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How Many Subpopulations is Too Many?

Exponential Lower Bounds for Inferring Population Histories∗

Younhun Kim† Frederic Koehler‡ Ankur Moitra§ Elchanan Mossel¶

Govind Ramnarayan‖

Abstract

Reconstruction of population histories is a central problem in population genetics. Existing
coalescent-based methods, like the seminal work of Li and Durbin (Nature, 2011), attempt to solve
this problem using sequence data but have no rigorous guarantees. Determining the amount of
data needed to correctly reconstruct population histories is a major challenge. Using a variety of
tools from information theory, the theory of extremal polynomials, and approximation theory, we
prove new sharp information-theoretic lower bounds on the problem of reconstructing population
structure — the history of multiple subpopulations that merge, split and change sizes over time.
Our lower bounds are exponential in the number of subpopulations, even when reconstructing
recent histories. We demonstrate the sharpness of our lower bounds by providing algorithms for
distinguishing and learning population histories with matching dependence on the number of
subpopulations. Along the way and of independent interest, we essentially determine the optimal
number of samples needed to learn an exponential mixture distribution information-theoretically,
proving the upper bound by analyzing natural (and efficient) algorithms for this problem.
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1 Introduction

1.1 Background: inference of population size history

A central task in population genetics is to reconstruct a species’ effective population size over
time. Coalescent theory [22] provides a mathematical framework for understanding the relationship
between effective population size and genetic variability. In this framework, observations of present-
day genetic variability — captured by DNA sequences of individuals — can be used to make
inferences about changes in population size over time.

There are many existing methods for estimating the size history of a single population from
sequence data. Some rely on Maximum Likelihood methods [15, 25, 26, 27] and others utilize
Bayesian inference [5, 11, 21] along with a variety of simplifying assumptions. A well-known work
of Li and Durbin [15] is based on using sequence data from just a single human (a single pair of
haplotypes) and revolves around the assumption that coalescent trees of alleles along the genome
satisfy a certain conditional independence property [17]. By and large, methods such as these do not
have any associated provable guarantees. For example, Expectation-Maximization (EM) is a popular
heuristic for maximizing the likelihood but can get stuck in a local maximum. Similarly, Markov
Chain Monte Carlo (MCMC) methods are able to sample from complex posterior distributions if
they are run for a long enough time, but it is rare to have reasonable bounds on the mixing time.
In the absence of provable guarantees, simulations are often used to give some sort of evidence of
correctness.

Under what sorts of conditions is it possible to infer a single population history? Kim, Mossel,
Rácz and Ross [14] gave a strong lower bound on the number of samples needed even when one
is given exact coalesence data. In particular, they showed that the number of samples must be at
least exponential in the number of generations. Thus there are serious limitations to what kind of
information we can hope to glean from (say) sequence data from a single human individual. In a
sense, their work provides a quantitative answer to the question: How far back into the past can
we hope to reliably infer population size, using the data we currently have? We emphasize that
although they work in a highly idealized setting, this only makes their problem easier (e.g. assuming
independent inheritance of loci along the genome and assuming that there are no phasing errors)
and thus their lower bounds more worrisome.

1.2 Our setting: inference of multiple subpopulation histories

A more interesting and challenging task is the reconstruction of population structure, which refers
to the sub-division of a single population into several subpopulations that merge, split, and change
sizes over time. There are two well-known works that attack this problem using coalescent-based
approaches. Both use sequence data to infer population histories where present-day subpopulations
were formed via divergence events of a single, ancestral population in the distant past. The first is
Schiffels and Durbin [25], who used their method to infer the population structure of nine human
subpopulations up to about 200,000 years into the past. More recently, Terhorst, Kamm and Song
[27] inferred population structures of up to three human subpopulations. Just as in the single
population case, these methods do not come with provable guarantees of correctness due to the
simplifying assumptions they invoke and the heuristics they employ.

As for theoretical work, the lower bounds proven for a single population trivially carry over to
the setting of inferring population structure. However, the lower bound in [14] only applies when
we are trying to reconstruct events in the distant past, leading us to a natural question: can we
infer recent population structure, but, when there are multiple subpopulations?
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In this paper, we establish strong limitations to inferring the population sizes of multiple
subpopulation histories using pairwise coalescent trees. We prove sample complexity lower bounds
that are exponential in the number of subpopulations, even for reconstructing recent histories. Our
results provide a quantitative answer to the question, Up to what granularity of dividing a population
into multiple subpopulations, can we hope to reliably infer population structure?

Our methods incorporate tools from information theory, approximation theory, and analysis
(from [29]). To complement our lower bounds, we also give an algorithm for hypothesis testing based
on the celebrated Nazarov-Turán lemma [20]. Our upper and lower bounds match up to constant
factors and establish sharp bounds for the number of samples needed to distinguish between two
known population structures as a function of the number of subpopulations. Finally, for the more
general problem of learning the population structure (as opposed to testing which of two given
population structures is more accurate) we give an algorithm with provable guarantees based on the
Matrix Pencil Method [12] from signal processing. We elaborate on our results in Section 1.4.

1.3 Modeling Assumptions

Our results will apply under the following assumptions: (1) individuals are haploids1, (2) the
genome can be divided into known allelic blocks that are inherited independently and (3) for
each pair of blocks, we are given the exact coalescence time. Indeed, in practice, one must start
with sequenced genomes — and in the context of recovering events in human history, (potentially
unphased) genotypes of diploid individuals. The problem of recovering coalescence times from
sequences provides a major challenge and often requires one to either know the population history
beforehand, or leverage simultaneous recovery of history and coalescence times using various joint
models that enable probabilistic inference.

But since the main message of our paper is a lower bound on the number of exact pairwise
coalescent samples needed to recover population history, in practice it would only be harder. Even
in our idealized setting, handling 7 or 8 subpopulations already requires more data than one could
reasonably be assumed to possess. Thus, our work provides a rather direct challenge to empirical
work in the area: Either results with 7 or 8 subpopulations are not to be trusted or there must be
some biological reason why the types of population histories that arise in our lower bounds, that
are information-theoretically impossible to distinguish from each other using too few samples, can
be ruled out.

1.3.1 The Multiple-Subpopulation Coalescent Model

Consider a panmictic haploid2 population, such that each subpopulation evolves according to the
standard Wright-Fisher dynamics3 — we direct the reader to [3] for an overview. For simplicity, we
assume no admixture between distinct subpopulations as long as they are separated in the model
(i.e. they have not merged into a single population in the time period under consideration).

As a reminder, if one assumes that a single population has size N which is large and constant
throughout time, then the time to the most recent common ancestor (TMRCA) of two randomly
sampled individuals closely follows the Kingman coalescent [3] with exponential rate N :

Pr(T > t) = exp(−t/N). (1)

1Alternatively, diploids whose phasing is provided.
2In a diploid population, the exponents are scaled by a constant factor 2. This can be handled easily via scaling

and therefore makes little difference in the analysis.
3The distinction between the Wright-Fisher and Moran models is of no consequence in this work, as the latter

yields the same exponential model in the diffusion limit [3].
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where T , the coalescence time for two randomly chosen individuals, is measured in generations.
Henceforth, we will assume that this is the distribution of T in the single-component case.

If instead we have a population which is partitioned into a collection of distinct subpopulations
with non-constant sizes, let N(t) be the function that describes the sub-population sizes over time.
As in [14], we will assume that the function N(t) is piecewise constant with respect to some unknown
collection of intervals I1, I2, . . . partitioning the real line. In particular, for each t ∈ Ik, there is

an associated vector of effective subpopulation sizes N(t) = (N
(k)
1 , . . . , N

(k)
Dk

), indexed by the Dk

subpopulations present at time t. The indexing need not be consistent across different intervals,

as their semantic meaning will change as subpopulations merge and split. For example, N
(k)
1 and

N
(k+1)
1 need not always represent the sizes of the same subpopulation.

Consider the case where N(t) is constant for all t ∈ I = [a, b], where 0 < a < b, with no
admixture and no migration in-between subpopulations in the time interval I. In this case, the
coalescence time follows the law of a convex combination of exponential functions:

Pr(T > a+ t
∣∣ T > a) =

D∑
`=0

p`e
−λ`t (2)

where p0 + p1 + · · · + pD = 1, λ0 = 0 and the other λi are 1
Ni

(refer to Appendix A for a more
careful treatment).

The population structure is assumed to undergo changes over time, where the positive direction
points towards the past. The three possible changes are:

1. (Split) One subpopulation at time t− becomes two subpopulations at time t (i.e. Dk =
Dk−1 + 1).

2. (Merge) Two subpopulations at time t− join to form one subpopulation at time t (i.e. Dk =
Dk−1 − 1).

3. (Change Size) An arbitrary number of subpopulations change size at time t.

Figure 1 provides an illustrative example. If an individual at time t− is from a subpopulation of size
M which splits into two subpopulations of sizes M1,M2 at time t, then its ancestral subpopulation
is random: for i ∈ {1, 2}, subpopulation i is chosen with probability Mi/M . In our model, we
only allow at most one of these events at any particular time point. For us, a “split” looking
backward in time refers to a convergence event of two subpopulations going forward in time, while a
“merge” refers to a divergence event. This convention is chosen because we think of reconstruction
as proceeding backwards in time from the present.

1.4 Our Results

The main theoretical contribution of this work is an essentially tight bound on the sample complexity
of learning population history in the multiple-subpopulation model. In particular, we show sample
complexity lower bounds which are exponential in the number of subpopulations k. Here is an
organized summary of our results:

• First, we show a two-way relationship between the problem of learning a population history
(in our simplified model) and the problem of learning a mixture of exponentials. Recall that
when the effective subpopulation sizes are all constant, the distribution of coalescence times
follows Eq. (2) and thus is equivalent to learning the parameters pt and λt in a mixture
of exponentials. Conversely, we show how to use an algorithm for learning mixtures of
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Figure 1: An example of population structure history, illustrating merges and splits starting with
three present-day subpopulations.

exponentials to reconstruct the entire population history by locating the intervals where
there are no genetic events and then learning the associated parameters in each, separately.
(Section 2.1 with details in Appendix B and Appendix F.)

• (Main Result) Using this equivalence, we show an information-theoretic lower bound on the
sample complexity that applies regardless of what algorithm is being used. In particular,
we construct a pair of population histories that have different parameters but which require
Ω((1/∆)4k) samples in order to tell apart. This lower bound is exponential in the number
of subpopulations k. Here, ∆ ≤ 1/k is the smallest gap between any pair of the λt’s. The
proof of this result combines tools spanning information theory, extremal polynomials, and
approximation theory. (Section 2.3 with details in Appendix D.)

• In the hypothesis testing setting where we are given a pair of population histories that we
would like to use coalescence statistics to distinguish between, we give an algorithm that
succeeds with only O((1/∆)4k) samples. The key to this result is a powerful tool from analysis,
the Nazarov-Turán Lemma [20] which lower bounds the maximum absolute value of a sum of
exponentials on a given interval in terms of various parameters. This result matches our lower
bounds, thus resolving the sample complexity of hypothesis testing up to constant factors.
(Section 2.4 with details in Appendix E)

• In the parameter learning setting when we want to directly estimate population history from
coalescence times, we give an efficient algorithm which provably learns the parameters of a
(possibly truncated) mixture of exponentials given only O((1/∆)6k) samples. We accomplish
this by analyzing the Matrix Pencil Method [12], a classical tool from signal processing, in the
real-exponent setting. (Section 2.2 with details in Appendix C.)

• Finally, we demonstrate using simulated data that our sample complexity lower bounds really
do place serious limitations on what can be done in practice. From our plots it is easy to see
that the sample complexity grows exponentially in the number of subpopulations even in the
optimistic case where the separation ∆ = 1/k which minimizes our lower bounds. In particular,
the number of samples we would need very quickly exceeds the number of functionally relevant
genes (on the order of 104) and even the number of SNPs available in the human genome (on
the order of 107). In fact, through a direct numerical analysis of our chosen instances, we can
give even stronger sample-complexity lower bounds (Section 3, with details in Appendix G.2).

