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Abstract

Genome-wide association studies are often confounded by popula-
tion stratification and structure. Linear mixed models (LMMs) are a
powerful class of methods for uncovering genetic effects, while control-
ling for such confounding. LMMs include random effects for a genetic
similarity matrix, and they assume that a true genetic similarity matrix
is known. However, uncertainty about the phylogenetic structure of a
study population may degrade the quality of LMM results. This may
happen in bacterial studies in which the number of samples or loci
are small, or in studies with low quality genotyping. In this work, we
develop methods for linear mixed models in which the genetic similar-
ity matrix is unknown and is derived from MCMC estimates of the
phylogeny. We apply our model to a genome-wide association study
of multidrug-resistance in tuberculosis, and illustrate our methods on
simulated data.
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1 Introduction

Genome-wide association studies (GWASs) are designed to identify the genetic

variants affecting phenotypes of interest such as multidrug-resistance in

tuberculosis (Price et al., 2006; Zhang et al., 2010). Classic approaches to

GWAS rely on linear association tests to quantify the relationship between

phenotypes and genotypes.

Population structure (Patterson et al., 2006) in the phylogeny of bacterial

genomes can lead to false positives, spurious associations, or inflated p-values

(Novembre et al., 2008). The genealogy of tuberculosis typically exhibits

strong clade structure (Cordero and Polz, 2014; Earle et al., 2016), with

geographically widespread lineages, and so GWASs on TB are vulnerable to

population stratification.

Linear mixed models (LMMs) use the genetic similarity among samples

as a random effect. This controls for confounding from population struc-

ture, leading to improved false discovery rates. In Kang et al. (2010), the

EMMAX (Efficient mixed-model association expedited) model was proposed,

which computes the variance component in linear mixed models in an effi-

cient way. In addition, factored spectrally transformed linear mixed models

(FaST-LMMs) were introduced (Lippert et al., 2011; Listgarten et al., 2013),

with running time and memory costs that scale linearly in the cohort size.

In Dahl et al. (2016); Yang et al. (2011); Zhou and Stephens (2014), mod-

els were developed for computationally efficient linear mixed effects model

with multivariate phenotypes. The efficiency of FaST-LMM methods have

been further improved by subsetting the genetic variants examined, so that

a set of maximally independent genetic variants are considered (Listgarten

et al., 2012). Several other methods have been proposed to scale to large

cohorts (such as UK Biobank; Bycroft et al. 2018, Sudlow et al. 2015). Loh

et al. (2015) developed an efficient Bayesian mixed model, BOLT-LMM, that

requires lower computational costs than standard LMMs, while increasing

power by modeling genetic architectures via a Bayesian mixture prior on
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marker effect sizes. Loh et al. (2018) also proposed a much faster version of

BOLT-LMM and demonstrate the method by analyzing the UK Biobank data.

Jiang et al. (2021) developed a generalized linear mixed model (GLMM)-based

methods for genome-wide association studies (fastGWA-GLMM) for binary

phenotypes. The method is scalable to cohorts with millions of individuals.

All the above LMM methods assume that the matrix specifying the genetic

similarity among the samples is known (i.e., through an empirical genetic

similarity matrix Patterson et al. 2006; or a kinship matrix derived from a

pedigree Kirkpatrick et al. 2019). For large cohorts of human genotypes, there

is often low uncertainty about estimated genetic similarity matrices. However,

for some studies, such as bacterial studies, in which small numbers of samples

or loci are present, or for studies in which genotyping is sparse and noisy,

uncertainty about the genetic similarity matrix may degrade the quality of

LMM results (for example, in S. Wang et al. 2021 heritability estimates based

on genetic similarity matrices were found to have large variance, which may

translate into reduced power for LMMs conducted with point estimates of

the genetic similarity matrix).

In the pyseer (Lees et al., 2018) package, a few methods for GWAS are

implemented. For example, a fixed effects model using the genetic similarity

matrix represented by a multiple-dimensional scaling approximation (MDS);

a linear mixed model using a kinship matrix; a whole genome model using

elastic net. However, the genetic similarity matrix represented by MDS is not

equal to its expectation (Patterson et al., 2006) and is biased (S. Wang et al.,

2021).

