nodes) of degree 1, are

labeled bijectively by the elements of a finite set L (representing the species), there is exactly one dis-

tinguished nonleaf vertex r(T) 2 VnL called the root and none of the vertices of Vnfr(T)g has degree 2.
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Present-day species under examination form the finite set L and are represented by leaves of a tree.

Internal vertices, that is, members of VnL, represent hypothetical ancestors of the taxa of L. In particu-

lar, r(T) is the ancestor of all species under study. For the sake of simplicity, we can identify the

leaves with their labels, that is, for a phylogenetic tree T, by L(T) we denote the set of leaves of T or the

set of labels of those leaves. By L(2) we denote the set of all unordered pairs of leaves, that is,

L(2) = ffx‚ yg : x‚ y 2 L‚ x 6¼ yg and jL(2)j = jLj(jLj - 1)=2.

A rooted binary phylogenetic tree is a rooted phylogenetic tree such that the root has degree 2 and all

other internal vertices have degree 3. By RL and RB
L we denote the sets of all rooted phylogenetic trees and

all rooted binary phylogenetic trees over the set of leaves L, respectively. For L = f1‚ . . . ‚ ng, we use the

notations Rn and RB
n . A rooted tree T defines a partial order relation of being descendant (and ancestor) on

its vertices, denoted by �T . For a‚ b 2 V(T), we have a�T b (i.e., a is a descendant of b and b is an ancestor

of a) if the path in T from a to r(T) contains b. In particular, v�T r(T) and v�T v for any v 2 V(T). To every

vertex v, we can assign its cluster c(v) � L, that is, the set of leaves (labels) that are descendants of v. There

are jLj + 1 trivial clusters in a tree T that are related to leaves u (where c(u) = fug) and to the root (where

c(r(T)) = L(T)), all other clusters are nontrivial. By r(T) and r�(T), we denote families of all clusters of T

and all nontrivial clusters of T, respectively. A rooted phylogenetic tree T is uniquely described by a set

r�(T) and the translation between these two descriptions can be performed efficiently in linear time [see

Semple and Steel (2003) section 3.5].

Let A � L, and let T(A) be a minimal subgraph of T that connects leaves of A and choose its root as the

vertex closest to r(T). The subtree of T induced by A is a tree TjA 2 RA obtained from T(A) by successively

removing all vertices of degree 2 (with exception of the root) and identifying their adjacent edges. The tree

TjA contains all phylogenetic information about evolutionary history of taxa from A, which is represented

by T. A tree T 2 RA, A � L, is an agreement subtree for trees T1‚ T2 2 RL if T = T1jA = T2jA. An agreement

subtree having maximum number of leaves is called a Maximum Agreement Subtree (MAST) (Finden and

Gordon, 1985).

The lowest common ancestor (LCA), also called the most recent common ancestor, of a pair of leaves u‚ v

of a rooted tree T, l(u‚ v), is the closest vertex to r(T) on the path connecting u and v in T. To every internal

vertex v of T 2 RL, we can assign a set of pairs of leaves lp(v) for which v is the LCA, that is,

lp(v) = ffx‚ yg 2 L(2) : l(x‚ y) = vg. We will call the set lp(v) the pair set of v. By c(T), we denote the family

of all pair sets of T, so c(T) is a partition of the set L(2) determined by T. Note that a rooted phylogenetic

tree T is uniquely described by a set c(T) because c(T) determines r�(T) and we have c(v) =
S

z2lp(v) z for

v 2 VnL.

To compare phylogenetic histories represented by trees T1‚ T2 2 RL, the structure of a metric space in the

set RL is introduced. One of the most widely used metrics on a set RL is the RF distance (Robinson and

Foulds, 1981) based on clusters.

Definition 1. The RF distance between two rooted trees T1‚ T2 2 RL is defined as*

dRF(T1‚ T2) =
1

2
jr(T1)� r(T2)j: (1)

3. MATCHING METHOD

Before we proceed to the formal definition of a new metric, we recall the general construction of

matching metrics presented in Bogdanowicz and Giaro (2012).

