
Adaptive Local Realignment of Protein Sequences

DAN DEBLASIO1 and JOHN KECECIOGLU2

ABSTRACT

While mutation rates can vary markedly over the residues of a protein, multiple sequence
alignment tools typically use the same values for their scoring-function parameters across a
protein’s entire length. We present a new approach, called adaptive local realignment, that in
contrast automatically adapts to the diversity of mutation rates along protein sequences.
This builds upon a recent technique known as parameter advising, which finds global pa-
rameter settings for an aligner, to now adaptively find local settings. Our approach in
essence identifies local regions with low estimated accuracy, constructs a set of candidate
realignments using a carefully-chosen collection of parameter settings, and replaces the
region if a realignment has higher estimated accuracy. This new method of local parameter
advising, when combined with prior methods for global advising, boosts alignment accuracy
as much as 26% over the best default setting on hard-to-align protein benchmarks, and by
6.4% over global advising alone. Adaptive local realignment has been implemented within
the Opal aligner using the Facet accuracy estimator.

Keywords: alignment accuracy, iterative refinement, local mutation rates, multiple sequence

alignment, parameter advising.

1. INTRODUCTION

Ever since the 1960s, it has been known that proteins can have distinct mutation rates at different

locations along the molecule (Fitch and Margoliash, 1967). The amino acids at some positions in a

protein may stay unmutated for long periods of time, whereas other regions change a great deal (sometimes

referred to as ‘‘hypermutable regions’’). This has led to methods in phylogeny construction that take variable

mutation rates into account when building trees from sequences (Yang, 1993). In multiple sequence align-

ment, however, variation in mutation rates across sequences to our knowledge has yet to be successfully

exploited to improve alignment accuracy. Multiple sequence alignments are typically computed using a

single setting of values for the parameters of the alignment scoring function. This single parameter setting

affects how residues across a protein are aligned, and implicitly assumes uniform mutation rates. In contrast,

the approach in this paper identifies alignment regions that may be misaligned under a single parameter

setting, and finds alternative settings that may more closely match the local mutation rate of the sequences.

We present a method that takes a given alignment and attempts to improve its overall accuracy by

replacing sections of it with better subalignments, as demonstrated in Figure 1. The top alignment of the

figure was computed using a single parameter setting: the optimal default setting of the Opal aligner

1Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania.
2Department of Computer Science, The University of Arizona, Tucson, Arizona.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 25, Number 7, 2018

Mary Ann Liebert, Inc.

Pp. 780–793

DOI: 10.1089/cmb.2018.0045

780

(Wheeler and Kececioglu, 2007). The bottom alignment is obtained by our new method, taking the top

alignment, automatically identifying the sections in gray boxes, and realigning them using alternative

parameter settings, as described later in Section 3. This increases the overall alignment accuracy by 10%, as

most of the misaligned core blocks (highlighted in red uppercase) are now corrected.

1.1. Related work

Methods that partition a set of sequences to align or realign them can be grouped in two categories, based on

the orientation of their partition. Vertical realigners cut the input sequences into substrings, and once these

shorter substrings are realigned, they stitch their alignments together. Horizontal realigners split an alignment

into groups of whole sequences, which are then merged together by realigning between groups, possibly using

the induced subalignment of each group. Realignment is occasionally called alignment polishing.

Crumble and Prune (Roskin et al., 2011) are a pair of algorithms for performing both vertical

(Crumble) and horizontal (Prune) splits on an input set of sequences. During the Crumble stage, a set

of constraints is found that anchor the input sequences together, and the substrings or blocks between these

anchor points are aligned. Once the disjoint blocks of the sequences are aligned, they are then fused by

aligning their overlapping anchor regions. During the Prune stage, smaller groups of sequences are

aligned that correspond to subtrees of the progressive aligner’s guide tree. The subset of sequences in a

subtree is then replaced by their alignment’s consensus sequence in the remaining steps of progressive

alignment. The original subalignments of the groups are finally reinserted to form the output alignment.

Replacing a group of sequences by their consensus sequence during alignment reduces the number of

sequences that are aligned at any one time. The objective, however, for splitting sequences both vertically

and horizontally within Crumble and Prune is not to improve accuracy, but to reduce running time and

memory consumption, to make aligning a large number of long sequences feasible.

An early example of horizontal realignment is ReAligner (Anson and Myers, 1997), which improves

DNA sequence assembly by removing and then realigning sequencing reads. If a read is initially misaligned

in the assembly, it may be corrected when realigned. This process is repeated over all reads to refine the

assembly.

Gotoh (1993) presented several horizontal methods for heuristically aligning two multiple sequence

alignments, which he called ‘‘group-to-group’’ alignment. This can be used for alignment construction in a

progressive aligner, proceeding bottom-up over the guide tree and applying group-to-group alignment at

each node, or for polishing an existing alignment by assigning sequences to two groups and realigning

between the groups.

a

b

FIG. 1. Effect of adaptive local realignment. Two alignments of the same region of benchmark BB11007 from the

BAliBASE suite, where the amino acids highlighted in red uppercase are from the so-called core columns of the

reference alignment, which should be aligned in a correct alignment. (a) The alignment computed by Opal using its

optimal default parameter setting (VTML200‚ 45‚ 11‚ 42‚ 40) across the sequences, with an accuracy of 89.6%. The

regions of the alignment in gray boxes are automatically selected for realignment. (b) The outcome of adaptive local

realignment, with an improved accuracy of 99.6%, that uses different parameter settings in each region. The realignments

of the three regions use alternative parameter settings (BLOSUM62‚ 45‚ 2‚ 45‚ 42), (BLOSUM62‚ 95‚ 38‚ 40‚ 40), and

(VTML200‚ 45‚ 18‚ 45‚ 45), respectively.