Discussion of Results: In summary, this work highlights some of the fundamental difficulties
of reconstructing population histories from pairwise coalescence data. Even for recent histories,
the lower bounds grow exponentially in the number of subpopulations. Empirically, and in the
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absence of provable guarantees, and even with much noisier data than we are assuming, many works
suggest that it is possible to reconstruct population histories with as many as nine subpopulations.
While testing out heuristics on real data and assessing the biological plausibility of what they find
is important, so too is delineating sharp theoretical limitations. Thus we believe that our work is an
important contribution to the discussion on reconstructing population histories. It points to the
need for the methods that are applied in practice to be able to justify why their findings ought to
be believed. Moreover they need to somehow preclude the types of population histories that arise in
our lower bounds and are genuinely impossible to distinguish between given the finite amount of
data we have access to.

1.5 Related works

As mentioned in Section 1.1, existing methods that attempt to empirically estimate the population
history of a single population from sequence data generally fall into one of two categories: Many are
based on (approximately) maximizing the likelihood [15, 25, 26, 27] and others perform Bayesian
inference [5, 11, 21]. Generally, they are designed to recover a piecewise constant function N(t)
that describes the size of a population, with the goal of accurately summarizing divergence events,
bottleneck events and growth rates throughout time.

Many notable methods that fall into the first category rely on Hidden Markov Models (HMMs),
which implicitly make a Markovian assumption on the coalescent trees of alleles across the genome.
One notable work is Li and Durbin [15], which gave an HMM-based method (PSMC) that reconstructs
the population history of a single population using the genome of a single diploid individual. Later
related works gave alternative HMMs that incorporate more than two haplotypes (diCal [26] and
MSMC [25]) and improve robustness under phasing errors (SMC++ [27]).

Methods in the second category operate under an assumption about the probability distribution
of coalescence events and the observed data. For instance, Drummond [5] prescribes a prior for the
distribution of coalescence trees and population sizes, under which MCMC techniques are used to
compute both an output and a corresponding 95% credibility interval. However, given the highly
idealized nature of their models and the limitations of their methodology (for example, there is no
guarantee their MCMC method has actually mixed), it is unclear whether the ground truth actually
lies in those credibility intervals.

In the multiple subpopulations case, there are two major coalescent-based methods. The first
is Schiffels and Durbin [25], which introduced the MSMC model as an improvement over PSMC.
These authors used their method to infer the population history of nine human subpopulations
up to about 200,000 years into the past. Terhorst, Kamm and Song [27] introduced a variant
(SMC++) that was directly designed to work on genotypes with missing phase information. In
particular, they demonstrate the potential dangers of relying on phase information, by showing
that MSMC is sensitive to such errors. In an experiment, SMC++ was used to perform inference
of population histories of various combinations of up to three human subpopulations. In these
experiments, individuals are purposefully chosen from specific subpopulations. We emphasize that
in our model, due to the presence of population merges and splits, one does not always know what
subpopulation an ancestral individual is from.

As a side remark, there are approaches that attempt to infer a (single-component) population
history using different types of information. We briefly touch upon some of these known works. One
alternative strategy is to use the site frequency spectrum (SFS), e.g. [2, 7]. The earliest theoretical
result regarding SFS-based reconstruction is due to Myers, Fefferman and Patterson [19], who proved
that generic 1-component population histories suffer from unidentifiability issues. Their lower bound
constructions have a caveat: They are pathological examples of oscillating functions which are
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unlikely to be observed in a biological context. Later works [1, 28] prove both identifiability and
lower bounds for reconstructing piecewise constant population histories using information from the
SFS. (In contrast, as our algorithms show, reconstruction from coalescence data does not suffer
from the same lack of identifiability issues.)

Most recently, Joseph and Pe’er [13] developed a Bayesian time-series model that incorporates
data from ancient DNA to recover the history for multiple subpopulations only under size changes,
without considering merges or splits. While our analysis does not directly account for such data,
the necessity of considering such models is consistent with our assertion: extra information about
the ground truth, such as directly observable information about the past (e.g. ancestral DNA), is
probably required in order for the problem to even be information-theoretically feasible. In addition,
[13] does not solve for subpopulation sizes, but rather subpopulation proportions, which contains
less information than what we are after.

2 Theoretical Discussion

2.1 Reductions between mixtures of exponentials and population history

In the rest of our theoretical analysis, we will focus on the mixture of exponentials viewpoint of
population history. To justify this, note that if we can learn truncated mixtures of exponentials,
then we can easily learn population history. Details are given in Appendix F including a concrete
algorithm based on our analysis of the Matrix Pencil Method. Conversely, we observe that an
arbitrary mixture of exponentials can be embedded as a sub-mixture of a simple population history
with two time periods, so that recovering the population history requires in particular learning
the mixture of exponentials. The following theorem makes this precise; its proof is delegated to
Appendix B.

Theorem 2.1. Let P with P (T > t) =
∑k

i=1 pie
−λit be a the distribution of an arbitrary mixture

of k exponentials (over random variable T ) with all λi > 0. Then for any t0 > 0, there exists a
two-period population history with k populations which induces a distribution Q on coalescence times
such that

Q(T > t+ t0|T 6=∞, T > t0) = P (T > t).

Remark 1. By choosing a small value for t0, we ensure that very few coalesence times occur in the
more recent period, so that the reconstruction algorithm must rely on the information from the
second (less recent) period with our planted mixture of exponentials.

Additionally, we provide a more sophisticated version of this reduction which maps two mix-
tures of exponentials to different population histories simultaneously, while preserving statistical
indistinguishability.

Theorem 2.2. Let P with P (T > t) =
∑k

i=1 pie
−λit and Q with Q(T > t) =

∑`
j=1 qje

−µjt be
arbitrary mixtures of exponentials with all λi, µj > 0. Then for all t0 > 0 sufficiently small there
exist two distinct 2-period population histories R with k + 2 subpopulations and S with ` + 2
subpopulations such that:

1. R[T > t+ t0|T 6=∞, T > t0] = P (T > t) and S[T > t+ t0|T 6=∞, T > t0] = Q(T > t)

2. R[T = t0] = S[T = t0] and R[T =∞] = S[T =∞].

Again, if we take t0 small enough, we ensure that any distinguishing algorithm must rely on
information from the second (less recent) period, and hence because the probability of all other
events match, must distinguish between the mixtures of exponentials Q and R.
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2.2 Guaranteed recovery of exponential mixtures via the Matrix Pencil Method

Given samples from a hyperexponential distribution

Pr(T > t) =
k∑
i=1

pie
−λit, (3)

can we learn the parameters p1, . . . , pk, λ1, . . . , λk? In Section 2.1, we established the equivalence
between solving this problem and learning population history. Suppose for now that we are given
access to the exact values of probabilities vt := Pr(T ≥ t) for t ∈ R≥0, i.e. vt =

∑k
j=1 piα

t
i, where

αi = e−λi . The Matrix Pencil Method is the following linear-algebraic method, originating in the
signal processing literature [12], which solves for the parameters {pi, λi}ki=1:

1. Let A,B be k × k matrices where Aij = vi+j−1 and Bij = vi+j−2.

2. Solve the generalized eigenvalue equation det(A − γB) = 0 for the pair (A,B). The γ which
solve det(A− γB) = 0 are the α’s.

3. Finish by solving for the p’s in a linear system of equations ~v = V ~p, where ~v = (v0, . . . , vk−1),
V is the k × k Vandermonde matrix generated by α1, . . . , αk and ~p is the vector of unknowns
(p1, . . . , pk).

To understand why the algorithm works in the noiseless setting, consider the decomposition
A = V DpDαV

T and B = V DpV
T where V = Vk(α1, . . . , αk) is the k × k Vandermonde matrix

whose (i, j) entry is αi−1
j , Dα = diag(α1, . . . , αk) and Dp = diag(p1, . . . , pk). Then it’s clear that

the αi are indeed the generalized eigenvalues of the pair (A,B). However, in our setting, we do not
have access to the exact measurements vt, but instead have noisy empirical measurements ṽt; in
practice, the output of the MPM can be very sensitive to noise.

The Matrix Pencil Method is a close cousin of Prony’s Method [23]. Prior to this work, Feldmann
et al. [8] considered the strategy of using Prony’s Method to fit exponential mixtures to general
long-tail distributions. In the upcoming section, we provide a finite-sample guarantee of the MPM in
the context of learning exponential mixture distributions. As it turns out (Remark 3 and Remark 4),
this algorithm is nearly optimal in terms of the number of samples required.

2.2.1 Analysis of MPM under noise

We now describe our analysis of the MPM in the more realistic setup where the CDF is estimated
from sample data. First note that the model (Equation 3) is statistically unidentifiable if there
exist two identical λ’s. Indeed, the mixture 1

2e
−λt + 1

2e
−λt is exactly same as the single-component

model e−λt, as is any other re-weighting of the coefficients into arbitrarily many components with
exponent λ. Therefore it is natural to introduce a gap parameter ∆ := mini 6=j |λi − λj | which is
required to be nonzero, as in the work on super-resolution (e.g. [4, 18]).

Without loss of generality, we also assume that: (1) the components are sorted in decreasing
order of exponents, so that λ1 > · · · > λk > 0, and (2) time has been re-scaled4 by a constant factor,
so that λi ∈ (0, 1) for each i. Now we can state our guarantee for the MPM under noise:

4In practice, even if this scaling is unknown, this is easily handled by e.g. trying powers of 2 and picking the best
result in CDF distance, for instance ‖F −G‖∞ = supt |F (t)−G(t)|.
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Theorem 2.3. Let ∆ = mini 6=j |λi − λj | and let pmin = mini pi. For all δ > 0, there exists

N0 = O
(
k10

p4
min

(
2e
∆

)6k
log 1

δ

)
such that, with probability 1− δ, using empirical estimates ṽ0, . . . , ṽ2k−1

from N ≥ N0 samples, the matrix pencil method outputs {(λ̃j , p̃j)}kj=1 satisfying

|λ̃j − λj | = O

(
k3.5

p2
min

(
2e

∆

)2k
√

1

N
log

1

δ

)
and |p̃j − pj | = O

(
k5

p2
min

(
2e

∆

)3k
√

1

N
log

1

δ

)

for all j.

Remark 2. Letting αi denote e−λi , we note that we can equivalently focus on learning the αi’s, and
that guarantees for recovering λi and αi are equivalent up to constants: e−1|αi − α̃i| ≤ |λi − λ̃i| ≤
|αi − α̃i|. since e−x is monotone decreasing on [0, 1] with derivative lying in [−1,−1/e].

The full proof of Theorem 2.3 is given in Appendix C. As in previous work analyzing the MPM
in the super-resolution setting with imaginary exponents [18], we see that the stability of MPM
ultimately comes down to analyzing the condition number of the corresponding Vandermonde
matrix, which in our case is very well-understood [9].

2.3 Strong information-theoretic lower bounds

In this section we describe our main results, strong information theoretic lower bounds establishing
the difficulty of learning mixtures of exponentials (and hence, by our reductions, population histories).
The full proofs of all results found in this section are given in Appendix D. First, we state a lower
bound on learning the exponents λj , which is an informal restatement of Corollary D.5.

Theorem 2.4. For any k > 1, there exists an infinite family of parameters a1, . . . , ak, λ1, . . . , λk
and b1, . . . , bk, µ1, . . . , µk parametrized by integers m > 2(k − 1) and α ∈ (0, 1

2) such that:

1. Each λi and µj is in (0, 1], λ1 = µ1, and the elements of {λi}ki=2 ∪{µi}ki=2 are all distinct and
separated by at least ∆ = 1/(m+ 2k). Furthermore λ2, µ2 > α/k.

2. Let H1 and H2 be hypotheses, under which the random variable T respectively follows the
distributions

Pr
H1

[T ≥ t] =

k∑
i=1

aie
−λit and Pr

H2

[T ≥ t] =

k∑
i=1

bie
−µit.

If N samples are observed from either H1 or H2, each with prior probability 1/2, then the
Bayes error rate for any classifier that distinguishes H1 from H2 is at least 1−δ

2 , where

δ =
α
√

2N

2k − 3
[∆(2k − 3)]2k−4.

