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ABSTRACT

Accurate identification of low-frequency somatic point mutations in tumor samples has
important clinical utilities. Although high-throughput sequencing technology enables cap-
turing such variants while sequencing primary tumor samples, our ability for accurate
detection is compromised when the variant frequency is close to the sequencer error rate.
Most current experimental and bioinformatic strategies target mutations with ‡5% allele
frequency, which limits our ability to understand the cancer etiology and tumor evolution.
We present an experimental and computational modeling framework, RareVar, to reliably
identify low-frequency single-nucleotide variants from high-throughput sequencing data
under standard experimental protocols. RareVar protocol includes a benchmark design
by pooling DNAs from already sequenced individuals at various concentrations to target
variants at desired frequencies, 0.5%–3% in our case. By applying a generalized, linear
model-based, position-specific error model, followed by machine-learning-based variant cal-
ibration, our approach outperforms existing methods. Our method can be applied on most
capture and sequencing platforms without modifying the experimental protocol.

Keywords: low frequency SNVs, machine learning, next-generation sequencing, sequencing

error modeling, somatic mutation.

1. INTRODUCTION

The advance of high-throughput sequencing technologies has revolutionized our capability to

detect somatic mutations in primary tumor samples. However, current experimental assays and analysis

methods are not sensitive enough to accurately detect somatic mutations with allele frequencies below

3%. Such low-frequency mutations commonly exist in tumor samples due to both tumor heterogeneity
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(Nik-Zainal et al., 2012; Walter et al., 2012) and contamination with normal tissues (Carter et al., 2012).

Accurate identification of low-frequency somatic mutations carries significant clinical implications due to

their function in tumor growth, drug resistance, and metastasis (Inda et al., 2010; Ding et al., 2012). In

addition, circulating tumor DNAs (ctDNAs) in early detection of cancer, prognostic assessment, and de-

tection of relapse or acquired resistance also require accurate detection of low-frequency variants (Forshew

et al., 2012; Crowley et al., 2013; Bettegowda et al., 2014) since ctDNAs only compose as much as 1%–10%

for patients with high-grade cancers (Diehl et al., 2005).

The sequencing artifacts can be introduced during the many stages of the experiment (Metzker, 2010),

including DNA capture and amplification, library construction, sequencing, and data analysis (O’Rawe

et al., 2013). Thus, identification of single-nucleotide variants (SNVs) with allele frequencies close to

experimental artifact rates (usually 0.1%–1% for most of the platforms) is extremely challenging. Many

bioinformatic methods have been developed to tackle this challenge. Among existing methods, VarScan2

(Koboldt et al., 2012), Strelka (Saunders et al., 2012), and mutect (Cibulskis et al., 2013) are mainly

designed to target variants with lowest allele frequencies at 5% for a whole exome or several hundreds of

targeted genes sequencing with average depth around hundreds. Several other studies focus on a small

number of hotspot cancer genes with ultradeep sequencing (greater than 10,000 · in depth) (Harismendy

et al., 2011; Wilm et al., 2012) for pushing down the detection limit. However, such methods usually take

an ad hoc filtering approach and are designed to target variant identification within a small genomic region,

usually less than 20,000 nucleotides. In addition, the above existing methods failed to consider differential

error profiles at different genomic sequence contexts across the targeted regions and thus are suboptimal in

sensitively detecting variants with allele frequencies close to the intrinsic sequencing error rate.

To effectively boost sensitivity at or lower than 1% allele frequencies without resorting to approxima-

tions or heuristics, deepSNV (Gerstung, 2012) considered the strand-specific error rate and LoFreq (Wilm

et al., 2012) modeled the position-specific error rate from base or sequencing qualities. However, deepSNV

used customized, high-accuracy deep-sequencing protocols not available to many laboratories. In addition,

these two methods only considered a limited number of sequence contexts and their performances on

sequencing platforms with potential sequence context biases were unknown.