781

The standard alignment tools MUSCLE (Edgar, 2004), MAFFT (Katoh et al., 2005), and ProbCons (Do

et al., 2005) also include a polishing step that performs horizontal realignment using ideas similar to Gotoh.

AlignAlign (Kececioglu and Starrett, 2004) is unique as a horizontal method in that it implements an

exact algorithm for optimally aligning two multiple sequence alignments under the sum-of-pairs scoring

function with affine gap costs. This optimal group-to-group alignment algorithm, used for both alignment

construction and alignment polishing, forms the basis of the Opal aligner (Wheeler and Kececioglu, 2007).

While realignment attempts to correct errors in existing alignments that were made during the alignment

process, several tools attempt to avoid making these errors in the first place by adjusting parameter values

along the sequences during alignment construction. For example, PRANK (Löytynoja and Goldman, 2008)

uses a multilevel Hidden Markov Model (HMM) that effectively chooses the alignment scoring function at

each position. T-Coffee (Notredame et al., 2000) and M-Coffee (Wallace et al., 2006) use consistency

between pairwise alignments to create position-specific substitution scores. M-Coffee extracts these

pairwise alignments from a set of multiple sequence alignments, whereas T-Coffee generates optimal

pairwise alignments. In fact, even the early tool ClustalW (Thompson et al., 1994) adjusted positional

gap-penalties based on pairwise sequence characteristics. Nevertheless, these tools which adjust positional

alignment scores all attain lower accuracies on protein benchmarks than the aligners that make no posi-

tional adjustments that we compare against in our later computational experiments.

Adaptive local realignment, in contrast, is a vertical approach that aims to improve alignment accuracy,

and a meta-method that can be applied to any aligner with tunable parameters. To our knowledge, this is the

first realignment approach that automatically adapts to varying mutation rates along a protein and suc-

cessfully achieves a demonstrable improvement in alignment accuracy.

1.2. Plan of the paper

The next section provides the necessary background on parameter advising, which is basic to our approach to

adaptive local realignment. A parameter advisor selects a parameter setting for an aligner from a small set of

choices drawn from a larger universe of all possible settings, using an alignment accuracy estimator to select its

choice. Section 3 then describes our adaptive local realignment method, which can be viewed as a form of local

parameter advising, and discusses how it interacts with global parameter advising. Section 4 experimentally

evaluates our approach, and compares it with prior methods for advising. Finally, Section 5 gives conclusions

and offers directions for further research.

2. BACKGROUND ON PARAMETER ADVISING

To make the paper self-contained, we briefly review our prior work on parameter advising. We first

review the concept of a parameter advisor, which requires an estimator of alignment accuracy and a set of

parameter choices for the advisor, and then summarize our prior techniques for learning both an estimator

and an advisor set. An extensive discussion of parameter advising for multiple sequence alignment is given

in DeBlasio and Kececioglu (2017c).

We emphasize that although this section describes how to find an accuracy estimator and advisor set based

on training examples, in practice a user of parameter advising will simply apply an advisor with a precomputed

accuracy estimator and advisor set, and will not invoke the training procedures described here.

2.1. Global parameter advising

The goal of parameter advising is to find the parameter setting for an aligner that yields the most accurate

alignment of a given set of input sequences. The accuracy of a computed alignment is measured with

respect to the ‘‘correct’’ alignment of the sequences (which often is not known). For special benchmark sets

of protein sequences, the gold standard alignment of the proteins, called their reference alignment, is

usually obtained through structural alignment by finding the best superposition of the known three-

dimensional structures of the proteins. Columns of the reference alignment that contain a residue from

every protein in the set (where a residue is the amino acid at a particular position in a protein), and for

which the residues in the column are all mutually close in space in the superposition of the structures, are

called core columns. Runs of consecutive core columns are called core blocks, which represent the regions

of the structural alignment with the highest confidence of being correct.

782 DEBLASIO AND KECECIOGLU

Given such a reference alignment with identified core blocks, the accuracy of an alternative computed

alignment is the fraction of the pairs of residues aligned in the core blocks of the reference alignment that

are also aligned in the computed alignment. (Note that although a computed alignment of 100% accuracy

must completely agree with the reference on its core blocks, it may disagree elsewhere.) The best computed

alignment is one of highest accuracy, and the task of a parameter advisor is to find a setting of the tunable

parameters of an aligner that yields an accurate output alignment. This setting can be highly input de-

pendent, as the best choice of parameter values for an aligner can vary for different sets of input sequences.

When aligning sequences in practice, a reference alignment is almost never known, in which case the true

accuracy of a computed alignment cannot be measured. Instead a parameter advisor relies on an accuracy

estimator E that for an alignment A gives a value E(A) in the range [0, 1] that estimates the true accuracy of

alignment A. An estimator should be efficiently computable and positively correlated with true accuracy.

To choose a parameter setting, an advisor takes a set of choices P, where each parameter choice p 2 P is

a vector that assigns values to all the tunable parameters of an aligner, and picks the choice that yields a

computed alignment of highest estimated accuracy.

Formally, given an accuracy estimator E and a set P of parameter choices, a parameter advisor tries each

parameter choice p 2 P, invokes an aligner to compute an alignment Ap using choice p, and then selects the

parameter choice p* that has maximum estimated accuracy: p�2 argmaxp2P fE(Ap)g. Figure 2 shows a diagram

of parameter advising. Since the advisor runs the aligner jPj times on a given set of input sequences, a crucial

aspect of parameter advising is finding a small set P for which the true accuracy of the output alignment

Ap� is high.