Remark 3. From the square-root dependence of N in Theorem 2.3, the required number of samples
N0 has rate 4k in the exponent of 2e

∆ if one just wants to learn the λ’s, and Theorem 2.4 confirms
that the exponent 4k is tight for learning the λ’s.

Next we state an additional information-theoretic lower bound showing that the information-
theoretic (minimax) rate is necessarily of the form 1√

N
∆−O(k) up to lower order terms, even if all

of the λi are already known and we are only asked to reconstruct the mixing weights pj .
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Theorem 2.5. Let m, k be positive integers such that m > k > 3 and let ∆ = 1/(m+k− 1). There
exists a fixed choice of λ1, . . . , λk which are ∆-separated such that

inf
p̂

max
p

Ep‖p− p̂‖1 ≥
1

4
min

(
1,
k − 3√

2N

(
1

∆(k − 3)

)k−4
)

(4)

where the max is taken over feasible choices of p, and the infimum is taken over possible estimators
p̂ from N samples of the mixture of exponentials with CDF F (t) = 1−

∑
j pje

−λjt.

Remark 4. Recall that in Theorem 2.3, the number of samples needed was exponential in 4k
when learning just the λ’s and in 6k for learning both the λ’s and the p’s. The exponent of 2k in
Theorem 2.5 suggests that the discrepancy of 2k for MPM in Theorem 2.3 is tight.

As expected, our lower bounds show that the learning problem becomes harder as ∆ approaches
0. The “easiest” case, then, ought to be when ∆ is as large as possible, so that the λi are equally
spaced apart in the unit interval. This raises the following question: as ∆ grows, does the sample
complexity remains exponential in k, or is there a phase transition (as in super-resolution [18])
where the problem becomes easier? In the Appendix, we completely resolve this question: the
sample complexity still grows exponentially in 4k (Theorem D.7) when ∆ is maximally large.

2.4 A tight upper bound: Nazarov-Turán-based hypothesis testing

As an alternative to the learning problem that the Matrix Pencil Method solves, we also consider
the hypothesis testing scenario in which we want to test if the sampled data matches a hypothesized
mixture distribution. In this case, we can give guarantees from weaker assumptions and requiring
smaller numbers of samples. To state our guarantee, we need the following additional notation: for
P a mixture of exponentials, let pλ(P ) denote the coefficient of e−λt, which is 0 if this component
is not present in the mixture. We study the following simple-versus-composite hypothesis testing
problem using N samples:

Problem 1. Fix k0, k1, δ,∆ > 0 and let P be a known mixture of k0 exponentials.

• H0: The sampled data is drawn from P .

• H1: The sampled data is drawn from a different, unknown mixture of at most k1 exponentials
Q. Let ν1 := max{λ : pλ(P ) > pλ(Q)} and ν2 := max{λ : pλ(Q) > pλ(P )}. We assume that
min{|pν1(P )− pν1(Q)|, |pν2(P )− pν2(Q)|} ≥ δ and |ν1 − ν2| ≥ ∆.

Henceforth, we will refer to H0 as the null hypothesis and H1 as the alternative hypothesis
(note that H1 is a composite hypothesis). To solve this hypothesis testing problem, we propose a
finite-sample variant of the Kolmogorov-Smirnov test:

1. Let α > 0 be the significance level.

2. Let FN be the empirical CDF and let F be the CDF under the null hypothesis H0.

3. Reject H0 if supt |Fn(t)− F (t)| >
√

log(2/α)/2N .

We show that this test comes with a provable finite-sample guarantee.
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Theorem 2.6. Consider the problem setup as in Problem 1 and fix a significance level α > 0. Let
k := k0+k1

2 and c∆ = 8e2/min(1/∆, 2k − 1). Then:

1. (Type I Error) Under the null hypothesis, the above test rejects H0 with probability at most α.

2. (Type II Error) There exists N0(α) = O((c∆/∆)4k−2 log(2/α)/δ2) such that if N ≥ N0, then
the power of the test at significance level α is at least:

Pr
Q∈H1

[Reject H0] ≥ 1− 2 exp
(
−Nδ2(∆/c∆)4k−2/8

)
. (5)

The full proof of Theorem 2.6 is given in Appendix E. The key step in the proof is a careful
application of the celebrated Nazarov-Turán Lemma [20].

Remark 5. This improves upon the Matrix Pencil Method upper bound (Theorem 2.3), in terms
of the exponent found above ∆ (∆−6k versus ∆−4k) and above the mixing weights (p4

min versus δ2).
Even when the alternative Q is fixed and known, we see from Theorem 2.4 that Ω((1/δ2)(1/∆)4k)
many samples are information-theoretically required, which matches Theorem 2.6.

3 Simulations and Indistinguishability in Simple Examples

Our theoretical analysis rigorously establishes the worst-case dependence on the number of samples
needed in order to learn the parameters of a single period of population history under our model –
recall the construction of Theorem 2.4 of two hard-to-distinguish mixtures of exponentials and the
result Theorem 2.2 converting these to population histories.

In our simulations, we will analyze both the performance and information-theoretic difficulty of
learning not a specially constructed worst-case instance, but instead an extremely simple population
history with k populations. More precisely we consider the following instance:

Simulation Instance(k):

Population history description: We consider reconstructing a single period model with
k populations in which the ratio of the population sizes is 1 : 2 : · · · : k and the relative
probability of tracing back to each of these populations (i.e. Pr(Ei,i|T > t0) from Appendix A)
are all equal to 1/k2. This can easily be realized as a one period of a 2-period population
history model, in which in the second (more recent) era all populations are the same size5

Mixture of exponentials description: We consider the following mixture of exponentials:

Pr(T > t) = (1− 1/k) +
k∑
i=1

(1/k2)e−t/k.

The constant term represents atomic mass at ∞ and corresponds to no coalescence. When
k = 1 this is a standard exponential distribution, otherwise it is a mixture of k+1 exponentials,
counting the degenerate constant term.

We do not believe that this is an unusually difficult instance of a mixture of exponentials on k
components. If anything, the situation is likely the opposite: our worst-case analysis (Theorems 2.5,
2.3) suggests that this is comparatively easy as the gap parameter ∆ is maximally large.

5As in Remark 1, we can optionally make the more recent era short so that almost all samples will be from the
earlier period.
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In order to evaluate the error in parameter space from the result of the learning algorithm, we
adopted a natural metric, the well-known Earthmover’s distance. Informally, this measures the
minimum distance (weighted by pi and recovered p̃i) that the recovered exponents must be moved
to agree with the ground truth; we give the precise definition in Appendix G.2.

For a point of comparison to MPM, we also tested a natural convex programming formulation
which essentially minimizes ‖

∫
e−λtdµ(λ)− (1− F̃ (t))‖∞ over probability measures µ on R≥0, where

F̃ is the empirical CDF – refer to Appendix G.1 for details. The results of running both the convex
program and the MPM are shown in Figure 3 (blue and green lines) plotted on a log (base 10) scale;
details of the setup are provided in Appendix G.2. As expected based on our theoretical analysis,
the number of samples needed scaled exponentially in k, the number of populations in our instance.
Details of the setup are provided in Appendix G.2; due to limitations of machine precision, the
convex program could not reliably reconstruct at 5 components with any noise level and so this
point is omitted.

Besides showing the performance of the algorithms, we were able to deduce rigorous, unconditional
lower bounds on the information-theoretic difficulty of these particular instances. Each point on the
red line corresponds to the existence of a different mixture of exponentials (found by examining the
output of the convex program), with a comparable number of mixture components6, which is far in
parameter space7 from the ground truth and yet the distribution of N samples from this model
(where N = 10y and y is the y-coordinate in the plot) has total-variation (TV) distance at most 0.5
from the distribution of N samples from the true distribution. By the Neyman-Pearson Lemma,
this implies that if the prior distribution is

(
1
2 ,

1
2

)
between these two distributions, then we cannot

successfully distinguish them with greater than 75% probability. We describe the mathematical
derivation of the TV bound in Appendix G.2, and illustrate such a hard-to-distinguish pair in
Example 1. Recall that by Theorem 2.2, such a hard to distinguish pair of mixtures can automatically
be converted into a pair of hard-to-distinguish population histories.

Notably, the lower bound shows that reliably learning the underlying parameters in this simple
model with 5 components necessarily requires at least 10 trillion samples from the true coalescence
distribution. In reality, since we do not truly have access to clean i.i.d. samples from the distribution,
this is likely a significant underestimate.

Example 1. Consider the mixtures of exponentials with CDFs F (t) and G(t), where 1− F (t) =
0.5 + 0.25e−0.5t + 0.25e−t and

1−G(t) = 0.49975946 + 0.15359557e−0.45t + 0.30642727e−0.81t + 0.0402177e−1.55t.

Despite being very different in parameter space, their H2 distance is 7.9727 · 10−6 so any learning
algorithm requires at least 15660 samples to distinguish them with better than 75% success rate.

As a remark, we point out that the CDFs F and G in this example have exponents that are
interlaced. Observe that this is a characteristic also shared by the information-theoretic obstructions
referenced in Section 2.3 and Appendix D. This likely illustrates a major source of difficulty of
most reasonable-looking instances: “averaging” adjacent exponents of an exponential mixture may
produce a different mixture with a similar distribution whose components interlace with the original.

6The alternative hypothesis had no more than a few additional mixture components. A byproduct of this analysis
is that even estimating the number of populations is in these examples requires a very large number of samples.

7More precisely, with Earthmover’s distance in parameter space greater than 0.01. For comparison, an estimator
which only gets the (easy) constant component correct already has Earthmover distance at most 1/k.
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Figure 2: Plot of #components versus log (base 10) number of samples needed for accurate recon-
struction (parameters within Earthmover’s distance 0.01). Below the red line, it is mathematically
impossible for any method to distinguish with greater than 75% success between the ground truth
and a fixed alternative instance which has significantly different parameters.
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A Derivation of the multiple-subpopulation coalescent model

For b > a > 0, let I = [a, b] be an interval such that the population structure N is constant over I.
Then Eq. (1), together with the Markov property of Kingman’s coalescent model tells us that the
coalescence time T of two randomly sampled individuals in the ith sub-population is given, for any
t ∈ [0, b− a], by

Pr
(
T > a+ t

∣∣ Ei,i ∧ {T > a}
)

= exp

(
− 1

Ni
t

)
. (6)

Here, Ei,j represents the event where the ancestry of one of the individuals traces back to subpopu-
lation i, and the other traces back to j.

Let D be the number of subpopulations restricted to the interval I. By the law of total probability,
the random variable T satisfies, again for any t ∈ [0, b− a],

Pr(T > a+ t
∣∣ T > a) =

∑
i<j

Pr(Ei,j
∣∣ T > a) +

D∑
i=1

Pr(Ei,i
∣∣ T > a) Pr(T > a+ t

∣∣ Ei,i ∧ {T > a})

The first summation over i < j uses the fact that Pr(T > a + t
∣∣ Ei,j ∧ {T > a}) = 1, via

the “no admixture” assumption; whenever the two individuals’ lineages at time a lie in distinct
subpopulations, they do not coalesce anywhere in I. Via Eq. (6), the right hand side can be
re-written as seen in Eq. (2), i.e.

Pr(T > a+ t
∣∣ T > a) =

D∑
`=0

p`e
−λ`t.

B Reduction from Mixtures of Exponentials to Population His-
tory

B.1 Proof of Theorem 2.1

Proof. We consider the following population history:

• In the (more recent) period [0, t0] there are k populations and population i has size
√
qi, where

qi is the (unique) nonnegative solution to

pi = qie
−t0/

√
qi .

To see that the solution exists and is unique, observe that the rhs of this equation is a strictly
increasing function in qi which maps (0,∞) to (0,∞).

• In the (less recent) period [t0,∞) each of the k populations changes to size 1/λi.

By construction, the probability that two independently sampled individuals being in the same
population is proportional to qi, and conditioned on no coalescence before time t0 this probability is
proportional to pi. Therefore the distribution Q of coalescence times satisfies

Q(T > t+ t0|T > t0) = q0 +
1

1− q0

k∑
i=1

pie
−λit (7)

where q0 is the probability that the two individuals sampled were in different populations.
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B.2 Hardness for Distinguishing Population Histories

Theorem 2.1 shows that any arbitrary mixture of exponentials can be embedded as a sub-mixture
of a simple population history with two time periods. We can leverage this equivalence to reduce
distinguishing two mixtures of exponentials to distinguishing two population histories, and hence
conclude from Theorem 2.4 that distinguishing two population histories is exponentially hard in the
number of subpopulations.