In this study, we present a novel experimental and computational modeling framework, RareVar, which

aims to push the detection limit to 0.5%–1% under standard sequencing experiment protocols. The ex-

perimental part includes a strategy to construct a benchmark sample mimicking tumor samples enriched

with low-frequency variants (0.5%–3%). The computational part utilized the constructed benchmark

sample to derive a genomic, position-specific error rate for sensitive low-frequency variant detection and to

further refine the candidates with machine-learning models. We evaluated the performance of RareVar

together with representative existing tools on an independent constructed testing benchmark. RareVar is

shown to be more sensitive and also accurate than the other tools, especially for variants with less than 3%

allele frequencies.

2. METHODS

2.1. Overall framework

The RareVar protocol includes five major components: benchmark sample design, target region am-

plification and sequencing, position-specific error modeling (PSEM), variant identification, and machine-

learning-based variant calibration (Fig. 1). A training benchmark sample was designed to contain a set of

mutations at known allele frequencies in the desired capture regions. This benchmark was sequenced in

parallel with the tumor/cell samples of interest using the exact same capturing and sequencing protocol.

Thus, it serves as a calibration set to evaluate the accuracy of the sequencing and analysis pipeline. The

invariant loci in the benchmark sample provide data for PSEM on genomic features that distinguish low-

frequency SNVs from sequencing errors, while the known SNVs allow further calibration of the variant

calls based on features from the particular experimental procedures.

2.2. Capture assay and sequencing platform

The exonic regions of 409 known cancer genes, totaling *1.7 million bases in 16,000 amplicons, were

captured using the Ion AmpliSeq� Comprehensive Cancer Panel. Ion Proton� system was used to
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generate sequencing data. TMAP from Torrent Suite� Software, version 4.4.2, was applied to align the

sequencing reads. Only uniquely mappable reads were used in further analysis. The aligned reads with

mapping quality less than 40 were filtered out.

2.3. Benchmark design

A total of 22 DNA samples from the 1000 Genomes Project for which there are genotype data (1000

Genomes Project Consortium et al., 2012) were selected and pooled as described. Two sets of 18 samples

were used, one for the training benchmark set and the other for the testing benchmark set (Supplementary

Table S1).

The goal of the training benchmark design was to maximize the number of low-frequency (0.5%–3%)

SNVs in the exonic target regions. First, among each set of 18 DNA samples, we identified the one that has

the largest number of overlapping SNVs with other samples in the target regions. The SNVs from this

sample were used to represent the normal cell population. Second, the other 17 samples were mixed at

varying concentrations (1%–10%); samples with larger number of unique SNVs in the target regions were

assigned lower concentrations. Similarly, the testing benchmark sample was designed by mixing another

set of 18 DNA samples in which 4 samples were not in the training benchmark and 3 samples with higher

number of unique variants were assigned lowest concentrations serving as low-frequency testing set totally

independent of the training set. For DNA samples that appeared in both training and testing, smaller

concentrations were preferably assigned to samples with higher number of unique variants and also tried to

assign different values from the training. The DNA mixing strategy for both training and test benchmark

tumor samples is shown in Supplementary Table S1. To demonstrate the performance on normal–tumor

pair design, the sample representing normal cell populations was also sequenced.

2.4. Position-specific error model

A Poisson distribution generalized linear model (PD-GLM) (Hao et al., 2016) was applied to model the

relationship between sequence contexts and error rates. PD-GLM integrated nine genome context features

related to sequencing errors (Bragg et al., 2013; Ross et al., 2013), including alternative base substitution types,

the nucleotides immediate upstream and downstream of the variant loci, and the percentage of guanine-cytosine
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FIG. 1. RareVar framework overview. During

the training phase, genome contexts of invariant

loci are used to train a position-specific error

model (PSEM). Then, the genome contexts of

all loci are fed to PSEM and the resultant predic-

tions comprise the candidate SNV loci. Sequen-

cing qualities of those candidates are used to

further calibrate their fidelity. Actual data involved

in model training are highlighted in dashed lines

and boxes. During the testing phase, a matched

normal–tumor pair goes through the trained

PSEM and recalibration model to generate high-

confidence somatic SNVs. SNV, single-nucleotide

variant.
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(GC) nucleotides in the nearby region. In addition, homopolymer features were also considered since se-

quencing data tend to be erroneous if the locus is near the boundary of one or more long homopolymer(s).

