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ABSTRACT

Enormous databases of short-read RNA-seq experiments such as the NIH Sequencing Read
Archive are now available. These databases could answer many questions about condition-
specific expression or population variation, and this resource is only going to grow over time.
However, these collections remain difficult to use due to the inability to search for a particular
expressed sequence. Although some progress has been made on this problem, it is still not
feasible to search collections of hundreds of terabytes of short-read sequencing experiments.
We introduce an indexing scheme called split sequence bloom trees (SSBTs) to support
sequence-based querying of terabyte scale collections of thousands of short-read sequencing
experiments. SSBT is an improvement over the sequence bloom tree (SBT) data structure for
the same task. We apply SSBTs to the problem of finding conditions under which query
transcripts are expressed. Our experiments are conducted on a set of 2652 publicly available
RNA-seq experiments for the breast, blood, and brain tissues. We demonstrate that this SSBT
index can be queried for a 1000 nt sequence in <4 minutes using a single thread and can be
stored in just 39 GB, a fivefold improvement in search and storage costs compared with SBT.

Keywords: data indexing, RNA-seq, sequence bloom trees, sequence search.

1. INTRODUCTION

An enormous amount of DNA and RNA short read sequence data has been published worldwide. The

NIH Sequence Read Archive (SRA) (Leinonen et al., 2011) alone contains almost six petabases of open-

access sequence and continues to grow at an accelerating rate. This collection could be a great resource for

understanding genetic variation, and condition- and disease-specific gene function in ways the original

depositors of the data did not anticipate. For example, a natural use would be to search all public, human

RNA-seq short-read files in the SRA (representing individual sequencing runs) for the presence of a particular

transcript of interest to understand where and when it is expressed or to select a manageable subset of

experiments for further analysis. However, searching the entirety of such a database for a query sequence has

not been possible in reasonable computational time.

Some progress has been made toward enabling sequence search on large databases. The NIH SRA does

provide a sequence search functionality (Camacho et al., 2009); however, it requires the selection of a small
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number of experiments to which to restrict the search. Existing full-text indexing data structures such as

Burrows–Wheeler transform (Burrows and Wheeler, 1994), FM-index (Ferragina and Manzini, 2005), or

others (Grossi and Vitter, 2005; Navarro and Mäkinen, 2007; Grossi et al., 2011) cannot at present be

efficiently built at this scale. Word-based indices (Navarro et al., 2000; Ziviani et al., 2000), such as those

used by Internet search engines, are not appropriate for edit distance-based biological sequence search. The

sequence-specific solutions caBLAST and its variants (Loh et al., 2012; Daniels et al., 2013; Yu et al.,

2015) require an index of known genomes, genes, or proteins, and so cannot search for novel sequences in

unassembled read sets. Furthermore, all of these existing approaches do not handle the additional com-

plication that a match to a query sequence q may span many short reads.

More recently, two methods have been developed that store the kmer content of a set of experiments in a

directly searchable index. The sequence bloom tree (SBT) (Solomon and Kingsford, 2016) encodes an

approximation of each experiment’s kmer content in a single bloom filter and builds a directly searchable

binary tree of bloom filters over increasingly large subsets of the data. Queries are processed by looking up

each kmer in a query for their presence or absence in the tree and recursing until all matching leaves have

been found. It represents the current best method for searching a large database but cannot handle petabase

scale data. The bloom filter trie (BFT) (Holley et al., 2016) was designed as a direct compression method

for a pan-genome and provides an exact index of kmer content that can be queried.

We address the search problem of finding all the experiments that contain enough reads matching a given

query sequence to indicate that it was present in the experiment. A query is an arbitrary sequence such as a

transcript, and we find the collection of short-read experiments in which that sequence is present. These

estimates themselves could be used to analyze conditions of gene expression or could make downstream

analysis more efficient by filtering a large database for the relevant files. The SBT was the first data

structure to directly address this problem and could search a 5 terabase data set in <20 minutes using a 200

GB index. We modify the base structure of SBT with a new indexing data structure called split sequence

bloom tree (SSBT). SSBT ‘‘splits’’ the bloom filters present in an SBT into two distinct filters that store

unique subsets of the base filter as described in Section 2.1. In addition to this novel storage strategy, the

SSBT method introduces the concept of a ‘‘noninformative bit’’ (Section 2.3) and uses a more efficient

query algorithm that can prune query indices when universal matches or mismatches are found in a subtree

(Section 2.5). These novel elements are the basis of the space and time improvements described hereunder.