Definition 2. There are given a finite set D, an element O =2D, and a metric h on D [ fOg. We define

a metric dh : 2D · 2D ! R�0, where the distance between A‚ B 2 2D dh(A‚ B) is equal to the value of a

minimum-weight perfect matching in a complete bipartite graph G = (V1‚ V2‚ E) defined as follows:

*A version of this definition without factor 1/2 is also used in the literature.
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� for arbitrary s‚ t 2 Z�0 such that s - t = jAj - jBj, we define the sets

V1 = fa1‚ . . . ‚ ajAj‚ ajAj + 1‚ . . . ‚ ajAj + tg‚
V2 = fb1‚ . . . ‚ bjBj‚ bjBj + 1‚ . . . ‚ bjBj + sg‚

as the vertices partitions of the graph G(V1‚ V2‚ E) and vertex labeling l : V1 [ V2 ! D [ fOg, so that

A = fl(ai) : 1 � i � jAjg‚
B = fl(bj) : 1 � j � jBjg‚

and l(ai) = l(bj) = O for jAj + 1 � i � jAj + t, jBj + 1 � j � jBj + s;
� the weights of the edges are defined using the metric h as w(fai‚ bjg) = h(l(ai)‚ l(bj)).

The function dh is a metric on 2D (i.e., for any A‚ B‚ C 2 2D holds dh(A‚ B) = 05A = B,

dh(A‚ B) = dh(B‚ A), dh(A‚ B) + dh(B‚ C) � dh(A‚ C)) and the value of dh(A‚ B) does not depend on s and t

(when s - t = jAj - jBj). Hence, we can always assume that minfs‚ tg = 0 and maxfs‚ tg = jjAj - jBjj. More-

over, dh(A‚ B) = dh(AnB‚ BnA) (Bogdanowicz and Giaro, 2012).

In two recent articles (Bogdanowicz and Giaro, 2012, 2013), we described properties of phylogenetic

metrics created according to the shown schema, that is, the MS distance for unrooted trees and the MC

distance for rooted tree. In the case of the matching metric for rooted trees, the dissimilarity between two

clades A‚ B can be measured as the number of elements that appear in one of the clade but not in the other,

that is, the cardinality of the set A� B. As the cardinality of A� B introduces a metric space structure in an

arbitrary family of finite sets, we obtain (Bogdanowicz and Giaro, 2013) the following:

Definition 3. Let T1‚ T2 2 RL be rooted phylogenetic trees, hC : 2L · 2L ! Z�0 be such that

hC(A‚ B) = jA�Bj, and let O = ;. According to Definition 2 we define the MC distance dMC : RL · RL!Z�0 as

dMC(T1‚ T2) = dhC
(r(T1)‚ r(T2)) = dhC

(r�(T1)‚ r�(T2)): (2)

In this work, we want to recall the definition of a metric introduced in Bogdanowicz (2008), which,

similarly to MC, is based on the schema presented in Definition 2. The rest of the article contains a detailed

study of properties of the metric.

Definition 4. Let T1‚ T2 2 RL be rooted phylogenetic trees, hP : 2L(2) · 2L(2) ! Z�0 be such that

hP(A‚ B) = jA�Bj, and let O = ;. According to Definition 2 we define the MP distance dMP : RL · RL!Z�0 as

dMP(T1‚ T2) =
1

2
dhP

(c(T1)‚ c(T2)): (3)

Observe that the MP distance between phylogenetic trees T1‚ T2 2 RL is equal to the transfer distance

between partitions c(T1) and c(T2) of the set L(2). The transfer distance between two partitions of a finite set

S, equal to the minimum number of elements that must be moved from one set of a partition to another

(possibly empty) to turn first partition into the second (Guénoche, 2011) has been introduced by Régnier

(1965). The equivalence between the value of a minimum-weight perfect matching in a bipartite graph

constructed according to Definitions 2 and 4 and the value of the transfer distance has been proven by Day

(1981), for more details about the relation, see also Charon et al. (2006); Denœud (2008); Gusfield (2002);

and Konovalov et al. (2005). An equivalent definition of the transfer distance between two partitions P and

P0 of a set S, which can be found in Gusfield (2002), says that the distance is equal to ‘‘the minimum

number of elements that must be deleted from S, so that the two induced partitions (P and P0 restricted to

the remaining elements) are identical.’’

For example, we calculate the MP distance between trees as shown in Figure 1. The weight of a

minimum-weight perfect matching in a bipartite graph shown in Figure 1 is equal to 6, so dMP(T1‚ T2) = 3.

The MP metric between two trees T1‚ T2 2 Rn can be computed in time O(n5=2 log (n)) using scaling

algorithms for finding minimum-weight perfect matchings (Gabow and Tarjan, 1989; Orlin and Ahuja,

1992).

