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ABSTRACT

In modeling censored data, survival forest models are a competitive nonparametric alternative
to traditional parametric or semiparametric models when the function forms are possibly
misspecified or the underlying assumptions are violated. In this work, we propose a survival
forest approach with trees constructed using a novel pseudo R2 splitting rules. By studying the
well-known benchmark data sets, we find that the proposed model generally outperforms
popular survival models such as random survival forest with different splitting rules, Cox
proportional hazard model, and generalized boosted model in terms of C-index metric.
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1. INTRODUCTION

In the field of medical and biological research, censored survival data are often studied using

(semi-)parametric models such as Cox proportional hazard models (David, 1972) and accelerated failure

time models (Cai et al., 2009). However, the underlying assumptions to these models are not easily satisfied in

practice. In this case, nonparametric survival trees and survival forests, which have the inherent advantage of

determining the relationship between covariates and hazard in censored data, are useful alternatives (Gordon

and Olshen, 1985; Ishwaran et al., 2008; Zhu and Kosorok, 2012; Steingrimsson et al., 2016).

In general, the construction of a survival decision tree involves two major steps: the tree growing step and

the tree pruning step (Cappelli and Zhang, 2007). The choice of splitting functions in the growing step is

usually crucial to the performance of decision trees (Mbogning and Broët, 2016). Owing to the presence of

censored data, splitting functions developed for classification and regression problems such as information

gain, Gini index, and mean squared error (Breiman et al., 1984) are not appropriate in the context of survival

analysis. To deal with this problem, various splitting functions for survival data have been proposed and

generally they can be categorized into two types: maximization of between-node heterogeneity and mini-

mization of within-node homogeneity. These splitting functions are based on various statistics or quantities

such as the L1-Wasserstein distance between the Kaplan–Meier estimators of two child nodes (Gordon and

Olshen, 1985), log-rank test statistic (Ciampi et al., 1986; LeBlanc and Crowley, 1993), likelihood ratio

statistic (Ciampi et al., 1987), Wilcoxon–Gehan statistics (Ciampi et al., 1989), two-sample Tarone–Ware

statistics (Segal, 1988), L1 loss function (Cho and Hong, 2008), and C-index statistic (Schmid et al., 2016).

And among them, the most popular splitting rule is the log-rank test statistic. A review on various splitting
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functions can be found in Bou-Hamad et al. (2011) and comparative studies of common splitting criteria have

been performed by Shimokawa et al. (2015, 2016).

A single survival tree, however, can be potentially unstable as it is very sensitive to small changes in the

data. This problem is usually mitigated by using a variety of ensemble methods such as survival bagging

(Hothorn et al., 2004, 2006; Mbogning and Broët, 2016), or random survival forest (RSF) (Ishwaran et al.,

2008; Wright and Ziegler, 2017). Among them, the most popular and widely applied survival ensemble is

RSF, which extends random forest (Breiman, 2001) from classification and regression scenarios to survival

analysis. In this method, tree node splits are designed to maximizing survival differences between subtree

nodes. A so-called ensemble cumulative hazard function (CHF) can be obtained by aggregating Nelson-

Aalen estimators for all ‘‘in-bag’’ data. Similar to survival trees, in most implementations of RSFs, the best

split of a node is usually judged by the log-rank test statistic (Pang et al., 2010).

From the aforementioned studies, one may observe that the log-rank test can be regarded as the de facto

splitting criterion is survival trees and survival forests. However, the log-rank test is most powerful when

the true hazard curve is proportional to the hypothesized curve (Bathke et al., 2009). And in the case of

crossed Kaplan–Meier survival curves (i.e., nonproportional hazards), which is not uncommon in medical

practice, this test statistic could be problematic. Consequently, survival trees or forests based on this kind of

splitting functions may not be adequate.

Thus, different from previous log-rank-based splitting functions, we propose and investigate a splitting

rule based on a newly proposed R2 prediction measure (Li and Wang, 2016) for a nonlinear model and for

right-censored survival data. The major reasons why we want to use the R2 statistic instead of other similar

measures for tree nodes splitting are threefold. First, this statistic reduces to the classical coefficient of

determination when no censoring is present. Second, this statistic is a consistent estimate of the non-

parametric coefficient of determination when the prediction is the conditional mean response based on a

correctly specified model. Third, the R2 statistic is applicable to a wide variety of event time models with

right-censored data and there is no requirement for the model to be correctly specified (Li and Wang, 2016).