SSBT also extends a number of important properties found in SBT. Like SBT, SSBT is independent of the

eventual queries, so the approach is not limited to searching only for known genes, but can potentially identify

arbitrary sequences. SSBTs can be efficiently built, extended, and stored in limited space and do not require

retaining the original sequence files to process queries. Using SSBTs, data sets can be searched using low

memory for the existence of arbitrary query sequences. We compared SSBT against BFT and SBT and found

that it outperforms in terms of both query time (5 times faster than SBT and 15 times faster than BFT) and

storage cost, at the price of some additional time and temporary storage needed to construct the index.

2. METHODS

2.1. Split sequence bloom tree

The main idea behind SSBT is the creation of a hierarchy of compressed bloom filters (Bloom, 1970;

Broder and Mitzenmacher, 2005), which is used to efficiently store a set of experiments, each consisting

of many short reads (Fig. 1). A bloom filter is a probabilistic storage structure that encodes an arbitrary set

into a fixed length bit vector using hash functions. As in the SBT, each bloom filter here encodes the set of

k-mers (length—k subsequences) present within a subset of the sequencing experiments and is stored using

hash functions that convert these kmers to a specific index on the filter. We denote the kmer content of each

experiment i by the set bi, with the collection B = fbij0 � i < ng denoting a set of n experiments re-

presented by their kmer content. Throughout, we abuse notation slightly to identify bloom filters with the

sets they represent.

An SSBT is a binary tree that stores each bi in B across a unique path from root to leaf with each leaf

mapping to a single experiment. This is a change from the SBT, which stores each bi in B both as a unique

leaf and in each node from root to leaf. The root node r of an SSBT contains the total content of each bi and

stores this information using two identically sized bloom filters using the same hash function; we define the

pair of bloom filters at a node as a single ‘‘split bloom filter.’’ The first filter, the similarity filter, stores the
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universally expressed kmers in set B. The second filter, the remainder filter, stores the remaining kmers—

those kmers in B that are not universally expressed but exist in at least one experiment.

More specifically, for a given node r containing n experiments in its subtree, we define the similarity

filter, rsim =
Tn - 1

i = 0 bi, as the intersection of all bi in B. We define the remainder filter, rrem =
Sn - 1

i = 0 (bi - rsim),

as the bloom filter that stores the remaining kmers—those in the union of all bi excluding those found in the

similarity vector. By this definition, the bitwise union of rsim and rrem is equivalent to a single bloom filter that

stores all bi in B. Furthermore, the bitwise intersection of rsim and rrem is the empty set. Different kmers in B may

hash to the same position in rsim. Because of this, additional ‘‘similarity’’ may be found by random chance when

hashing kmers. The inverse (identical kmers mapping to different positions) is not possible in a bloom filter.

Given the root r, only the kmers that are stored in rrem are then passed to the children. In this way r’s

immediate children do not store the full set bi but rather the modified b0i = (bi - rsim). This sparsification

continues from root to leaf with b00i = (b0i - r0sim) and more generally takes the form of a recurrence relationship

b(d)0

i = b(d - 1)0

i - r(d - 1)0

sim for the depth d node on an arbitrary path from root to leaf. A leaf at depth d stores b(d)0

i in

its sim filter. The leaf’s rem filter is defined as b(d)0

i - b(d)0

i , which is the empty set. We can recover the original set

of kmers for each experiment by following the unique path from root to leaf and computing bi =
Sd

j = 0 r
(j)0

sim.