Note that, although both the MP and MC metrics are defined as the weight of a minimum-weight perfect

matching in a bipartite graph, there is no direct relationship between dMC and dMP. In other words, if we

know dMC(T‚ T 0), we cannot compute easily dMP(T‚ T 0).
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4. PROPERTIES OF THE MATCHING PAIR DISTANCE
FOR ROOTED PHYLOGENETIC TREES

4.1. Small topological transformations

In the case of the MC metric (as well as for the MS metric for unrooted trees), it was shown that adding a

new leaf to compared trees can decrease their distance (Bogdanowicz and Giaro, 2012, 2013). Regarding this

feature, the MP metric behaves more similarly to RF metric, which is expressed in Theorem 1 and Corollary

2. Before we present the theorem, we give two lemmas that we then use in the proof of the theorem.

Lemma 1. Let T1‚ T2 2 RB
n be rooted binary phylogenetic trees constructed as presented in Figure 2,

then dMP(T1‚ T2) = (1=2)n2 - (3=2)n + 1.

Proof. See Supplementary Materials. -

Lemma 2. Let T3‚ T4 2 RB
n be rooted binary phylogenetic trees constructed as presented in Figure 3,

then dMP(T3‚ T4) � (1=2)n2 - (3=2)n + 2.

Proof. See Supplementary Materials. -

Theorem 1. Let T1‚ T2 2 RL, jLj = n, A= L, and jAj = n - 1. Then

dMP(T1‚ T2) � dMP(T1jA‚ T2jA)‚ (4)

dMP(T1‚ T2) � dMP(T1jA‚ T2jA) + n - 1‚ (5)

and both inequalities can be tight.

Proof. Let L = A [ fzg and Az = ffx‚ zg : x 2 Ag. We have -

c(TijA) = fSnAz : S 2 c(Ti)gnf;g‚ i = 1‚ 2: (6)

Let M =
Sk

i = 1f(gi‚ hi)g, where gi 2 c(T1) [ f;g, hi 2 c(T2) [ f;g, be an optimal pairing that defines the

distance dMP(T1‚ T2). Let M0 be a pairing formed based on M by removing from it all leaf pairs containing z,

T1

a1 a2 a3 an-1an-2 an

u2

u3

un

T2

an an-1 an-2 a2a3 a1

v2

v3

vn

FIG. 2. Two caterpillar trees labeled in opposite

directions are examples of very distant trees in the

MP metric.

b

T1

a c d b

T2

a dc

{{a,b}}

{{c,d}}

{{a,b},{a,c},{b,c}}

O=Ø

2

2
4

{{a,c},{a,d},{b,c},{b,d}} 4

{{a,d},{b,d},{c,d}}
4

113 3

FIG. 1. Calculation of the MP distance between

trees T1 and T2. The bipartite graph of their par-

titions has a perfect matching of minimum weight

equal to 6. MP, matching pair.
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that is, M0 =
Sk

i = 1f(g0i‚ h0i)g, where g0i = ginAz and h0i = hinAz. Note that M0 is a pairing of elements of

c(T1jA) [ f;g with sets of c(T2jA) [ f;g. Moreover, each pair set of c(T1jA), as well as each element of

c(T2jA), appears in M0 exactly once. Hence, we have

dMP(T1‚ T2) =
1

2

Xk

i = 1

jgi � hij

=
1

2

Xk

i = 1

jg0i � h0ij + j(gi \ Az)� (hi \ Az)jð Þ

� 1

2

Xk

i = 1

jg0i � h0ij � dMP(T1jA‚ T2jA):

Tightness of this inequality is straightforward, which can be seen, for example, for trees defined so that

T1 = T2 2 RL and T1jA = T2jA.

The second inequality follows directly from the fact that the MP distance is a special case of the transfer

distance and Equation (6), because jAzj = n - 1.

Let L = fa1‚ a2‚ . . . ‚ ang and an = z, hence A = Lnfang. For a tight example of the inequality, consider

trees T 01‚ T 02 2 RB
A constructed as presented in Figure 2 but for n - 1 leaves. Note that trees T3‚ T4 2 RB

L

(Fig. 3) can be constructed by adding leaf an to trees T 01‚ T 02, respectively. Hence, by Lemmas 1 and 2, we

obtain that dMP(T3‚ T4) - dMP(T 01‚ T 02) � n - 1. -

Corollary 1. Let T3‚ T4 2 RB
n be rooted binary phylogenetic trees constructed as presented in Figure 3,

then dMP(T3‚ T4) = (1=2)n2 - (3=2)n + 2.