2.5. Variant identification

For each targeted locus, a Bayes factor was calculated by comparing the likelihood of two competing

models, ME—the number of alternative reads follows sequencing error distribution—estimated by PD-

GLM, and MV, the number follows the lowest intended identifiable frequency distribution. In this study,

intended frequency is f = 0.5%. In Equation (1), nl‚ b‚ s is the number of reads in location l with nonreference

base b on strand s (forward or reverse) and dl‚ s is the depth at location l on strand s. In addition, kE‚ l‚ b‚ s

and kV‚ l‚ b‚ s represent the expected number of alternative reads assuming the candidate locus is not an

SNV (nl‚ b‚ s * Poi kE‚ l‚ b‚ sð Þ) and is an SNV with the lowest intended identifiable allele frequency

(nl‚ b‚ s * Poi kV‚ l‚ b‚ sð Þ), respectively. An observed substitution in a location is considered an SNV can-

didate if Bayesian factors BFl‚ b‚ s for both strands are greater than BFthres.

BFl‚ b‚ s =
Pr nl‚ b‚ sjMVð Þ
Pr nl‚ b‚ sjMEð Þ =

Pnl‚ b‚ s

k = 0 kk
V‚ l‚ b‚ se

- kV‚ l‚ b‚ s

k!

1 -
Pnl‚ b‚ s

k = 0 kk
E‚ l‚ b‚ se

- kE‚ l‚ b‚ s

k!

‚

kV‚ l‚ b‚ s = kE‚ l‚ b‚ s + dl‚ s � f : (1)

2.6. Machine learning-based SNV calibration

SNV candidates from the variant identification step still contain a large number of false positives.

Sequencing-related measurements, such as sequencing and alignment quality, have a strong influence on

the accuracy of variant identity (DePristo et al., 2011). Instead of setting up a series of heuristic filters, we

adopted a machine-learning-based approach to derive an optimal classification boundary between false and

true positives by simultaneously modeling multiple measurements. The PSEM model focused on the

sequence contexts, whereas measurements related to the experimental and analytical steps are considered

here. The features included in the machine-learning model can be grouped into the following generic types:

sequencing, alignment, amplicon structure, and genome context-related features from PSEM. Information

gain (IG) was used to rank the classification power of all features (Supplementary Table S2).

Machine learning algorithm, random forest (Breiman, 2001), was employed to incorporate all features to

best distinguish false positives from true positives. The random forest algorithm is employed with 100

trees, maximum log2 nfeature

� �
+ 1 features (nfeature is the total number of features) to consider in each tree,

and no limitation on depth of the trees.

2.7. Performance evaluation

Exonic loci with at least five reads supporting an alternative allele are included in the evaluation.

Precision, recall, and F1 score are defined in Equations (2)–(4). The allele frequency ranges were deter-

mined by observed values for precision and expected values from test benchmark for recall.

precision =
recovered test benchmark SNVs

predicted number of SNVs
(2)

recall =
recovered test benchmark SNVs

expected number of test benchmark SNVs
(3)

F1 =
2 � precision � recall

precision + recall
: (4)

2.8. Parameter customization for existing tools

The complete list of parameters is in Supplementary Table S3.

Torrent variant caller (TVC): change the default settings (snp-min-allele-freq, gen-min-alt-allele-freq,

and downsample) to allow calling SNVs with down to 0.5% frequency. There is no option for turning off

downsample, thus the maximum depth (34,223) in test benchmark data was used.
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Strelka: parameter file for bwa aligner was used. Depth filter (isSkipDepthFilters) was turned off. Since

low recall was observed for £3% SNVs in test runs, combinations of ssnvPrior and ssnvNoise were tested.

The conclusion from this combinatory exploration suggested that elevated ssnvNoise decreases precision

and recall, while elevated ssnvPrior increases recall with a slight drop in precision. The 1000 · bigger

ssnvPrior results in *3% increase in recall and *1% drop in precision and since the extent of change is

small, no further increase was attempted.

VarScan2: min-var-freq was set to 0.5% and min-reads2 was set to 5 to be consistent with RareVar.

