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Abstract

Machine learning provides a probabilistic framework for metabolic pathway inference from
genomic sequence information at different levels of complexity and completion. However, sev-
eral challenges including pathway features engineering, multiple mapping of enzymatic reactions
and emergent or distributed metabolism within populations or communities of cells can limit
prediction performance. In this paper, we present triUMPF, triple non-negative matrix fac-
torization (NMF) with community detection for metabolic pathway inference, that combines
three stages of NMF to capture myriad relationships between enzymes and pathways within
a graph network. This is followed by community detection to extract higher order structure
based on the clustering of vertices which share similar statistical properties. We evaluated
triUMPF performance using experimental datasets manifesting diverse multi-label properties,
including Tier 1 genomes from the BioCyc collection of organismal Pathway/Genome Databases
and low complexity microbial communities. Resulting performance metrics equaled or exceeded
other prediction methods on organismal genomes with improved precision on multi-organismal
datasets.
Availability and implementation: The software package, and installation instructions are
published on github.com/triUMPF
Contact: shallam@mail.ubc.ca
Keywords: non-negative matrix factorization, community detection, metabolic pathway pre-
diction, BioCyc, multi-organismal genomes.

1 Introduction

Pathway reconstruction from genomic sequence information is an essential step in describing
the metabolic potential of cells at the individual, population and community levels of biological
organization [12, 18, 25]. Resulting pathway representations provide a foundation for defining
regulatory processes, modeling metabolite flux and engineering cells and cellular consortia for
defined process outcomes [11, 20]. The integral nature of the pathway prediction problem has
prompted both gene-centric e.g. mapping annotated proteins onto known pathways using a
reference database based on sequence homology, and heuristic or rule-based pathway-centric
approaches including PathoLogic [16] and MinPath [38]. In parallel, the development of trusted
sources of curated metabolic pathway information including the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [15] and MetaCyc [4] provides training data for the design of more
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flexible machine learning (ML) algorithms for pathway inference. While ML approaches have
been adopted widely in metabolomics research [3,34] they have gained less traction when applied
to predicting pathways directly from annotated gene lists.

Dale and colleagues conducted the first in-depth exploration of ML approaches for path-
way prediction using Tier 1 (T1) organismal Pathway/Genome Databases (PGDB) [5] from
the BioCyc collection randomly divided into training and test sets [7]. Features were developed
based on rule-sets used by the PathoLogic algorithm in Pathway Tools to construct PGDBs [16].
Resulting performance metrics indicated that standard ML approaches rivaled PathoLogic per-
formance with the added benefit of probability scores [7]. More recently Basher and colleagues
developed multi-label based on logistic regression for pathway prediction (mlLGPR), a multi-
label classification approach that uses logistic regression and feature vectors inspired by the
work of Dale and colleagues to predict metabolic pathways from genomic sequence information
at different levels of complexity and completion [25].

Although mlLGPR performed effectively on organismal genomes, pathway prediction out-
comes for multi-organismal datasets were less optimal due in part to missing or noisy feature
information. In an effort to solve this problem, Basher and Hallam evaluated the use of rep-
resentational learning methods to learn a neural embedding-based low-dimensional space of
metabolic features based on a three-layered network architecture consisting of compounds, en-
zymes, and pathways [24]. Learned feature vectors improved pathway prediction performance
on organismal genomes and motivated the use of graphical models for multi-organismal features
engineering.

Here we describe triple non-negative matrix factorization (NMF) with community detection
for metabolic pathway inference (triUMPF) combining three stages of NMF to capture relation-
ships between enzymes and pathways within a network [9] followed by community detection to
extract higher order network structure [8]. Non-negative matrix factorization is a data reduc-
tion and exploration method in which the original and factorized matrices have the property
of non-negative elements with reduced ranks or features [9]. In contrast to other dimension
reduction methods, such as principal component analysis [2], NMF both reduces the number of
features and preserves information needed to reconstruct the original data [37]. This has im-
portant implications for noise robust feature extraction from sparse matrices including datasets
associated with gene expression analysis and pathway prediction [37].

For pathway prediction, triUMPF uses three graphs, one representing associations between
pathways and enzymes indicated by enzyme commission (EC)) numbers [1], one representing
interactions between enzymes and another representing interactions between pathways. The two
interaction graphs adopt the subnetworks concept introduced in BiomeNet [32] and MetaNetSim
[14], where a subnetwork is a linked series of connected nodes (e.g. reactions and pathways).
In the literature, a subnetwork is commonly referred to as a community [30], which defines
a set of densely connected nodes within a subnetwork. It is important to emphasize that
unless otherwise indicated, the use of the term community in this work refers to a subnetwork
community based on statistical properties of a network rather than a community of organisms.
Community detection is performed on both interaction graphs (pathways and enzymes) to
identify subnetworks among pathways.

We evaluated triUMPF’s prediction performance in relation to other methods including Min-
Path, PathoLogic, and mlLGPR on a set of T1 PGDBs, low complexity microbial communities
including symbiont genomes encoding distributed metabolic pathways for amino acid biosynthe-
sis [26], genomes used in the Critical Assessment of Metagenome Interpretation (CAMI) initia-
tive [31], and whole genome shotgun sequences from the Hawaii Ocean Time Series (HOTS) [33]
following information hierarchy-based benchmarks initially developed for mlLGPR enabling
more robust comparison between pathway prediction methods [25].

2 Methods

In this section, we provide a general description of triUMPF components, presented in Fig. 1.
At the very beginning, MetaCyc is applied to: i)- extract three association matrices, indicated in
step Fig. 1(a), one representing associations between pathways and enzymes (P2E) indicated by
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enzyme commission (EC)) numbers [27], one representing interactions between enzymes (E2E)
and another representing interactions between pathways (P2P), and ii)- automatically generate
features corresponding pathways and enzymes (or EC) from pathway2vec [24] in Fig. 1(b).
Then, triUMPF is trained in two phases: i)- decomposition of the pathway EC association
matrix in Fig. 1(c), and ii)- subnetwork or community reconstruction while, simultaneously,
learning optimal multi-label pathway parameters in Figs 1(d-f). Below, we discuss these two
phases while the analytical expressions of triUMPF are explained in Appx. Sections 5.1, 5.2,
and 5.3.

2.1 Decomposing the Pathway EC Association Matrix

Inspired by the idea of non-negative matrix factorization (NMF), we decompose the P2E asso-
ciation matrix to recover low-dimensional latent factor matrices [9]. Unlike previous application
of NMF to biological data [28], triUMPF incorporates constraints into the matrix decomposition
process. Formally, let M ∈ Zt×r

≥0 be a non-negative matrix, where t is the number of pathways
and r is the number of enzymatic reactions. Each row in M corresponds to a pathway and each
column represent an EC, such that Mi,j = 1 if an EC j is in pathway i and 0 otherwise. Given
M, the standard NMF decomposes this matrix into the two low-rank matrices, i.e. M ≈WH>,
where W ∈ Rt×k stores the latent factors for pathways while H ∈ Rr×k is latent factors as-
sociated with ECs and k(∈ Z≥1) � t, r. However, triUMPF extends this standard NMF by
leveraging features, obtained from pathway2vec [24], encoding two interactions: i)- within ECs
or pathways and ii)- between pathways and ECs. For more details about this step, please see
Appx. Section 5.2.1.

2.2 Community Reconstruction and Multi-label Learning

The community detection problem [23,30] is the task of discovering distinct groups of nodes that
are densely connected. During this phase, triUMPF performs community detection to guide the
learning process for pathways using binary P2P (A ∈ Zt×t

≥0 ) and E2E (B ∈ Zr×r
≥0 ) association

matrices, where each entry in these matrices is a binary value indicating an interaction among
corresponding entities. However, A and B capture pairwise first-order proximity among their
related entities, consequently, they are inadequate to fully characterize distant relationships
among pathways or ECs [30]. Therefore, triUMPF utilizes higher-order proximity using the
following formula [23]:

Aprox =
∑
i∈lp

ωiA
l, Bprox =

∑
i∈le

γiB
l

(1)

where Aprox and Bprox are polynomials of order lp ∈ Z>0 and le ∈ Z>0, respectively, and
ω ∈ R>0 and γ ∈ R>0 are weights associated to each term. Using these higher order matrices,
triUMPF applies two NMFs to recover communities (Appx. Section 5.2.2). Then, triUMPF
uses W and H from the decomposition phases (Section 2.1) and the detected communities to
optimize multi-label pathway parameters in an iterative process (Appx. Section 5.2.3) until the
maximum number of allowed iterations is reached. At the end, the trained model can be used
to perform pathway prediction from an organismal genome or multi-organismal dataset with
high precision due to constraints embedded in the P2E, P2P, and E2E associations matrices.