The high-level idea is to take the reduction from Theorem 2.1 and apply it to two arbitrary
mixtures of exponentials, and argue that the problem of distinguishing the resulting two population
histories is at least as hard as distinguishing the two mixtures they came from. The problem that
arises is that the constant term (q0 in Equation 7) is exactly the probability of no coalescence, which
is fixed by the subpopulation sizes, and therefore fixed by the desired mixture. Therefore, if we
are not careful, the probability of no coalescence will be significantly different between our two
population histories, making them easily distinguishable.

Proof of Theorem 2.2. Consider the following population history for R:

• The first k populations of R are constructed according to the proof of Theorem 2.1 from the
mixture P . Let Ni denote the size if the ith population in the more recent period [0, t0).

• The (k + 1)th and (k + 2)th populations of R will have sizes Nk+1, Nk+2 in the period [0, t0),
such that N2

k+1 +N2
k+2 = 64 max(k2, `2)

∑k
i=1N

2
i . The exact sizes of Nk+1 and Nk+2 will be

set later.

• Every pair of samples in populations k + 1 and k + 2 coalesce in the closed interval [0, t0].
This can be achieved by having populations k + 1 and k + 2 shrink to size “zero” at time t0,
so any pair of individuals in these populations who have not coalesced in the interval [0, t0)
will coalesce at time t0.

Similarly, let the population history S be constructed from the mixture Q in the same way
(substituting Q for P and ` for k in what appears above), and let Mj denote the size of jth

population of the population history S in the (most recent) period [0, t0) (where j ranges from 1 to
`+ 2). Recall that we want to establish the following four properties:

1. R has k + 2 subpopulations and S has `+ 2 subpopulations.

2. R[T > t+ t0|T 6=∞, T > t0] = P (T > t) and S[T > t+ t0|T 6=∞, T > t0] = Q(T > t)

3. R[T = t0] = S[T = t0].

4. R[T =∞] = S[T =∞].

Note that the coalescence probability for the population history R at exactly t0 is

R[T = t0] =
1

(
∑k+2

i=1 Ni)2

(
N2
k+1e

−t0/Nk+1 +N2
k+2e

−t0/Nk+2

)
.

First, we analyze what happens in the limit t0 → 0, disregarding the term that comes from the
probability of coalescing before time t0, so the equations simplify to

R[T = t0] =
N2
k+1 +N2

k+2

(
∑k+2

i=1 Ni)2
(8)
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and similarly

S[T = t0] =
M2
k+1 +M2

k+2

(
∑`+2

i=1 Mi)2
(9)

We do this mainly for simplicity, and at the end show how to handle the general case, supposing t0
is sufficiently small.

It is clear that R and S satisfy Property (1) of Theorem 2.2 by construction, as they have the
correct numbers of subpopulations. Property (2) is similarly satisfied by construction and by an
application to Theorem 2.1. Indeed, when we sample from the history R conditioned on coalescence
before time ∞ and no coalescence at or before time t0, we can see that the two individuals sampled
must be from one of subpopulations 1 to k (since any pair of individuals sampled from subpopulations
k+ 1 or k+ 2 coalesce in the interval [0, t0]). Repeating this argument for S establishes property (2).

It remains to show that Properties (3) and (4) hold, and for this we will need to setNk+1, Nk+2,M`+1,
and M`+2 appropriately. In order to do this, we first rewrite Properties (3) and (4) using Equations 8
and 9, to see what conditions we need to satisfy with Nk+1, Nk+2,M`+1, and M`+2.

Noting that the probability of coalescence at exactly time t0 from population history R (resp.
S) is exactly the probability of sampling a pair of individuals from Nk+1 or Nk+2 (resp. M`+1 or
M`+2), we get that R and S will satisfy Property (3) if and only if the population sizes satisfy the
following (desired) equation:

N2
k+1 +N2

k+2(
k+2∑
i=1

Ni

)2 =
M2
`+1 +M2

`+2(
`+2∑
j=1

Mj

)2 (10)

Similarly, R and S will satisfy Property (4) if and only if the population sizes satisfy the following
(desired) equation:

`+2∑
j=1

M2
j(

`+2∑
j=1

Mj

)2 =

k+2∑
i=1

N2
i(

k+2∑
i=1

Ni

)2 (11)

So it suffices to describe how to set Nk+1, Nk+2,M`+1, and M`+2 such that Equations 10 and 11
are satisfied. First, we rearrange Equations 10 and 11 to get the equivalent (desired) set of equalities(

k+2∑
i=1

Ni

)2

(
`+2∑
j=1

Mj

)2 =
N2
k+1 +N2

k+2

M2
`+1 +M2

`+2

=

k+2∑
i=1

N2
i

`+2∑
j=1

M2
j

(12)

Note that the second equality is trivially satisfied by our stipulations that N2
k+1 + N2

k+2 =

64 max(k2, `2)
∑k

i=1N
2
i and M2

`+1 +M2
`+2 = 64 max(k2, `2)

∑`
i=1M

2
j .

Now we move on to describing how to set population sizes to satisfy the first equality. Note that
we can write `+2∑

j=1

Mj

2

= ((M`+1 +M`+2) +
∑̀
j=1

Mj)
2 (13)
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Note that the RHS of Equation 13 is a continuous and strictly increasing function of M`+1 +M`+2,
and furthermore that we can set M`+1 +M`+2 to be anywhere in the range[√

M2
`+1 +M2

`+2,
√

2 ·
√
M2
`+1 +M2

`+2

]
while keeping M2

`+1 + M2
`+2 constant. Furthermore, note

that

`+2∑
j=1

Mj

2

= ((M`+1 +N`+2) +
∑̀
j=1

Mj)
2

≤ ((9/8)(M`+1 +M`+2))2

=
81

64
(M`+1 +M`+2)2 (14)

where the second line uses the fact that we set M2
`+1 +M2

`+2 sufficiently large such that

M`+1 +M`+2 ≥

√√√√64`2
∑̀
j=1

M2
j ≥

√√√√√64

∑̀
j=1

Mj

2

≥ 8
∑̀
j=1

Mj

We can do the same bound for
(∑k+2

i=1 Ni

)2
, and hence we get that the LHS of Equation 12 can

be bounded on both sides as follows

64

81

(Nk+1 +Nk+2)2

(M`+1 +M`+2)2
≤

(
k+2∑
i=1

Ni

)2

(
`+2∑
j=1

Mj

)2 ≤
81

64

(Nk+1 +Nk+2)2

(M`+1 +M`+2)2
(15)

Now suppose that we initially set Nk+2 = M`+2 = 0, and suppose that this gives us that

N2
k+1 +N2

k+2

M2
`+1 +M2

`+2

= α ·

(
k+2∑
i=1

Ni

)2

(
`+2∑
j=1

Mj

)2 (16)

for some α < 1. We know by α ≥ 64
81 by noting that Nk+2 = M`+2 = 0 and applying the upper

bound of Equation 15.
We can continuously increase M`+1 + M`+2 while keeping M2

`+1 + M2
`+2 constant by moving

M`+1 and M`+2 relatively closer together, until we satisfy Equation 16 with α = 1, satisfying the
first equality in Equation 12. This is because we can increase (M`+1 +M`+2)2 by a factor of up to 2
overall in this manner, and using the fact that

(M`+1 +M`+2)2 ≤

`+2∑
j=1

Mj

2

≤ 81

64
(M`+1 +M`+2)2

we conclude that we can increase
(∑`+2

j=1Mj

)2
by at least a multiplicative factor of 2 · (64/81) ≥

(81/64) in this fashion. Hence, there exists a setting of M`+1 and M`+2 that satisfies both equalities
in Equation 12.
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To handle the case where 1 < α ≤ 81/64, we instead continuously increase Nk+1 +Nk+2 while
keeping N2

k+1 +N2
k+2 fixed, and the argument goes through mutatis mutandis.

Finally, we describe how to handle the general case where t0 > 0 and t0 is sufficiently small. We
can ensure that property (2) by using the same rescaling method as in the proof of Theorem 2.1. It
remains to show that properties (3) and (4) hold by modifying Nk+1, Nk+2,M`+1,M`+2 appropriately.
Recall that in this case, R[T = t0] = 1

(
∑k+2

i=1 Ni)2

(
N2
k+1e

−t0/Nk+1 +N2
k+2e

−t0/Nk+2
)

and similarly

for S. As before, property (3) holds by fixing the ratio of N2
k+1e

−t0/Nk+1 + N2
k+2e

−t0/Nk+2 and

M2
k+1e

−t0/Mk+1 +M2
k+2e

−t0/Mk+2 . As before, this leaves a degree of freedom in the value of Mk+1 +
Mk+2 which we use to guarantee property (4) holds assuming t0 is sufficiently small.

C Analysis of the Matrix Pencil Method

In this section, ‖A‖ and ‖A‖F respectively denotes the operator norm and the Frobenius norm of
matrices. For a vector x, ‖x‖ is its Euclidean norm, and more generally ‖x‖p denotes its `p-norm.

C.1 The condition number of Vandermonde matrices

In 1962, Gautschi [9] observed an exact formula for the `∞ → `∞ condition number of a real
Vandermonde matrix, which we now recall:

Definition 1. The `∞ → `∞ norm of a matrix is defined by8

‖A‖∞→∞ := sup
x:‖x‖∞=1

‖Ax‖∞ = max
i

∑
j

|Aij |.

Theorem C.1 ([9],[10]). Suppose V = Vn(α1, . . . , αn) such that α1, . . . , αn are all distinct. Then

max
i

∏
j:j 6=i

max(1, |αj |)
|αi − αj |

≤ ‖V −1‖∞→∞ ≤ max
i

∏
j:j 6=i

1 + |αj |
|αj − αi|

and furthermore equality is attained in the upper bound whenever αj = |αj |eiθ for θ independent of
j.

Since we are interested in real-valued Vandermonde matrices with positive entries, the above
expression is an exact formula. Furthermore, we can relate ‖V −1‖∞→∞ to the bottom singular
value of V , i.e. top singular value of V −1, because for any matrix A we have

σmax(A) = sup
x:‖x‖2=1

‖Ax‖2 ≤
√
n sup
x:‖x‖2=1

‖Ax‖∞ ≤
√
n sup
x:‖x‖∞=1

‖Ax‖∞ =
√
n‖A‖∞→∞

for an upper bound, and for a lower bound we have

σmax(A) = sup
x:x 6=0

‖Ax‖2
‖x‖2

≥ sup
x:x 6=0

‖Ax‖2√
n‖x‖∞

≥ sup
x:x 6=0

‖Ax‖∞√
n‖x‖∞

=
1√
n
‖A‖∞→∞

Hence, by applying these bounds to the matrix V −1 and from Theorem C.1, we see that

σmin(V )−1 = σmax(V −1) ∈

 1√
n

max
i

∏
j:j 6=i

1 + |αj |
|αj − αi|

,
√
nmax

i

∏
j:j 6=i

1 + |αj |
|αj − αi|


8The second equality follows from Holder’s inequality (and its equality case, where one takes x to be the appropriate

sign vector).
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In particular, these bounds show that the condition number of a square Vandermonde is exponentially
bad in the dimension. (Note that these bounds do not contradict Moitra’s results [18], which instead
shows that in the Fourier setting, rectangular V can sometimes be well-conditioned – this is because
Theorem C.1 looks specifically at the conditioning of square Vandermonde matrices.)

Next, we translate this result to a bound in terms of the parameters described in Section 2.2.

Lemma C.2. Let αi = e−λi and 1 > λ1 > · · · > λk > 0. Define V = Vk(α1, . . . , αk), and let

∆ = mini 6=j |λi − λj |. Then 1
σmin(V )

≤
√
k
(

2e
∆

)k
and κ(V ) ≤ k3/2

(
2e
∆

)k
.

