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The intrinsic high entropy sequence metadata, known as quality scores, are

largely the cause of the substantial size of sequence data files. Yet, there is

no consensus on a viable reduction of the resolution of the quality score scale,

arguably because of collateral side effects. In this paper we leverage on the

penalty functions of HISAT2 aligner to rebin the quality score scale in such

a way as to avoid any impact on sequence alignment, identifying alongside

a distortion threshold for “safe” quality score representation. We tested our

findings on whole-genome and RNA-seq data, and contrasted the results with

three methods for lossy compression of the quality scores.
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Introduction

High-throughput sequencing technologies epitomize the challenges of data-intensive science,

the current paradigm for scientific exploration (1). Massive datasets, diverse in variety, exhaus-

tive in scope, and fine-grained in resolution are representative descriptors of sequence data, the

big data (2) in the biomedical sciences. The drop in sequencing costs (3) has democratized

the production of sequence data and propelled its growth. Sequence data has historically dou-

bled every seven months a, a figure that is meticulously tracked and updated by the GenBank,

the genetic sequence database of the National Institute of Health (NIH), every two months.

The current storage requirements for sequence data are, conservatively, on par with the stor-

age estimates for any of the other major Big Data producers: Astronomy (1 EB/year), Twitter

(0.001-0.017 EB/year) and YouTube (1-2 EB/year) (4). It has been projected an annual storage

need between 2-40 EB per year for sequence data. However, we are at the onset of the sequence

data flood. The promise of personalized medicine to revolutionize the diagnosis and treatment

of diseases has triggered projects to sequence an important proportion of the human population.

An attest to this is the 100 000 Genomes Project, a study launched in the UK that sequenced

one hundred thousand human genomes from patients with rare diseases and their families, and

patients with cancer (5). As per estimates of The Global Alliance for Genomics and Health,

more than 60 million patients will have their genome sequenced by 2025 (6), a projection that

will be facilitated by the competition of private companies to offer genome sequencing services

at a population scale with milestones to reduce sequencing costs, currently pushing the cost of

100 dollars per sequenced genome. The ubiquitous integration of personal genomic information

into aspects of everyday life is around the corner, as we step into era of the “social genome” (7).

The capacity to generate massive datasets of sequence data greatly outpaces our ability to

analyze them, the notorious bottleneck in omic analyses. As per projections to the year 2025,
ahttps://www.ncbi.nlm.nih.gov/genbank/statistics/
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over 75% of the cost and complexity in omic workflows will be taken over by data analysis

and storage (8). Data is accumulating very rapidly, and the immediate, pressing challenge in

high-throughput sequencing is to reduce the size of sequence data files, the FASTQ files, for

storage. Many solutions in the realm of data compression have emerged to reduce the size of

such files, and much work has been devoted to explore methods to compress sequence data, and

its associated metadata, without loss of information (9, 10).

Substantial storage size is dedicated to sequence metadata in lossless compressed files com-

pared to the storage devoted to sequence data. Conservatively speaking, this figure is over 50%

in lossless compressed files. There has been early evidence in the scientific literature to the

size occupied by sequence metadata (11, 12), and more recently such proportions have been

brought back to attention (13, 14). Sequence metadata, also referred to as quality scores, is the

bottleneck in the compression of FASTQ files.

The study of lossy quality score representation was initiated as a remedy to the large storage

footprints of FASTQ files. The investigation of techniques for lossy compression of quality

scores, along with quantification of their impact on the calling of genetic variants has been

well studied. It has been shown and confirmed at length that lossy approaches for quality score

representation provide significant storage saving with negligible impact on variant calling (11,

13,15–18), regardless the idiosyncrasies of the lossy compression approach. The effect of lossy

compression of quality scores has also been explored in differential gene expression with similar

conclusions on the negligible effect of applying lossy representations (19). Furthermore, recent

advances in sequencing technologies are leading the production of longer genomic sequences

with better accuracy and drastically reduced resolution for the quality scores (20), supporting

the claim that coarser representations are in principle suitable for omic analyses.