3 Results

We evaluated triUMPF performance across multiple datasets spanning the genomic information
hierarchy [25]: i)- T1 golden consisting of EcoCyc, HumanCyc, AraCyc, YeastCyc, LeishCyc,
and TrypanoCyc; ii)- three E. coli genomes composed of E. coli K-12 substr. MG1655 (TAX-
511145), uropathogenic E. coli str. CFT073 (TAX-199310), and enterohemorrhagic E. coli
O157:H7 str. EDL933 (TAX-155864); iii)- BioCyc (v20.5 T2 & 3) [5] composed of 9255 PGDBs
(Pathway/Genome Databases) with 1463 pathways constructed using Pathway Tools v21 [16];

3

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2020.05.27.119826doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119826
http://creativecommons.org/licenses/by/4.0/


Figure 1: A workflow diagram showing the proposed triUMPF method. Initially, triUMPF takes
the Pathway-EC association (P2E) information (a) to produce several low rank matrices (c) while,
simultaneously, detecting pathway and EC communities (d) given two interaction matrices, corre-
sponding Pathway-Pathway (P2P) and EC-EC (E2E) (a). For both steps (c) and (d), pathway and
EC features obtained from pathway2vec package (b) are utilized. Afterwards, triUMPF iterates be-
tween updating community parameters (d) and optimizing multi-label parameters (e) with the use
of training data (f). Once the training is achieved the learned model (g) can be used to predict a set
of pathways (i-j) from an organismal genome or multi-organismal dataset (h).
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Table 1: Average precision of each comparing algorithm on 6 golden T1 data.

Methods
Average Precision Score

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480
MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129
mlLGPR 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455
triUMPF 0.8662 0.6080 0.7377 0.7273 0.4161 0.4561

iv)- symbionts genomes of Moranella (GenBank NC-015735) and Tremblaya (GenBank NC-
015736) encoding distributed metabolic pathways for amino acid biosynthesis [26]; v)- Critical
Assessment of Metagenome Interpretation (CAMI) initiative low complexity dataset consisting
of 40 genomes [31]; and vi)- whole genome shotgun sequences from the Hawaii Ocean Time Series
(HOTS) at 25m, 75m, 110m (sunlit) and 500m (dark) ocean depth intervals [33]. We applied
BioCyc v20.5 to train triUMPF while the remaining datasets were used to report performance
results. Since BioCyc v20.5 contains less than 1460 trainable pathways, we applied pathway2vec
with RUST-norm (or “crt”) configuration to improve prediction (see Section 5.4.3). For general
statistics about these datasets are summarized in Appx. Table 4.

For comparative analysis, triUMPF’s performance on T1 golden datasets was compared to
three pathway prediction methods: i)- MinPath version 1.2 [38], which uses integer programming
to recover a conserved set of pathways from a list of enzymatic reactions; ii)- PathoLogic version
21 [16], which is a symbolic approach that uses a set of manually curated rules to predict
pathways; and iii)- mlLGPR which uses supervised multi-label classification and rich feature
information to predict pathways from a list of enzymatic reactions [25]. In addition to testing
on T1 golden datasets, triUMPF performance was compared to PathoLogic on three E. coli
genomes and to PathoLogic and mlLGPR on mealybug symbionts, CAMI low complexity, and
HOTS multi-organismal datasets. The following metrics were used to report on performance
of pathway prediction algorithms including: average precision, average recall, average F1 score
(F1), and Hamming loss as described in [25]. For experimental settings and additional tests,
see Appx. Sections 5.4 and 5.5.

3.1 T1 Golden Data

As shown in Table 1, triUMPF achieved competitive performance against the other methods in
terms of average precision with optimal performance on EcoCyc (0.8662). However, with respect
to average F1 scores, it under-performed on HumanCyc and AraCyc, yielding average F1 scores
of 0.4703 and 0.4775, respectively (Appx. Table 5). Since the observed number of pathway
labels in BioCyc v20.5 is 1463 pathways (a subset of 2526 MetaCyc pathways) (as explained in
Section 3), triUMPF trained with this data (using features from pathway2vec [24]) can not infer
pathways outside the trainable pathways. Consequently, this has translated into low average
F1 scores of HumanCyc and AraCyc. A possible treatment would be incorporating additional
PGDBs containing more pathways to train triUMPF. However, this would require substantially
building many PGDBs from organismal genomes or using multiple versions of BioCyc data. A
detailed analysis on this is left for future work.

3.2 Three E. coli data

Recall that community detection (Section 2.2) was used to guide the multi-label learning process.
To demonstrate the influence of communities on pathway prediction, we compared pathways
predicted for the T1 gold standard E. coli K-12 substr. MG1655 (TAX-511145), henceforth
referred to as MG1655, using PathoLogic and triUMPF. Appx. Fig. 8a shows the results,
where both methods inferred 202 true-positive pathways (green-colored) in common out of 307
expected true-positive pathways (using EcoCyc as a common frame of reference). In addition,
PathoLogic uniquely predicted 39 (magenta-colored) true-positive pathways while triUMPF
uniquely predicted 16 true-positives (purple-colored). This difference arises from the use of tax-
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(a) PathoLogic (taxonomic pruning) (b) triUMPF

Figure 2: A three way set difference analysis of pathways predicted for E. coli K-12 substr. MG1655
(TAX-511145), E. coli str. CFT073 (TAX-199310), and E. coli O157:H7 str. EDL933 (TAX-155864)
using (a) PathoLogic (taxonomic pruning) and (b) triUMPF.

onomic pruning in PathoLogic which improves recovery of taxonomically constrained pathways
and limits false-positive identification. With taxonomic pruning enabled, PathoLogic inferred
79 false-positive pathways, and over 170 when pruning was disabled. In contrast triUMPF
which does not use taxonomic feature information inferred 84 false-positive pathways (Appx.
Table 6). This improvement over PathoLogic with pruning disabled reinforces the idea that
pathway communities improve precision of pathway prediction with limited impact on overall
recall. Based on these results, it is conceivable to train triUMPF on subsets of organismal
genomes resulting in more constrained pathway communities for pangenome analysis.

To further evaluate triUMPF performance on closely related organismal genomes, we per-
formed pathway prediction on E. coli str. CFT073 (TAX-199310), and E. coli O157:H7 str.
EDL933 (TAX-155864) and compared results to the MG1655 reference strain [36]. Both CFT073
and EDL933 are pathogens infecting the human urinary and gastrointestinal tracts, respectively.
Previously, Welch and colleagues described extensive genomic mosaicism between these strains
and MG1655, defining a core backbone of conserved metabolic genes interspersed with genomic
islands encoding common pathogenic or niche defining traits [36]. Neither CFT073 nor EDL933
genomes are represented in the BioCyc collection of organismal pathway genome databases. A
total of 335 and 319 unique pathways were predicted by PathoLogic and triUMPF, respectively.
The resulting pathway lists were used to perform a set-difference analysis with MG1655 (Fig.
2). Both methods predicted more than 200 pathways encoded by all three strains including
core pathways like the TCA cycle (Appx. Figs 8b and 8c). CFT073 and EDL933 were pre-
dicted to share a single common pathway (TCA cycle IV (2-oxoglutarate decarboxylase)) by
triUMPF. However this pathway variant has not been previously identified in E. coli and is
likely a false-positive prediction based on recognized taxonomic range. Both PathoLogic and
triUMPF predicted the aerobactin biosynthesis pathway involved in siderophore production in
CFT073 consistent with previous observations [36]. Similarly, four pathways (e.g. L-isoleucine
biosynthesis III and GDP-D-perosamine biosynthesis) unique to EDL933 were inferred by both
methods.

Given the lack of cross validation standards for CFT073 and EDL933 we were unable to deter-
mine which method inferred fewer false-positives across the complete set of predicted pathways.
To constrain this problem on a subset of the data, we applied GapMind [29] to analyze amino
acid biosynthesis pathways encoded in MG1655, CFT073 and EDL933 genomes. GapMind is a
web-based application developed for annotating amino acid biosynthesis pathways in prokary-
otic microorganisms (bacteria and archaea), where each reconstructed pathway is supported
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Figure 3: Comparative study of predicted pathways for symbiotic data between PathoLogic, mlL-
GPR, and triUMPF. The size of circles corresponds the associated coverage information.

by a confidence level. After excluding pathways that were not incorporated in the training
set, a total of 102 pathways were identified across the three strains encompassing 18 amino
acid biosynthesis pathways and 27 pathway variants with high confidence (Appx. Table 7).
PathoLogic inferred 49 pathways identified across the three strains encompassing 15 amino acid
biosynthesis pathways and 17 pathway variants while triUMPF inferred 54 pathways identified
across the three strains encompassing 16 amino acid biosynthesis pathways and 19 pathway
variants including L-methionine biosynthesis in MG1655, CFT073 and EDL933 that was not
predicted by PathoLogic. Neither method was able to predict L-tyrosine biosynthesis I (Appx.
Fig. 10).