Proof. Observe that ∏
j 6=i

1 + |αj |
|αj − αi|

≤
(

2e

∆

)k
because |αi| ≤ 1 and

αi − αj = e−λi − e−λj =

∫ −λi
−λj

exdx ≥ ∆e−1

for i > j. Thus ‖V −1‖∞→∞ ≤
(

2e
∆

)k
, which implies 1

σmin(V ) = σmax(V −1) ≤
√
k
(

2e
∆

)k
. We also

know that σmax(V ) ≤ ‖V ‖F ≤ k, which gives the bound on the condition number.

C.2 Matrix perturbation bounds

In this section, we will establish key lemmas that allow us to prove bounds on how close α̃j are to
αj .

Lemma C.3. Let (A,B) be a pair of n× n matrices with generalized eigenvalues {µj}, such that
B is nonsingular. Take A = V DAV

T and B = V DBV
T where DA and DB are diagonal matrices

and V is an arbitrary, nonsingular n× n matrix. Consider the perturbed system Ã = A+ E and
B̃ = B + F where E and F are symmetric matrices, and let {µ̃j} be its generalized eigenvalues.
Assume further that ‖F‖ < σmin(DB)σmin(V )2. Then for all j,

|µj − µ̃j | ≤
2k3/2

σmin(DB)σmin(V )2 − ‖F‖

(
σmax(DA)

σmin(DB)
‖F‖+ ‖E‖

)
(17)

Proof. Observe that the generalized eigenvalue problem Ax = µBx has the same solutions as the
ordinary eigenvalue problem B−1Ax = µx. Let E′ = V −1E(V T )−1 and F ′ = V −1F (V T )−1 so that

Ã = V (DA + E′)V T , B̃ = V (DB + F ′)V T .

Note that ‖F ′‖ ≤ ‖V −1‖2‖F‖ < σmin(DB) by assumption, so B̃ is also invertible, hence the
generalized eigenvalues {µ̃j} of (Ã, B̃) are just the ordinary eigenvalues of B̃−1Ã. Since eigenvalues
are invariant under change of basis (i.e. similarity transformation), the eigenvalues of B−1A are the
same as those of

C := V TB−1A(V T )−1 = D−1
B DA

and the eigenvalues of B̃−1Ã are the same as those of

C̃ := V T B̃−1Ã(V T )−1 = (DB + F ′)−1(DA + E′).
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Therefore if we let E := C− C̃, then by Gershgorin’s circle theorem9, the Cauchy-Schwarz inequality,
and the equivalence of Frobenius and spectral norms, we find

|µj − µ̃j | ≤ 2
∑
i,j

|Eij | ≤ 2k‖E‖F ≤ 2k3/2‖E‖ (18)

for all j.
It remains to bound ‖E‖. By the triangle inequality,

‖E‖ = ‖D−1
B DA − (DB + F ′)−1(DA + E′)‖ ≤ ‖D−1

B DA − (DB + F ′)−1DA‖+ ‖(DB + F ′)−1E′‖.

To bound the second term on the right hand side, we observe

‖(DB + F ′)−1E′‖ ≤ ‖(DB + F ′)−1‖‖E′‖ ≤ ‖E′‖
σmin(DB)− ‖F ′‖

.

To bound the first term, we observe the following useful matrix identity for ‖M‖ < 1:

(I −M)−1 =
∞∑
i=0

M i = I +M(I −M)−1.

This gives
(DB + F ′)−1 = D−1

B (I + F ′D−1
B )−1 = D−1

B −D
−1
B F ′(DB + F ′)−1.

which is valid because ‖F ′‖ ≤ ‖F‖‖V −1‖2 < σmin(DB) by assumption. Therefore

‖D−1
B DA − (DB + F ′)−1DA‖ = ‖D−1

B F ′(DB + F ′)−1DA‖ ≤
‖D−1

B ‖‖F ′‖‖DA‖
σmin(DB)− ‖F ′‖

.

Combining these two parts completes the bound on ‖E‖:

‖E‖ ≤ 1

σmin(DB)− ‖F ′‖
(‖D−1

B ‖‖F
′‖‖DA‖+ ‖E′‖)

≤ ‖V −1‖2

σmin(DB)− ‖V −1‖2‖F‖
(‖D−1

B ‖‖F‖‖DA‖+ ‖E‖).

Rewriting the last expression and combining with (18) gives the result.

C.3 Proof of Theorem 2.3

When we put the results of Appendix C.2 back into the context of learning mixtures of exponentials,
we should think about the perturbation errors E and F as essentially being the same, just offset in
the row/column indexing from each other. This is because when we are using the Matrix Pencil
Method (Section 2.2) to learn an exponential mixture, the entries of A and B are simply noisy
versions of v0, v1, v2, . . . , v2k−1.

We remind the reader of the normalization assumption which restricts λ1, . . . , λk ∈ [0, 1]. An
application of the previous lemmas yields the following result:

9Here we use that the connected component made of r Gershgorin discs has exactly r eigenvalues, which follows by
a standard continuity argument. Therefore the distance an eigenvalue moves under perturbation is at most the sum of
the diameters of the discs.
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Lemma C.4. Consider ṽ0 . . . , ṽ2k−1 as inputs to the Matrix Pencil Method, in place of v0, . . . , v2k−1.
Let pmin := mini pi. If

sup
t≥0
|vt − ṽt| =

βpmin

k2

(
2e

∆

)−2k

for some β ∈ [0, 1), then for all j,

|αj − α̃j | ≤
k3/2

(
1

pmin
+ 1
)

1
β − 1

.

Proof. The strategy is to apply Lemma C.3. The setup prescribes DA = DpDα, DB = Dp, which
gives σmin(DB) = pmin and σmax(DA) ≤ 1. Observe that the hypothesized bound on the estimated
vt’s implies

max(‖E‖∞, ‖F‖∞) = max
t∈{0,...,2k−1}

vt ≤
βpmin

k2

(
2e

∆

)−2k

.

This, in turn, gives us bounds on ‖E‖ (and ‖F‖), since ‖E‖ ≤ k‖E‖∞. In particular, by Lemma C.2,
‖F‖ ≤ σmin(DB)σmin(V )2.

This allows us to directly apply Lemma C.3, by substituting αj and α̃j as the eigenvalues of

(A,B) and (Ã, B̃) respectively. This immediately gives the desired bound on |αj − α̃j |.

Lemma C.4 provides sufficient conditions for the computed exponents λ̃j to be accurate. It
remains to analyze the resulting error in the coefficients pj . To do so, we recall the following result,
attributed to Weyl:

Theorem C.5 (Singular Value Stability). Let A and B be n× n matrices with entries in R. Then
for j = 1, . . . , n, we have |σj(A+B)− σj(A)| < ‖B‖.

Lemma C.6. Consider step (3) of the Matrix Pencil Method, using ṽ0 . . . , ṽ2k−1 and α̃1, . . . , α̃k in
place of their true counterparts. Let ρ := maxi |αi−α̃i|, ε := supt≥0 |vt−ṽt|, and Ṽ := Vk(α̃1, . . . , α̃n).
Then if σmin(V ) > kρ,

‖p̃− p‖∞ ≤
√
kε+ kρ

σmin(V )− kρ
. (19)

Proof. Let η = ṽ − v, and recall that v = V p, where p is the vector (p1, . . . , pn). By the setup, we
may write ṽ = V p+ η = Ṽ p+ (V − Ṽ )p+ η. Let p̃ be such that ṽ = Ṽ p̃. Equating the two formulae
and moving terms around gives

p̃− p = Ṽ −1
(

(V − Ṽ )p+ η
)

which yields

‖p̃− p‖ ≤ ‖Ṽ −1‖(‖V − Ṽ ‖‖p‖+ ‖η‖) =
‖V − Ṽ ‖‖p‖+ ‖η‖

σmin(Ṽ )
. (20)

Now observe that

1. By Gershgorin’s circle theorem, ‖V − Ṽ ‖ ≤ k‖V − Ṽ ‖∞ = k ·maxi |αi − α̃i| = kρ.

2. p is a vector (p1, . . . , pn) such that
∑

i pi = 1, so ‖p‖ ≤ 1.

3. ‖η‖ ≤
√
k‖η‖∞ ≤

√
kε.
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4. Using Theorem C.5, we get σmin(Ṽ ) ≥ σmin(V )−k‖Ṽ −V ‖∞, given the hypothesis σmin(V ) >
kρ.

These, together with Equation 20 and the bound ‖p̃− p‖∞ < ‖p̃− p‖ give the desired result.

The hypothesis σmin(V ) > kρ of Lemma C.6 is satisfied for sufficiently small β. Qualitatively,
this is the regime where β is small enough so that σmin(Ṽ ) ≈ σmin(V ). Indeed, the statement of
Theorem 2.3 specifies the case for large N , which will induce such a scenario. To complete the
analysis, we recall the Dvoretzky-Kiefer-Wolfowitz concentration inequality which gives uniform
control of the error for the empirical CDF:

Theorem C.7 (DKW Inequality [6, 16]). Suppose X1, . . . , Xn are i.i.d. samples from an unknown
distribution with CDF F . Let Fn denote the n-sample empirical CDF, i.e.

Fn(x) :=
1

n
#{i : Xi ≤ x}.

Then for every ε > 0,

Pr

(
sup
t∈R
|F (t)− Fn(t)| ≥ ε

)
≤ 2e−2nε2 .

We are now ready to finish the proof of Theorem 2.3.

Proof of Theorem 2.3. Recall that vt is the tail probability Pr[T ≥ t] = 1−F (t), while the empirical

estimate of vt is computed as ṽt = 1−Fn(t); therefore |F (t)−Fn(t)| = |vt− ṽt|. Let ε =
√

1
2N log 2

δ ,

so that by the DKW inequality (Theorem C.7),

sup
t
|vt − ṽt| ≤ ε

with probability at least 1− δ. Let β = εk2

pmin

(
2e
∆

)2k
, as in the hypothesis of Lemma C.4. Observe

that both ε and β decrease to zero as N increases for any fixed δ. Specifically, we may take N large
enough so that 1

β − 1 > 1
2β .

According to Lemma C.4, the event |vt − ṽt| < ε implies the desired bound on the α’s:

|αj − α̃j | ≤ k1.5
1

pmin
+ 1

1
β − 1

≤ k1.5 · 2

pmin
· 2β =

4k3.5ε

p2
min

(
2e

∆

)2k

.

To get the bound on the p’s, again we require N sufficiently large, this time so that 1

ε
√
k( 2e

∆ )
k −

4k4.5

p2
min

(
2e
∆

)2k ≥ 1

2ε
√
k( 2e

∆ )
k . Such a condition ensures that 4k4.5ε

p2
min

(
2e
∆

)2k
< σmin(V ) by Lemma C.2,

which allows us to apply Lemma C.6. This gives us

|pj − p̃j | <

√
kε+ 4k4.5ε

p2
min

(
2e
∆

)2k
σmin(V )− 4k4.5ε

p2
min

(
2e
∆

)2k ≤ 5k4.5

p2
min

(
2e
∆

)2k
1
ε
√
k

(
2e
∆

)−k − 4k4.5

p2
min

(
2e
∆

)2k ≤ 10k5ε

p2
min

(
2e

∆

)3k

.

In particular, both of the stated conditions on N are satisfied for N ≥ N0, where

N0 =
32k10

p4
min

(
2e

∆

)6k

log
2

δ
.
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D Information-Theoretic Lower Bounds

We will show that an exponential dependence on the number of components is not just a limitation
of the matrix pencil method, but is in fact information-theoretically necessary. Furthermore we
will show that our dependence on the gap parameter ∆ is also information-theoretically necessary,
proving that the Matrix pencil method has essentially the correct dependence on all parameters.

Our constructions rely on interpreting polynomials as the difference between two mixtures of
exponentials, under the re-parametrization x 7→ e−x. From this point of view, and in light of our
upper bound (Theorem 2.3), the hardest examples should come from families of polynomials whose
supremum on [0, 1] are exponentially small in the number of terms.