To construct a good advisor, we need to find a good estimator E and a good set P. The estimator and

advisor set are learned on training data consisting of benchmark sets of protein sequences for which a

reference alignment is known. The learning procedure tries to find an estimator E and set P that maximize

the true accuracy of the resulting advisor on this training data, which we subsequently assess on separate

testing data.

Note that the process of advising is fast: for a set P of k parameter choices, advising involves computing

k alignments under these choices, which can be done in parallel, evaluating the estimator on these

FIG. 2. The parameter advising process. For an input set of sequences, a parameter advisor first invokes the aligner for

each assignment of parameter values in a collection of parameter choices. Each parameter choice when used with the aligner

produces an alternative alignment of the sequences. An accuracy estimator is then used to label each of the alternative

alignments with an accuracy estimate. The advisor then returns the alignment with the highest accuracy estimate.

ADAPTIVE LOCAL REALIGNMENT OF PROTEIN SEQUENCES 783

k alignments, and taking a max. The separate process of training an advisor, by learning an estimator and

advisor set as we review next, is done once, off-line, before any advising is done.

2.2. Learning an accuracy estimator

Our previous work (DeBlasio et al., 2012; Kececioglu and DeBlasio, 2013) presented an efficient approach

for learning an accuracy estimator that is a linear combination of real-valued alignment feature functions,

based on solving a large-scale linear programming problem. This approach resulted in Facet (short for

‘‘feature-based accuracy estimator’’; DeBlasio and Kececioglu, 2015b), which is currently the most accurate

estimator for parameter advising (Kececioglu and DeBlasio, 2013; DeBlasio and Kececioglu, 2017b).

This approach assumes we have a collection of d real-valued feature functions g1(A)‚ . . . ‚ gd(A) on

alignments A, where these functions gi are positively correlated with true accuracy. The alignment accuracy

estimator E is a linear combination of these functions, E(A) =
P

1�i�d ci gi(A), where the coefficients ci

specify the estimator E. When the feature functions have range [0‚ 1] and the coefficients form a convex

combination, the resulting estimator E will also have range [0‚ 1]. Facet uses a collection of five feature

functions, many of which make use of predicted secondary structure for the protein sequences (Kececioglu

and DeBlasio, 2013). Figure 3 shows the correlation of Facet and TCS (the next best estimator in our

tests; Chang et al., 2014) with true accuracy. To be able to distinguish good from bad alignments, an

estimator should have a steep slope and very little spread. While the TCS estimator has high slope, it has

quite a bit of spread. In contrast, the Facet estimator has much less spread, though a less steep slope, and

we have found this to be more effective in ranking alignments for parameter advising.

The features we use in Facet are a mixture of canonical measures of alignment quality, such as Amino

Acid Identity, and novel non-local features of an alignment that correlate with true accuracy. Many of the

most accurate features use predicted protein secondary structure. For instance, the Secondary Structure

Blockiness feature finds an optimal packing of blocks of aligned amino acids that have the same predicted

structure type. The other feature functions used in the Facet estimator are: Secondary Structure Identity,

Secondary Structure Agreement, Gap Open Density, and Core Column Percentage. A full description of all

features is given in Kececioglu and DeBlasio (2013).

A parameter advisor uses the estimator to effectively rank alignments, so an estimator just needs to be

monotonic in true accuracy. The difference-fitting approach learns the coefficients of an estimator that is

close to monotonic by fitting the estimator to differences in true accuracy for pairs of training alignments.

We can formulate the problem of coefficient finding using difference-fitting as a linear program; the details

of this approach are given in Kececioglu and DeBlasio (2013).

2.3. Learning an advisor set

The size of the parameter set used for advising should be small, since the aligner is run for each

parameter setting. We utilize the concept of an oracle (a perfect advisor that has access to the true accuracy

of an alignment; see Wheeler and Kececioglu, 2007) to compute sets that we use in practice. For a given

advisor set P, an oracle selects parameter choice argmaxp2PfF(Ap)g, where function F gives the true

accuracy of an alignment. (Equivalently, an oracle is an advisor that uses the perfect estimator F.) An

oracle always picks the parameter choice that yields the highest accuracy alignment.

Although an oracle is impossible to construct in practice, it gives a theoretical limit on the accuracy

achievable by advising with a given set. Furthermore, if we find the optimal advisor set for an oracle for a

given cardinality bound k, which we call an oracle set, then the performance of an oracle on an oracle set

gives a theoretical limit on how well advising can perform for a given bound k on the number of parameter

choices. In practice, oracle sets are used with Facet to construct an advisor.

FIG. 3. Relationship of estimators to true accu-

racy. Each point in a scatterplot corresponds to an

alignment whose true accuracy is on the horizontal

axis, and whose value under a given estimator is on

the vertical axis. Both scatterplots show the same set

of 3,000 alignments under the accuracy estimators

Facet (Kececioglu and DeBlasio, 2013) and TCS
(Chang et al., 2014).

784 DEBLASIO AND KECECIOGLU

While finding an optimal oracle set is NP-complete, it can be formulated as an integer linear pro-

gramming problem (Kececioglu and DeBlasio, 2013). Learning an optimal oracle set of cardinality k, for a

universe of m parameter choices and a training set of n benchmarks, involves solving an integer linear

program with Y(mn) variables and Y(mn) inequalities. Using the CPLEX (IBM Corporation, 2015) integer

linear programming solver, this formulation permits finding optimal oracle sets in practice even for car-

dinalities up to k = 25.