Multidrug-resistant tuberculosis (MDR-TB) is a major concern for tuber-

culosis control (Grandjean et al., 2017). Multidrug-resistance in TB is caused

by genetic variations in genes that encode drug targets and drug-converting

enzymes (Coll et al., 2014). Understanding these effects is critical for im-

proving treatment for MDR-TB patients. But population stratification (in

which genetic variates correlate with structure in geographical or socioeco-
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nomic indicators), and noisy genotyping of bacterial genomes confounds such

studies (Price et al., 2006; Zhang et al., 2010). In this work, we improve

the control provided by linear mixed models by encoding uncertainty about

genetic similarity, and report applications on TB data and simulated data.

We propose a new LMM method for genome-wide association studies, using

phylogenetic trees to control for population structure. We use MCMC (Markov

chain Monte Carlo) to draw samples for the phylogeny based on observed

genetic sequences, and then we compute the expected genetic similarity matrix

induced by each phylogeny (S. Wang et al., 2021). We then apply the linear

mixed model to each sampled expected genetic similarity matrix and average

the results. Simulations show that the true positive rates and false discovery

rates of our method outperform both existing linear regression methods, LMM

methods in which the genetic similarity matrix is estimated empirically, and

pyseer with the genetic similarity matrix represented using consensus tree of

MCMC posterior samples. We apply this method to MDR-TB in a GWAS of

467 TB subjects in a population from Lima, Peru (Grandjean et al., 2017).

2 Methods

2.1 Linear mixed effects models for genome-wide asso-

ciation studies

We consider a population of samples typed at given SNPs (single nucleotide

polymorphisms) and with measured phenotypes. We begin this section with

an exposition of the linear mixed model (Kang et al., 2010; Lippert et al.,

2011). Let the study subject indices be i = 1, 2, . . . , N , and let the SNP

locations be indexed by m = 1, 2, . . . ,M . Let y = (y1, y2, . . . , yN)′ denote a

column vector of phenotypes (yi ∈ R), and let G = [G1, G2, . . . , GM ] denote

genotype data observed at the M SNPs, with Gm denoting a column vector of

alleles for the m-th SNP for all N subjects. For details on bacterial genetics
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we refer readers to Earle et al. (2016) and Coll et al. (2014). Let Gim = 0 and

Gim = 1 encode the events that subject i has the major allele or the minor

allele at SNP m respectively.

The LMM is a mixed effects model for association between SNP Gm and

the phenotype. Independent LMMs may be applied at each SNP as follows:

y = Gmβm + bm + εm. (1)

Here βm is the effect size of the fixed effect of the m-th SNP, εm is the random

error vector, with εm ∼ MVN(0, σ2
gI), and bm is the random effect of the

m-th SNP, with bm ∼ MVN(0, σ2
eψ), and MVN(0,Σ) is the multivariate

normal distribution with mean 0 and covariance Σ. The genetic similarity

matrix ψ measures the genetic relatedness among different subjects. This is

an N ×N positive semi-definite matrix, and an empirical estimate of ψ is

given by Patterson et al. (2006):

ψij =
1

M

M∑
m=1

(Gim − µm)(Gjm − µm)

σ2
m

. (2)

Here µm = 1
N

∑N
i=1Gim, σ2

m = µm(1 − µm) are the empirical mean and

variance (respectively) of the genotypes of the N subjects at the m-th SNP.

While previous LMM work approximates ψ by (2), there is often uncer-

tainty about the true value of ψ. A realisation of ψ is implied deterministically

by a phylogenetic tree for the N subjects (S. Wang et al., 2021). We denote

this tree by t. In the next subsection we introduce a linear mixed model with

uncertain genetic similarity matrices (LiMU), in which the genetic similarity

matrix is unknown and is estimated based on the genotypes.

2.2 The LiMU method

The covariance matrix of the random effects for the m-th SNP is the positive-

definite matrix ψ, which measures the genetic relatedness among individuals.
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The empirical estimate of genetic similarity (shown in Equation 2) is inaccurate

if genotypes are not densely sampled, or are of poor quality (S. Wang et al.,

2021). The inaccuracy in empirical genetic similarity estimates may lead

to inconsistent estimates for parameters in linear mixed models. In this

work, we propose a new linear mixed model for multivariate genome-wide

association studies, by assuming an unknown genetic similarity matrix ψ(t)

that depends on the underlying phylogenetic tree t. Phylogenetics explicitly

model a rate matrix, so branch lengths are likely to give a better estimate

of genetic relatedness than the inner product of sequences used in existing

software packages such as GEMMA (Zhou and Stephens, 2014).