Proof. The proof follows from Lemmas 1 and 2 and Equation (5). -

Corollary 2. For A � L and T1‚ T2 2 RL the following inequality holds:

dMP(T1‚ T2) � dMP(T1jA‚ T2jA):

Proof. The proof follows from repeated application of Theorem 1. -

It seems to be a very natural property, a similar inequality holds for other classical metrics for phylo-

genetic trees, for example, RF and Triples metrics (Critchlow et al., 1996), but it is not fulfilled, for

example, for MC (Bogdanowicz and Giaro, 2013).

Corollary 3. Let T1‚ T2 2 RL and N be the number of leaves in MAST for trees T1‚ T2. The following

inequality holds:

dMP(T1‚ T2) � 1

2
(jLj2 - jLj - N2 + N):

Proof. Let X � L‚ jLj = n‚ jXj = N, and T� 2 RX be a MAST for trees T1‚ T2 2 RL, so T� = T1jX = T2jX and

T1 (as well as T2) can be obtained from T� by a sequence of additions of leaves from LnX. Based on

Equation (5) from Theorem 1, it is clearly seen that by adding a single leaf to T� we can obtain trees at the

MP distance of at most N. Therefore, by adding n - N leaves to T� we can obtain trees at the MP distance

less than or equal to N + (N + 1) + 	 	 	 + (n - 2) + (n - 1) = (n2 - n - N2 + N)=2. -

T3

a1 a2 a3 an-1an-2 anan-3

w

T4

anan-1 an-2 a2a3 a1an-3

s t

FIG. 3. An example of trees at a distance of

(1=2)n2 - (3=2)n + 2 in the MP metric.
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The metric space determined by the MC distance has an interesting feature, which we can call ‘‘regu-

larity’’ or ‘‘lack of isolated islands’’ (Bogdanowicz and Giaro, 2013), that is, any two trees of RL can be

connected by a sequence of trees defined so that any two subsequent elements of it are at a distance of 4 at

the most. The MP metric, however, does not have this property.

Lemma 3. For each s 2 Z>0 and a finite set L with jLj > 8s, there exists a partition S [ S0 = RL,

S \ S0 = ; such that

8T2S8T 02S0dMP(T‚ T 0) > s:

Proof. See Supplementary Materials. -

Note that there are metrics, for example, Quartet metric (QT) (Estabrook et al., 1985), whereby even the

minimal distance between different trees grows together with the number of leaves. In the case of MP, such a

situation does not hold. Moreover, for any tree T 2 RL, there exists a tree T 0 6¼ T 2 RL close to T, that is,

dMP(T‚ T 0) � 4. The same remains true for binary trees, that is, if T 2 RB
L then T 0 can be chosen from RB

L .

Such a tree can be constructed based on T using one of the operations presented in Figure 4. The operations 1

and 2 are feasible within a family of binary trees. The MP distance between trees after performing operation 1

is equal to 4, the distance between trees taking part in operations 2 and 3 equals 1. Therefore, operations 2 and

3 lead to the creation of a neighboring tree (a tree being at the minimal positive distance) in MP.

4.2. Matching pair metric space diameter

One of the important and frequently studied properties of any phylogenetic metric space is its diameter,

that is, the maximum distance between n-leaf trees. Diameters of phylogenetic metrics indicate the range,

in which a particular metric defines differences between trees. Usually, more discriminative metrics have

larger diameters, provided that the minimum distance between distinct trees is constant or grows much

slower than the diameter. In this section we present bounds on the maximal distance in the MP metric.

Theorem 2 (Charon et al., 2006). Let P‚ Q be partitions of a set X having the cardinality at most p and

q, p � q, respectively. The maximum transfer distance between such partitions is equal to jXj - ØjXj=qø.

T

q x zy

T’

q y zx

Operation 1

T’

yz A1 Ak

T

yz A1 Ak

Operation 3

y

T

xA1

T’

y xA1

Operation 2

dMP(T,T’)=4

dMP(T,T’)=1

dMP(T,T’)=1

FIG. 4. Operations that create close trees. By

letters Ai, i = 1‚ . . . ‚ k we denote single leaves or

rooted subtrees.
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Theorem 3. The maximal distance in the MP metric between trees of Rn can be characterized as

1

2
n2 -

3

2
n + 2 � max

T1‚ T22RB
n

dMP(T1‚ T2) (7)

� max
T1‚ T22Rn

dMP(T1‚ T2) � 1

2
n2 - n: (8)

Proof. By Corollary 1, the lower bound is realized by the trees shown in Figure 3. The upper bound can

be obtained using Theorem 2 by taking P = c(T1), Q = c(T2), where jXj = n(n - 1)=2, q < n. -

Construction of distant trees in the MP metric is presented in Figure 3. The trees are at maximum

possible MP distance in Rn for 3 � n � 6. We suspect that Figure 3 shows trees at maximum possible MP

distance also for n � 7 and Equation (7) is tight.