It is possible to use a greedy procedure to find advisor sets tuned to a concrete estimator rather than the

oracle (DeBlasio and Kececioglu, 2017b). While using these sets on global parameter advising increased

advising accuracy over oracle sets, this increase did not transfer to adaptive local realignment. For the results

in later sections, we construct an advisor using the Facet accuracy estimator learned using difference fitting,

along with oracle sets. Note this is not an oracle advisor, since it uses the Facet estimator.

3. ADAPTIVE LOCAL REALIGNMENT

To handle heterogeneity in protein sequences that have regions requiring distinct alignment parameter

settings, we introduce a method that we call adaptive local realignment. Adaptive local realignment uses

some of the same basic principles that have been shown to work well for global parameter advising. We

apply the techniques described in the previous section locally to choose the best alignment parameters over

an interval of columns in an alignment.

The adaptive local realignment method has two major steps: (1) discerning regions of the alignment that

are well-aligned, which should be retained, and (2) producing a new alignment for regions that are poorly

aligned, using parameter advising.

3.1. Identifying local realignment regions

When selecting alignment columns that should be retained, we cannot just identify the correctly-recovered

columns in a computed alignment, since in practice we do not have a known reference alignment against

which to compare. We can, however, attempt to identify these regions using an accuracy estimator E, as

defined earlier. To partition the input alignment, we first evaluate the accuracy estimator within a window of a

fixed width that we slide across the alignment (Fig. 4a). The window width is given by a fraction x < 1 of the

total length ‘ of the alignment. The value of x must be carefully chosen, as the accuracy estimator has features

that reflect global properties of an alignment. While a larger sliding window provides more context at each

position, and should yield a better accuracy estimate, if the window is too large, the granularity may not be

sufficiently fine to precisely identify the transition points between correctly- and incorrectly-aligned columns.

Hence we also specify upper and lower bounds on the absolute window width to account for very short and

very long alignments.

A score is assigned to each column as a weighted sum of the estimated accuracies of windows that overlap

that column, weighted according to how far away the center column of the window is (Fig. 4b). A geometric

distribution with decay rate k < 1, centered at the given alignment column, weights the contributions to the

column’s score by windows that overlap it. As k approaches 1, a column gets equal weight from all over-

lapping windows; as k approaches 0, the score only depends on the window centered at that column.

Using these column scores, we partition the alignment into regions by first labeling the columns for

which there is the most evidence of being correctly- or incorrectly-aligned. Given a minimum percentage of

columns we would like to retain from the input alignment, qB (for ‘‘barriers’’), and a minimum percentage

of columns we would like to replace, qS (for ‘‘seeds’’), we determine two threshold values, sB and sS, such

that the number of columns with score greater than sB is at least ØqB ‘ø for an alignment of length ‘, and the

number of columns with score less than sS is at least ØqS ‘ø. Then all columns with score at least sB are

labeled barriers—these columns are guaranteed to be retained—and those with column score at most sS are

labeled seeds—these columns are guaranteed to be realigned (Fig. 4c). Finally, we define realignment

regions by extending each seed in both directions until a barrier column (or the first or last column of the

alignment) is reached. Note that a realignment region may contain more than one seed column, but will

never include one of the barriers. With this method we ensure that at least qB ‘ columns from the original

alignment will be in the final alignment, there will always be at least one realignment region, and there will

never be a realignment region that covers all columns of the input.

ADAPTIVE LOCAL REALIGNMENT OF PROTEIN SEQUENCES 785

3.2. Local parameter advising on a region

The realignment regions defined in Section 3.1 identify subalignments that may potentially be improved,

and we use parameter advising to search for better alignments of these regions that may replace them in the

initial alignment. We extract the subalignment given by the columns in each realignment region (Fig. 4d).

Removing the gaps from this subalignment yields a set of unaligned sequences, which become the input to

a slightly modified version of the parameter advising approach described earlier (Section 2.1, Fig. 2), that

now takes the location of the realignment region into account in the alignment scoring scheme (Fig. 4e).

The Opal aligner uses different scores for terminal and internal gaps. For adaptive local realignment, we

only apply terminal gap scores when the terminal column in the context of the subalignment is also a

terminal column in the context of the global alignment. As indicated earlier, an alignment region will not

have terminal columns at both ends.

Once we have obtained the new subalignment through parameter advising, the last step is to replace the

corresponding region in the original alignment (Fig. 4f) if its new Facet score is higher than that of the

original subalignment for the realignment region.

a

b

c

d

e

f

FIG. 4. The adaptive local realignment process. (a) Estimate the accuracy for sliding windows across the input

alignment using Facet. (b) Calculate a score for each column as the weighted sum of the accuracy estimates of all

windows that overlap the column. (c) Label columns that are above sS or below sB as seeds or barriers, respectively.

(d) Define realignment regions that will be extracted from the alignment by extending seeds in both directions until they

reach a barrier. (e) Use parameter advising to find a new alignment of each realignment region. (f) Replace the original

realignment region if the new alignment has higher accuracy estimate.

786 DEBLASIO AND KECECIOGLU

After all realignment regions have been updated by local advising, we make one final comparison

between the new resulting alignment and the original initial alignment: of these two global alignments, the

one with higher estimated accuracy is returned.

3.3. Iterative local realignment

Although adaptive local realignment can correct errors, after performing the procedure there may still be

regions that can be further improved. Such regions may not have been identified because they are sub-

regions of a newly-included alignment, or because the threshold was too low for a seed to be identified due

to the very low quality of another region. In either situation, it can be beneficial to repeat adaptive local

realignment to further increase accuracy. Accordingly, we iterate the whole process (Fig. 4) until a user-

defined maximum number of iterations are reached, or no further improvements are made.