2.2. Split sequence bloom tree construction and insertion

An SSBT inherits the same general build process as an SBT and is built by repeated insertion of

sequencing experiments followed by the removal of all so-called noninformative bits from each filter. We

first describe the process to insert an experiment; Section 2.3 defines noninformative bits. Given an

(possibly empty) SSBT T, a new sequencing experiment s can be inserted into T by first computing the

fixed-length bloom filter bs of the kmers present in s and then walking from the root along a path to the

leaves and inserting s at the bottom of T in the following way. When at node u, if u has children, bs has to be

split between usim and urem. This is done through the bit updates defined in Table 1 for each bit index i in

0 � i < jbsj. These updates ensure that u correctly stores what is still universally similar in usim and what

now exists below u in the tree with urem and that bs has been updated to store similar elements at u.

a

b

FIG. 1. Example uncompressed and compressed SSBT. Black corresponds to a bit value of ‘‘1’’ and white corresponds to

a bit value of ‘‘0.’’ (a) Gray bits correspond to noninformative bits whose value is known (always 0) given a parent filter. We

see that gray bits are cumulative and exist at all index positions below a ‘‘1’’ in the sim filter or a ‘‘0’’ in the rem filter. When

looking up index value 5, each filter is queried until either a sim ‘‘1’’ is found or a rem ‘‘0’’ is found. This search is

represented by the blue outlined square. (b) All noninformative bits have been removed from the uncompressed tree (RRR

does not change the bit values and is not represented in the figure). The lookup for index value 5 is adjusted based on the

removed noninformative bits. SSBT, split sequence bloom tree.
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The potentially modified bs is then compared against each child c of u to find the ‘‘most similar’’ child.

This greedy insertion strategy attempts to maximize the similarity in a branch to produce the smallest SSBT

with the most efficient branch pruning. Although we tested many similarity metrics for comparing a single

filter b(s) with a split filter (csim‚ crem), the metric used in the experiments reported hereunder chooses the

child with the largest number of shared 1-bits between csim and bs. If no child has any 1-bits in common

with bs, the metric then selects the child with the smallest Hamming distance between bs and crem(s). The

most similar child then becomes the new current node, and the process is repeated with a new subtree. If u

has no children, then u represents a sequencing experiment s0 and only contains one vector usim. In this case,

a new node v is created as a child of u’s parent with u and bs as v’s children. As both u = usim and bs are

leaves, vsim is the bit intersection of u and bs, whereas vrem is the bit union of u - vsim and bs - vsim. Finally,

we remove the elements in this new parent node from both children by replacing u with u - vsim and bs with

bs - vsim. This yields an uncompressed SSBT containing all previous nodes and two new nodes v and bs.

2.3. Noninformative bits in split sequence bloom tree

Given the definition of SSBT’s split filters already described, for an arbitrary node u the only values

allowed at a particular index i are (usim[i]‚ urem[i]) = (1‚ 0)‚ (0‚ 1)‚ (0‚ 0). However, every index is re-

presented using a bit from either filter, even when one filter’s value clearly defines the other. We address

this inefficiency by removing these ‘‘noninformative bits’’ from the tree. We define a noninformative bit as

a bit index i present in node u whose value can be determined by examining the bloom filters present in the

set of parent filters above u. We describe the cases of noninformativity in SSBT hereunder and provide an

example in Figure 1:

(1) For a bit index i, if urem[i] = 0, then for every descendant c of u, csim[i] = crem[i] = 0 and i is non-

informative below u. This is a direct result of the definition of urem as the union of all children below

it.

(2) For a bit index i, if usim[i] = 1 then urem[i] = 0 and urem[i] is noninformative. This is a result of the fact

that the rem filter only contains the elements thaat are not stored in the sim filter.

(3) For a bit index i, if usim[i] = 1 then for every descendent c of u, csim[i] = crem[i] = 0 and i is non-

informative below u. This is a consequence of applying (1) to (2).

Using these cases, we can remove all noninformative bits from urem given usim, and we can remove all

noninformative bits from u’s immediate children using both usim and urem. As bits are only ever removed,

for a node u and its child c, jcremj � jcsimj � juremj � jusimj. These removed bits lead to size reductions for

all subsequent filters. SSBTs are most efficient when there is a large amount of uniformity in the exper-

iments being stored at u in terms of either uniform expression of kmers or uniform absence of any kmer

hashing to a particular bit.