The rest of the article is organized as follows. Section 2 describes the preliminaries and the proposed

R-squared survival forest with splitting functions based on the R2 statistic. In Section 3, the performance of

R-squared survival forest is illustrated through analyzing real well-known benchmark data sets. Section 4

concludes the article and provides further research directions.

2. METHODS

In this section, we first give a short introduction of survival trees and then we describe a tree splitting

function based on the R2 statistic. Later on, we shall develop an ensemble of R-squared survival trees within

the RSF framework.

2.1. Survival trees

A survival tree is a hierarchical model composed of discriminant functions, or splitting rules, that are

applied recursively to partition the covariate space of a data set into pure covariate subspaces (Gordon and

Olshen, 1985). As stated earlier, training of a survival tree involves two main steps: the growing step and

the pruning step.

In the growing step, at each internal node, a certain splitting function is used to evaluate and compare all

possible partition values for all covariates. The best partition value that maximizes between-node het-

erogeneity or minimizes within-node homogeneity is selected to split the samples at the current node into

two child nodes. This process continues until some stopping conditions, such as the node samples are

homogeneous or a minimum sample count is reached, are met.

In the pruning step, the algorithm removes the overfitting decision rules based on the prediction errors on

an independent validation data. When related decision rules are removed, the associated internal nodes are

replaced with leaf nodes. A smaller and more accurate tree is thereby obtained and the complexity of the

tree model is reduced.

As stated in Breiman (2001) and Ishwaran et al. (2008), trees in random forest and RSF are usually

grown without pruning. Thus, in this article, we only focus on the growing step wherein tree nodes are split

recursively according to a certain splitting rule.
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2.2. A splitting rule based on the R2 statistic

Assume we have a censored survival data set of size n. Denote the true survival time by a continuous

random variable Y and the censoring time by a continuous variable C. However, the observed time s is

usually not fully observed, s = min(Y‚ C). d = I(Y � C) is the censoring indicator, where d = 1 represents the

observation is an event and d = 0 represents the observation is censored. Let X = (X1‚ X2‚ � � � ‚ Xp) denote a

p-dimensional covariate vector and D be the data set containing n independent and identically distributed

observations sampled from (X‚ s‚ d), namely D = (Xi‚ si‚ di)‚ i = 1‚ 2‚ � � � ‚ n.

The proposed algorithm partitions each internal node on the basis of the R2 statistic. Specifically, for a

node t of k observations, the censoring weight is defined by

wi =
di

Ĝ(si - )Pk
j = 1

dj

Ĝ(sj - )

‚ i = 1‚ . . . ‚ k‚ (1)

where Ĝ is the Kaplan–Meier estimate (Kaplan and Meier, 1958) of G(c) = P(C > c). And for a covariate Xi

with a split value s, define the indicator variable by X�ij(s) = I(Xij � s)‚ j = 1‚ � � � ‚ k: Let �s(w) =
Pk
j = 1

wisi. The

proposed R2 splitting statistic is based on

R2 =

Pk
j = 1

wj m(wc)

ĥ
(X�ij(s)) - �s(w)

n o2

Pk
j = 1

wj sj - �s(w)
� �2

‚ (2)

where m(wc)

ĥ
(X�ij(s)) is the fitted regression function from the weighted least squares linear regression of

s1‚ . . . ‚ sk on X�i1(s)‚ � � �X�ik(s) with weight W = diagfw1‚ . . . ‚ wkg as defined by Li and Wang (2016). Our

task is then to find the optimal splitting variable and the corresponding split point that has the largest R2

statistic from the possible binary splits defined by all available covariates at node t.

2.3. R-squared random survival forest

The proposed R-squared random survival forest (R2RSF) algorithm can be described as follows:

1. Draw ntree bootstrap samples of size n from the training set D, where ntree is a user-specified parameter

indicating the size of a survival forest.

2. For each of the bootstrap samples, grow an unpruned R-squared survival tree such as:

(a) At each node, randomly select mtry out of p covariates as candidate split variables and mtry is

usually set to
ffiffiffi
p
p

.

(b) Calculate the R2 statistic already defined for each possible split of each candidate split variable.

(c) Find the best split point and the corresponding covariate that has the maximum R2 value among

all candidate splits. Then, partition the current node into two child nodes accordingly.

(d) Continue tree growing until some stopping criteria are satisfied, for example, a minimum terminal

node size is reached.

(e) Calculate the hazard function of each terminal node in the tree through the Nelson-Aalen

estimator. Consider a specific node h. If the training observations in the node h are represented

as Dh = (Xi‚ si‚ di)‚ i = 1‚ 2‚ . . . ‚ nh. Let s1‚ h < s2‚ h < � � � < snh‚ h be the nh distinct event times.