Since the percentage of DNA from test benchmark normal sample individual was 0.46, tumor-purity was

set to 0.54.

deepSNV: desired significance level sig.level was set to 0.5 to be more sensitive. Multiple testing

correction method, Benjamini–Hochberg procedure, was applied.

LoFreq: minimal coverage for somatic calls min-cov was set to 5. fdr was used for multiple testing

correction. Parameter no-srt-qual was used to disable use of source quality in tumor.

3. RESULTS

3.1. Benchmark data evaluation

Potential SNV allele frequency bias introduced in the pooling step was evaluated by the correlation of

the detected median allele frequencies of SNVs unique to each individual with their designed frequencies.

The log scale linear regression analysis showed that individuals with smaller assigned percentages tend to

have slightly lower observed percentages, with R2 > 0.98 for both training and testing benchmarks (Fig. 2).

The designed benchmark sets derived 1461 and 1557 SNVs for the training and testing datasets, re-

spectively (Table 1). The design enables evaluation of SNVs with a broad range of allele frequencies and is

also enriched in 0.5%–3% allele frequencies. As shown in Table 1, the percentage of SNVs with allele

frequency no more than 3% is 64% in training benchmark and 68.9% in testing benchmark. Independent

testing SNVs from individuals only in testing benchmark composed 38.6% of all testing benchmarks, in

which >60% SNVs were with allele frequencies £3%.

3.2. Position-specific error model

To evaluate the efficacy of the PSEM in identifying SNV candidates, we compared the performance of

PSEM at BFthres = 100 with Fisher’s exact test-based VarScan2 (Koboldt et al., 2012), which tends to have

higher recall. On both full and new testing sets, PSEM showed much higher overall recall and slightly

lower precision (Table 2).
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FIG. 2. Evaluation of mixing variance in construction of the training and testing benchmarks. Numbers next to the

dots represent the mixing frequencies of DNA samples; the line at 45� represents perfect pipetting (observed frequency

exactly equals the expected).
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3.3. Machine learning-based SNV calibration

Classification power of 29 features used in machine learning was ranked by IG. Sequencing-related

features and alignment quality features ranked the highest, while sequence context feature—GC content—

was removed from further analysis due to 0 IG (Supplementary Table S2).

The calibration effectively reduced false-positive SNVs identified by the PSEM. On the full testing

benchmark dataset, overall precision increased from 0.492 to 0.955 after calibration, while on the new

testing set, overall precision increased from 0.301 to 0.887 (Table 3).

3.3.1. Performance by allele frequencies. A closer examination of the RareVar performance by

allele frequencies in full testing set showed that precision increased for all allele frequencies by at least 0.1

after calibration, with greater than 0.9 precision achieved for SNVs in all allele frequency ranges (Table 3).

Lower frequencies showed higher increase, in which 0.70 and 0.35 increases in precision were achieved for

0.5% and 1%, resulting in >0.9 precision for both. The decrease in recall was mainly attributed to 0.5% and

1%, yet >0.8 recall was maintained for allele frequencies ‡1%. The ROC curve on different allele fre-

quency ranges (Fig. 3a) showed that the model reaches relatively stable performance for >1% frequency.

On the new testing set, the recall values are similar to the ones on the full set across all allele frequencies,

while the precision values dropped noticeably (Table 4). Except for the drop caused by overfitting, part of

the drop is due to the inflated false positives originated from other individuals in the full set and thus

artificially lowered the precision.

3.3.2 Depth effect on performance by allele frequencies. The average depth for the testing dataset

was 3973. To evaluate its influence on performances, we gradually downsampled the testing benchmark

sequencing data by randomly selecting a fixed percentage of reads from the original data. The precision is

not affected, but the recall steadily decreases with reducing average depths for all frequencies (Fig. 3b). The

decreasing trend is more severe when the depth is less than 1000 · . This result suggests that depth should

be predetermined when detecting SNVs at a specific frequency range. In addition, for variants >0.5%, the

recall curve reaches a plateau when average depth is greater than 2000 · . Thus, further increasing the

sequencing depth will not improve the detection sensitivity.