3.4. Combining local and global advising

The quality of the initial alignment that is input to this process is critical, since realignment only makes

local improvements. To identify the best initial alignment, it may be advantageous to use global parameter

advising, which is known to aid accuracy (Kececioglu and DeBlasio, 2013). Local and global parameter

advising can be combined in two ways:

1. local advising on all global alignments, using adaptive local realignment on each of the alternative

alignments considered by global parameter advising with advisor set P, and then choosing among all

2jPj alternative alignments (for jPj original global alignments and jPj locally advised realignments); and

2. local advising on the best global alignment, which first selects the global alignment of highest

estimated accuracy and then, only on this selection, performs adaptive local realignment.

We compare both these ways of combining local and global advising, as well as simply local advising on

the single alignment produced by the default parameter setting, in the next section.

4. ASSESSING ADAPTIVE LOCAL REALIGNMENT

We evaluate the performance of adaptive local realignment, and its use in combination with global

advising, through experiments on a collection of protein multiple sequence alignment benchmarks. A full

description of the benchmarks and the universe of parameter settings used for parameter advising can be

found in Kececioglu and DeBlasio (2013), and is briefly described here.

The benchmark suites used in our experiments consist of reference alignments of proteins that are largely

induced by structurally aligning their known three-dimensional structures. In particular, we use the BENCH
suite of Edgar (2009) supplemented by a selection from the PALI suite of Balaji et al. (2001). BENCH is, in

turn, a combination of the BAliBASE (Bahr et al., 2001), PREFAB (Edgar, 2004), OxBench (Raghava

et al., 2003), and SABRE (Van Walle et al., 2005) suites of benchmarks. The full collection of benchmarks

we use consists of 861 reference alignments.

As is common in benchmark suites, easy-to-align benchmarks are highly over-represented in this col-

lection. To correct for this bias toward easy-to-align benchmarks when evaluating average advising ac-

curacy, we binned the 861 benchmarks by difficulty, which we measured by the true accuracy of Opal
using its default parameter setting. We then divided the full range [0‚ 1] of accuracies into 10 bins, where

bin b for b = 1‚ . . . ‚ 10 contains difficulty interval ((b - 1)=10‚ b=10], which have 12, 12, 20, 34, 26, 50, 62,

74, 137, and 434 benchmarks, respectively. We report ‘‘average accuracy’’ uniformly-averaged across bins

(rather than uniformly averaged across benchmarks). This means that the average alignment accuracy of

Opal using its default parameter setting will be near 50%. Even though the binning is based on Opal
default alignments, most other standard aligners have default accuracy near 50% as well: ClustalOmega
(Sievers et al., 2011), 47.3%; MUSCLE (Edgar, 2004), 48.4%; and MAFFT (Katoh et al., 2005), 51.0%.

(Note these numbers do not imply that MAFFT, for instance, is more accurate than ClustalOmega, since

if you bin based on an aligner other than Opal, you will again get a different ranking of these aligners.) We

have previously shown that for the task of global parameter advising, many of the top aligners perform

almost equally well; we chose Opal for local parameter advising as it had the highest global advising

ADAPTIVE LOCAL REALIGNMENT OF PROTEIN SEQUENCES 787

accuracy in prior tests (DeBlasio and Kececioglu, 2017b). We emphasize that the methodology presented

here is general, and can be applied to any other aligner.

We developed a universe of alignment parameter settings by enumerating reasonable values for each of

the tunable parameters for the Opal aligner. In particular, the tunable parameters for Opal can be written

as a 5-tuple (r‚ cI‚ cT ‚ kI‚ kT), which represents the substitution scoring matrix (r), as well as the internal (I)

and terminal (T) gap-open (c) and gap-extension (k) penalties. We considered three choices of substitution

matrices from the BLOSUM (Henikoff and Henikoff, 1992) and VTML (Müller et al., 2002) families, two

choices of terminal gap-extension penalties, and three choices each of internal gap-extension, terminal gap-

open, and internal gap-open penalties. In total, we generated a universe of 162 parameter settings.

We used 12-fold cross-validation to assess the increase in accuracy gained by adaptive local realignment. We

first evenly and randomly distributed benchmarks into 12 groups for each hardness bin; the 12 independent folds

were generated by choosing one group from each bin to be in the testing set and the other 11 to be in the

training set. Finally, we generated an example alignment for each benchmark in the training or testing set for

each fold using each of the parameters in our universe with the Opal aligner. The results we report are averages

over these 12 folds. (Note that across the 12 folds, every example alignment is tested on exactly once.)

We trained the estimator coefficients for Facet on the training example sets for each fold, using the

difference-fitting method described in Section 2.2. We found there was very little change in coefficients

between the training folds, so for simplicity we use the estimator coefficients that are released with the

latest version of Facet, which were trained on all available benchmarks. We also consider the TCS
estimator for adaptive local realignment and show these results in Section 4.3.

To choose values for the hyperparameters for adaptive local realignment (such as x, qB, and qS, as

described earlier in Section 3.1), we enumerated the cross product of reasonable values for these param-

eters. We used the performance on training benchmarks described earlier to find the combination of these

settings that gave the highest improvement in accuracy when local advising was applied to the default

alignments from Opal. Table 1 summarizes these hyperparameters, the range of values that we considered,

and the value that was selected for use in our experiments. Details on selecting the number of iterations are

given in Section 4.4.

4.1. Effect of local realignment within difficulty bins

Figure 5 shows alignment accuracy within difficulty bins for default alignments from Opal, local

advising on these default alignments, global advising alone, and local combined with global advising

(which uses local advising on all alternative alignments considered by global advising). The optimal oracle

set of cardinality k = 10 was used for both local and global advising.