Of particular interest are two families of polynomials – one attributed to Chebyshev and the
other to Turań [20, 29]. These polynomials are tightest examples of extremal families, in the sense
that they have the largest growth rate outside of the unit interval. In particular, the Chebyshev
family are tight examples of the Remez Inequality [24] which is a bound on the supremum norm of
a polynomial, while Turań’s polynomial family (essentially) serve as tight examples for the closely
related Nazarov-Turań lemma (Theorem E.1). Notably, the latter result is specialized to linear
combinations of exponential functions – precisely the setting that we are working in, which make
Turań’s polynomials fitting candidates for constructing matching lower bounds.

D.1 A lower bound construction

D.1.1 Turán’s polynomials and their properties

First, we recall the construction by Turán’s family of polynomials. As mentioned earlier in this
section, a slight multivariate generalization of this construction is central to the proof of Turán’s
First Main Theorem [29] and to “Turán’s proof” of the Nazarov-Turán Lemma [20].

Definition 2 (Turán Polynomials). Fix positive integers m and n such that m > n. The (m,n)-th
Turań polynomial Qm,n(z) is defined to be (1− z)nσm(z), where σm(z) =

∑m
i=0 aiz

i is the degree-m
truncation of the power series expansion of (1− z)−n.

These polynomials have several very useful properties; we recall these facts below, along with
proofs for the reader’s convenience. First we recall the following basic fact:

Proposition D.1. For any k and n,

[zk]
1

(1− z)n
=

(
n+ k − 1

n− 1

)
where the left hand side denotes the coefficient of zk in the power series expansion about 0.

Proof. Consider the power series expansion of 1/(1 − z) as 1 + z + z2 + · · · . It follows that the

kth coefficient of the expansion of
(

1
1−z

)n
is exactly the number of ways in which we can select n

nonnegative numbers to sum up to k, which is
(
n+k−1
n−1

)
.

From this one can verify that the Turan polynomials has several very interesting and useful
properties.

Lemma D.2. Let n,m be positive integers such that m > n, and let Q = Qm,n. Then

1. Q(1) = 0 so the sum of the coefficients equals 0.
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2. The only nonzero monomials in Q(z) are the constant term z0 and zm+1, . . . , zm+n.

3. The leading coefficient has norm at least
(
m+n−1
n−1

)n−1
.

4. Q(z) ∈ [0, 1] for z ∈ [0, 1].

5. The signs of the coefficients of Q(z) are alternating.

Proof. The first point is immediate. For Property (2), observe that degree of Q is at most m+ n
and furthermore that, for 0 < k ≤ m,

[zk]Q(z) = [zk]σm(z)(1− z)n = [zk]
(1− z)n

(1− z)n
= 0.

For Property (3), we use Proposition D.1 to observe that

|[zm+n]Q(z)| = [zm]
1

(1− z)n
=

(
m+ n− 1

n− 1

)
=

(
1 +

m

n− 1

)(
1 +

m

n− 2

)
· · ·
(

1 +
m

1

)
≥
(

1 +
m

n− 1

)n−1

.

For Property (4), observe that the coefficients of the power series of
(

1
1−z

)n
are all nonnegative, so

for z ∈ [0, 1)

0 ≤ (1− z)nσm(z) < (1− z)n 1

(1− z)n
≤ 1.

and furthermore that Q(1) = 0. Finally, to infer Property (5), observe that Q has exactly n + 1
monomials and a positive root of multiplicity n at z = 1. Apply Descartes’ Rule of Signs, which tells
us that the number of sign changes is equal to the number of positive roots with multiplicity.

D.2 Hard exponential mixtures from Turán polynomials

We remind ourselves of some tools from information theory. For a pair of probability measures P
and Q corresponding to densities p and q, their χ2-divergence is defined by

χ2(P,Q) :=

∫
(p(x)− q(x))2

q(x)
dx.

We recall the following well-known fact relating Hellinger and χ2-divergence; we include the proof
for the reader’s convenience.

Proposition D.3.

H2(P,Q) ≤ 1

2
χ2(P,Q)

Proof. Directly, we have

H2(P,Q) =
1

2

∫
(
√
q(x)−

√
p(x))2dx =

1

2

∫
(q(x)− p(x))2

(
√
q(x) +

√
p(x))2

≤ 1

2

∫
(q(x)− p(x))2

q(x)
dx.
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This fact will be useful in obtaining the following estimate, which is tight in terms of the exponent
of the gap parameter ∆.

Theorem D.4. For any positive integers m,n such that m > 2n, let ∆ = 1/(m + 2n + 1). Fix
α ∈ (0, 1/2). Then there exists two mixtures of exponentials P1, P2 with CDFs defined on [0,∞) by

1− F1(t) = (1− α+ a0)e−νt +
n∑
j=1

aje
−λjt

and

1− F2(t) = (1− α)e−νt +
n∑
j=1

bje
−µjt

such that

1. (Normalization) ν, λj , µj ∈ (0, 1].

2. (Exponents are well-separated) All of the elements of the set ν ∪ {λj} ∪ {µj} are separated
by at least ∆. Furthermore, the sets {ν}, {λj}, and {µj} are disjoint and interlaced, e.g.
ν < λ1 < µ1 < λ2 < µ2 < · · · < λn < µn.

3. (Coefficients are bounded)
∑

j aj = α and
∑

j bj = α.

4. (Indistinguishability) H2(P1, P2) ≤ α2

(2n−1)2 [∆(2n− 1)]4n−4.

Proof. Let Qm,2n be the (m, 2n)-th Turań polynomial. We start by re-centering it so that its average
value over the unit interval is zero, by writing

Rm,2n(x) := Qm,2n(x)−
∫ 1

0
Qm,2n(y)dy.

Let Cm,2n be the sum of the positive entries of Qm,2n. By Property 3 of Lemma D.2, we have
Cm,2n ≥ [(m+ 2n− 1)/(2n− 1)]2n−1. Integrate Rm,2n to give the polynomial

Sm,2n(x) :=

∫ x

0
Rm,2n(y)dy

and observe that Sm,2n(0) = 0 and Sm,2n(1) =
∫ 1

0 Qm,2n(y)dy−
∫ 1

0 Qm,2n(y)dy = 0. Define C ′m,2n to
be the sum of the positive entries of Sm,2n(x). Observe, by the power rule for integrating monomials,
that

C ′m,2n ≥ Cm,2n/(m+ 2n+ 1) ≥ [(m+ 2n− 1)/(2n− 1)]2n−2

4n− 2
.

Define f(x) = αSm,2n(x)/C ′m,2n, so

f(x) = f1x+
m+2n+1∑
k=m+2

fkx
k

and the sum of all of the positive (or all of the negative) coefficients of f is α. The coefficients here
will be exactly the aj ’s and bj ’s, which verifies property (3).
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We now split the polynomial into a positive part and a negative part. Define f+(x) = (1− α+
f1)x+

∑m+2n+1
k=m+2;fk>0 fkx

k and f−(x) = (1− α)x+
∑m+2n+1

k=m+2;fk<0(−fk)xk so that

f(x) = f+(x)− f−(x)

and define CDFs of mixtures of exponentials F1, F2 by

F1(t) := 1− f+(e−t), F2(t) := 1− f−(e−t).

Observe by the chain rule that

p1(t) :=
d

dt
F1(t) = f ′+(e−t)e−t, p2(t) :=

d

dt
F2(t) = f ′−(e−t)e−t

so by linearity of the derivative,

p1(t)− p2(t) = e−t(f ′+(e−t)− f ′−(e−t)) = e−tf ′(e−t).

Observe that for x ∈ [0, 1]

|f ′(x)| = α

C ′m,2n
|S′m,2n(x)| = α

C ′m,2n
|Rm,2n(x)| = α

C ′m,2n

∣∣∣∣Qm,2n(x)−
∫ 1

0
Qm,2n(y)dy

∣∣∣∣ ≤ α

C ′m,2n
.

In the last step, we used Property 4 of Lemma D.2; the quantity inside the absolute value is the
difference between Qm,2n and its average over [0, 1], which implies that the difference is bounded in
absolute value by 1.

Finally, notice that f ′−(x) ≥ (1 − α) ≥ 1/2 for all |x| ≥ 0. If P1 and P2 are measures having
densities p1 and p2, then

χ2(P1, P2) =

∫
t

(p1(t)− p2(t))2

p2(t)
dt =

∫
t
e−t

(f ′+(e−t)− f ′−(e−t))2

f ′−(e−t)
dt

≤
∫
t
e−t

(α/C ′m,2n)2

(1/2)
dt

≤ 2α2(4n− 2)2

[
2n− 1

m+ 2n− 1

]4n−4

.

Therefore,

H2(P1, P2) ≤ 1

2
χ2(P1, P2) ≤ α2(4n− 2)2

[
2n− 1

m+ 2n− 1

]4n−4

≤ α2(4n− 2)2 [∆(2n− 1)]4n−4 .

This computation verifies condition (4). Finally, we re-scale t by making the transformation
t 7→ t

m+2n+1 . By Properties 2 and 5 of Lemma D.2, these mixtures satisfy (1) and (2).

Corollary D.5. Let P1 and P2 be as in Theorem D.4, α ∈ (0, 1/2) be arbitrary, and let k = n+ 1
be the number of components in each of the two mixtures. Let P⊗N denote the product measure
corresponding to taking N iid samples from probability measure P . Then

TV(P⊗N1 , P⊗N2 ) ≤ α
√

2N

2k − 3
[∆(2k − 3)]2k−4 .
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Proof. We use the comparison inequality between TV and H2, together with the tensorization
inequality for H2 to conclude

TV(P⊗N1 , P⊗N2 ) ≤
√

2H2(P⊗N1 , P⊗N2 ) ≤
√

2NH2(P1, P2)

and then apply Theorem D.4.

Note that if we take m to be much larger than k, ∆ is much smaller than 2k. Informally speaking,
Corollary D.5 translates to a sample complexity lower bound of

Ω

(
k2

α2

(
1

∆

)4k−4
)

in the hypothesis testing problem of distinguishing between P1 and P2 for any choice of α. Compare
this to Equation 5 of Theorem 2.6, which gives an upper bound of

O

(
1

p2
leading

(c∆/∆)4k−2 log(2/α)

)
where c∆ = 8e2/ (min(1/∆leading, (2k − 1))) for simple-versus-composite hypothesis testing at a
constant significance level. This shows the matching the quadratic dependence on the coefficients as
well as the exponent 4k in the gap parameter.

For comparison, we also juxtapose the result from Theorem 2.3, which gives an upper bound of

O

(
k7

p4
min

(
2e

∆

)4k
)

for the learning problem, which gives a quartic dependence on the coefficients instead. We suspect
this difference is not simply an artifact of the analysis; in practice, the convex programming approach
seems to succeed with fewer samples than the MPM.

Finally, we can also give a lower bound on the minimax rate of learning the coefficients of a
mixture of exponentials:

Theorem D.6. Let k > 3, m > k and ∆ = 1/(m + k − 1). There exists λ1, . . . , λk which are
∆-separated such that for any estimator p̂ of the coefficients from N samples of the mixture of
exponentials with CDF F (t) = 1−

∑
j pje

−λjt:

inf
p̂

max
p

Ep‖p− p̂‖1 ≥
1

4
min

(
1,
k − 3√

2N

(
1

∆(k − 3)

)k−4
)

Proof. This is derived by the usual reduction to hypothesis testing. Let α ∈ (0, 1/2) to be fixed
later, and let P1 and P2 be the mixtures of exponentials from Corollary D.5 with coefficients {ai}
and {bj} (supported at disjoint indices) with parameter α. As a reminder, Corollary D.5 gives
(where we write k′ as a placeholder for k)

TV(P⊗N1 , P⊗N2 ) ≤ α
√

2N

2k′ − 3

(
∆(2k′ − 3)

)2k′−4
.

Now let

α := min

(
1

2
,
2k − 3

2
√

2N

(
1

∆(2k′ − 3)

)2k′−4
)

28



so TV(P1, P2) ≤ 1/2. This means we can couple the distributions so that they draw identical
outputs with probability at least 1/2. Let k = 2k′. Under such a coupling, for at least one of P1 or
P2, its coefficients p are far from p̂:

‖p̂− p‖1 ≥
1

2
(a0 +

k∑
j=1

|aj − bj |) = α

with probability at least 1/4, so the expected error is at least α/4. For the last equality in the above
expression, we again keep in mind that the coefficients aj and bj are supported on disjoint sets of
indices.