Table 1. Distribution of Single-Nucleotide Variants Across Designed Allele Frequency Ranges

Designed

AF (%)

Training benchmark Testing benchmark

Full

training

Cumulative

percentage

Full

testing

Cumulative

percentage

New

testing

Cumulative

percentage

0.50 304 20.8 270 17.3 152 25.3

1 271 39.4 309 37.2 43 32.4

1.5–3 360 64.0 493 68.9 168 60.4

3.5–5 162 75.1 164 79.4 45 67.9

5.5–10 213 89.7 151 89.1 69 79.4

10.5–53 151 100.0 170 100.0 124 100.0

All 1461 100.0 1557 100.0 601 100.0

Table 2. Overall Performances in Testing Benchmark by Methods

Methods

All testing New testing

Recall Precision F1 score Recall Precision F1 score

PSEM 0.958 0.492 0.650 0.970 0.274 0.428

VarScan2 0.830 0.533 0.649 0.812 0.301 0.439

RareVar 0.819 0.955 0.882 0.785 0.887 0.833

Strelka 0.360 0.899 0.514 0.429 0.804 0.560

TVC 0.638 0.934 0.759 0.644 0.843 0.730

deepSNV 0.165 0.959 0.282 0.235 0.928 0.375

LoFreq 0.528 0.956 0.680 0.567 0.900 0.696
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3.3. Performance comparison with existing methods

We compared RareVar with established variant detection tools, including VarScan2, TVC from Torrent

Suite� software, Strelka, deepSNV, and LoFreq. The default settings for these tools aim at SNVs with

higher frequencies, thus customized parameters were selected by optimizing for rare variants (Supple-

mentary Table S3). On both full and new testing sets, RareVar was the best method in overall performance

by F1 score (Table 2), with the advantage over the second and third best methods, TVC and LoFreq, most

evident for 1% and 0.5% frequencies (Fig. 4). At 1%, precision is similar for these three methods, while

RareVar achieved 0.812 recall, compared with <0.4 for the other 2. Even at 0.5% allele frequency, RareVar

Table 3. Comparison of Precision and Recall Between Position-Specific Error

Model (PSEM) and RareVar on Full Testing Set by Allele Frequencies

(a) Precision comparison

Observed

frequency (%)

PSEM RareVar

Predicted

no. of SNVs

Recovered

no. of SNVs Precision

Predicted

no. of SNVs

Recovered

no. of SNVs Precision

0.25–0.75 1369 286 0.209 140 127 0.907

0.75–1.25 479 298 0.622 271 264 0.974

1.25–3 571 422 0.739 417 403 0.966

3–5 217 168 0.774 172 165 0.959

5–10 207 159 0.768 169 159 0.941

10–54 190 158 0.832 166 157 0.946

All 3033 1491 0.492 1335 1275 0.955

(b) Recall comparison

Expected

frequency (%)

PSEM RareVar

Expected

no. of SNVs

Recovered

no. of SNVs Recall

Expected

no. of SNVs

Recovered

no. of SNVs Recall

0.5 270 230 0.852 270 96 0.356

1 309 296 0.958 309 251 0.812

1.5–3 493 483 0.980 493 458 0.929

3.5–5 164 162 0.988 164 156 0.951

5.5–10 151 150 0.993 151 149 0.987

10.5–54 170 170 1.000 170 165 0.971

All 1557 1491 0.958 1557 1275 0.819
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FIG. 3. Performances by allele frequencies and effect of depth on recall on full testing benchmark. (a) The precision

and recall are evaluated at classification probabilities from 0 to 0.95 in steps of 0.05. Probabilities of 0.50 points are

highlighted. (b) The depth is sampled from 10% to 100% of the original in steps of 5%.
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Table 4. RareVar Performance Comparison Between Full Testing

and New Testing Sets Across All Frequency Ranges

(a) Recall comparison

Expected

frequency (%)