3.3 Mealybug Symbionts data

To evaluate triUMPF performance on distributed metabolic pathways, we used the reduced
genomes of Moranella and Tremblaya [26]. Collectively the two symbiont genomes encode intact
biosynthesis pathways for 9 essential amino acids. PathoLogic, mlLGPR, and triUMPF were
used to predict pathways on individual symbiont genomes and a composite genome consisting
of both, and resulting amino acid biosynthesis pathway distributions were determined (Fig. 3).
Both triUMPF and PathoLogic predicted 6 of the expected amino acid biosynthesis pathways
on the composite genome while mlLGPR predicted 8 pathways. The pathway for phenylalanine
biosynthesis (L-phenylalanine biosynthesis I ) was excluded from analysis because the associated
genes were reported to be missing during the ORF prediction process. False positives were
predicted for individual symbiont genomes in Moranella and Tremblaya using both methods
although pathway coverage was reduced in relation to the composite genome.

3.4 CAMI and HOTS data

To evaluate triUMPF’s performance on more complex multi-organismal genomes, we used the
CAMI low complexity [31] and HOTS datasets [33] comparing resulting pathway predictions
to both PathoLogic and mlLGPR. For CAMI low complexity, triUMPF achieved an average
F1 score of 0.5864 in comparison to 0.4866 for mlLGPR which is trained with more than 2500
labeled pathways (Table 2). Similar results were obtained for HOTS (see Appx. Section 5.5.4).
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Table 2: Predictive performance of mlLGPR and triUMPF on CAMI low complexity data. For each
performance metric, ‘↓’ indicates the smaller score is better while ‘↑’ indicates the higher score is
better.

Metric mlLGPR triUMPF
Hamming Loss (↓) 0.0975 0.0436
Average Precision Score (↑) 0.3570 0.7027
Average Recall Score (↑) 0.7827 0.5101
Average F1 Score (↑) 0.4866 0.5864

Among a subset of 180 selected water column pathways, PathoLogic and triUMPF predicted a
total of 54 and 58 pathways, respectively, while mlLGPR inferred 62. From a real world per-
spective none of the methods predicted pathways for photosynthesis light reaction nor pyruvate
fermentation to (S)-acetoin although both are expected to be prevalent in the water column.
Perhaps, the absence of specific ECs associated with these pathway limits rule-based or ML
prediction. Indeed, closer inspection revealed that the enzyme catabolic acetolactate synthase
was missing from the pyruvate fermentation to (S)-acetoin pathway, which is an essential rule
encoded in PathoLogic and represented as a feature in mlLGPR. Conversely, although this
pathway was indexed to a community, triUMPF did not predict its presence, constituting a
false-negative.

4 Discussion and Conclusion

In this paper we introduced a novel ML approach for metabolic pathway inference that combines
three stages of NMF to capture relationships between enzymes and pathways within a network
followed by community detection to extract higher order network structure. First, a Pathway-
EC association (M) matrix, obtained from MetaCyc, is decomposed using the NMF technique
to learn a constrained form of the pathway and EC factors, capturing the microscopic structure
of M. Then, we obtain the community structure (or mesoscopic structure) jointly from both
the input datasets and two interaction matrices, Pathway-Pathway interaction and EC-EC
interaction. Finally, the consensus relationships between the community structure and data,
and between the learned factors from M and the pathway labels coefficients are exploited to
efficiently optimize metabolic pathway parameters.

We evaluated triUMPF performance using a corpora of experimental datasets manifesting
diverse multi-label properties comparing pathway prediction outcomes to other prediction meth-
ods including PathoLogic [16] and mlLGPR [25]. During benchmarking we realized that the
BioCyc collection suffers from a class imbalance problem [13] where some pathways infrequently
occur across PGDBs. This results in a significant sensitivity loss on T1 golden data, where tri-
UMPF tended to predict more frequently observed pathways while missing more infrequent
pathways. One potential approach to solve this class-imbalance problem is subsampling the
most informative PGDBs for training, hence, reducing false-positives [19]. Despite the observed
class imbalance problem, triUMPF improved pathway prediction precision without the need for
taxonomic rules or EC features to constrain metabolic potential. From an ML perspective this
is a promising outcome considering that triUMPF was trained on a reduced number of pathways
relative to mlLGPR. Future development efforts will explore subsampling approaches to improve
sensitivity and the use of constrained taxonomic groups for pangenome and multi-organismal
genome pathway inference.

5 Appendices

5.1 Appendix A1: Definitions and Problem Formulation

Here, the default vector is considered to be a column vector and is represented by a boldface
lowercase letter (e.g., x) while matrices are represented by boldface uppercase letters (e.g., X).
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The Xi matrix indicates the i-th row of X and Xi,j denotes the (i, j)-th entry of X while, for
a vector, xi denotes an i-th cell of x. The transpose of X is denoted as X> and the trace of

it is symbolized as tr(X). The Frobenius norm of X is defined as ||X||F =
√∑

i∈n
∑

j∈m X2
i,j .

Occasional superscript, x(i), suggests an index to a sample, a power, or a current epoch during a
learning period. We use calligraphic letters to represent sets (e.g., E) while we use the notation
|.| to denote the cardinality of a given set. With these notations in mind, we introduce several
concepts integral to the problem formulation.

Metabolic pathway inference from genomic sequence information at different levels of com-
plexity and completion requires a trusted source of labeled pathway information in which the set
of ordered reactions within and between cells is linked to substrates and products (compounds
or metabolites). This information can be represented in graphs corresponding to reactome and
pathway-level interactions. In this study, we use MetaCyc, a multi-organism member of the
BioCyc collection of Pathway/Genome Databases (PGDB) as the trusted source for reactome
and pathway information [5]. MetaCyc contains only experimentally validated metabolic path-
ways across all domains of life. To simplify computational complexity, we consider the reaction
and pathway graphs to be undirected.

Definition 5.1. Reaction Graph Topology. Let the reaction graph be represented by an
undirected graph G(rxn) = {C,Z(c)}, where C is a set of c metabolites and Z(c) represents r′ links
between compounds. Each link indicates a reaction, derived from a set of biochemical reactions
R of size r′. Then, the reaction graph topology is defined by a matrix Ω(c) ∈ Zr′×c

≥0 , where each

entry Ω
(c)
i,j is a binary value of 1 or 0, indicating either the compound j is a substrate/product

in a reaction i or not involved in that reaction, respectively.

Definition 5.2. Pathway Graph Topology. Let G(path) = {R,Z ′(r)} be an undirected
graph, where R is presented in Def. 5.1, and Z ′(r) represents a set of t′ links between reactions.

Then, the pathway graph topology is defined by a matrix Ω(r) ∈ Zt×r′
≥0 , where each entry Ω

(r)
i,j

is either 0 or a positive integer, corresponding the absence or the frequency of the reaction j in
pathway i, respectively. And, t is the number of pathways in a set T .

Note that reactions in G(path) may be annotated as a spontaneous reaction or a reaction
catalyzed by one or more enzymes, enzymatic reaction and classified by an enzyme commission
number (EC) [27]. In addition, a number of enzymes referred to as promiscuous enzymes
can participate in more than one pathway. Given this information we associate EC numbers
to pathways and formulate three graphs, one representing associations between pathways and
enzymes indicated by enzyme commission (EC)) numbers, one representing interactions between
enzymes and another representing interactions between pathways.

Definition 5.3. Pathway-EC Association (P2E). Let G′,(path) = {E ,Z(r)} be a subgraph of
G(path), such that E ⊂ R with r � r′ enzymatic reactions. Then, the Pathway-EC association
is defined as a matrix M ∈ Zt×r

≥0 , where each row corresponds to a pathway, and each column
represent an EC, such that Mi,j = 1 if an EC j is in pathway i and 0 otherwise.

Typically, the association matrix M is extremely sparse. Using reaction and pathway graph
topology, we build interaction adjacency matrices as follows.

Definition 5.4. EC-EC Interaction (E2E). Given G′(rxn) ⊂ G(rxn), we define an EC-EC
interaction matrix B ∈ Zr×r

≥0 such that an entry Bi,j is a binary value encoding an interaction

between two ECs i and j iff they both share a compound, i.e., Ω
(c)
i,k ∧ Ω

(c)
j,k = 1 where k ∈ C.

Definition 5.5. Pathway-Pathway Interaction (P2P). Given G(path), we define a Pathway-
Pathway interaction matrix A ∈ Zt×t

≥0 such that an entry Ai,j is a binary value indicating
an interaction between pathways i and j if there exists a reaction k ∈ R where associated
compounds are either substrate or product in both i and j pathways.

After determining relationships within each graph, we define a multi-label metabolic pathway
dataset.
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Definition 5.6. Multi-label Pathway Dataset [25]. A general form of pathway dataset
is characterized by S = {(x(i),y(i)) : 1 < i 6 n} consisting of n examples, where x(i) is a
vector indicating the abundance information corresponding to each enzymatic reaction. An
enzymatic reaction, in turn, is denoted by e, which is an element of a set of enzymatic reactions
E = {e1, e2, ..., er}, having r possible reactions. The abundance of an enzymatic reaction i, for

example e
(i)
l , is defined as a

(i)
l (∈ R≥0). The class labels y(i) = [y

(i)
1 , ..., y

(i)
t ] ∈ {−1,+1}t is a

pathway label vector of size t that represents the total number of pathways, which are derived
from a set of labeled metabolic pathway Y. The matrix form of x(i) and y(i) are symbolized as
X and Y, respectively.