Table 1. Bit Update Table When Inserting b(s)

into the Subtree Rooted at u

Before After

usim urem b(s) usim urem b(s) csim

(i) 1 0 1 — — 0 —

(ii) 1 0 0 0 1 — 1

(iii) 0 1 1 — — — —

(iv) 0 1 0 — — — —

(v) 0 0 1 — 1 — —

(vi) 0 0 0 — — — —

u’s two immediate children are both updated with the single column csim. A value

of ‘‘—’’ implies that no change needs to be made to that bit. (i) b(s) contains a value

already stored in usim, the value is removed from b(s). (ii) b(s) does not contain a

value stored in usim. Although the bit is no longer similar at u, b(s) has not yet been

inserted into a child and all current children of u are universally similar at this

location. (v) b(s) contains a value not found in the tree. urem is updated to reflect that

the value now exists. (iii, iv, vi) No changes need to be made.
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2.4. Split sequence bloom tree compression

Given an uncompressed SSBT T with bloom filters of fixed length m and conserved hash function, we build

a compressed SSBT T 0 by removing all noninformative bits (defined in Section 2.3) from T and compressing

the variable length filters using Raman-Raman-Rao (RRR) compression (Raman et al., 2002). After removing

noninformative bits from vector u, we obtain a smaller vector u0. The total number of informative bits in usim

and urem, as well as their indices, can be determined using two filters: u’s immediate parent’s rem filter,

p(u)rem, and usim. We define rankx(u)[j] to be the number of bits set to x in the bit vector u from index

0 � i < j. We compute this value in O( log log d) time for a vector of size b = Ø log dø by storing extra bits as

described as part of the 64-bit rank9 function (Vigna, 2008) and implemented in the C++ package sdsl (Gog

et al., 2014). For vectors of size 2256 bits or less, this can be considered a near-constant time method.

Given p(u)rem, the only informative bits in usim are those i for which p(u)rem[i] = 1 and ju0simj =m -
rank0(p(u)rem)[m] = rank1(p(u)rem)[m]. Likewise given usim, the only informative bits in urem are those i in

which both usim[i] = 0 and p(u)rem[i] = 1 and ju0remj = m - rank0(p(u)rem)[m] - rank1(usim)[m]. At each i, the

values in p(u)rem[i] and usim[i] determine whether i is informative. If i is informative, it is appended to the next

position in u0sim and/or u0rem. Subsequently, u0 is compressed through the RRR (Raman et al., 2002) compression

scheme, which allows querying a bit without decompression and incurs only an O( log m) factor increase in

access time (where m is the size of the bloom filter with noninformative bits removed). This process operates

for every node in the tree, starting with the root node T that has a full length T 0sim because it has no parent. See

Figure 1 for an example of the compression step.

2.5. Split sequence bloom tree querying

Given a query sequence q and a compressed SSBT T, the sequencing experiments that contain q can be

found by breaking q into its constituent set of kmers Kq and then flowing these kmers over T starting from

the root. In an SSBT, these kmers are organized into a set of unique kmers and immediately converted into

a vector of filter indices Vq = Hash(Kq) using the hash functions defined by T’s root’s sim filter. At the root

node u, we query first usim for each index in Vq. Matches in usim are recorded as ‘‘universal hits’’ since they

are found in intersection of all experiments rooted beneath u. The count of all universal hits represents a

lower bound on the number of matching kmers in all experiments rooted below u. Indices that are universal

hits do not have to be queried further and are removed from the set—the sum of these hits records their

presence at all children of u. The remaining indices that were not found in usim are then queried in urem. As

jusimj � juremj, this query is accomplished by adjusting all indices Vi 2 Vq to account for the noninformative

bits that were removed. As we have already converted kmers to hash values, we transition from usim to urem

by subtracting the number of 1-bits that occurred before Vi in usim. This is simply the rank1(usim)[Vi], a

property of a bit vector that can be computed in constant time using RRR-compressed vectors.