The improvement gained by adaptive local realignment over the default parameter setting is most evident

in the two most difficult benchmark bins. On these hardest bins, local advising increases average accuracy

by 11.5% and 9.1%, respectively. Furthermore, local advising boosts accuracy in all 10 bins. On average,

local advising increases the accuracy of the default alignments by 4.5% across the bins.

Combining local and global advising together substantially improves accuracy over using either of these

approaches alone. This is again most pronounced on the hardest-to-align benchmarks. On the bottom two

bins, combined local and global advising increases the accuracy by 23.0% and 25.6% over the default

parameter choice. On these bottom-most bins, local advising increases the accuracy by 5.9% and 6.4% over

Table 1. Adaptive Local Realignment Hyperparameter Selection

Hyperparameter Range of values Selection

Window-width fraction x 0.05, 0.1, 0.2, 0.3, ., 0.7 0.3

Window-width lower bound 5, 10, 20, 30 10

Window-width upper bound 30, 50, 75, 100, 125 30

Barrier percentage qB 5%, 10%, 20%, 30%, ., 70% 10%

Seed percentage qS 5%, 10%, 20%, 30%, ., 70% 30%

Geometric decay rate k 0.5, 0.66, 0.9, 0.99 0.9

No. of iterations 1, ., 5, 10, 15, 25 5

788 DEBLASIO AND KECECIOGLU

global advising alone. On average across bins, combined local and global advising increases accuracy by

8.9% over the default parameter choice, and local advising by 3.1% over global advising alone.

4.2. Varying advisor set cardinality

Since a new alignment is recomputed for each realignment region and each parameter choice in the

advisor set, the running time grows with the cardinality of the advisor set, so it may be desirable to use a

smaller cardinality to reduce the running time for advising. We constructed optimal oracle advisor sets for

cardinalities k = 2‚ . . . ‚ 15, and examined their effect on local advising both alone and in combination with

global advising. Figure 6 shows average advising accuracies with advisor sets of increasing cardinalities,

for local advising on Opal default alignments, global advising alone, and local combined with global advising.

The figure shows accuracies for both of the strategies described in Section 3.4 for combining local and global

advising: local advising applied to the best alignment from global advising and local advising applied to all

alignments from global advising. The cardinality of the advisor set used for both global and local advising is on

the horizontal axis, whereas alignment accuracy uniformly-averaged across bins is on the vertical axis.

The average accuracy for all four approaches eventually reaches a plateau, where adding further pa-

rameter choices to the advisor set no longer improves accuracy. This plateau is reached at cardinality

k = 10 for local advising applied to default alignments, and at k = 6 for global advising with or without

local advising, but plateaus at a higher accuracy for combined advising. Across all cardinalities, combined

local and global advising improves accuracy by nearly 4% on average. Note that when local advising is

FIG. 5. Accuracy of the default alignment, and different advising methods, within difficulty bins. The horizontal axis

represents all 10 benchmark bins. The vertical axis represents the accuracy averaged over just the benchmarks in that

bin using default parameter settings, local advising only, global advising only, and the combined advising method using

an oracle set of cardinality k = 10. The bar chart on the right shows the accuracy uniformly averaged over the bins.

FIG. 6. Advising accuracy versus advi-

sor set cardinality. The horizontal axis

represents the cardinality of the advisor set

used by the advising methods. The vertical

axis represents the advising accuracy of

the default parameter setting, local advis-

ing, global advising, and the combined

advising method, averaged across diffi-

culty bins.

ADAPTIVE LOCAL REALIGNMENT OF PROTEIN SEQUENCES 789

applied to all alignments from global advising, the combined advisor is now choosing from an expanded set

of alternative alignments whose best accuracy can only be higher than the original set.

These results again give advising accuracy uniformly-averaged across bins. In contrast, if we report

advising accuracy uniformly-averaged across benchmarks, Opal with its default parameter setting

achieves accuracy 80.4%; local or global advising alone increases this accuracy to 82.1% and 81.8%,

respectively; and combining both methods increases the accuracy to 83.1% (all at cardinality k = 10). By

comparison, the corresponding average accuracies of other standard aligners, using their default parameter

settings, are: Clustal Omega, 77.3%; MUSCLE, 78.1%; and MAFFT, 79.4%.

4.3. Comparing estimators for local advising

Figure 7 shows the average accuracy of local advising on default alignments using both Facet and TCS
(the next-best estimator for advising; see Kececioglu and DeBlasio (2013) and DeBlasio and Kececioglu

(2017b)). These results used only a single iteration of adaptive local realignment for both estimators, due to

the large increase in running time caused by calls to the external TCS program. Using TCS for local

advising does increase accuracy over the default alignment, but the increase is less than half that of Facet.

4.4. Effect of iterating local realignment

As discussed in Section 3.3, iterating adaptive local realignment should eventually reach a state where

the alignment no longer improves, or even worse, begins deteriorating due to noise in the accuracy

estimator. Table 2 shows the average accuracy of adaptive local realignment on default alignments as the

number of iterations increases. Both the training accuracy and testing accuracy reach a plateau at around

five iterations, and this is the number we used in Sections 4.1 and 4.2.