The input space is assumed to be encoded as r-dimensional feature vector and is symbolized
as X = Rr. Furthermore, each example in S is considered to be drawn independent, identically
distributed (i.i.d) from an unknown distribution D over X × 2|Y|. Now we state the problem
considered in this paper.
Metabolic Pathway Prediction. Given: i)- Pathway-EC matrix M, ii)- a Pathway-Pathway
interaction matrix A, iii)- an EC-EC interaction matrix B, and iv)- a dataset S, the goal is to
efficiently reconstruct pathway labels for a hitherto unseen instance x∗.

5.2 Appendix A2: Detailed Description of triUMPF Method

In this section, we provide a description of triUMPF components, presented in Fig. 1 of main
manuscript, including: i)- decomposing the pathway EC association matrix , ii)- subnetwork or
community reconstruction, and iii)- the multi-label learning process.

5.2.1 Decomposing the Pathway EC Association Matrix

Given the non-negative M, we formulate the following minimization objective function:

J fact(W,H,U,V) = min
W,H,U,V

||M−WH>||2F + λ1||W −PU||2F

+ λ2||H−EV||2F + λ3||U−V||2F
+ λ4(||W||2F + ||H||2F + ||U||2F + ||V||2F )

s.t. {W,H,U,V} ≥ 0

(2)

where W ∈ Rt×k stores the latent factors for pathways while H ∈ Rr×k, known as the basis
matrix, can be thought of as latent factors associated with ECs and k � t, r and λ∗ are
regularization hyperparameters. The leftmost term is the well-known squared loss function that
penalizes the deviation of the estimated entries in both W and H from the true association
matrix M. The second term corresponds to the relative differences of latent matrix W from the
pathway features P ∈ Rt×m, learned using pathway2vec framework, where the matrix U ∈ Rm×k

absorbs different scales of matrices W and P. Similarly, the third term indicates the squared
loss of H from E ∈ Rr×m, which denotes the feature matrix of ECs, and their differences are
captured by V ∈ Rm×k. In the fourth term, we minimize the differences between factors U and
V, capturing shared prominent features for the low dimensional coefficients.

5.2.2 Subnetwork or Community Reconstruction

Recall from the main manuscript, the higher order proximity of the two matrices A and B is
defined according to the formula [23]:

Aprox =
∑
i∈lp

ωiA
l, Bprox =

∑
i∈le

γiB
l

(3)

where Aprox and Bprox are polynomials of order lp ∈ Z>0 and le ∈ Z>0, respectively, and
ω ∈ R>0 and γ ∈ R>0 are weights associated to each term. Using these higher order matrices,
we invoke NMF to recover communities.

Formally, let T ∈ Rm×p be a non-negative community representation matrix of size p com-
munities for pathways, where the j-th column in T:,j denotes the representation of community j.
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The pathway community indicator matrix is denoted by C ∈ Rt×p conditioned on tr(C>C) = t,
where each entry Ci,l and Cj,l encodes the probability that pathways i and j generates an edge
belonging to a community l. The probability of i and j belonging to the same community can be

assessed as: Âprox
i,j = (PiC:,lT

>
l,i)
>(PjC:,lT

>
l,j). Similar discussion follows for the non-negative

representation matrix R ∈ Rm×v and the EC community indicator matrix K ∈ Rr×v of v com-
munities, conditioned on tr(K>K) = r. Unfortunately, due to the constraints emphasized on
C and K, it is not straightforward to analytically derive an expression, instead, we resort to a
more tractable solution provided in [35], and relax the condition to be an orthogonal constraint,
resulting in the following objective function:

J comm(C,K) = min
C,K
||Aprox −PTC>||2F

+ ||Bprox −ERK>||2F
+ α||C>C− I||2F + β||K>K− I||2F
+ λ5(||C||2F + ||K||2F )

s.t. {C,K} ≥ 0

(4)

where I denotes an identify matrix, λ5 is a regularization hyperparameter while α and β are
both positive hyperparameters. The value of these hyperparameters is usually set to a large
number, e.g. 109 in this work, for adjusting the contribution of corresponding terms. The
obtained communities in Eq 4 are directly linked to the underlying graph topologies, i.e., Aprox

and Bprox.

5.2.3 Multi-label Learning Process

We now bring together the NMF and community detection steps with multi-label classification
for pathway prediction. The learning problem must balance between information in M while
being lenient towards the dataset S, which should provide enough evidence to generate repre-
sentations of communities among pathways and ECs, as suggested by Aprox and Bprox. We
present a weight term Θ ∈ Rt×r that enforces X to be close enough to both Y and M. We
also introduce two auxiliary terms L ∈ Rn×m, which capture correlations between X and Y
and Z ∈ Rr×r, enforcing the pathway coefficients associated with M resulting in the following
objective function:

J path(T,R,Θ,L,Z) = min
T,R,Θ,L,Z

∑
i∈n

∑
k∈t

log
(

1 + e−y
(i)
k Θᵀ

kx
(i)
)

+ ||X− LRK>||2F + ||Y − LTC>||2F
+ ρ||Θ− ZHW>||2F
+ λ5(||T||2F + ||R||2F )

+ λ6(||Θ||2,1 + ||L||2F + ||Z||2F )

s.t. {T,R} ≥ 0

(5)

where λ5, λ6, and ρ are regularization hyperparameters, and ||.||2,1 represents the sum of the
Euclidean norms of columns of a matrix introduced to emphasize sparseness. Notice that we do
not restrict the terms L and Z to be non-negative. Both the second and the third terms in Eq.
5, are needed to discover pathway and EC communities, i.e., C and K, respectively.

The Eqs 2, 4, and 5 are jointly non-convex due to non-negative constraints on the original
and the approximation factorized matrices, implying the solutions to triUMPF are only unique
up to scalings and rotations [37]. Hence, we adopt an alternating optimization algorithm to
solve each objective function simultaneously, which is provided in Section 5.3.

5.3 Appendix A3: Optimization

In this section, we derive the optimization for triUMPF’s objective function:

J =J fact(W,H,U,V) + J comm(C,K) + J path(T,R,Θ,Z,L) (6)
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where,

J fact(W,H,U,V) = min
W,H,U,V

||M−WH>||2F + λ1||W −PU||2F

+ λ2||H−EV||2F + λ3||U−V||2F
+ λ4(||W||2F + ||H||2F + ||U||2F + ||V||2F )

s.t. {W,H,U,V} ≥ 0

J comm(C,K) = min
C,K
||Aprox −PTC>||2F + ||Bprox −ERK>||2F

+ α||C>C− I||2F + β||K>K− I||2F
+ λ5(||C||2F + ||K||2F )

s.t. {C,K} ≥ 0

J path(T,R,Θ,L,Z) = min
T,R,Θ,L,Z

∑
i∈n

∑
k∈t

log
(

1 + e−y
(i)
k Θᵀ

kx
(i)
)

+ ||X− LRK>||2F + ||Y − LTC>||2F
+ ρ||Θ− ZHW>||2F + λ5(||T||2F + ||R||2F )

+ λ6(||Θ||2,1 + ||L||2F + ||Z||2F )

s.t. {T,R} ≥ 0

(7)

The objective function in Eq. 7 is non-convex due to multiple non-negative constraints.
Numerous algorithms have been proposed to optimize the objective function, including alter-
nating non-negative least squares [17] and hierarchical alternating least squares [6]. Here, we
employ the original algorithm for NMF which was introduced in [22] and consists of simple
multiplicative update rules (with auxiliary variables) that are based on the gradient descent
technique [10]. Beginning with random positive initialization, element-wise updates of Eq 6
w.r.t W, H, U, V, C, K, T, R, Θ, Z, and L at each iteration are applied until convergence.
The gradient descent aims to search for a local minima of the cost function by moving in the
direction of its steepest descent. By introducing Lagrangian multipliers (auxiliary variables),
which are ψ, φ, ϕ, %, ζ, $, κ, and ξ to enforce the constraints for W, H, U, V, C, T, R, K,
respectively, Eq. 7 can be reformulated as:

J fact(W,H,U,V) = min
W,H,U,V

tr
(

(M−WH>)>(M−WH>)
)

+ λ1tr
(

(W −PU)>(W −PU)
)

+ λ2tr
(

(H−EV)>(H−EV)
)

+ λ3tr
(

(U−V)>(U−V)
)

+ λ4

(
tr(W>W) + tr(H>H) + tr(U>U) + tr(V>V)

)
+ tr(ψW) + tr(φH) + tr(ϕU) + tr(%V)

(8)

J comm(C,K) = min
C,K

tr
(

(Aprox −PTC>)>(Aprox −PTC>)
)

+ tr
(

(Bprox −ERK>)>(Bprox −ERK>)
)

+ αtr
(

(C>C− I)>(C>C− I)
)

+ βtr
(

(K>K− I)>(K>K− I)
)

+ λ5

(
tr(C>C) + tr(K>K)

)
+ tr($C) + tr(ξK)

(9)
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J path(T,R,Θ,L,Z) = min
T,R,Θ,L,Z