Then, the CHF for h is given by

Ĥh(s) =
X
sl‚ h�s

dl‚ h

Yl‚ h

‚ (3)

where dl‚ h and Yl‚ h are the number of deaths and individuals at risk at time sl‚ h. It is obvious that all

observations within the same terminal node have the same CHF.

3. Calculate an ensemble cumulative hazard estimate by combining information from all the ntree trees

in the survival forest.

4. To predict the CHF of a new observation v, we drop its covariates vnew down each survival tree within

the forest. Owing to the survival tree’s binary nature, v will fall into a unique terminal node h� of each
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tree. Hence, the CHF prediction from a single tree is Ĥ(sjvnew) = Ĥ�h (s) and the ensemble CHF for v is

the average of all values of CHF over ntree survival trees.

3. RESULTS AND DISCUSSION

In this section, we first describe the data sets used in the experiments and then we present the perfor-

mance metrics and statistical tests we have adopted. Finally, we give and discuss the experimental results.

3.1. Data sets

To show the effectiveness of the proposed R2RSF model, we consider various benchmark data sets that

have been extensively analyzed in the statistical literature. All of these 12 data sets are from respective R

packages on the CRAN repository (R Core Team, 2016). These data sets include fields of study covering

mainly breast cancer, lung cancer, colon cancer, squamous carcinoma, primary biliary cirrhosis, chronic

myelogenous leukemia, and drug abuse. The amount of censored data for each data set varies, ranging from

a lowest censoring rate of 7% to a highest rate of 86%.

Table 1 shows the characteristics of the 12 data sets used in the experiments.

3.2. Performance metric and statistical tests

In this study, Harrell’s concordance index (C-index or C-statistic) (Harrell et al., 1996) is employed to

evaluate the predictive performance of a survival model for it is the most common discrimination metric in

survival analysis (Ishwaran et al., 2008; McGeechan et al., 2008; Tripepi et al., 2010; Schmid et al., 2016).

The C-index metric is popular as it can account for the whole range of observed survival times and is also

easy to calculate and interpret (Schmid and Potapov, 2012). The C-index takes the following form:

C - index =

P
i‚ j2O

Ifŝi < ŝjg + 0:5 · Ifŝi = ŝjg

jOj ‚ (4)

where I is an indicator function and ŝi‚ ŝj stands for the predicted survival probabilities of patients i and j,

respectively. And O is the set of all pairs of patients fi‚ jg who satisfy one of the following conditions: (a)

both patients experienced an event and the corresponding true survival times si < sj and in case si = sj we

count it as an half pair; (b) only patient i experienced an event and si < sj.

Note that C-index = 1 indicates the model has a perfect prediction, and C-index = 0.5 implies that the model is

as good as a random predictor. Usually, a larger C-index implies a better performance of the model.

To test whether a model performs significantly better than other models, we use two types of statistic tests:

the nonparametric Friedman test and the Nemenyi post hoc test (Demšar, 2006). If the p-value of the Friedman

test is less than a threshold (say, 0.05), the null hypothesis that there is no significant difference among the

compared survival models can be rejected and a Nemenyi post hoc test can be adopted to find where the

Table 1. Descriptions of the Data sets

Data set Sample size No. of covariates Censoring rate (%) Source R package

Burn 154 15 69 iBST

CML 507 5 21 multcomp

Colon 1776 12 51 survival

GBSG 686 8 56 mfp

Lung 167 8 28 survival

NWTCO 4028 5 86 survival

PBC 276 17 60 randomForestSRC

Pharynx 195 10 27 invGauss

Stagec 134 6 64 rpart

UIS 575 9 19 prLogistic

Veteran 137 6 7 survival

WPBC 194 32 76 TH.data
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differences lie. In this study, ‘‘friedman.test’’ function from the R ‘‘stat’’ package (R Core Team, 2016) and

the ‘‘posthoc.friedman.nemenyi.test’’ function from the R ‘‘PMCMR’’ package (Pohlert, 2014) are applied.

3.3. Experimental results

As suggested by Dietterich (1998), we assess the performance of the proposed algorithm using 5 · 2 folds

cross-validation. In 5 · 2 folds cross-validation, we randomly divide the training data into two equal-sized

blocks. We then train the model on the first block and evaluate the performance on the second block, followed

by training on the second block and evaluating on the first block. This process is repeated five times.