4.5. Summarizing the effect of adaptive local realignment

Table 3 summarizes how adaptive local realignment behaves across difficulty bins, during the first

iteration of improving Opal default alignments. The columns are average values for each of the 10

benchmark bins and average values across all benchmarks. The first three rows show how many of the 861

benchmarks are in each bin, as well as the number and percentage of those with at least one realignment

region that was replaced. The last three rows summarize how much of each alignment changed. The fourth

row shows the average number of realignment regions found for each benchmark; on average about two

regions were realigned for each default alignment. The last two rows summarize the percentage of the

original columns that were in realignment regions, and how many of the columns from the original

alignment were replaced. Note that although the percentage of columns covered by realignment regions

FIG. 7. Accuracy of local realignment using the

Facet and TCS estimators, for varying advisor

set cardinality. The curves show the accuracy of

local realignment, using either the Facet or

TCS estimators, on initial alignments produced

by Opal with its default parameter setting. The

horizontal axis represents the cardinality of the

advisor set for local realignment, where oracle

sets are used for advising. The vertical axis rep-

resents alignment accuracy, averaged across dif-

ficulty bins.

Table 2. Accuracy of Adaptive Local Realignment Across Iterations

Iteration 1 2 3 4 5 10 15 25

Training 53.5% 53.9% 54.5% 54.6% 54.8% 54.8% 54.9% 54.9%

Testing 53.5% 53.7% 54.1% 54.4% 54.5% 54.5% 54.5% 54.5%

790 DEBLASIO AND KECECIOGLU

stays roughly the same across bins, in the easiest-to-align bin only 47% of alignment columns were

replaced, whereas in the rest of the bins, more than 60% of the columns changed.

4.6. Running time

To give a sense of running time, Opal with adaptive local realignment, averaged across all benchmarks,

takes 110 seconds using an advisor set of cardinality 10 and 5 iterations. This is up from 36 seconds for one

iteration and about 8 seconds using just the default parameter setting. This high increase in wall-clock time

is mainly due to adaptive local realignment, as currently implemented, not exploiting parallelism in

advising. In contrast, global advising is parallelized, and the average running time of global advising for the

same advisor set of cardinality 10 is only around 33 seconds. (Note that the number of columns being

repeatedly aligned by global advising is about a factor 1.25 more than for local advising.) When these two

approaches are combined, the average running time increases to 68 and 178 seconds, respectively, for local

advising on the best alignment, and on all alignments, from global advising.

5. CONCLUSION

We have presented adaptive local realignment; to our knowledge, this is the first approach that de-

monstrably boosts protein multiple sequence alignment accuracy by adaptively realigning regions with

local parameter settings. Applying this new method to alignments initially computed using an optimal

default parameter setting already improves accuracy significantly, and when combined with global pa-

rameter advising to select an initial parameter setting, this new approach to local parameter advising boosts

alignment accuracy greatly.

A new tool that performs both adaptive local realignment and global parameter advising is implemented

within the Opal aligner (Wheeler and Kececioglu 2007) using the Facet accuracy estimator (DeBlasio

and Kececioglu, 2015b).

5.1. Further research

Many directions remain open for further research in local parameter advising. In the context of global

parameter advising, greedy advisor sets, which are designed to work well with a given accuracy estimator,

are known to perform better than estimator-independent oracle sets (DeBlasio and Kececioglu, 2017b). In

the context of local parameter advising, however, the greedy sets found for global advising performed

worse than oracle sets for local advising (hence the use of oracle sets in this study). Greedy sets may

possibly have underperformed due to the smaller universe of parameter settings explored here, or because

the known tendency of greedy sets to not generalize well may be exacerbated when they are applied to local

advising. While improving the generalization of greedy sets may require more fundamental changes to our

approach for learning advisor sets, perhaps by simply exploring a much larger universe of parameter

settings and by learning greedy sets specifically for local parameter advising, advisor sets might be found

that perform even better than the oracle sets used here.

Finally, combining local parameter advising with aligner advising (DeBlasio and Kececioglu, 2015a),

which takes in addition a set of aligners and selects both an aligner and its parameter setting—effectively

yielding a method for local ensemble alignment—also seems promising. Just as a given alignment tool may

Table 3. Summary of Adaptive Local Realignment on Default Alignments

Bin 1 2 3 4 5 6 7 8 9 10 Overall

No. of benchmarks 12 12 20 34 26 50 61 74 137 434 861

No. modified 8 7 16 27 19 34 46 61 115 352 685

Percentage modified 67% 58% 80% 79% 73% 68% 74% 82% 84% 81% 80%

Regions per benchmark 1.92 2.17 2.50 1.88 2.23 2.14 2.31 2.16 2.48 2.19 2.23

Columns realigned 75% 73% 76% 70% 75% 77% 74% 73% 75% 72% 73%

Columns replaced 64% 60% 68% 60% 66% 72% 65% 63% 64% 47% 57%

ADAPTIVE LOCAL REALIGNMENT OF PROTEIN SEQUENCES 791

be particularly well suited for aligning a class of proteins with high accuracy (through the developer

tailoring the aligner’s models and methods), so an aligner might for instance have a class of protein

structural motifs at which it excels. Incorporating aligner advising could potentially leverage each aligner’s

particular strength within adaptive local realignment.

ACKNOWLEDGMENTS

Research of J.K. and D.D. at the University of Arizona was supported by NSF Grant IIS-1217886. D.D. was

also partially supported at Carnegie Mellon University by the Lane Fellows Program from the Computational

Biology Department. This article is an extended version of the conference publication, DeBlasio and Kececioglu

(2017a). Portions of this material are also presented in Chapter 8 of DeBlasio and Kececioglu (2017c).

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Anson, E.L., and Myers, E.W. 1997. ReAligner: A program for refining DNA sequence multi-alignments. J.

Comput. Biol. 4, 369–383.

Bahr, A., Thompson, J.D., Thierry, J.C., et al. 2001. BAliBASE (Benchmark alignment dataBASE): Enhancements

for repeats, transmembrane sequences and circular permutations. Nucleic Acids Res. 29, 323–326.