4.3. Distances of random trees

To fully interpret the level of dissimilarity of two trees using the value of the distance between them in a

particular metric, a reference value is usually needed. In most cases, the average distance between random

trees generated according to a particular model can be used for such purposes. In this section, we consider

the distance in the MP metric between binary phylogenetic trees drawn independently from any label-

invariant model. A model of random phylogenetic trees is label invariant if the probability of a tree remains

constant under an arbitrary permutation of its taxa labels (Steel and Penny, 1993). This is a natural

assumption stating that the probability of a particular phylogenetic tree depends on its shape and does not

depend on labeling of its leaves. It is easy to observe that the following lemma holds.

Lemma 4. Let A � L and T be a tree chosen randomly from RB
L according to any label-invariant

model. Then, the probability distribution of trees TjA over RB
A is also label invariant.

Two models of random phylogenetic trees can be distinguished as those that are most often used in the

literature: the uniform model, whereby equal probability is assigned to each possible tree, and the Yule

model, whereby trees are constructed iteratively: starting from three random taxa, new taxa (chosen

randomly) are added to a branch connected to a leaf (also chosen uniformly at random). Both models are

label invariant [see McKenzie and Steel (2000) for more information].

The main result in this section, expressed in Theorem 4, concerns estimation of an asymptotic behavior

of the expected MP distance between two random binary trees. To prove this fact, we utilized a combi-

natorial tool called Steiner triple system [see Colbourn and Dinitz (2006)], which is a pair (V‚ B) of a set V

together with a collection B of three-element subsets (called blocks or triples) of V with the property that

every two-element subset of V occurs in exactly one block B 2 B.

Lemma 5 (Kirkman, 1847). If V is a set of cardinality n = jV j > 1 such that jV j 
 1 mod 6 or

jVj 
 3 mod 6, then there exists a Seiner triple system, in which jBj = n(n - 1)=6.

A term migrated pair has been introduced by Chen (2012) in a general context of partition distance. For

two partitions P1 and P2 of a fine set V, a set fs‚ tg 2 V (2) is a migrated pair if s and t are in the same set in

one partition and in different sets in the other. It is easy to see from Chen (2012) that the cardinality of any

set S � V (2) of disjoint migrated pairs is a lower bound on a partition distance between P1 and P2, because

at least one element from any migrated pair has to be deleted to make considered partitions identical.

Theorem 4. For rooted trees T1n
‚ T2n

2 RB
L, n = jLj generated independently at random according to

any label-invariant model, for example, the Yule model or the uniform model, their expected distance is

E[dMP(T1n
‚ T2n

)] =Y(n2): (9)

Proof. The upper bound O(n2) on the expected distance follows from Theorem 3. Therefore, we have to

prove that the lower bound is O(n2) and by Theorem 1, Equation (4), and Lemma 4 we may also assume

that n = 6k + 1, k 2 Z>0. We consider a tree induced by unordered triples fx‚ y‚ zg � L of leaves. There are
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only three possible subtrees (Figure 5). Let L(3) = ffx‚ y‚ zg : x‚ y‚ z 2 L‚ x 6¼ y 6¼ z 6¼ xg be a family of all

unordered triples of leaves of L. We define the indicator function I : L(3) · RB
L · RB

L ! f0‚ 1g such that

I(fx‚ y‚ zg‚ T̂‚ �T) = 1 if and only if induced trees T̂jfx‚ y‚ zg, �Tjfx‚ y‚ zgare different.