Each modified index can then be queried in urem. Indices that map to 0-bits do not have to be queried

further as they do not exist in any child to u. Indices that map to 1-bits are potential hits that belong to at least

one child below u but not all. By adding the number of potential hits in urem with the number of universal hits

found in usim, an upper bound on the number of matching kmers is determined for each query. If, for a user-

specified cutoff h 2 [0‚ 1], this count is less than hjVqj, then the query cannot exist in this subtree and the

subtree is not searched further (it is pruned). If there exist hjVqj or more universal matches, every child

beneath u is a query hit and the tree also does not have to be searched further. Only in the case where the

count is greater than hjVqj but not enough universal matches have been found do we have to proceed to u’s

children. To transition each index from node u to child node c, each index has to be further adjusted by the

number of 0-bits in urem. Once again, this can be calculated in constant time using rank0(urem)[Vi]. By

repeating this process down through the tree, SSBT efficiently prunes branches that cannot contain the query,

prunes queries that are known to exist in all children, and maintains a consistent hash function across a

variable length set of compressed filters. After searching or pruning every branch, the set of leaves that

contain the query are then returned. An example of this query process can be found in Figure 1.

Using this process, not all query indices are searched at each node in the tree. All indices are initially

searched in an ‘‘active’’ state but may be pruned to ‘‘inactive’’ if a universal match or mismatch is found. To

prevent having to store a unique query set for every node in the tree, we stored Vq only once outside of the

SSBT structure and developed a reversible means of activating or deactivating an index, as well as reversing

changes made to the index value when descending the tree. Given a vector of indices Vq, we define a single

integer—the tail-index—to be the position along the Vq vector that contains the last ‘‘active’’ query index.
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This tail-index is initialized to the final value in Vq and queries that are ‘‘deactivated’’ simply swap positions

with the tail-index, and the tail-index is decremented by 1. In such a way, we store the full set of indices but

only query those indices up to and including the tail-index. By storing the tail-index present in each node (a

cost of a single integer per node), we can restore all queries that were active at that node. Because the tail-

index defines both the pivot between ‘‘active’’ and ‘‘inactive’’ and the swap position for deactivating an

index, the order in the vector records the order of deactivation. Because of this, any index that was ‘‘active’’

for an arbitrary node u with tail-index k will always be among the first k indices in Vq and can be reactivated

as the tree traversal pops back up the tree. Thus using the tail-index, we can exactly store the unique set of

indices that need to be searched at any node using only a single vector and an integer at each node.

‘‘Active’’ indices in Vq also have their values adjusted at each step to match the change in size between

usim and urem and between u and u’s children. Given an index position irem that maps to urem, we can

reconstruct the index position isim that maps to usim by looking up the irem-th informative bit in usim. As

usim = 1 defines noninformativity, we simply find the irem-th 0 in usim. This can be done using the

selectx(u)[j] operation, which is defined to be the index position of the j-th bit set to x in the bit vector u. For

an RRR-compressed vector, select0(usim)[irem] can be computed in O( log m) time for a length m vector.

Likewise, given an index position jsim mapping to an arbitrary child node of u, csim, we can recover the

index position irem mapping to urem by finding the jsim-th informative bit in urem. As urem = 0 defines

noninformativity, we simply find the jsim-th 1 in urem. For an RRR-compressed vector, this can be computed

in O( log m) time for a length m vector using the select1(urem)[jsim] operation. Thus, using just the rank and

select operations implicit to an RRR-compressed vector, we can recover any index position at any node

given a position along the SSBT and the SSBT split bloom filters themselves.

2.6. Accuracy

SSBT builds off of the base bloom filters used in SBT and encodes the same information found in the

leaves of an SBT. The innovations introduced here improve upon the efficiency of that encoding and provide

additional information to facilitate rapid search but an SSBT will always yield an identical set of results as

SBT. As it has been shown that kmer similarity is highly correlated to the quality of the alignments between

sequences (Rasmussen et al., 2006; Philippe et al., 2013; Zhang et al., 2014; Brown et al., 2015), and SBT has

previously determined the accuracy of this metric (Solomon and Kingsford, 2016), we did not investigate the

accuracy of SSBT, which is the same as SBT, further here. One can think of SSBT as a lossless compression

and reorganization scheme on SBTs that operates before RRR-compression.