Here we consider estimating the phylogeny t in a Bayesian framework. We

place a proper prior distribution on the phylogenetic tree t (i.e., a uniform clock

prior for a binary clock tree). After specifying the prior distributions, trees can

be sampled conditioned on genotype data using standard software packages for

phylogenetic inference (e.g. MrBayes; Ronquist et al. 2012). When multiple

posterior samples of the phylogeny {tj}j=1,...,J are available (for example,

after running MrBayes for the phylogeny), we use the algorithm proposed

in S. Wang et al. (2021) to compute the expected genetic similarity matrix

{ψ(tj)}j=1,...,J for each posterior sample. The resulting matrices represent

the uncertainty of genetic similarities among species, and we combine them

with linear mixed models to account for population stratification and correct

for spurious associations.

We associate each posterior sample {ψ(tj)}j=1,...,J with a linear mixed

model. For each j and m, we use restricted maximum likelihood estimation

(REML) (Corbeil and Searle, 1976) to estimate parameters in each LMM

y = Gmβmj + bmj + εmj. (3)

Here εmj ∼ MVN(0, σ2
gI), and bmj is the random effect of the m-th SNP,

and ψ(tj) is the expected genetic similarity matrix, bmj ∼ MVN(0, σ2
eψ(tj)).

We compute the p-value for β̂mj, denoted by pmj = P (T rep
m > Tm|ψ(tj)).
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Here Tm is the test statistic for site m, and it is a function of ψ(t). T rep
m

denotes the test statistic for a replication of site m. Finally, we compute the

mean of p-values pmj for each site m, p∗m = 1
J

∑J
j=1 pmj. We note that p∗m is

natural way to combine a set of p-values since it is an unbiased estimator

of
∫
P (T rep

m > Tm|ψ(t))π(ψ(t))dψ(t). This is related to posterior predictive

p-values (Hjort et al., 2006; Meng, 1994). A permutation test is another option

for finding p-values for this test, and may be more precise than the mean,

but we found that permutation tests are not computationally tractable with

this model. Algorithm 1 provides an overview of the estimation procedure of

LiMU. We provide an open source software implementation for this method1.

Algorithm 1 A linear mixed model with uncertain genetic similarity
matrices for genome-wide association study

1: Inputs: Phenotype y and genotype G.
2: Output: Significantly associated genetic variants and posterior samples

of p-value.
3: Run MrBayes (or related software) to obtain posterior samples of phylo-

genetic tree {tj}j=1,...,J using G.
4: Compute the genetic similarity matrix {ψ(tj)}j=1,...,J using the algorithm

proposed in S. Wang et al. (2021).
5: for j ∈ {1, 2, . . . , J} do
6: for m ∈ {1, 2, . . . ,M} do
7: Use REML to estimate parameters in Equation (3) with ψ(tj) and

compute the p-value for site m, pmj

8: for m ∈ {1, 2, . . . ,M} do
9: Compute adjusted p-value for each site m using p∗m = 1

J

∑J
j=1 pmj.

10: Select genetic variants with p-value lower than threshold.
11: return Significantly associated genetic variants and the estimated p-

values.

The computational cost for an MCMC step for tree construction is a

linear function of N ·K. Here K is the number of MCMC samples. For each

thinned posterior sample, the cost for computing the genetic similarity matrix

1https://github.com/shijiaw/LMMTree
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is O(N2), and the cost for REML of LMM is O(N3 ·M). The walltime of

these operations can be improved by parallelizing the REML step for each

genetic similarity matrix computation.