Full testing New testing

Expected

no. of SNVs

Recovered

no. of SNVs Recall

Expected

no. of SNVs

Recovered

no. of SNVs Recall

0.5 270 96 0.356 152 55 0.362

1 309 251 0.812 43 34 0.791

1.5–3 493 458 0.929 168 154 0.917

3.5–5 164 156 0.951 45 40 0.889

5.5–10 151 149 0.987 69 68 0.986

10.5–54 170 165 0.971 124 121 0.976

All 1557 1275 0.819 601 472 0.785

(b) Precision comparison

Observed

frequency (%)

Full testing New testing

Predicted

no. of SNVs

Recovered

no. of SNVs Precision

Predicted

no. of SNVs

Recovered

no. of SNVs Precision

0.25–0.75 140 127 0.907 57 44 0.772

0.75–1.25 271 264 0.974 83 76 0.916

1.25–3 417 403 0.966 137 123 0.898

3–5 172 165 0.959 53 46 0.868

510 169 159 0.941 78 68 0.872

1054 166 157 0.946 124 115 0.927

All 1335 1275 0.955 532 472 0.887

V P

R

ST

L

D
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All Testing SNVs: 0.5%

Recall

P
re

ci
si

on V P

R

S

TL
D

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All Testing SNVs: 1%

Recall

P
re

ci
si

on

V
P

RS TLD

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All Testing SNVs: 1 ~ 3%

Recall

P
re

ci
si

on

R
P
V
T
L
D
S

RareVar
PSEM
VarScan
TVC
LoFreq
deepSNV
Strelka

V P

R

ST

L

D
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

New Testing SNVs: 0.5%

Recall

P
re

ci
si

on

V P

R

S

T
L

D

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

New Testing SNVs: 1%

Recall

P
re

ci
si

on V
P

RS
T

LD

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

New Testing SNVs: 1 ~ 3%

Recall

P
re

ci
si

on

R
P
V
T
L
D
S

RareVar
PSEM
VarScan
TVC
LoFreq
deepSNV
Strelka

FIG. 4. Precision and recall at £3% allele frequencies. Benchmark performance-optimized parameters were applied

for VarScan2, TVC, LoFreq, deepSNV, and Strelka. Upper panels show the performance evaluated on full testing set,

while lower panels show the performances evaluated on new testing variants not used in training.
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maintained 0.907 precision and 0.356 recall. It is expected that TVC also demonstrates good performance

for >1% since it is specifically designed for Ion Proton� technology. Overall, RareVar shows the best

performance among all the tools tested, in particular for the SNVs with low allele frequencies (0.5%–3%).

However, all methods, RareVar included, showed decreased recall, which is partially due to inflated false

positives.

4. DISCUSSION

The framework of RareVar provides guidance for low-frequency SNV identification from both exper-

imental and algorithmic aspects. Many components in the next-generation sequencing pipeline, including

library preparation, target enrichment assay, and sequencing technology, affect the sensitivity and fidelity

of SNV detection. The comparison of RareVar with other algorithms underscores the necessity of modeling

frequency detection limits and the significance of a model tailored for each technology. It is impractical to

have a universal parameter or threshold setting scheme that fits all sequencing platforms and experimental

protocols. To solve this problem, we construct a benchmark sample containing variants with desired allele

frequencies. The distribution of nucleotide mismatch patterns around the positive and negative variant loci

in the benchmark sample provides a valuable guideline for optimizing the parameter and threshold settings

during the variant identification process. In addition, the benchmark sample also enables fair evaluation on

the performance of the detection.

The two-stage computational modeling, position-specific error model (PSEM) and machine-learning-

based calibration, was designed to take the advantages of sequencing signals on the invariant loci and

designed variant loci, respectively. The PSEM step intends to model how genomic sequence contexts

impact the sequencing error profiles that are associated with the experimental protocol. The derived

model serves as an important base for accurately estimating background error signal that is specific to

any particular nucleotide position. This step is critical in improving the detection accuracy of SNVs with

extreme low frequency, as opposed to using a universal background error rate for all the genomic loci.

The machine-learning-based variant recalibration considered experiment-related features, such as strand

bias and mapping quality. This design effectively avoids using a series of filters that often involves multiple

ad hoc thresholds. We demonstrated that the variant calibration step significantly increased the specificity

of variant identification and further improved overall accuracy.
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