Let (L‚ B), jLj = n be a Steiner triple system. Such a system exists based on Lemma 5 and the fact that

n = 6k + 1, k 2 Z>0. Consider a triple B = fx‚ y‚ zg 2 B. If the set B induces different subtrees in the

compared trees T1n
‚ T2n

2 RB
L , then note that at least one pair of leaves from B has to be transferred between

pair sets of c(T1n
) to transform it to c(T2n

) (Fig. 5). Hence, if I(B‚ T1n
‚ T2n

) = 1, then B(2) contains a migrated

pair for partitions c(T1n
), c(T2n

) of the set L(2). For example, a pair fs = fx‚ yg‚ t = fx‚ zgg is a migrated pair

for partitions induced by trees T and T 0 in Figure 5. Moreover, sets B(2) are disjoint for different elements B

of a Steiner system (L‚ B), hence we obtain the following relation:

dMP(T1n
‚ T2n

) �
X
B2B

I(B‚ T1n
‚ T2n

): (10)

Thus by taking the expected value according to random choices of T1n
, T2n

from both sides of the

inequality, we obtain that

E[dMP(T1n
‚ T2n

)] � E
X
B2B

I(B‚ T1n
‚ T2n

)

" #
=
X
B2B

E[I(B‚ T1n
‚ T2n

)]: (11)

As the trees T1n
‚ T2n

2 RB
L are drawn independently according to some label-invariant model, from

Lemma 4 E[I(B‚ T1n
‚ T2n

)] = (9 - 3)=9 = 2=3: Consequently, as jBj= n(n - 1)=6, by Equation (11) we obtain

the lower bound on E[dMP(T1n
‚ T2n

)], which is at least n(n - 1)=9. -

One of the main advantages of MC and MS metrics based on Definition 2 in comparison with RF metric

is the fact that relocation of O(1) leaves in compared trees T1‚ T2 2 Rn can change their distance by at most

O(n), which is a relatively small value when referring to the maximum distance being Y(n2) for MC and

MS metrics (Bogdanowicz and Giaro, 2012, 2013). We can say that a little change in phylogenetic trees

cannot cause large (considering the whole space Rn) changes in their distance. Theorems 1 and 3 show that

the mentioned statements are valid also for MP. It is worth mentioning that the expected MP distance

between random trees is Y(n2), so the value is O(n) times more than the possible MP distance change, this

being the result of a relocation of a bounded number of leaves. Considering this property further, we can

notice that the MP metric behaves more naturally than the MC metric or the MS metric, for which the

expected value grows asymptotically slower than the diameter Y(n3=2) in the uniform model (Bogdanowicz

and Giaro, 2012, 2013) and only O(n log n) in the Yule model.{ In Table 1 we summarized the main

properties of MP metric discussed in this section.

In Supplemental Materials, we present comparisons of distributions of various metrics, that is, RF metric,

the Triples distance (TT) (Critchlow et al., 1996), the Nodal Splitted metric with L2 norm (NS) (Cardona

et al., 2010), MC, MP, and the cophenetic metric with L2 norm (CPH) (Cardona et al., 2013), between 1000

random pairs of trees having 100 leaves generated according to the two most popular models, that is, the

Yule model and the uniform model.

yx z

T’’

{{x,z},{y,z}}

{{x,y}}

zy x

T

{{x,y},{x,z}}

{{y,z}}

zx y

T’

{{x,y} ,{y,z}}

{{x,z}}

FIG. 5. The three possible trees having fx‚ y‚ zg leaf set.

{Let S(T) for T 2 RB
n be defined as

P
c2r(T) jcj. Note that the value of S(T) is closely related to the Sackin’s index

Sind(T) used to measure the tree balance (Sackin, 1972; Shao and Sokal, 1990). We have S(T) = Sind(T) + n. The
O(n log n) upper bound on the average MC-distance in the Yule model can be obtained using the fact that for trees
T1‚ T2 2 RB

n , dMC(T1‚ T2) � S(T1) + S(T2) (Bogdanowicz and Giaro, 2013) and the fact that ET2RB
n
(Sind(T)) =

2n(
Pn

i = 1
1
i

- 1) =Y(n log n) (Kirkpatrick and Slatkin, 1993).
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5. HEURISTICS FOR ROOTED SUBTREE PRUNE AND REGRAFT DISTANCE:
AN APPLICATION OF THE MATCHING PAIR DISTANCE

IN DETECTING HORIZONTAL GENE TRANSFER

In this section, we provide a preliminary study of the usefulness of the MP distance in identifying HGT.

HGT is a direct transfer of genetic material from one lineage to another (Boc et al., 2010). HGT events lead

to SPR transformations (Wu, 2009; Boc et al., 2010), appearing in rooted phylogenetic trees constructed

based on respective DNA regions.