∑
i∈n

∑
k∈t

log
(

1 + e−y
(i)
k Θᵀ

kx
(i)
)

+ tr
(

(X− LRK>)>(X− LRK>)
)

+ tr
(

(Y − LTC>)>(Y − LTC>)
)

+ ρtr
(

(Θ− ZHW>)>(Θ− ZHW>)
)

+ λ5

(
tr(T>T) + tr(R>R)

)
+ λ6

(
||Θ||2,1 + tr(L>L) + tr(Z>Z)

)
+ tr(ζT) + tr(κR)

(10)

where tr(.) denotes the trace of a matrix. Using the addition property of the transpose,
(X + Y)> = X> + Y>, and its multiplication property, (XY)> = Y>X>, we can expand the
trace of the first term as

tr
(

(M−WH>)>(M−WH>)
)

=tr
(
M>M−M>WH> −W>HM + HW>WH>

)
(11)

By expanding the remaining terms in Eq. 8 and using the trace of a sum of matrix property,
tr(X + Y) = tr(X) + tr(Y), we obtain the following formula:

J fact(W,H,U,V) = min
W,H,U,V

tr(M>M)− tr(M>WH>)− tr(W>HM) + tr(HW>WH>)

+ λ1

(
tr(W>W)− tr(W>PU)− tr(U>P>W) + tr(U>P>PU)

)
+ λ2

(
tr(H>H)− tr(H>EV)− tr(V>E>H) + tr(V>E>EV)

)
+ λ3

(
tr(U>U)− 2tr(U>V) + tr(V>V)

)
+ λ4

(
tr(W>W) + tr(H>H) + tr(U>U) + tr(V>V)

)
+ tr(ψW) + tr(φH) + tr(ϕU) + tr(%V)

(12)

Similar to the process of getting Eq. 12, we expand the Eq. 9 as:

J comm(C,K) = min
C,K

tr(Aprox>Aprox)− tr(Aprox>PTC>)

− tr(CT>P>Aprox) + tr(CT>P>PTC>)

+ tr(Bprox>Bprox)− tr(Bprox>ERK>)

− tr(KR>E>Bprox) + tr(KR>E>ERK>)

+ α
(
tr(C>CC>C)− 2tr(C>C) + t

)
+ β

(
tr(K>KK>K)− 2tr(K>K) + r

)
+ λ5

(
tr(C>C) + tr(K>K)

)
+ tr($C) + tr(ξK)

(13)
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Expand the Eq. 10, we obtain the following:

J path(T,R,Θ,L,Z) = min
T,R,Θ,L,Z

∑
i∈n

∑
k∈t

log
(

1 + e−y
(i)
k Θᵀ

kx
(i)
)

+ tr(X>X)− tr(X>LRK>)− tr(KR>L>X)

+ tr(KR>L>LRK>) + tr(Y>Y)

− tr(Y>LTC>)− tr(CT>L>Y) + tr(CT>L>LTC>)

+ ρ
(
tr(Θ>Θ)− tr(Θ>ZHW>)− tr(WH>Z>Θ)

+ tr(WH>Z>ZHW>)
)

+ λ5

(
tr(T>T) + tr(R>R)

)
+ λ6

(
||Θ||2,1 + tr(L>L)

+ tr(Z>Z)
)

+ tr(ζT) + tr(κR)

(14)

As explained earlier, the objective functions in Eqs 12, 13, and 14, are not convex with
respect to all parameters combined. Instead in NMF, W, H, U, V, C, K, T, R, Θ, L,
and Z are individually optimized in an iterative process, where we update one matrix at a
time while keeping the remaining matrices fixed. This ensures convergence to a local minima
for each subproblem. This methods is called block-coordinate descent. Hence, the update of
parameters occur in the following four alternate optimization steps for J fact: i)- the basis
matrix W, representing pathway factors, ii)- the latent coefficient matrix H, representing EC
factors, iii)- the linear transformation U, and iv)- the other linear transformation V. For
J comm, we alternate between the community indicator matrix C for pathways and the other
community indicator matrix K for ECs. Finally, we optimize, alternatively, the two community
representation matrices T and R for pathways and ECs, respectively, the two auxiliary matrices
L and Z, and the input weight matrix Θ. The three objective functions, J fact, J comm, and
J path are run simultaneously in a divide and conquer strategy. Detailed rules for updating all
the variables are outlined below.

1. Update the basis matrix W. To update the feature matrix W, we fix H, U and V.
Then, the objective function in Eq. 12 w.r.t W is reduced to the following formula (after
dropping the min operation):

J fact(W) =− tr(M>WH>)− tr(W>HM) + tr(HW>WH>)

+ λ1

(
tr(W>W)− tr(W>PU)− tr(U>P>W)

)
+ λ4tr(W>W) + tr(ψW)

(15)

where ψ is the Lagrange multiplier for the constraint W ≥ 0. For computing the gradient
of this equation, we use the following properties with respect to X:

∇Xtr(X>X) =2X

∇Xtr(XY) =Y>

∇Xtr(X>Y) =Y

∇Xtr(X>YX) =(Y + Y>)X

∇Xtr(XYX>) =X(Y> + Y)

∇Xtr(YXZ) =Y>Z>

∇Xtr(YX>Z) =ZY

(16)

By computing the gradient of the cost function in Eq. 15 w.r.t W to 0, we have:

ψ =2MH− 2W(H>H +Q) + 2λ1PU (17)

where Q = (λ1 + λ4). Following the Karush-Kuhn-Tucker (KKT) condition for the non-
negativity of W, we have the following equation:

2
(
MH−W(H>H +Q) + λ1PU

)
k,j

Wj,k = ψj,kWj,k = 0 (18)
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Given an initial value of W, the successive updating rule of W is:

W←W ◦ MH + λ1PU

W(H>H +Q)
(19)

The iterative update rules in Eq. 19 is transformed into multiplicative update rules, which
cannot generate negative elements since all values are positive and only multiplications
and divisions are involved at each iteration [21].

2. Update the latent coefficient matrix H. The feature matrix H is updates as described
above in which W, U and V are fixed to obtain the objective function for Eq. 12 w.r.t H
as:

J fact(H) =− tr(M>WH>)− tr(W>HM) + tr(HW>WH>)

+ λ1

(
tr(H>H)− tr(H>EV)− tr(V>E>H)

)
+ λ4tr(H>H) + tr(φH)

(20)

Taking the derivative of the cost function in Eq. 20 w.r.t H to 0 and using the gradient
properties in Eq. 16, we obtain the following:

φ =2M>W − 2H(W>W +Q) + 2λ1EV (21)

where Q = (λ1 + λ4). With the KKT complementary condition for the nonnegativity of
H, we have:

2
(
M>W −H(W>W +Q) + λ1EV

)
j,k

Hj,k = φj,kHj,k = 0 (22)

The multiplicative updates after some algebraic manipulation w.r.t parameter H:

H←H ◦ M>W + λ1EV

H(W>W +Q)
(23)

3. Update the linear transformation U. Suppose that W, H and V are fixed, then Eq.
12 w.r.t U is reduced to:

J fact(U) =λ1

(
− tr(W>PU)− tr(U>P>W) + tr(U>P>PU)

)
+ λ3

(
tr(U>U)− 2tr(U>V)

)
+ λ4tr(U>U) + tr(ϕU)

(24)

Then we take the derivative of above formula with respect to the transformation matrix
U to 0:

ϕ =2λ1P
>W − 2(λ1P

>P +D)U + 2λ3V (25)

where D = (λ3 + λ4). Formulating the above equation based on Karush–Kuhn–Tucker
conditions for the nonnegativity of U results in:

2
(
λ1P

>W − (λ1P
>P +D)U + λ3V

)
j,k

Uj,k = ϕj,kUj,k = 0 (26)

Then, the parameter U is updated according to:

U←U ◦ λ1P
>W + λ3V

(λ1P>P +D)U
(27)

4. Update the linear transformation V. To update the linear transformation matrix V,
that W, H and U are fixed, then the transformation matrix V is updated such that the
error is minimized:

J fact(V) =λ2

(
− tr(H>EV)− tr(V>E>H) + tr(V>E>EV)

)
+ λ3

(
− 2tr(U>V) + tr(V>V)

)
+ λ4tr(V>V) + tr(%V)

(28)
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Taking the derivative of this error with respect to V to 0 and after some manipulations,
we have:

% =2λ2E
>H− 2(λ2E

>E +D)V + 2λ3U (29)

where D = (λ3+λ4). Following the Karush–Kuhn–Tucker conditions for the nonnegativity
of V, we have:

2
(
λ2E

>H− (λ2E
>E +D)V + λ3U

)
j,k

Vj,k = %j,kVj,k = 0 (30)

As usual, the parameter V is updated according:

V←V ◦ λ2E
>H + λ3U

(λ2E>E +D)V
(31)

5. Update the community indicator matrix C for pathways. In a similar process, we
fix K, and update C. The matrix C is updated such that the error is minimized:

J (C) =− tr(Aprox>PTC>)− tr(CT>P>Aprox) + tr(CT>P>PTC>)

+ α
(
tr(C>CC>C)− 2tr(C>C)

)
+ λ5tr(C>C) + tr($C)

− tr(Y>LTC>)− tr(CT>L>Y) + tr(CT>L>LTC>)

(32)

Taking the derivative of this error with respect to C to 0, we have:

$ =2Aprox>PT + 2Y>LT + 4αC− 2C(T>P>PT + T>L>LT + 2αC>C + λ5) (33)

Again, we follow the Karush–Kuhn–Tucker conditions for the nonnegativity of C

2
(
Aprox>PT + Y>LT + 2αC−C(T>P>PT + T>L>LT + 2αC>C + λ5)

)
j,k

Cj,k = $j,kCj,k = 0

(34)

The parameter C is updated according:

C←C ◦ Aprox>PT + Y>LT + 2αC

C(T>P>PT + T>L>LT + 2αC>C + λ5)
(35)

6. Update the community indicator matrix K for ECs. Once the parameter C is
updated, we use it to update K. The matrix K is updated such that the error is minimized:

J (K) =− tr(Bprox>ERK>)− tr(KR>E>Bprox) + tr(KR>E>ERK>)

+ β
(
tr(K>KK>K)− 2tr(K>K)

)
+ λ5tr(K>K) + tr(ξK)

− tr(X>LRK>)− tr(KR>L>X) + tr(KR>L>LRK>)

(36)

Taking the derivative of this error with respect to K to 0, we have:

ξ =2Bprox>ER + 2X>LR + 4βK− 2K(R>E>ER + R>L>LR + 2βK>K + λ5) (37)

Using the Karush–Kuhn–Tucker conditions for the nonnegativity of K, we obtain:

2
(
Bprox>ER + X>LR + 2βK−K(R>E>ER + R>L>LR + 2βK>K + λ5)

)
j,k

Kj,k = ξj,kKj,k = 0

(38)

The parameter K is updated according:

K←K ◦ Bprox>ER + X>LR + 2βK

K(R>E>ER + R>L>LR + 2βK>K + λ5)
(39)
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7. Update the community representation matrix T for pathways. By fixing the
parameters C, R, and K, we update T. The matrix T is updated such that the error is
minimized:

J (T) =− tr(Aprox>PTC>)− tr(CT>P>Aprox)

+ tr(CT>P>PTC>)− tr(Y>LTC>)

− tr(CT>L>Y) + tr(CT>L>LTC>)

+ λ5tr(T>T) + tr(ζT)

(40)

Taking the derivative of this error with respect to T to 0, we have:

ζ =2P>AproxC + 2L>YC− 2(P>CC>P + λ5)T− 2L>LTC>C (41)

Using the Karush–Kuhn–Tucker conditions for the nonnegativity of T, we obtain:

2
(
P>AproxC + L>YC− (P>CC>P + λ5)T− L>LTC>C

)
j,k

Tj,k = ζj,kTj,k = 0 (42)

The parameter T is updated according:

T←T ◦ P>AproxC + L>YC

(P>CC>P + λ5)T + L>LTC>C
(43)

8. Update the community representation matrix R for EC features. By fixing the
parameters C, T, and K, we update R. The matrix R is updated such that the error is
minimized:

J (R) =− tr(Bprox>ERK>)− tr(KR>E>Bprox)

+ tr(KR>E>ERK>)− tr(X>LRK>)

− tr(KR>L>X) + tr(KR>L>LRK>)

+ λ5tr(R>R) + tr(κR)

(44)

Taking the derivative of this error with respect to R to 0, we have:

κ =2E>BproxK + 2L>XK− 2(E>KK>E + λ5)R− 2L>LRK>K (45)

Using the Karush–Kuhn–Tucker conditions for the nonnegativity of R, we obtain:

2
(
E>BproxK + L>XK− (E>KK>E + λ5)R− L>LRK>K

)
j,k

Rj,k = κj,kRj,k = 0

(46)

The parameter R is updated according:

R←R ◦ E>BproxK + L>XK

(E>KK>E + λ5)R + L>LRK>K
(47)

9. Update the weight matrix Θ. By fixing the other parameters, we update Θ. The
matrix Θ is updated such that the error is minimized:

J path(Θ) =
∑
i∈n

∑
k∈t

log
(

1 + e−y
(i)
k Θᵀ

kx
(i)
)

+ ρ
(
tr(Θ>Θ)− tr(Θ>ZHW>)

− tr(WH>Z>Θ)
)

+ λ6||Θ||2,1
(48)

where f(.) is a non-lniear sigmoid function, i.e., f(x) = σ(x) = 1
1+e−x . This choice can be

generalized to any non-linear functions. By transforming X with σ(.) and Θ, our method
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enables pathway prediction. Taking the derivative of this error with respect to Θ to 0, we
have:

∇ΘJ path(Θ) =
1

n

∑
i∈n

∑
k∈t

(
−y

(i)
k x(i)

1 + ey
(i)
k Θ>k x(i)

)
+ 2ρ(Θ− ZHW>) + λ6tr(

Θ

2||Θ||2
) (49)

Due to non-closed form of the above equation, we use iterative gradient descent approach
with a defined learning rate η. Hence, the general update rule for Θ becomes:

Θi+1 ←Θi − η ◦ ∇ΘJ path(Θi) (50)

10. Update the auxiliary matrix L. By fixing the rest of parameters in J path, the matrix
L is updated such that the error is minimized:

J path(L) =− tr(X>LRK>)− tr(KR>L>X) + tr(KR>L>LRK>)

− tr(Y>LTC>)− tr(CT>L>Y)

+ tr(CT>L>LTC>) + λ6tr(L>L)

(51)

Taking the derivative of this error with respect to L to 0, we have:

∇LJ path(L) = 2(LTC>CT> + LRK>KR> −YCT> −XKR> + λ6L) (52)

The parameter L is updated according:

Li+1 ←Li − η ◦ ∇LJ path(Li) (53)

11. Update the auxiliary matrix Z. By fixing the rest of parameters in J path, the matrix
Z is updated such that the error is minimized:

J path(Z) =− ρtr(Θ>ZHW>)− ρtr(WH>Z>Θ)

+ ρtr(WH>Z>ZHW>) + λ6tr(Z>Z)
(54)

Taking the derivative of this error with respect to Z to 0, we have:

∇ZJ path(Z) = 2(ρZHW>WH> − ρΘWH> + λ6Z) (55)

The parameter Z is updated according to gradient descent approach as:

Zi+1 ←Zi − η ◦ ∇ZJ path(Zi) (56)

5.4 Appendix A4: Experimental Setup

In this section, we describe the experimental framework used to demonstrate triUMPF pathway
prediction performance across multiple datasets spanning the genomic information hierarchy
[25]. All experimental tests were conducted on a Linux server using 10 cores of Intel Xeon CPU
E5-2650.

5.4.1 Association Matrices

MetaCyc v21 ( [4]) was used to obtain the three association matrices, P2E (M), P2P, (A), and
E2E (B). Some of the properties for each matrix are summarized in Table 3. All three matrices
are extremely sparse. For example, M contains 2526 pathways, having an average of four EC
associations per pathway, leaving more than 3600 columns with zero values. These matrices will
be utilized to obtain higher-order proximity (Section 5.5.1) and to analyze triUMPF’s robustness
(Section 5.5.2).
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Table 3: Characteristics of MetaCyc database and the three association matrices. MetaCyc (uec)
denotes enzymatic reactions where links among enzymatic reactions are removed. The “–” indicates
non applicable operation.

#EC #Compound #Pathway |V| |E|
MetaCyc (uec) 6378 13689 2526 22593 33353
M 3650 – 2526 – 8576
A – – 2526 – 9938
B 3650 – – – 35629

5.4.2 Description of Datasets

We report the performance of triUMPF using the following data: i)- T1 golden consisting of six
PGDBs from the BioCyc collection (biocyc): EcoCyc (v21), HumanCyc (v19.5), AraCyc (v18.5),
YeastCyc (v19.5), LeishCyc (v19.5), and TrypanoCyc (v18.5); ii)- three E.coli genomes consist-
ing of E. coli K-12 substr. MG1655 (TAX-511145), E. coli str. CFT073 (TAX-199310), and E.
coli O157:H7 str. EDL933 (TAX-155864) [36]; iii)- BioCyc (v20.5 T2 & 3) [5] consisting of 9255
Pathway/Genome Databases (PGDBs) with 1463 distinct pathways; iv)- reduced complexity of
mealybug symbiont genomes from Moranella (GenBank NC-015735) and Tremblaya (GenBank
NC-015736) encoding distributed metabolic pathways for amino acid biosynthesis [26]; v)- the
Critical Assessment of Metagenome Interpretation (CAMI) initiative low complexity dataset
(edwards.sdsu.edu/research/cami-challenge-datasets/), consisting of 40 genomes [31], and vi)-
whole genome shotgun sequences from the Hawaii Ocean Time Series (HOTS) at 25m, 75m,
110m (sunlit) and 500m (dark) ocean depth intervals downloaded from the NCBI Sequence
Read Archive under accession numbers SRX007372, SRX007369, SRX007370, SRX007371 [33].
T1 PGDBs were refined to include only those pathways that cross-intersect with the MetaCyc
database (v21) [4]. The detailed characteristics of the datasets are summarized in Table 4. For
each dataset S, we use |S| and L(S) to represent the number of instances and pathway labels,
respectively. In addition, we also present some characteristics of the multi-label datasets, which
are denoted as:

1. Label cardinality (LCard(S) = 1
n

∑i=n
i=1

∑j=t
j=1 I[Yi,j 6= −1]), where I is an indicator func-

tion. It denotes the average number of pathways in S.