Balaji, S., Sujatha, S., Kumar, S., et al. 2001. PALI—A database of phylogeny and ALIgnment of homologous protein

structures. Nucleic Acids Res. 29, 61–65.

Chang, J., Tommaso, P., and Notredame, C. 2014. TCS: A new multiple sequence alignment reliability measure to

estimate alignment accuracy and improve phylogenetic tree reconstruction. Mol. Biol. Evol. 31, 1625–1637.

DeBlasio, D., and Kececioglu, J. 2015a. Ensemble multiple sequence alignment via advising. In the proceedings of 6th

ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB), pp. 452–461.

DeBlasio, D., and Kececioglu, J. 2015b. Facet: Software for accuracy estimation of protein multiple sequence

alignments. Available at: http://facet.cs.arizona.edu. Accessed June 14, 2016.

DeBlasio, D., and Kececioglu, J. 2017a. Boosting alignment accuracy by adaptive local realignment. In the proceedings

of 21st Conference on Research in Computational Molecular Biology (RECOMB), pp. 1–17.

DeBlasio, D., and Kececioglu, J. 2017b. Learning parameter-advising sets for multiple sequence alignment. IEEE/ACM

Trans. Comput. Biol. Bioinform. 14, 1028–1041.

DeBlasio, D., and Kececioglu, J. 2017c. Parameter Advising for Multiple Sequence Alignment, volume 26 of Com-

putational Biology Series. Springer International, Cham, Switzerland.

DeBlasio, D.F., Wheeler, T.J., and Kececioglu, J.D. 2012. Estimating the accuracy of multiple alignments and its use in

parameter advising. In the proceedings of 16th Conference on Research in Computational Molecular Biology

(RECOMB), pp. 45–59.

Do, C., Mahabhashyam, M., Brudno, M., et al. 2005. ProbCons: Probabilistic consistency-based multiple sequence

alignment. Genome Res. 15, 330–340.

Edgar, R. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res.

32, 1792–1797.

Edgar, R.C. 2009. BENCH. Available at: http://drive5.com/bench. Accessed March 2011.

Fitch, W.M., and Margoliash, E. 1967. A method for estimating the number of invariant amino acid coding positions in

a gene using cytochrome C as a model case. Biochem. Genet. 1, 65–71.

Gotoh, O. 1993. Optimal alignment between groups of sequences and its application to multiple sequence alignment.

Comput. Appl. Biosci. 9, 361–370.

Henikoff, S., and Henikoff, J. 1992. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. U S A.

89, 10915–10919.

IBM Corporation. 2015. CPLEX: High-performance mathematical programming solver for linear programming, mixed

integer programming, and quadratic programming (version 12.6.2.0).

Katoh, K., Kuma, K.-I., Toh, H., et al. 2005. MAFFT version 5: Improvement in accuracy of multiple sequence

alignment. Nucleic Acids Res. 33, 511–518.

Kececioglu, J., and DeBlasio, D. 2013. Accuracy estimation and parameter advising for protein multiple sequence

alignment. J. Comput. Biol. 20, 259–279.

792 DEBLASIO AND KECECIOGLU

Kececioglu, J., and Starrett, D. 2004. Aligning alignments exactly. In the proceedings of 8th Conference on Research in

Computational Molecular Biology (RECOMB), pp. 85–96.

Löytynoja, A., and Goldman, N. 2008. Phylogeny-aware gap placement prevents errors in sequence alignment and

evolutionary analysis. Science. 320, 1632–1635.

Müller, T., Spang, R., and Vingron, M. 2002. Estimating amino acid substitution models: A comparison of dayhoff’s

estimator, the resolvent approach and a maximum likelihood method. Mol. Biol. Evol. 19, 8–13.

Notredame, C., Higgins, D., and Heringa, J. 2000. T-coffee: A novel method for fast and accurate multiple

sequence alignment. J. Mol. Biol. 302, 205–217.

Raghava, G., Searle, S.M., Audley, P.C., et al. 2003. OXBench: A benchmark for evaluation of protein multiple

sequence alignment accuracy. BMC Bioinformatics. 4, 1–23.

Roskin, K.M., Paten, B., and Haussler, D. 2011. Meta-alignment with Crumble and Prune: Partitioning very large

alignment problems for performance and parallelization. BMC Bioinformatics. 12, 1–12.

Sievers, F., Wilm, A., Dineen, D., et al. 2011. Fast, scalable generation of high-quality protein multiple sequence

alignments using Clustal Omega. Mol. Syst. Biol. 7, 539–539.

Thompson, J., Higgins, D., and Gibson, T. 1994. ClustalW: Improving the sensitivity of progressive multiple

sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Res. 22, 4673–4680.

Van Walle, I., Lasters, I., and Wyns, L. 2005. SABmark: A benchmark for sequence alignment that covers the entire

known fold space. Bioinformatics. 21, 1267–1268.

Wallace, I.M., O’Sullivan, O., Higgins, D.G., et al. 2006. M-Coffee: Combining multiple sequence alignment

methods with T-Coffee. Nucleic Acids Res. 34, 1692–1699.

Wheeler, T.J., and Kececioglu, J.D. 2007. Multiple alignment by aligning alignments. Bioinformatics, 23, i559–i568.

Yang, Z. 1993. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over

sites. Mol. Biol. Evol. 10, 1396–1401.

Address correspondence to:

Dr. Dan DeBlasio

Computational Biology Department

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

E-mail: deblasio@cmu.edu

ADAPTIVE LOCAL REALIGNMENT OF PROTEIN SEQUENCES 793