There are HGT detection methods present in literature (Wu, 2009; Boc et al., 2010), whose main concept

is based on determining the SPR distance between phylogenetic trees T1 and T2, that is, the minimum

number of SPR (or rooted SPR [rSPR] for rooted trees) operations needed to transform tree T1 into T2. In

this section, we present two simple heuristic approaches to the problem of computing the rSPR distance,

which make use of the polynomially computable comparison metrics.

Unfortunately, computing the rSPR distance is NP-hard (Bordewich and Semple, 2005), so some ap-

proximation or heuristic algorithms have to be applied to large instances of the problem. In the next part of

this section, we present the results of computational experiments on the effectiveness of heuristics for

estimation of the rSPR distance between analyzed trees. The tests have been performed based on randomly

generated pairs of trees of various sizes.

For small instances, that is, when the compared trees are rather similar, exact exponential algorithms

work reasonably fast. We have tested the SPRDist application (Wu, 2009), which was able to compute all

our test cases (each test case consists of 1000 comparisons between randomly generated pair of trees) of

size up to 20 leaves, and UltraNet (Chen et al., 2015) able to compute test cases up to 40 leaves. For test

cases with 50 leaves UltraNet (which worked much faster than SPRDist) was able to compute only 25

distances in about 5 days on a desktop computer, so we decided to interrupt further computation of the

exact rSPR distance. Finally, we manged to compute exact distances for all test cases on 50 leaves using

rSPR 1.2.0 software (Whidden et al., 2014) (http://kiwi.cs.dal.ca/Software/RSPR).

All of the trees used in the experiments were generated according to the uniform model. In our ex-

periments, we included most of the known metrics for rooted trees, that is, RF metric, the Triples distance

(TT) (Critchlow et al., 1996), the NS metric (Cardona et al., 2010), MC and MP metrics, and the CPH

metric (Cardona et al., 2013). It turns out that the MP distance performs better than any other metric in both

experiments.

5.1. Single metric algorithm

Here, we present a simple heuristic that uses the value of an arbitrary phylogenetic trees metric as an

indicator for consequent rSPR moves. The idea of such type of heuristics has been introduced by Boc et al.

(2010). The method presented hereunder, in contrast to that described in Boc et al. (2010), uses only

metrics for rooted phylogenetic trees and does not check any evolutionary constraints on possible rSPR

moves.

Let Ta‚ Tb 2 RB
L be the input trees. In the first step, we compute the distance in a selected polynomially

computable metric d between each tree Tc of 1 - rSPR neighborhood of Ta and the target tree Tb. We call

the trees within 1 - rSPR neighborhood as candidate trees. Let T 0c be an arbitrary chosen candidate tree

whose distance in the metric d to Tb is minimal. In the next step, we compute the 1 - rSPR neighborhood of

T 0c and again choose from it an arbitrary candidate tree of minimal distance to Tb. We then repeat the steps

Table 1. Comparison of Selected Properties of Analyzed Metrics for Binary Trees

Property RF MC MP

Minimal positive distance 1 2 1

Single-rooted NNI operation distance 1 � 2, � n - 1 O(n2)

Maximal distance n - 2 � 1

2
n2 - O(n), � 3

4
n2 + O(n)

1

2
n2 - O(n)

Average distance (the uniform model) Y(n) Y(n3=2) Y(n2)

Average distance (the Yule model) Y(n) O(n log n) Y(n2)

MC, matching cluster; MP, matching pair; NNI, nearest neighbor interchange; RF, Robinson–Foulds.
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until the tree Tb is reached and the number of steps is an obtained estimation (upper bound) on rSPR

distance between Ta and Tb.

Note that, to be useful in such a procedure, a phylogenetic tree metric d should guarantee that for any two

trees Ta‚ Tb 2 RB
L , Ta 6¼ Tb, there exists T 2 RB

L obtained from Ta by a single rSPR operation such that

d(Ta‚ Tb) > d(T‚ Tb). The fact that RF and QT metrics for unrooted trees fulfill the mentioned condition

(where unrooted SPR instead of rSPR is considered) has been proved in Bordewich et al. (2009). During

our experiments, we found that such a property does not hold for the NS, MC, and CPH metrics, but we did

not find any counterexamples for metrics TT and MP, which suggests that both these metrics have this

property.{

In Table 2 we present the results, that is, the number of rSPR operations estimated using a particular

metric, true rSPR distance (the last column), and the ratio of the estimated distance to the exact value of

rSPR metric. Each row contains average values from 1000 test cases. Table 2 in Supplementary Materials

presents the fraction of the test cases, in which a particular method gave the best result (note that more than

one method can give the best result in a single test case). Based on the data, we can see that the best results

for all analyzed sizes of trees have been obtained using the MP metric.