2. Label density (LDen(S) = LCard(S)
L(S) ). This is simply obtained through normalizing LCard(S)

by the number of total pathways in S.

3. Distinct labels (DL(S)). This notation indicates the number of distinct pathways in S.

4. Proportion of distinct labels (PDL(S) = DL(S)
|S| ). It represents the normalized version of

DL(S), and is obtained by dividing DL(.) with the number of instances in S.

The notations R(S), RCard(S), RDen(S), DR(S), and PDR(S) have similar meanings for the
enzymatic reactions E in S. Finally, PLR(S) represents a ratio of L(S) to R(S).

5.4.3 Pathway and Enzymatic Reaction Features

triUMPF was trained using BioCyc v20.5 which contains less than 1460 trainable pathways. To
offset this limit, we applied pathway2vec [24] using RUST-norm (or “crt”) module to obtain
pathway and EC features, indicated by P and E, respectively, with the following settings: the
number of memorized domain is 3, the explore and the in-out hyperparameters are 0.55 and
0.84, respectively, the number of sampled path instances was 100, the walk length is 100, the
embedding dimension size was m = 128, the neighborhood size was 5, the size of negative
samples was 5, and the used configuration of MetaCyc was “uec”, indicating links among ECs
are being trimmed.

After generating node features, we only apply EC features to concatenate each example i
according to:

x̃(i) = x(i) ⊕ 1

r
x(i)E (57)
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Table 4: Experimental data set properties. The notations |S|, L(S), LCard(S), LDen(S), DL(S),
and PDL(S) represent: number of instances, number of pathway labels, pathway labels cardinality,
pathway labels density, distinct pathway labels, and proportion of distinct pathway labels for S,
respectively. The notations R(S), RCard(S), RDen(S), DR(S), and PDR(S) have similar meanings
for the enzymatic reactions E in S. PLR(S) represents a ratio of L(S) to R(S). The last column
denotes the domain of S.

Dataset |S| L(S) LCard(S) LDen(S) DL(S) PDL(S) R(S) RCard(S) RDen(S) DR(S) PDR(S) PLR(S) Domain
AraCyc 1 510 510 1 510 510 2182 2182 1 1034 1034 0.2337 Arabidopsis

thaliana
EcoCyc 1 307 307 1 307 307 1134 1134 1 719 719 0.2707 Escherichia coli K-

12 substr.MG1655
HumanCyc 1 279 279 1 279 279 1177 1177 1 693 693 0.2370 Homo sapiens
LeishCyc 1 87 87 1 87 87 363 363 1 292 292 0.2397 Leishmania major

Friedlin
TrypanoCyc 1 175 175 1 175 175 743 743 1 512 512 0.2355 Trypanosoma bru-

cei
YeastCyc 1 229 229 1 229 229 966 966 1 544 544 0.2371 Saccharomyces

cerevisiae
Three E.coli 3 – – – – – 2353 784.3333 0.3333 634 211.3333 – E. coli K-12 sub-

str. MG1655
(TAX-511145), E.
coli str. CFT073
(TAX-199310),
and E. coli
O157:H7 str.
EDL933 (TAX-
155864)

BioCyc 9255 1804003 194.9220 0.0001 1463 0.1581 8848714 956.1009 0.0001 2705 0.2923 0.2039 BioCyc version
20.5 (tier 2 & 3)

Symbiont 3 – – – – – 304 101.3333 0.3333 130 43.3333 – Composed of
Moranella and
Tremblaya

CAMI 40 6261 156.5250 0.0250 674 16.8500 14269 356.7250 0.0250 1083 27.0750 0.4388 Simulated mi-
crobiomes of low
complexity

HOTS 4 – – – – – 182675 26096.4286 0.1429 1442 206.0000 – Metagenomic
Hawaii Ocean
Time-series (10m,
75m, 110m, and
500m)

where ⊕ indicates the vector concatenation operation, E ∈ Rr×m corresponds the feature matrix
of ECs and m = 128. The addition of features results in a dimension of size r +m, where r =
3650. We expect by incorporating enzymatic reactions features into the original r dimensional
example x(i), the modified x̃(i) summarizes informative characteristics, which are expected to
be useful in the prediction task.

5.4.4 Parameter Settings

For training, unless otherwise indicated, the learning rate was set to 0.0001, batch size to
50, number of epochs to 10, number of components k = 100, number of pathway and EC
communities to p = 90 and v = 100, respectively. The higher-order proximity for Aprox and
Bprox (corresponding P2P and E2E matrices, respectively, in Section 5.4.1) were set to lp = 3
and le = 1 and their associated weights fixed as ω = 0.1 and γ = 0.3, respectively. The α and β
were fixed to 109. For the regularized hyperparameters λ∗, we performed 10-fold cross-validation
on MetaCyc and a subsample of BioCyc T2 &3 data and found the settings λ1:5 = 0.01, λ6 = 10,
and ρ = 0.001 to be optimum on golden T1 data.

5.5 Appendix A5: Experimental Results

Four tests were performed to benchmark the performance of triUMPF including parameter
sensitivity, network reconstruction, impact of ρ, and metabolic pathway prediction.

5.5.1 Parameter Sensitivity

The impact of seven hyperparameters (k, p, v, lp, le, ω and γ) was evaluated in relation to matrix
reconstruction costs for (M, Aprox, and Bprox). The reconstruction cost (or error) defines the
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Figure 4: Sensitivity of components k based on reconstruction cost.

sum of mean squared errors accounted in the process of transforming the decomposed matrices
into its original form where lower cost entails the decomposed low dimensional matrices were able
to better capture the representations of the original matrix. We specifically evaluated the effects
of varying the following parameters: i)- the number of components k ∈ {20, 50, 70, 90, 120}, ii)-
the community size of pathway p ∈ {20, 50, 70, 90, 100} and EC v ∈ {20, 50, 70, 90, 100}, iii)- the
higher-order proximity lp and le ∈ {1, 2, 3}, and iv)- weights of the polynomial order ω and γ
∈ {0.1, 0.2, 0.3}. We used the full matrix M, for each test, however, for community detection,
we used BioCyc T2 &3 data that is divided into training (80%), validation (5%) and test sets
(15%). The final costs for community detection are reported based on the test set after 10
successive trials. In addition, we contrast triUMPF with the standard NMF for monitoring the
reconstruction costs of M by varying k values. We emphasize that M, Aprox, and Bprox were
collected from MetaCyc (Section 5.4.1) and not from BioCyc T2 &3 (Section 5.4.2).

Fig. 4 shows the effect of rank k on triUMPF performance. In general, we observe steady
performance with increasing k. Although this contrasts standard NMF, where reconstruction
cost decreases as the number of features increases it is expected because, unlike standard NMF,
triUMPF exploits two types of correlations to recover M: i)- within ECs or pathways and ii)-
betweenness interactions that serve as additional regularizers. As observed in Fig. 4, higher k
values result in improved outcomes. Consequently, we selected k = 100 for downstream testing.

For community detection, we observed optimal results with respect to pathway community
size at p = 20 under parameter settings k = 100 and v = 100, as shown in Fig. 5a. However,
because Aprox is so sparse, we suggest that this low rank may not correspond to the optimum
community size. As with all methods of community detection triUMPF is sensitive to com-
munity size and requires empirical testing. Therefore, we tested settings between p = 20 and
p = 100 and observed a decrease in performance under parameter settings k = 100 and v = 100
with p = 90 providing a balance between cost and increased community size. A similar result
was observed for EC community size at v = 100 under parameter settings p = 90 and k = 100
in Fig. 5b.

Finally, we show the effect of changing polynomial orders, and their weights on triUMPF
performance. From Fig. 5c, we see that reconstruction cost progressively increases with varying
higher orders for lp for all the three weights ω. However, for the same reasons described above,
we prefer more long distances with less weight to preserve community structure, and remarkably,
when ω = 0.1 triUMPF performance was relatively stable after the second order. The same
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(a) Pathway community p (k = 100, v = 100) (b) EC community v (k = 100, p = 90)

(c) Effect of lp (d) Effect of le

Figure 5: Sensitivity of community size and higher order proximity with weights based on recon-
struction cost.

conclusion can be drawn for le and its associated weights γ in Fig. 5d.
Based on these results, triUMPF performance is stable while minimizing cost under the

following parameter settings: k = 100, p > 90, e > 90, lp = 3, ω = 0.1, le = 1, and γ = 0.3.
Therefor, we recommend these settings for both MetaCyc and BioCyc T2 &3.