3. RESULTS

3.1. Data and hardware

We used a set of 2652 human, RNA-seq short-read runs from the NIH SRA (Leinonen et al., 2011). At the

time of download, these files consisted of the entire set of publicly available, human RNA-seq runs from

blood, brain, and breast tissues stored at the SRA (as determined by keywords in their metadata and excluding

files sequenced using the SOLiD technology). This data set has a total size of 5 TB of raw SRA data or 2.7 TB

of gzipped fasta sequences. The 50 files for the comparison with BFT were chosen at random from this set

and have a total size of 49 GB of gzipped fasta sequences. Kmer counts were computed using the Jellyfish 2.0

library for SBT and SSBT and KMC 2.0 for BFT. Jellyfish counts were constructed using the SBT ‘‘count’’

command using an expected kmer set size of 2 · 109 and a single hash function. All times in these experi-

ments were obtained on a shared computer with 16 Intel Xeon 2.60 GHz cores using a single thread. BFT was

run using default options with a compression constant of 50. SBT and SSBT use a kmer size of 20, whereas

BFT was built using a kmer size of 18 as it only allows kmer lengths that are multiples of 9.

3.2. Evaluation on build time and storage cost

We compared the construction costs associated between SBT version 0.3.5, SSBT version 0.1, and BFT

version 0.8.1 by measuring their respective build time, maximum memory cost during construction, and

storage cost of the resulting 100 experiment index. SBT and SSBT’s RAM loads are controlled by setting

the maximum number of filters allowed to be loaded simultaneously. We manually adjusted these values to

be roughly equivalent to BFT by setting SBT’s maximum in-memory filter load to 100 nodes, with a
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measured peak RAM of 24.2 GB, and SSBT was limited to 30 in-memory nodes, with a measured peak

RAM of 16.2 GB. This is in line with our expectations that an uncompressed SSBT internal node is roughly

twice as large as an SBT node and requires a more complicated build process. In addition, as BFT uses a

different kmer counting tool (KMC2 vs. Jellyfish), the build time records only the time required to construct

an index from a precomputed set of kmer counts. These results, which are summarized in Tables 2 and 3,

indicate that BFT takes 11 times longer to build than the combined time to build and compress an SBT and

yields an index over three times larger. Similarly SSBT builds and compresses 3.8 times faster than BFT

and yields a directly searchable index with less than 1/13th the total storage cost. We note that this is not a

strictly apples-to-apples comparison as BFT exactly encodes the kmer set for each experiment, whereas

SBT and SSBT are approximate indices with a high false positive for any one kmer.

We also performed a large scale analysis between SBT and SSBT using the full 2652 experiment set.

Both SBT and SSBT were run with a maximum of 100 tree nodes in memory, with a peak memory of

roughly 24 and 48 GB, respectively. The results from this analysis are summarized in Table 4 and show that

Table 3. Build and Compression Times for Sequence

Bloom Tree, Split Sequence Bloom Tree, and Bloom

Filter Trie Constructed from a 50 Experiment Set

Data index BFT SBT SSBT

Build time (minutes) 137 6 19

Compression time (minutes) — 6.5 17

Total time (minutes) 137 12.5 36

As SBT and SSBT were designed to be queried from a compressed state,

we compare the time to build and compress against BFT’s time to build.

Table 4. Build Statistics for Sequence Bloom

Tree and Split Sequence Bloom Tree

Constructed from a 2652 Experiment Set

Data index SBT Split SBT

Build time (hours) 18 78

Compression time (hours) 17 19

Uncompressed size (GB) 1295 1853

Compressed size (GB) 200 39.7

The sizes are the total disk space required to store a bloom

tree before or after compression. In SSBT’s case, this

compression includes the removal of noninformative bits.

The bold values represent the on-disk storage cost for a

complete, searchable tree.