5.2. Guided Robinson–Foulds metric algorithm

Here, we consider a modified version of the mentioned procedure, in which two metrics are used. First,

the RF distances between candidate trees and the destined tree are computed. Next, ties in a subset of

candidate trees of the minimum RF distance in a particular iteration are resolved using any other metric.

Note that any metric (or even only a dissimilarity measure) can be chosen as a tiebreaker because using the

RF metric as the based one guarantees that the procedure finishes in a number of steps not greater than

the RF distance between compared trees [see footnote on this page and similar analysis for unrooted trees

for RF and QT metrics described in Bordewich et al. (2009)].

The results of the experiment are presented in Table 3 and in Supplementary Materials, where we present

the fraction of test cases in which a particular method gave the best result. Similarly to the previous

experiment, Table 3 contains average values from 1000 test cases for the estimated number of rSPR

operations, true rSPR distance, and the ratio of the estimated distance to the exact value of rSPR metric.

The MP metric performs better that the other distances in almost all cases.

Based on the results from both experiments, we obtain that the strategy incorporating two metrics (e.g.,

RF + MP), where the second metric is used as a tiebreaker, is worth further development and can lead to

better results than using a single metric. A similar observation has been recently reported by Whidden et al.

(2014), where the RF distance is used as a tiebreaker for the SPR supertree method.

Table 2. Performance Comparison of a Single Metric Rooted Subtree Prune and Regraft

Heuristic—Average Distance and Relative Performance

N

RF TT MP

rSPRy y/rSPR y y/rSPR y y/rSPR

10 5.958 1.169 5.552 1.090 5.458 1.071 5.103

15 10.499 1.209 9.774 1.125 9.590 1.104 8.701

20 15.212 1.230 14.265 1.152 13.901 1.122 12.396

30 24.886 1.236 23.972 1.190 23.098 1.147 20.152

40 34.617 1.233 34.143 1.216 32.583 1.160 28.099

50 44.355 1.226 44.396 1.227 42.327 1.170 36.184

By y we denote the average number of rSPR operations obtained using a particular heuristic. SPR, subtree prune and

regraft; rSPR, rooted SPR. Bold indicates the minimum value among the analyzed heuristics.

{We can formally prove that for Ta 6¼ Tb 2 RB
L , there exists a tree T 2 RB

L obtained from Ta by a single rSPR
operation such that dMP(T‚ Tb) � dMP(Ta‚ Tb) and dRF(T‚ Tb) < dRF(Ta‚ Tb). Hence, a modification of the heuristic so
that in each step a tree Tc with lexicographically the lowest pair (dMP(Tc‚ Tb)‚ dRF(Tc‚ Tb)) of candidate trees is chosen
assures convergence. However, during our experiments, we did not encounter the need for considering the second
element dRF(Tc‚ Tb) of a pair.
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6. CONCLUSION

By using a general matching method (Bogdanowicz, 2008; Bogdanowicz and Giaro, 2012), we defined a

new phylogenetic metric that can be used for general (binary and nonbinary) rooted phylogenetic trees and

analyzed its main properties (such as minimum positive distance, diameter, and average distance between

random trees). The interesting fact is that the MP metric becomes the transfer distance between partitions of

the set of unordered leaf pairs determined by compared trees. As the transfer distance has already been

found useful in bioinformatics (Konovalov et al., 2005), we believe that the MP distance will also become a

valuable supplement to the current set of computational tools for phylogenies.

Among the analyzed properties of the MP distance, at least the following two deserve more attention, the

quadratic (with respect to the number of leaves) diameter and the quadratic distance between random trees,

and a relatively low, that is, O(n) distance increase after relocation of a bounded number of leaves in

comparison with the maximum or average distance. Presented computational experiments show potential

area in which the MP metric can be successfully applied, that is, HGT analysis according to the method

introduced in Boc et al. (2010). Application of MP metric as a tiebreaker metric in the procedure of

searching for SPR supertree (Whidden et al., 2014) might also be interesting and requires further research.

The MP metric (among many others) is implemented in TreeCmp 1.1 application freely available at

(http://kaims.eti.pg.gda.pl/~dambo/treecmp/).
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