While the ultimate interest lies in assessing the impact of lossy quality score representation

in a full bioinformatic pipeline, this approach may be ineffective for the purpose of understand-
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ing the role of lossy quality scores in the analysis. This is because sequence data is transformed

continually as it is shepherded throughout the pipeline, and errors and associated uncertainties

of the computational methods that operate on it are combined along with the data, obscuring

the precise effect of lossy quality scores in the analysis.

Moreover, despite several efforts to evidence marginal impact in the application of lossy

quality score representation, no consensus exist on the limits of a “safe” representation for

compressing them lossy. In this context, this work focuses on read alignment to explore the

effect of lossy quality score representation. In particular, we show that it is possible to compute

a threshold value for transparent quality score distortion for sequence alignment, allowing the

identification of a safe representation for the quality score scale. A result that aligns with current

trends in sequencing technologies pushing for coarser resolutions to reduce the storage footprint

of sequence data.

Read alignment The challenge to represent lossy quality scores in the alignment of sequence

reads lies in maintaining the reads original alignment location(s) with the new simplified rep-

resentation. In quality-aware aligners, quality score values participate in the computation of

suitable alignment locations for the reads. The way in which quality score values is factored

in depends on the alignment technique, and their usage is not essential but clearly optional.

Many aligners have been developed that do not rely on quality scores. This is readily noted in

benchmark comparisons, which commonly include widely used aligners (21–25).

Using quality scores can improve alignment accuracy because the information they provide,

the probability of error in the calling of each sequence base, can be incorporated to determine

which positions in a read are more important to map (21,26). Quality scores can be used in very

diverse ways among alignment tools, as the methods prioritize this metadata differently.

One of the most widely used reference-based aligners, BWA (27, 28), incorporates quality
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scores in a measure for the reliability of alignments. The aligner does this by defining a mapping

quality score that represents the error probability of each read alignment. Quality scores are

not used in BWA’s alignment algorithm but rather they are used to support alignment results.

For example, alignments of high accuracy can be screen out using the mapping quality score.

Moreover, this score is used by the aligner to estimate the insert size distribution in paired-end

mapped reads.

In constrast, quality scores can be incorporated at the core of an aligners algorithm to guide

the alignment decision. This is the case for Novoalign (29), another well-known reference-based

aligner, which consistently ranks well in alignment accuracy. Novoalign uses quality score

information in its penalization system to score candidate alignment locations for each input

sequence read.

Our purpose is to investigate the contribution of quality scores to alignment in HISAT2,

which uses quality score metadata for the computation of alignment scores. Built over Bowtie2

(30), HISAT2 is in fact the evolution of this very well-know and popular aligner. It has good

adoption and performance (23, 31), and has stood the test of time. Moreover, it is open source,

and it is still been maintained b. In addition, it was designed to map both DNA and RNA-seq

reads.

The role of quality scores in alignment is framed within HISATs scoring system, and un-

derstanding it will be the way through finding a simplified representation for the quality scores

that circumvents undesirable effects on alignment. Concretely, the goal is to preserve alignment

locations as if no modification to the values of quality scores was done before alignment, that

is, we aim at varying the quality scores transparently.

We ask, under what circumstances quality score values are, or become, informative for

determining the alignment location of a read? To address this question we look into how quality

bhttps://ccb.jhu.edu/software/hisat2/index.shtml
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scores weigh in on HISAT2’s scoring system.

Methods

Aligning sequences consists in lining up characters to reveal similarity. However, the aligner

cannot always assign a read to its point of origin with high confidence, thus it makes an educated

guess about its origin in the reference sequence.

HISAT2 quantifies how similar the sequence of a read is to the reference sequence it aligns

to by computing an alignment score (AS) for the read, whose value is used by the aligner to

classify reads as aligned or unaligned. Therefore, the AS can be seen as a proxy to measure the

effect quality scores have on alignment.