Table 2. Build and Compression Peak RAM Loads

and On-disk Storage Costs for Sequence Bloom Tree,

Split Sequence Bloom Tree, and Bloom Filter Trie

Constructed from a 50 Experiment Set

Data index BFT SBT SSBT

Build peak RAM (GB) 21.2 21.5 15.6

Compress peak RAM (GB) — 24.2 16.2

Uncompressed size (GB) — 24 35

Compressed size (GB) 13 3.9 0.94

As BFT’s built-in compression tool is a core part of its build process,

we report only a single value for RAM and final size for BFT.

BFT, bloom filter trie; SBT, sequence bloom tree; SSBT, split

sequence bloom tree.
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SSBT is still roughly three times slower to build and compress than the SBT. We note that the large scale

SSBT is much less efficient to build, whereas much more efficient to compress than the small scale test.

We hypothesize that the more complex construction scheme, as well as the storage costs associated

with storing two bloom filters in each internal node, scales poorly with database size and negatively

impacts the build time. Meanwhile, the improvements in compression time are primarily a consequence

of the noninformative bits. Specifically, as these noninformative bits do not need to be compressed and

are cumulative, it becomes increasingly efficient to compress filters as one descends the tree. This has a

much more significant effect at large scales wherein the accumulation of noninformative bits at low

depths affects a greater number of nodes. In addition, we predict that there should be more non-

informative bits overall given a larger population of experiments organized to maximize similarity in

each subtree. This is supported by the fact that the average size of a compressed leaf filter is smaller in

the large scale SSBT than the small scale SSBT, implying that more bits were removed on average from

each individual experiment.

Although the ratio of build times remained roughly the same, the SSBT is demonstrably more efficient

to store at large scales, yielding a fivefold reduction in overall size. As the indices only need to be built

once (and can be incrementally built from the uncompressed state), the SSBT is a superior choice when

there is sufficient hardware support for its larger uncompressed size. We further note that even this size

(1853 GB) is significantly smaller than the raw data, that this size includes the bloom filter representation

of every experiment, and that the raw data are not needed during the search once the bloom filter is

constructed.

3.3. Evaluation of the query time

We evaluated the efficiency of queries in SBT, SSBT, and BFT on three sets of 100 queries. To build

each query set, we estimated the expression profiles of all 50 experiments used in the small scale indices

using Sailfish (Patro et al., 2014). We then randomly sampled transcripts that were expressed at transcripts

per million (TPM) values at or more than 100, 500, or 1000 in at least one of those files to build three query

sets of 100 queries each. Each query was run individually for each tool and the file system cache was

emptied at the end of each run to ensure that the average time is an accurate representation of query

behavior. The results are summarized in Table 5 and show that SSBT is anywhere from 3 · to 15 · faster

than either method at this scale. Although this is a significant improvement, we suspect that this 50-

experiment test underestimates SSBTs relative performance due to SSBTs efficient storage of similar

elements and better optimized querying. We further note that this comparison is not strictly fair to BFT as it

returns exact kmer content rather than approximate content. In practice, this would yield significantly fewer

false positives, which may be preferred in certain contexts.

A larger scale comparison was performed using the full 2652-experiment indices with SBT and SSBT.

The query sets used in this analysis were randomly selected to exist in at least 1 of 100 randomly sampled

Table 5. Comparison of Query Timing (and Average Peak Memory) Between Sequence

Bloom Tree, Split Sequence Bloom Tree, and Bloom Filter Trie Indices for 50 Experiments

Index TPM ‡100 TPM ‡500 TPM ‡1000

BFT 85 seconds (11.5 GB) 84 seconds (11.5 GB) 84 seconds (11.5 GB)

SBT 19 seconds (2.9 GB) 21 seconds (3.1 GB) 22 seconds (3.2 GB)

SSBT 5.8 seconds (0.64 GB) 6.2 seconds (0.65 GB) 6.3 seconds (0.66 GB)

TPM, transcripts per million.