3 Experiments

3.1 Simulation

3.1.1 Simulation 1

In the first simulation study, we simulated datasets for four scenarios: A, B,

C and D. In scenario A, we simulated 50 trees with N = 30 taxa, each with

M = 500 loci; In scenario B, we simulated 50 trees with N = 100 taxa, each

with M = 2000 loci; In scenario C, we simulated 50 trees with N = 100 taxa,

each with M = 2000 loci; In scenario D, we simulated 50 trees with N = 100

taxa, each with M = 2000 loci. The binary trees were simulated via the ms

software (Hudson, 2002). We used the R package phangorn (Schliep, 2011)

to create genetic variants under the assumption of Juke Cantor model (Jukes

and Cantor, 1969). We assumed that the branch lengths are in units of 2N

generations. We standardized the genotypes, and uniformly chose one SNP to

be significant. We computed a ground-truth genetic similarity matrix given

the reference trees, according to S. Wang et al. (2021). In Scenarios A and B,

we simulated the phenotype though the LMM described in Section 2.1, with

σe = 0.60, σg = 0.50, effect size β = 0.20, and with σe = 0.40, σg = 0.20, effect

size β = 0.20. In Scenarios C and D, we simulated the phenotype though the

LM with σe = 0.20, β = 0.20, genotyping error 0.5% and 10% respectively.

These two thresholds correspond to specific sequencing technologies used for

MTB genotyping. Based on estimates of error rates from different sequencing

technologies, 0.5% is towards the higher estimate for most Illumina short read

sequencing technologies (Stoler and Nekrutenko, 2021), and 10% is a good

estimate for technologies with higher error rates, such as Oxford Nanopore
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sequencing (Nicholls et al., 2019), especially given the relatively high GC

content in Mtb (>60%), which can influence error rates (Delahaye and Nicolas,

2021).

We compared the true positive rate (TPR) and false discovery rate (FDR)

of LiMU, LMM (using the empirical genetic similarity matrix for the kinship),

the fixed effects model with the genetic similarity matrix represented by MDS

implemented in the pyseer software, a linear mixed effects model with the

expected genetic similarity matrix computed from consensus tree of Mr. Bayes

(CLMM), and a linear model in a task in which associated genetic variants are

recovered. To compute the similarity matrix of model implemented in pyseer

for controlling population structure, we used the consensus tree provided by

MrBayes. The estimation of linear mixed model was carried out using the

efficient mixed model association (EMMA; Lippert et al. 2011). We examined

the receiver operating characteristic (ROC) curves induced by the p-values

for these models for simulated data in which the ground truth is known.

Figure 1 displays the ROC found for these methods for datasets A (upper

left panel), B (upper right panel), C (lower left panel) and D (lower right

panel). In Scenarios A and B, the ROC curve of LiMU dominates those of

pyseer, LMM and LM at all FDR level in both Scenarios. In Scenario C,

the data was generated via a linear regression model, the ROC curves found

for all methods were close. In Scenario D, with higher genotyping error in

data simulation, the area under all ROC curves was lower (compared with

Scenario C). The area under the ROC curve (AUC) and the improvement at

FDR=0.05 are listed in Table 1. Figure 2 shows the TPR at a fixed FDR

level 0.05 for the four scenarios shown in Figure 1. The ROC curves provided

by LiMU and LMM with the expected genetic similarity matrix computed

from the consensus tree according to S. Wang et al. (2021) exhibit similar

performance.
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Figure 1: ROC provided by linear regression (LM), linear mixed model with
empirical genetic similariy matrix (LMM), the and the fixed effects model
implemented in pyseer software (PYSEER), and a linear mixed effects model
with the expected genetic similarity matrix computed using the consensus
tree of Mr. Bayes according to S. Wang et al. (2021), and a linear mixed
model with unknown genetic similariy matrices (LiMU) for datasets A (upper
left panel), B (upper right panel), C (lower left panel), D (lower right panel),
the vertical dotted line is at FPR level of 0.05.

3.1.2 Simulation 2

In the second simulation study, we first examined the area under the ROC

curve (AUC) provided by the four methods discussed above as a function of

σe. We simulated 50 trees with N = 15 taxa, each with M = 100 loci. We

considered 11 levels of σe equally distanced between 0 and 1. For each level

of σe, we simulated the phenotype though the LMM described in Section 2.1,

with β = 0.1, σg = 0.1. Hence, we have 50 data sets for each level of σe. The
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Figure 2: TPR at a fixed FDR level 0.05 for the four scenarios shown in
Figure 1.