The aligner starts with the assumption that no difference exists between the read sequence

r and the segment of the reference sequence R, pointed to by the alignment location, it aligns

to. If this condition is satisfied, the best possible alignment score is assigned to the read, which

is zero. This the largest, non-negative value the alignment score can take. The concept of

alignment score does not apply to unaligned reads, as such HISAT2 does not report a value, nor

the AS metric for these reads. As dissimilarities are found between r and R, HISAT2 penalizes

each discrepant sequence character. Penalty values are always negative and are added together

to compute the total alignment score for the read r. For an alignment to be considered good

enough, or valid, it must have an alignment score with a value no less than the minimum score

threshold t. The threshold is configurable and a function of the read length x, and its default

value is t(x) = 0 − 0.2 × (x). Thus, valid alignments meet or exceed the minimum score

theshold and are capped at zero. For example, aligned sequences of 100 base-pairs long will

have valid alignment scores in the range −20 ≤ AS ≤ 0.

There are four types of penalizations, and each is scored differently:

- Ambiguous characters (N). The penalty is set in positions where the read, reference or

6

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/754614doi: bioRxiv preprint 

https://doi.org/10.1101/754614
http://creativecommons.org/licenses/by-nc-nd/4.0/


both, contain an ambiguous character such as N. For each ambiguous character the pe-

nalization is 1

- Gaps. Affine gaps in the read or the reference are penalized for their occurrence (gap

opening, O), and for each position they span (gap extension E). The sum of both values

defines the penalization for the gap. The penalty for a read gap of length n is O + n × E,

and its default is 5+ n× 3. The same expression applies for a reference gap of length n

- Soft-clips (sc). Reads can be aligned in a way such that they are trimmed at one or both

extremes, because some of the characters at their ends do not match the reference. Omit-

ted characters are trimmed or soft-clipped from the read to produce a valid alignment.

Each character that is soft-clipped receives a penalty value defined by the penalty func-

tion

P = MN+

⌊
(MX− MN)

min(Q, 40)

40

⌋
(1)

where MX = 2, and MN = 1 are the default values, and Q is the quality score for the

soft-clipped character

- Mismatches (mm). These are discrepant characters between the read and the reference.

Each mismatch is penalized using the penalty function for soft-clips. However, the pa-

rameters values change for mismatches, and they default to MX = 6, and MN = 2

Lets note that quality scores participate only in the penalization for mismatches and soft-

clips. By solving the penalty function above for the full quality score scale, and for both mis-

matches and soft-clips, we get Table 1.

The hypothesis is that sequence alignment is preserved when quality score distortion and

alignment score invariance occur simultaneously. To test this, we start by grouping the quality
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Table 1: Penalty values for mismatches and soft-clips. Penalties are always negative values.
Pmm: Penalization for mismatches; Psc: Penalization for soft-clips.

ASCII Q f = min(Q,40)
40

Pmm = −( 2+ b4× fc ) Psc = −( 1+ b1× fc )
73 40 1 -6 -2
72 39 0.975

-5

-1

71 38 0.95
70 37 0.925
69 36 0.9
68 35 0.875
67 34 0.85
66 33 0.825
65 32 0.8
64 31 0.775
63 30 0.75
62 29 0.725

-4

61 28 0.7
60 27 0.675
59 26 0.65
58 25 0.625
57 24 0.6
56 23 0.575
55 22 0.55
54 21 0.525
53 20 0.5
52 19 0.475

-3

51 18 0.45
50 17 0.425
49 16 0.4
48 15 0.375
47 14 0.35
46 13 0.325
45 12 0.3
44 11 0.275
43 10 0.25
42 9 0.225

-2

41 8 0.2
40 7 0.175
39 6 0.15
38 5 0.125
37 4 0.1
36 3 0.075
35 2 0.05
34 1 0.025
33 0 0
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score scale shown in Table 1, according to the penalty values for mismatches and soft-clips.

The result is the table shown in Figure 1.

Rebinning

40

30

20

10

0

Figure 1: Rebinning of quality score scale.

With this rebinning we can compute distortion rate baselines that represent lossy compres-

sion rates that can “at least” be applied to the quality scores of raw sequence files (FASTQ

files) without compromising alignment. These baselines can be thought of as distortion thresh-

olds, which rely on sequence files. Figure 2 shows the setup of our experiments. An input file

with undistorted quality scores (D) is rebinned to produce an output file with distortion rate d.

Both undistorted and rebinned files are aligned, and produce identical alignment reports. The

distortion threshold for file D is d.