Table 6. Comparison of Query Times Between

Sequence Bloom Tree and Split Sequence

Bloom Tree for 2652 Experiments

Index TPM ‡100 TPM ‡500 TPM ‡1000

SBT (minutes) 19.7 20.7 20

SSBT (minutes) 3.7 3.8 3.6
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experiments out of the full data set with three TPM-specific sets constructed as before. Each query was run

individually and the results are summarized in Tables 6 and 7 and show that SSBT is more than five times

faster than SBT regardless of the TPM value or cutoff threshold used in either index.

Given that SSBT’s speed improvement closely mirrors its size improvement (a fivefold speedup for a

fivefold size reduction), we hypothesized that SSBT could be made significantly faster by reducing or

eliminating the I/O costs associated with loading and unloading bloom filters. Both SBT and SSBT are

likely to benefit from this engineering adjustment, but under our hardware specifications, this is only

possible for an SSBT, whose directly searchable index uses <1% of the size of the original data. This

resulted in an additional 7 · speedup over regular SSBT and a roughly 39 · increase over SBT. We report

this result as ‘‘RAM SSBT’’ in Table 7.

SSBT’s speed improvement can generally be explained by a reduction in I/O costs resulting from its

smaller size, but SSBT has another key benefit in the ability to prune queries that are found in every child

(‘‘universal query pruning’’). This is not relevant for the average query but is a significant improvement in

recovery of queries that are expressed in a large fraction of the database. We demonstrate this property by

recording the number of SSBT nodes loaded in our TPM 100 set. When universal query pruning is ignored

(Fig. 2), queries that are expressed in a majority of the data set are inefficient to look up, loading many

more nodes than the naive bloom filter search. However, when query pruning is introduced (Fig. 3),

significantly fewer queries look at >2652 nodes.

Table 7. Comparison of Query Times Using Different

Thresholds h for Sequence Bloom Tree and Split

Sequence Bloom Tree Using Queries Found at TPM ‡ 100

Query time h = 0.7 h = 0.8 h = 0.9

SBT (minutes) 20 19 17

SSBT (minutes) 3.7 3.5 3.2

RAM SSBT (seconds) 31 29 26

‘‘RAM SSBT’’ describes a hardware-accelerated search enabled

locally based on the SSBT’s smaller index size. A similar improvement

in speed would be possible on SBT given the necessary hardware.

0.7

0.8

0.9

FIG. 2. Number of SSBT nodes that would be loaded if SSBT did not prune queries against the total number of query

matches found among 2652 experiments. Blue, green, and red correspond to a kmer matching threshold of 0.7, 0.8, and 0.9,

respectively. A naive approach would search all 2652 leaves as individual bloom filters, represented by the black dashed line.
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4. CONCLUSION

The SSBT is a novel approach to searching for short read experiments in a large database. It uses a more

efficient encoding scheme to generate a compressed, but directly searchable, index that is at least five times

smaller than any existing method. This improvement is large for most queries but produces the largest gap

over existing techniques when querying transcripts that are found in many experiments. SSBT’s improved

storage allows 5 TB of sequencing information to be indexed in 40 GB, yielding a 5 · increase in speed. Its

on-disk memory usage scales more efficiently than any previous tool, and the size of the database that can be

stored as a RAM-index is several times larger. For example, a 5 TB data set could be searched 39 · faster

using RAM-SSBT but SBT could not be accelerated due to hardware constraints. Although these im-

provements come at a large cost in build time and some additional uncompressed storage usage, these

operations are typically much more rare than queries. All of the results in this article were run using a single

thread on a single computer. Future work optimizing SSBT for multiple-threaded builds and querying should

produce an even more significant improvement in build and query times. Some of the ideas in this article

were independently and concurrently discovered by Sun et al. (2017a,b), appearing in the same issue.

SSBT is open source and available at (www.cs.cmu.edu/*ckingsf/software bloomtree/).
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FIG. 3. Number of SSBT nodes loaded against the total number of query matches found among 2652 experiments.

Blue, green, and red correspond to a kmer matching threshold of 0.7, 0.8, and 0.9, respectively. A naive approach would

search all 2652 leaves as bloom filters, represented by the black dashed line.
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