5.5.2 Network Reconstruction

In this section, we explore the robustness of triUMPF when exposed to noise. Links were
randomly removed from M, A, and B according to ε ∈ {20%, 40%, 60%, 80%}. We used the
partially linked matrices to refine parameters while comparing the reconstruction cost against
the full association matrices M, A and B. Specifically for M, we varied components of M
according to k ∈ {20, 50, 70, 90, 120} along with ε. For all experiments, both MetaCyc and
BioCyc T2 &3 were applied for training using hyperparameters described in Section 3.4 of the
primary text.

Fig. 6a indicate that by progressively increasing noise ε to M, the reconstruction cost
increases when k is low. As more features are incorporated the cost at all noise levels steadily
decreases up to k = 100. This tendency indicates that both pathway and EC features (P and
E contain useful correlations that contribute to the resilience of triUMPF’s performance when
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(a) Effect of k

(b) EC links recovery (c) Pathway links recovery

Figure 6: Link prediction results by varying noise levels ε ∈ {20%, 40%, 60%, 80%} based on recon-
struction cost.

Figure 7: Effect of ρ based on average F1 score using golden datasets.

M is perturbed.
For Aprox and Bprox, as shown in Figs 6b and 6b, the costs are reduced in the presence of

noise, which is not surprising as the reconstruction of associated communities are constrained
on both data and Aprox and Bprox. These results are directly linked to the sparseness of both
matrices, as previously described in [8]. The pathway graph network, depicted in Fig. 1 of the
primary text, indicates that many pathways constitute islands with no direct links, while some
pathways are densely connected. For community detection, it is sufficient to group nodes that
are densely connected, while links between communities can remain sparse. The same line of
reasoning follows for the EC network.

5.5.3 Impact of ρ

Fig. 7 shows the inverse effect in predictive performance on T1 golden datasets when decreasing
ρ before reaching a performance plateau at ρ = 0.001. The hyperparameter ρ in Eq. 5 controls
the amount of information propagation from M to pathway label coefficients Θ. This suggests,
in practice, lesser constraints should be emphasized on Θ, while not neglecting associations
between EC numbers and pathways indicated in M.
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Table 5: Predictive performance of each comparing algorithm on 6 golden T1 data. For each perfor-
mance metric, ‘↓’ indicates the smaller score is better while ‘↑’ indicates the higher score is better.

Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.0610 0.0633 0.1188 0.0424 0.0368 0.0424
MinPath 0.2257 0.2530 0.3266 0.2482 0.1615 0.2561
mlLGPR 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590
triUMPF 0.0435 0.0954 0.1560 0.0649 0.0443 0.0776

Methods
Average Precision ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480
MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129
mlLGPR 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455
triUMPF 0.8662 0.6080 0.7377 0.7273 0.4161 0.4561

Methods
Average Recall ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.8078 0.8423 0.7176 0.8734 0.8391 0.7829
MinPath 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000
mlLGPR 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914
triUMPF 0.7590 0.3835 0.3529 0.3319 0.7126 0.6229

Methods
Average F1 ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511
mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768
triUMPF 0.8090 0.4703 0.4775 0.4735 0.5254 0.5266

5.5.4 Metabolic Pathway Prediction

Here, we investigate the effectiveness of triUMPF for the pathway prediction task on i)- T1
golden data, ii)- three E. coli data, and iii)- HOTS.
T1 Golden Data. We compare the performance of triUMPF on 6 benchmark datasets, as
described in Section 5.4.2, against the other pathway prediction algorithms using four evaluation
metrics: Hamming loss, average precision, average recall, and average F1 score. As shown in
Table 5, triUMPF achieved competitive performance against the other methods in terms of
average precision.
Three E.coli Data. Fig. 8 shows pathway communities observed for MG1655, CFT073 and
EDL933 using BioCyc T2 &3 including MetaCyc in training. Fig. 9 shows that PathoLogic
was able to infer over 90 additional pathways when taxonomic pruning is disabled. Table
7 summarizes GapMind [29] results for MG1655, CFT073 and EDL933. Fig. 10 shows the
results for both PathoLogic with taxonomic pruning enabled and triUMPF. Without taxonomic
pruning, PathoLogic predicted 56 pathways across the three strains encompassing 15 amino
acid biosynthesis pathways and 20 pathway variants, including L-proline biosynthesis II (from
arginine) pathway that is known only for eukaryotes (Fig. 11), consequently, increasing false-
positive pathway prediction.
HOTS water column. Here, we use triUMPF to infer a set of pathways from the HOTS water
column spanning sunlit and dark ocean depth intervals comparing results to other prediction
methods including PathoLogic and mlLGPR. The results are presented in Fig. 12.
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(a) MG1655 (b) CFT073 (c) EDL933

Figure 8: Pathway community networks for related T1 and T3 organismal genomes. Pathway com-
munities for (a) E. coli K-12 substr. MG1655 (TAX-511145), (b) E. coli str. CFT073 (TAX-199310),
and (c) E. coli O157:H7 str. EDL933 (TAX-155864) based on community detection. Nodes col-
ored in dark grey indicate pathways predicted by PathoLogic; lime pathways predicted by triUMPF;
salmon pathways predicted by both PathoLogic and triUMPF; red expected pathways not predicted
by both PathoLogic and triUMPF; magenta expected pathways predicted only by PathoLogic; pur-
ple expected pathways predicted solely by triUMPF; and green expected pathways predicted by
both PathoLogic and triUMPF. light-grey indicates pathways not expected to be encoded in either
organismal genome. The node sizes reflect the degree of associations between pathways.

Availability of Data and Materials

The triUMPF source code is available under the MIT License on GitHub (hallamlab/triUMPF)
with detailed descriptions on how to install and execute all commands run to generate results
in our GitHub repository. The MetaCyc database can be obtained from metacyc.org. The T1
golden datasets can be downloaded from biocyc.org. For the symbiotic Candidatus Moranella
endobia and Candidatus Tremblaya princeps genomes, they can be downloaded from GenBank
under accession numbers NC-015735 and NC-015736 while the simulated CAMI low complexity
dataset can be obtained from edwards.sdsu.edu/research/cami-challenge-datasets. Unassem-
bled whole genome shotgun DNA pyrosequences from HOTS (10m, 75m, 110m, and 500m)
can be obtained from the NCBI Sequence Read Archive under accession numbers SRX007372,
SRX007369, SRX007370, SRX007371. The preprocessed datasets used in this paper can be
downloaded from zenodo.org/YLIBG lKhPZ. The same zenodo repo contains a pre-trained tri-
UMPF (triUMPF Xe.pkl) using configurations stated in Section 5.4. We also included the three
preprocessed E.coli data in the github repo under the “sample” directory.
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Table 6: Top 5 communities with pathways predicted by triUMPF for E. coli K-12 substr. MG1655
(TAX-511145). The last column asserts whether a pathway is present in or absent (a false-positive
pathway) from EcoCyc reference data.

Community Index MetaCyc Pathway ID MetaCyc Pathway Name Status

67

PWY0-1182 trehalose degradation II (trehalase) true
PWY-6910 hydroxymethylpyrimidine salvage true
HOMOSER-THRESYN-PWY L-threonine biosynthesis true
PUTDEG-PWY putrescine degradation I true
PWY-6611 adenine and adenosine salvage V true
FERMENTATION-PWY mixed acid fermentation true
ENTNER-DOUDOROFF-PWY Entner-Doudoroff pathway I true

34

ASPARAGINESYN-PWY L-asparagine biosynthesis II true
PWY-5340 sulfate activation for sulfonation true
PWY-6618 guanine and guanosine salvage III true
PWY0-1314 fructose degradation true
PWY-7181 pyrimidine deoxyribonucleosides degradation true
PWY0-1299 arginine dependent acid resistance true
PWY0-42 2-methylcitrate cycle I true

9

NAGLIPASYN-PWY lipid-A-precursor biosynthesis (E. coli) true
PWY-7221 guanosine ribonucleotides de novo biosynthesis true
KDOSYN-PWY Kdo transfer to lipid IVA I (E. coli) true
PWY0-1309 chitobiose degradation true
PPGPPMET-PWY ppGpp biosynthesis true
PWY-6608 guanosine nucleotides degradation III true
PWY-5656 mannosylglycerate biosynthesis I false

47

PLPSAL-PWY pyridoxal 5’-phosphate salvage I true
PWY0-1313 acetate conversion to acetyl-CoA true
PYRUVDEHYD-PWY pyruvate decarboxylation to acetyl CoA true
PWY-4381 fatty acid biosynthesis initiation (bacteria and plants) true
PWY0-662 PRPP biosynthesis true

81

HISTSYN-PWY L-histidine biosynthesis true
PWY-6147 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I true
PWY-7176 UTP and CTP de novo biosynthesis true
PWY-6932 selenate reduction false
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pathways solely predicted by PathoLogic. The size of circles corresponds the associated coverage
information.
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