To observe the effect that quality score distortion plays on alignment we ran three lossy

compressors: PRblock (32), QVZ (33), and Quartz (34), and set their parameters such that the

output files met as close as possible the value of the distortion threshold d. The approximate

distortion rates for each compressor are dA, dB and dC (refer to Figure 2). The distorted files

were then aligned with HISAT2 to quantify mapping results.
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Rebinning

Compressor A 

(PRblock)

Compressor B 

(QVZ)

Compressor C 

(Quartz)

HISAT2

HISAT2

HISAT2

HISAT2

HISAT2

Alignment 

breakdown

Figure 2: Experimentation setup.

Results

We experimented with synthetic and natural data and are reporting results for two natural data

samples: T16M Metastatic liver tumor (whole-genome sequence data) (35), and Gene expres-

sion data in skin fibroblast cells (rna-seq data) (36). Results are reported in the tables in Figure

3. The alignment report is presented as the percentage of reads grouped in one of three possible

sets: reads that aligned zero times (Z), reads that aligned exactly one time (X), and reads that

aligned more that one time (M).

The tables summarize alignment information as the percentage of reads whose alignment

coordinate changed as a consequence of quality score distortion. We call this read relocation,

and can happen between alignment sets or within alignment set M (see Figure 4).

For example, a read aligned before quality score distortion may be grouped in set Z but if

that same reads is aligned after quality score distortion it may be grouped in set X. This type of

read relocation is between sets, or interset, and the percentage of reads relocated in this fashion

is shown under Interset read relocation in Figure 3.
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rna-seq, 10k reads

wgs, 1M reads

Distortion method Parameters Distortion rate
[bits/QS]

Alignment set
[% reads]

Read relocation
[% reads]

Z X M Interset Intraset

Total f le M

Undistorted — 0.7715 1.6 73.8 24.6 — —

Rebinning — 0.3702 1.6 73.8 24.6 — 0.8 3.2

PRblock q=2, l=20 0.4028 1.7 73.9 24.4 0.4 1.1 4.5

QVZ 0.013 0.3906 1.9 73.8 24.3 0.4 0.8 3.2

Quartz — 0.5067 1.7 77.2 21.1 3.6 2.0 9.4

Undistorted — 2.696631 6.11 79.21 14.68 — —

Rebinning — 1.202877 6.11 79.21 14.68 — 0.5037 3.4331

PRblock q=2, l=7 1.189309 6.86 78.73 14.41 16.86 7.91 53.91

QVZ 0.035 1.202382 6.61 78.95 14.44 7.97 0.448 3.056

Quartz — 2.465246 6.13 79.29 14.58 0.14 0.44 3.056

Figure 3: Distortion rate and alignment percentages for wgs and rna-seq samples.
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Z X M

M

Change of alignment set

Change alignment coordinate within set M

Figure 4: Read relocation between sets (top), and within set M (bottom).

The second form of read relocation can occur within set M, when the quality scores of a read

with multiple alignment locations are modified in a way such that the new alignment coordinate

belongs to the set of its multiple candidate locations. The percentage of reads relocated within

set M is shown under Intraset read relocation in Figure 3. The percentages shown are relative to

the total file and to the set of multireads (M).

Note that this type of read relocation occurs even in the rebinned file. This happens when

the set M contains reads whose set of alignment coordinates have the same alignment score.

HISAT2 will select one of the candidate coordinates for each read by computing a pseudo-

random number generated from the read name, the sequence string, the quality score string

and an optional seed value. Thus, modifying the quality scores will trigger HISAT2 intrinsic

response toward multireads with equally likely alignment coordinates.

The graphs in Figure 5 report the effect of rebinning. In both graphs, the points to the far

right show the lossless compression rate for each file. In this case, no changes to the quality
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scores are made, and therefore, all alignment coordinates are preserved.