Hence, the reported performance in the following is based on 5 · 2 folds cross-validation results of the

proposed and other methods.

3.3.1. Experimental settings. The proposed R2RSF is implemented within the framework of the

‘‘ranger’’ R package (Wright and Ziegler, 2017). Here, we compare R2RSF with five popular survival

models. The first three models are RSF (Ishwaran et al., 2008) with different splitting rules: RSF with log-

rank rule (RSFL), RSF with log-rank score rule (RSFLS), and RSF with C-index rule (RSFCI) (Wright and

Ziegler, 2017). The fourth model is a generalized boosted model (GBM) (Ridgeway, 2004). And the fifth

model is Cox proportional hazard (Cox) model (David, 1972) and comparisons with these models are

conducted with corresponding ‘‘randomForestSRC,’’ ‘‘ranger,’’ ‘‘gbm,’’ and ‘‘survival’’ packages in R. For

the ease of notation, survival models R2RSF, RSFL, RSFLS, RSFCI, GBM, and Cox are denoted by A, B,

C, D, E, and F, respectively, when necessary.

In the experiments, we want all survival models to have the same opportunities to achieve the best

results, thus the default settings are adopted. For ensemble methods, that is, R2RSF, RSFL, RSFLS, RSFCI,

and GBM, 500 trees are built.

3.3.2. Performance comparison results and discussions. The following Figure 1 reports the

performance of R2RSF, RSFL, RSFLS, RSFCI, GBM, and Cox in terms of C-index on all data sets.

From Figure 1, one may observe that the proposed R2RSF method generally outperforms other methods

on GBSG, Veteran, CML, PBC, Pharynx, and WPBC data sets. And on these data sets, Cox usually gets the

FIG. 1. Boxplots of performance in terms of C-index.

392 WANG ET AL.



worst results. This might be the situation where the proportional hazard assumption underlying Cox is

violated or the parametric or semiparametric function form is not correctly specified.

From Figure 1, one may also observe that Cox generally performs better than survival forest models on

Burn, Lung, NWTCO, and Stagec data sets. This might be the case wherein the proportional hazard

assumption is almost satisfied. In this case, R2RSF is slightly worse than Cox but usually outperforms other

survival forest models.

The Friedman rank sum test statistic on these data sets is 63.096 and it is significant as the corresponding

p-value is less than 2.781e-12. Thus, to find out which pairs of models are significantly different, we can

compute the Nemenyi test statistics for different pairs of survival methods. Here, we are only concerned

with relative performance of the proposed model (A), and thus only Nemenyi test statistics related to model

A are calculated.

The corresponding post hoc Nemenyi test results are shown in the following Table 2.

It can be seen from Table 2 that all these p-values are far <0.05. Thus, in terms of C-index, there exist

significant differences between R2RSF and the other three algorithms on these data sets. In other words,

based on the results on all these 12 data sets, R2RSF is significantly better than RSFL, RSFLS, RSFCI,

GBM, and Cox in terms of C-index metric.

4. CONCLUSIONS

In modeling censored data, survival forest methods are a competitive nonparametric alternative to

traditional parametric or semiparametric models when the functional forms are possibly misspecified or the

underlying assumptions are violated.

In this work, we have proposed a survival forest approach with trees constructed using the R2 splitting

rules. By studying the well-known benchmark data sets, we have found that R2RSF generally outperforms

popular survival models such as RSF with log-rank, log-rank score, and C-index splitting rules, Cox

proportional hazard model, and GBM in terms of C-index metric. We have also found that the proposed R2

splitting rule tends to outperform log-rank, log-rank score, or C-index splitting criteria when the propor-

tional hazard assumption possibly holds.

It is clear that other kinds of nonparametric, semiparametric, and parametric splitting functions are

available, but the goal here is to illustrate some key features of the proposed method and not to provide an

exhaustive comparison across all splitting methods.

The R package and the supplementary material are available at (https://github.com/whcsu/r2rsf). The

proposed algorithm still has room for improvement. First, in calculating the R2 statistic, the censoring

weight is simply determined by the Kaplan–Meier estimator. Other inverse probability censoring weight

schemes, such as a doubly robust extension proposed by Steingrimsson et al. (2016), might be more

appropriate in certain conditions. Second, to obtain m(wc)

ĥ
(X�ij(s)) in Equation (2), we just set

mĥ(X�ij(s)) = X�ij(s) for simplicity. We can further test other linear or nonlinear models to estimate mĥ(X�ij(s))

as well.
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