D.3 Equally-spaced exponents via Chebyshev Polynomials

In this section, we briefly discuss a slightly different family of polynomials, which are classically
attributed to Chebyshev. It will turn out that they give a similar exponential-type bound for
learning the λj ’s when the gap ∆ is as large as possible. We remind ourselves of their definition
now:

Definition 3. The kth Chebyshev polynomial (of the first kind) Tk is given by the recursive relation

Tn+1(x) = 2xTn(x)− Tn−1(x)

starting with T0(x) = 1 and T1(x) = x.

These polynomials have the property that for any k,

1. |Tk(x)| ≤ 1 for all x ∈ [−1, 1].

2. If k is even, the monomials that appear in Tk are all even powers of x up to k. If k is odd,
then the monomials are all odd powers of x up to k.

3. The coefficient of xk is 2k−1 for k ≥ 1.

Note that Property 3 of Tk is comparable to Property 3 of Qm,n in Lemma D.2. Of particular interest
here is Property 2 of Tk, which states that the exponents that appear are equally spaced. Indeed,
the same technique of normalizing then re-weighting the coefficients by an arbitrary α ∈ (0, 1/2)
used in the proof of Theorem D.4 yields the following lower bound:

Theorem D.7. Fix any positive integer k, and fix α ∈ (0, 1/2). There exist two mixtures of
exponentials P1, P2 with CDFs defined on [0,∞] by

1− F1(t) = (1− α+ a0)e−νt +

k∑
j=1

aje
−λjt

and

1− F2(t) = (1− α)e−νt +

k∑
j=1

bje
−µjt

such that

1. (Normalization) ν, λj , µj ∈ (0, 1].
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2. (Well-separated exponents) All of the elements of the set ν ∪ {λj} ∪ {µj} are separated by at
least 1/(2k).

3. (Bounded coefficients)
∑

j αj = α and
∑

j bj = α.

4. (Indistinguishability) H2(P1, P2) ≤ α2(2k+1)2

24k−2 .

E Hypothesis Testing using the Nazarov-Túran Lemma

In this section we use the Nazarov-Túran lemma, originating in works on analytic number theory
and approximation theory, to give guarantees on the number of samples needed for the Kolmogorov-
Smirnov test described in Section 2.4 to successfully solve the simple-vs-composite hypothesis testing
Problem 1.

As a first step towards proving Theorem 2.6, we now recall our key technical tool, the Nazarov-
Turán Lemma10.

Theorem E.1 (Nazarov-Turán [20]). Suppose p(t) =
∑n

j=1 cje
−λjt. Then for t1, t2 > 0

max
t∈[−t2,t1]

|p(t)| ≤ e(t1+t2)λ1 [4e(t1 + t2)/t1]n−1 max
t∈[0,t1]

|p(t)|.

We will use the Nazarov-Turán lemma by analytically continuing the mixture of exponential
CDFs to negative time; this allows us to derive the following lemma which is the heart of our
hypothesis testing result.

Lemma E.2. Suppose p(t) =
∑k0

j=1 cje
−λjt−

∑k1
j=1 dje

−µjt such that the cj , dj ≥ 0 and
∑

j cj ,
∑

j dj ≤
1. Also suppose that 1 ≥ λ1 > · · · > λk0 ≥ 0 and similarly for the µj. Then if k := k0+k1

2 and
δ := min(|c1|, |d1|)

δ

2(8e2 log(2/δ))2k−1
·min

(
1, ((2k − 1)(λ1 − µ1))2k−1

)
≤ max

t∈[0,2k−1]
|p(t)|

Proof. Without loss of generality we suppose that λ1 > µ1. By Theorem E.1, for any t1, t2 we have

|p(−t2)| ≤ e(t1+t2)λ1 [4e(t1 + t2)/t1]2k−1 max
t∈[0,t1]

|p(t)|.

To use this, we will need to choose a t2 so that we can get an explicit lower bound on p(−t2). It
will suffice if

|c1e
λ1t2 |/2 ≥ |

k1∑
j=1

dje
µjt2 |

or, phrased slightly differently:

|c1|/2 ≥ |
k1∑
j=1

dje
(µj−λ1)t2 | (21)

Observe that all the exponents on the right hand side have negative coefficients, because λ1 is the
largest. In order to bound the right hand side, we use Holder’s Inequality:

|
n∑
j=1

dje
(µj−λ1)t2 | ≤ e(µ1−λ1)t2

k1∑
j=1

|dj | ≤ e(µ1−λ1)t2 .

10Here we have specialized the Nazarov-Turán lemma to real exponents and to intervals instead of general measurable
sets.
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Therefore, taking t2 = log 2/|c1|
λ1−µ1

suffices for (21) to hold. We then have

|c1e
λ1t2 |/2 ≤ e(t1+t2)λ1 [4e(t1 + t2)/t1]2k−1 max

t∈[0,t1]
|p(t)|

=⇒ |c1|/2 ≤ et1λ1 [4e(t1 +
log(2/|c1|)
λ1 − µ1

)/t1]2k−1 max
t∈[0,t1]

|p(t)|.

which gives a lower bound on the maximum value of |p(t)|:

|c1|
2
e−t1λ1

 t1

4e(t1 + log(2/|c1|)
λ1−µ1

)

2k−1

≤ max
t∈[0,t1]

|p(t)|.

Letting t1 = (2k − 1) and using that |λ1| ≤ 1, we find

|c1|
2(4e2)2k−1

 2k − 1

(2k − 1) + log(2/|c1|)
λ1−µ1

2k−1

≤ max
t∈[0,2k−1]

|p(t)| (22)

Using the inequality that x+ y ≤ 2 max(x, y), we bound the second term on the LHS as follows: 2k − 1

(2k − 1) + log(2/|c1|)
λ1−µ1

2k−1

≥ 1

22k−1

 2k − 1

max
(

2k − 1, log(2/|c1|)
λ1−µ1

)
2k−1

≥ 1

22k−1
min

(
1,

(2k − 1)(λ1 − µ1)

log(2/|c1|)

)2k−1

≥ 1

(2 log(2/|c1|)2k−1
min

(
1, ((2k − 1)(λ1 − µ1))2k−1

)
(23)

Using Equation 23, we simplify the lhs of (22) to give

|c1|
2(8e2 log(2/|c1|))2k−1

·min
(

1, ((2k − 1)(λ1 − µ1))2k−1
)
≤ max

t∈[0,2k−1]
|p(t)|.

We are now ready to prove the finite sample guarantee (Theorem 2.6) for the Kolmogorov-Smirnov
test from Section 2.4. For the reader’s convenience, we re-state the test now:

1. Let α > 0 be the significance level.

2. Let FN be the empirical CDF and let F be the CDF under the null hypothesis H0.

3. Reject H0 if supt |Fn(t)− F (t)| >
√

log(2/α)/2N .

Proof of Theorem 2.6. Let F be the CDF under the null hypothesis, that the samples are drawn
from P . By the DKW inequality (Theorem C.7), under the null hypothesis

Pr
P

(sup
t
|FN (t)− F (t)| > s) ≤ 2e−2Ns2
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Therefore with s =
√

log(2/α)/2N then the probability of type I error is bounded by α, as desired.
On the other hand, observe by Lemma E.2 that if FQ is the CDF of Q ∈ H1, then

δ

2(8e2)2k−1
·min

(
1, ((2k − 1)(ε))2k−1

)
≤ max

t∈[0,2k−1]
|F (t)− FQ(t)|

It follows that the test is guaranteed to reject as long as

δ

2(8e2)2k−1
·min

(
1, ((2k − 1)(ε))2k−1

)
− sup

t
|FN (t)− FQ(t)| >

√
log(2/α)/2N. (24)

Under the alternative hypothesis, by the DKW Inequality (Theorem C.7). Equation 24 happens
with probability

Pr

(
sup
t
|FN (t)− FQ(t)| < δ

2(8e2)2k−1
·min(1, ((2k − 1)ε)2k−1)−

√
log(2/α)/2N

)
≥1− 2 exp

(
−Nδ

2 min(1, ((2k − 1)ε)4k−2)

8(8e2)4k−2

)
since

√
log(2/α)/2N < δ·min(1,((2k−1)ε)2k−1)

4(8e2)2k−1 under the assumption N ≥ N0.

Remark 6. The point of the above argument is to derive finite sample guarantees. In the asymptotic
regime, one can immediately derive more precise results by combining the guarantee from Lemma E.2,
applied to the difference of CDFs, with the classical version of the Kolmogorov-Smirnov test, using
the critical values for the Kolmogorov distribution.

F A reconstruction algorithm for population history

In this section, we describe an algorithm that takes as input L independent and identically distributed
2-sample coalescence times c1, . . . cL and outputs a population shape. In particular, we assume that
each sample is an accurate measurement of coalescence times, with the interpretation that they are
i.i.d. from the distribution of T (Section 1.3.1).

Our strategy is reminiscent of the algorithm provided by [14] for the 1-component case. We
will be reconstructing the history iteratively, starting from the most recent event and going as far
backwards in time as possible. The hope is that if we have a guarantee that we have accurate
constructions of the subpopulation structures in the intervals I1, . . . Ij , then we should be able to
provide a good guess of what happened at the boundaries between Ij−1 and Ij at time tj−1.

F.1 Preliminary ideas

F.1.1 Inferring events – split, merge or size change?

Assume, for the sake of argument, that we are given the exact population shape N for the interval
Ij−1. Since our model only allows for up to one merge or one split at any given time, the only
possibilities are Dj ∈ {Dj−1 − 1, Dj−1, Dj−1 + 1}. Therefore, the maximal number of components
in the exponential mixture in Ij including the constant term is Dj−1 + 2.

In the noiseless scenario, we can run the matrix pencil method with component size k = Dj−1 +2
on estimates v0, . . . , v2Dj−1+3 describing CDF values on Ij . In this case, we get some collection
of k eigenvalues α0 > · · · > αDj−1+1. If in reality Dj < Dj−1 + 1, then 0 must be an eigenvalue.
Therefore, we can discard αi that are equal to zero to get the true collection of components.
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In the noisy case, by Theorem 2.3, given a sufficiently large collection of L iid samples that lie in
Ij and to its right, we can discard αi that are close to zero: those that are smaller than some error

threshold11, η1 = Θ
((

2e
∆

)2k√ 1
L

)
. Just as in Theorem 2.3, ∆ is a lower bound on the gap between

any two distinct exponents in the model. For the reconstruction algorithm, it is a free parameter
that determines the number of samples required. Conversely, it is the threshold for learning given
the number of samples available.

Once this is done, all that’s left is to semantically link the subpopulations in Ij−1 to those of
Ij . While it is tempting to simply index subpopulations in decreasing order of α’s and say that
corresponding subpopulations are matching, the labeling becomes inconsistent, for instance, under
consideration of large size changes or under merges/splits. We address this issue in the upcoming
section, Appendix F.1.2.

F.1.2 The recursion

We briefly recall the model derived in Appendix A. If the population history N is constant in the
interval I = [a, b], then T satisfies

Pr(T > a+ t | T > a) = p0 +

D∑
`=1

p`e
−λ`t,

where for each ` ≥ 1, p` := Pr(E`` | T > a).
Since our algorithm works iteratively, it would be helpful to relate the exponential mixture

parameters of the interval Ij to those of Ij−1, assuming N is constant in Ij = [b, c] and in Ij−1 = [a, b],
for a < b < c. The overall goal here is to describe a “matching” scheme for subpopulations of Ij−1

to those of Ij. For the sake of brevity, we introduce some notation.

• Let n = Dj and m = Dj−1.

• For i = 1 to Dj , let Eji denote the event that both lineages trace back to subpopulation
indexed i in the interval Ij .

• Let {(pi, αi)}ni=1 denote the coefficients and exponentials (αi = e−λi) for the interval Ij .

• Let {(qi, βi)}mi=1 denote the analogous parameters for Ij−1.