If we then rebin the quality score scale by changing their values according to Figure 1, in

five bins, the file can be compressed at a rate indicated by the green dots in both graphs in Figure

5. The green dots identify distortion thresholds for AS invariance, and every rebinned file has

a specific threshold value. Notice there is a percenage of alignment coordinate changes, which

result as a consequence of intraset read relocation of multireads. In Figure 5, the red points to

the left of the green dots show the rebin of the quality score scale but this time using three and

two bins, instead of the standard five bins shown in Figure 1. Notice the abrupt raise in the

percentage of affected reads as we move toward the left of the graph, a consequence of pushing

for a coarser representation for the quality score scale.

Changes to the quality scores of read sequences will inevitably lead to changes in alignment

coordinates, therefore impacting alignment. Assessing the significance of this impact will de-

pend on the recipient application following sequence alignment. However, the impact of lossy

quality scores on alignment can be eliminated by keeping the alignment scores invariant. Al-

though this is in principle true, we discovered that some idiosyncratic design decisions in the

aligner weigh in unexpectedly, and collaterally impact alignment locations; this is beyond our

control.

Sequence reads will fall in one of thee sets after alignment, and an alignment location(s)

will be reported afterward for each read. As seen at the top of Figure 6, each read U will be

assigned an alignment score AS by the aligner, and this value will determine whether the read

receives an alignment position or not. Aligned reads are grouped by the number of locations the

aligner found for them; if that number is one, they group in set X, if more than one location are

found for a read, they group in set M. An unaligned read has no alignment location and belong

to set Z.

When changes are made to their quality scores of a read U∗, and it is then aligned, the report
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Figure 5: Alignment coordinate changes for rna-seq and wgs samples
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of its alignment score may change (AS∗), or keep the same value (AS). Refer to the bottom of

Figure 6. A change in the value of the AS does not immediately yield a change in the alignment

position for that read. However, it could be the case that it does (pos∗), and thus the alignment

coordinate is tracked to record its displacement. Regardless of the outcome, the read will group

in either Z, X or M set.

The effect of rebinning reads, in accordance to Figure 1, and aligning them afterward is

shown in Figure 7. Invariance of alignment scores is achieved for every input read U∗, and the

only reads that could potentially be affected by this new representation to their quality scores

are the multireads. Therefore, changes to alignment coordinates can happen only within set M.

A graphical summary of the process is presented in Figure 8. Input reads without changes,

and with changes (rebinning), to their quality scores are aligned and compared side to side. The

content of the three alignment sets (Z, X and M) are preserved. As for the alignment coordinates,

they are kept unchanged with no guarantees for those in the mutiread set.
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Figure 7: Abstraction of the assignment of alignment location(s) for rebinned reads. For multi
reads, the report of the primary alignment is randomly selected by the aligner. No guarantees
can therefore be given with respect to their values.
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Discussion

We investigated the penalty functions that drive the alignment score system for read sequence

alignment in a well-known quality-aware aligner. We then derived a simplification in the as-

signment of penalty values that reduces quality score scale granularity while keeping alignment

scores unaffected. Consequently, this coarser quality score scale reduces storage footprint of

sequence files with the advantage of entirely preserving read mapping percentages. In other

words, we distorted quality scores without collateral impact on alignment.

The aligner in question was HISAT2, the modern version of the popular aligner Bowtie2,

suitable for mapping genome and exome sequence data. Compared to other quality-aware align-

ers like Novoalign, HISAT2s approach to alignment score computation is straight-forward and

deterministic, making it a good candidate to explore the relation and effect of quality scores and

sequence alignment.

Simplifying the representation of quality scores is arguably a natural choice in the face of

the sequence data explosion, and computational methods that approach the problem introduce

collateral errors that are difficult to quantify. The assessment of quality score distortion has been

attempted in some application domains (17,19,37) without clear consensus on the limits of safe

lossy distortion levels. Meanwhile the increasing complexity of genomic assays, datasets and

computational methods only adds to the difficulty of its potential quantification.

Nevertheless, even uniform requantization of the quality scores is a suitable approximation

for high accuracy applications (38), and we have shown that this approach can be extended

further to rebin coarsely quality scores without impact in sequence alignment.

In the light of the fast-paced sequencing technology progress, the utility of quality scores

is at stake, as they are arguably unnecessary for many omics applications. We must therefore

advocate for a feasible and pertinent granularity that suits each host application.
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