We only need to consider subpopulations i in Ij which is linked to subpopulation i′ in Ij−1, in
the absence of splits or merges specifically involving i or i′. Indeed, since we only allow one split
or merge at a time, either of these events can be inferred from the fact that all but at most two
subpopulations from Ij can be “matched” with subpopulations in Ij−1 if a split/merge occurred.

Observe that Eji = Ej−1
i′ , and that {T > b} ⊂ {T > a} as events. We derive the following:

pi = Pr(Eji | T > b)

= Pr(Ej−1
i′ ∧ {T > a} | T > b)

= Pr(T > b | Ej−1
i′ ∧ {T > a}) ·

Pr(Ej−1
i′ ∧ {T > a})
Pr(T > b)

= Pr(T > b | Ej−1
i′ ∧ {T > a}) · Pr(Ej−1

i′ | T > a) · Pr(T > a)

Pr(T > b)

=
(
βb−ai′

)
· (qi′) ·

1

Pr(T > b | T > a)

11Note that we provide the exact constants in the full proof of Theorem 2.3 found in Appendix C.
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In particular, if we can accurately estimate p̂, α̂, q̂, β̂ from coalescent samples t1, . . . , tL, we can infer
that population i links to population i′ if

p̂i ·
#{k : tk > b}
#{k : tk > a}

≈ q̂i′ β̂b−ai′ (25)

where ≈ denotes an approximation up to some additive error η2. To determine what η2 should be,
we analyze both sides of Eq. (25) via the bounds from Theorem 2.3.

Let Lj−1 and Lj respectively denote the number of samples that fall in the intervals [a,∞)
and [b,∞). For the RHS, note that if the additive errors ε1 and ε2 for qi′ and βi′ respectively
are small, then the error of the right-hand side of Eq. (25) is bounded by βε1 + qε2 + ε1ε2 ≤
ε1+ε2+ε1ε2 = O

((
2e
∆

)3Dj−1
√

1
Lj−1

)
. The same analysis goes for the LHS. In particular, the error for

Pr(T > b | T > a), by the DKW inequality, is
√

1
Lj−1

log 2
δ0

with probability δ0, which is dominated

by the error O
((

2e
∆

)3Dj
√

1
Lj

)
in pi. Therefore, the tolerance should be η2 = Θ

((
2e
∆

)3Dj
√

1
Lj

)
.

F.2 The algorithm description

Now we implement the proposed strategy, which is built upon the ideas of the previous section
(Appendix F.1).

Inputs: {c1, . . . , cL}, a sample collection of L iid coalescence times.

Parameters:

• D0, an initial upper bound for the number of subpopulations at t = 0.

• K, the number of intervals for reconstruction.

• δ, failure probability budget.

• ε, a scaling parameter for the interval sizes.

• N , the present-day (t = 0) total population size.

• P , threshold lower bound for component weight.

• ∆, threshold lower bound for exponential gap over all intervals.

Output: A population history {(Ij , Dj ,Nj , Ej)}Kj=1.

Procedure:

1. Partition time (oriented towards the past) into intervals by setting tj = εjN , for j = 0, . . . ,K.
Let I1 = [t0, t1], . . . , IK = [tK−1, tK ]. Initialize j = 1.

2. Collect CDF statistics in Ij : Abbreviate D := Dj−1. For ` = 0, 1, . . . , 2D + 3, compute the
statistic

v̂` =
#{i : ci ≥ tj−1 + εN

2D+4`}
#{i : ci ≥ tj−1}
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3. Learn the model parameters in Ij : apply the Matrix Pencil Method on D + 2 components
using inputs v̂0, . . . , v̂2D+3, which outputs eigenvalues α̂0 > · · · > α̂D+1 and corresponding
coefficients p̂0, p̂1, . . . , p̂D+1.

Discard all α̂’s (and corresponding p̂’s) of absolute value at most η, where

η1 =
4(D + 2)3.5

P 2

(
2e

∆

)2D+4
√

1

Le−εjN
log

K

δ
. (26)

Set Dj equal to the number of leftover α̂’s, minus 1 (to account for the constant term), and
re-normalize the remaining p̂’s so that they sum to 1.

4. Learn the population event at tj−1 & sizes in Ij : If j = 1, let N̂1 = (N
√
p̂1, . . . , N

√
p̂D1).

(The leading coefficient p̂0 is omitted from this calculation.)

Otherwise (j > 1), set N̂j = ( εN
(2D+4)µ̂1

, . . . , εN
(2D+4)µ̂Dj

), where µ̂i = − log(α̂i). Let {(q̂i, β̂i)}
Dj−1

i=0

be the (coefficient, eigenvalue) pairs recovered from the previous iteration.

Say that subpopulation i of Ij matches subpopulation i′ of Ij−1 if∣∣∣∣p̂i − q̂i′ β̂2D+4
i′ · #{k : tk > a}

#{k : tk > b}

∣∣∣∣ < η2 (27)

where

η2 =
40(D + 2)5

P 2

(
2e

∆

)3(D+2)
√

1

Le−εjN
log(K/δ). (28)

Do one of the following.

• If Dj = D + 1, infer “Split”: Find a valid matching. There should be one ` ∈ [Dj−1] and
two indices k1, k2 ∈ [Dj ] left over. Assign the event: Split(`→ {k1, k2}).
• If Dj = D − 1, infer “Merge”: Find a valid matching. There should be two `1, `2 ∈ [Dj−1]

and one k ∈ [Dj ] left over. Assign the event: Merge({`1, `2} → k).

• If Dj = D, infer “Change Size”: Identify a bijection from [Dj ] to [Dj−1] via the matching
scheme.

• If none of the above cases are true, or if there is no such prescribed matching, fail by default
and terminate the procedure.

5. If j = K, stop. Otherwise, set j ← j + 1, go back to step 2.

F.3 Reconstruction Guarantees

Consider the setting where the intervals are known and are equal in size (which decides ε). Given
enough samples, the algorithm for population reconstruction presented in Section F succeeds in
reconstructing the correct population history with high probability. Indeed, with a large enough
number of samples, the conditional tail distribution F (t) = Pr(T > t | T ≥ tj) can be approximated
to arbitrarily high precision with high probability. In turn, this means that the empirical (conditional)
tail probabilities in Ij that are collected in step (2) of the algorithm are arbitrarily close to the
ground truth tail probabilities.

We choose 2(D + 2) maximally spread out points in the interval Ij , and input the empirical tail
probabilities at these points to the Matrix Pencil Method. The robustness of the Matrix Pencil
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Method (Theorem 2.3) guarantees that the estimated exponents µ̂i are sufficiently close to their
true values µi with high probability. Furthermore, each true exponent µi is roughly the reciprocal
of Ni, the size of the ith subpopulation in the interval Ij , and so approximating the µi’s gives us a
good approximation of the subpopulation sizes in the interval Ij .

Note the scaling factor ν = εN
(2D+4) that appears in the algorithm, which comes from the change

of variables t = ντ . The rescaling reflects a time units conversion from generations to coalescent
units, which is convenient because the robustness guarantees are provided via interpolation at integer
points τ = 0, 1, 2, etc. The precise relation between the µis and Nis in our algorithm is

µi =
εN

(2D + 4)Ni
.

Steps 3 and 4 contain errors η1, η2 with correction terms Le−εjN and K/δ. The first term Le−εjN

is the expected number of samples (out of L total) found inside and to the right of the interval Ij .
By the observations made in Appendix F.1 and Appendix F.1.2, Steps 3 and 4 of the algorithm
provide accurate reconstructions of N for Ij with probability δ/K, given sufficiently large samples.
By union bounding over all K intervals, the algorithm accurately reconstructs all K pieces of N
with probability δ.

Remark 7. It is almost always the case, however, that we do not know the interval endpoints, and
do not know a small enough value of ε for which the algorithm will work. According to the model,
there exists a sufficiently small value of ε which will allow for correct inference, where ”sufficiently
small” means I1, . . . , IK in Step 1 of the algorithm is fine-grained enough to capture all intervals.
Therefore, a natural strategy is to try a search-based approach for an optimal value, as follows.
Choose various values of ε, then learn the parameters of the model for each. From these, we may
choose the best ε via a goodness-of-fit test, by taking the ε that outputs a learned distribution f̂ that
is closest to the empirical distribution femp in total variation distance. Note that femp converges to
the true f as the number of samples increases, for some appropriate ε.

G Simulation Methods

G.1 A convex programming approach to learning

In addition to using the Matrix Pencil Method to learn mixtures of exponentials in each interval,
we also implemented a convex program. Here, the goal is to learn a mixture of exponentials, whose
support is perhaps restricted to an interval I = [a, b]. The idea is as follows: assume that we
know the interval Λ = [0, c] for which we can assume λ1, . . . , λn ∈ Λ. We first discretize the space
of possible exponents by choosing n equally spaced points λ1, . . . , λn inside Λ. Solve the convex
program

minimize
~p

sup
t∈I

∣∣∣∣∣
n∑
i=1

pie
λit − vt

∣∣∣∣∣
subject to

∑
i

pi = 1

pi ≥ 0, i = 1, . . . , n.

In practice, we replace supt∈I with the discretization maxt∈S , where S ⊂ I is a finite mesh of points
in I. Since we are learning from samples, we also substitute vt with ṽt, the empirical estimate of
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the tail probability Pr[T = t | T ≥ a]. Since the `1-norm of the pi is fixed to be 1, we do not expect
to need additional regularization to get sparse output.

For small instances (see Section 3), the convex program is more sample-efficient than the Matrix
Pencil Method. In the context of this paper, however, it does not come with robustness guarantees.
Results on convex programming approaches for super-resolution are known, due to Candès and
Fernandez-Granda [4]; for our (real-exponent) setting, a different analysis will be required and we
leave this to future work. If we assume that the program does return a sparse output (which occurs
in practice), some guarantees for the accuracy of the output follow automatically from the analysis
of Theorem 2.3 and Theorem 2.6, since for sparse mixtures they (implicitly) bound parameter error
in terms of the closeness in CDF-distance.

Implementation in simulations: In our experiments, we solved the above convex program
using the barrier method of CPLEX version 12.8 with numerical emphasis enabled.

G.2 Simulations: Additional Details

Earthmover’s distance between parameters: The Earthmover’s (or 1-Wasserstein) distance
between P and Q measures the minimum transport cost to move the “mass” corresponding to
probability distribution P to that of Q. Rigorously, in one dimension it can be defined by

EMD(P,Q) := min
π:π|X=P,π|Y =Q

E(X,Y )∼π[|X − Y |]

where here π ranges over all possible couplings of marginal distributions P and Q. The following
definition makes the notion of Earthmover’s distance between the parameters of two mixtures of
exponentials precise:

Definition 4. Let P and Q be two mixtures of exponentials P (T > t) =
∑

i pie
−λit and Q(T > t) =∑

i qie
−γit. The Earthmover’s distance in parameter space between P and Q is the Earthmover’s

distance between corresponding atomic measures µP :=
∑

i piδλi and µQ :=
∑

i qiδγi where δx
represents a Dirac mass at point x.

Derivation of Per-Instance Information-Theoretic Lower bounds: Given the alternative
instance, we derived the bound by computing the H2 (Hellinger squared) distance between the
true distribution and the alternative distribution, and then applying standard tensorization and
comparison inequalities to bound the TV (as used in the proof of Corollary D.5).

Upper bound simulations: We ran 300 trials for each setting of k and number of sam-
ples; in order to run the simulation for very large numbers of samples, we directly generated the
corresponding noisy CDF estimates by adding Gaussian noise of order O(1/

√
N) where N is the

number of samples. For reasonable size N we also ran the methods using actual sample-estimated
CDFs and the results were consistent with the simulated Gaussian-noise CDFs. The lower bound is
analytically computed, not simulated, so it is unaffected by this Gaussian-noise approximation.

Plotted Data: Here we provide the data plotted in Figure 3, that was found via simulation
as described above.
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k CVX MPM LB

1 2.98× 105 9.28× 104 1.34× 104

2 3.25× 108 3.45× 1010 8.18× 106

3 3.55× 1011 3.87× 1014 1.44× 108

4 1.21× 1014 1.40× 1019 1.13× 109

5 N/A 4.89× 1022 1.43× 1013

Table 1: Values plotted on a log (base 10) scale in Figure 3.
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