AUC TPR (FDR = 0.05)
Scenario LM PYSEER LMM LiMU CLMM LM PYSEER LMM LiMU CLMM

A 0.706 0.703 0.713 0.760 0.760 0.24 0.20 0.26 0.32 0.32
B 0.958 0.958 0.980 0.992 0.992 0.78 0.82 0.92 0.98 0.98
C 0.993 0.990 0.997 0.993 0.993 0.98 0.96 0.98 0.98 0.98
D 0.969 0.965 0.961 0.966 0.966 0.90 0.86 0.90 0.90 0.90

Table 1: AUC and TPR at FDR 0.05 for simulation Scenarios A, B and C.
LiMU shows improved AUC and TPR in Scenarios A and B. The AUC and
TPR are close for all methods in Scenario C.

rest of the setup for this simulation was the same as the previous simulation

study. We also report the compute time required for each step of LiMU in

Table 2. The experiments are conducted on a 2.3 GHz Intel Core i9 processor.

Half a million iterations of Mr.Bayes run costs 6.524 seconds, computation of

the genetic similarity matrix for one thinned posterior sample takes 6.84 ·10−3

seconds, and one run of REML with a sample for the genetic similarity matrix

takes 0.613 seconds.

We examined the area under curves (AUC) induced by the p-values of

linear regression (LM), linear mixed model with empirical genetic similariy
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Table 2: Timing for each step of LiMU. The experiments are conducted on a
2.3 GHz Intel Core i9 processor.

Mr.Bayes GSM REML
Time (Sec) 6.524 6.84 · 10−3 0.613

matrix (LMM), the pyseer software (pyseer) and a linear mixed model with

unknown genetic similariy matrices (LiMU), for simulated data in which the

ground truth was known. Figure 3 displays the area under curve (AUC) as a

function of σe. When σe is small, the AUC provided by the four methods are

similar. The AUCs of LiMU and rest of the methods start to diverge once we

increase σe, showing that LiMU outperforms the other methods significantly

when the heritability is high.

In addition, we examined the area under curve (AUC) as a function of σe

provided by LiMU with p-value summarized by four different statistics (max,

mean, min, median). Figure 4 indicates that the AUC provided by mean and

median statistics are similar, and are higher than max statistics with a high

level of σe, the AUC provided by the min statistic is lower than the other

three.

3.1.3 Simulation 3

In the third simulation study, we design experiments with more sophisticated

setups. We create 50 data sets, in each of them we randomly sample N = 50

genetic sequences among the 467 tuberculosis subjects that we analyzed in

Section 3.2. We first run Mr. Bayes to obtain a consensus phylogeny for each

data set, and the consensus tree is used to simulate phenotype. The amount of

uncertainty in the phylogeny can be quantified using the R package treespace

(Jombart et al., 2017; Team et al., 2013). Figure 5 shows the density plot for

the first two components provided by metric multidimensional scaling (MDS)

(Williams, 2000). The MDS is conducted on the pairwise distance between

the 100 thinned posterior samples for one of the 50 data sets using treespace.
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Figure 3: Area under curve (AUC) as a function of σe provided by linear
regression (LM), linear mixed model with empirical genetic similariy matrix
(LMM), the pyseer software (pyseer) and a linear mixed model with unknown
genetic similariy matrices (LiMU). With a small value of σe, the AUC provided
by the four methods are close. LiMU and rest methods start to diverge once
we increase σe. LiMU works better with higher heritability.

We investigate the effects of polygenic traits using LiMU, linear regression

(LM), linear mixed model with empirical genetic similariy matrix (LMM),

and the fixed effects model implemented in the pyseer software (PYSEER).

The genetic sequences are obtained by randomly sampling M markers from

the original TB sequences. We examine three levels of M , M = 100, 300, 1000.

For each level of M , we simulate phenotypes in four scenarios using multiple

significant loci, and in each scenario we simulate 50 data sets with different

random seeds. The number of significant loci is set to d = 1, 2, 5 and 10
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Figure 4: Area under curve (AUC) as a function of σe provided by LiMU
with p-value summarized by four different statistics (i.e. max, mean, min,
median). The AUC provided by mean and median statistics are close, and
are higher than max statistics with a high level of σe. The AUC provided by
min statistic is lower than the other three.

in the four scenarios respectively. The effective sizes are sampled from a

uniform distribution. Figure 6 shows the AUC as a function of M provided

by LiMU, linear regression (LM), linear mixed model with empirical genetic

similariy matrix (LMM), and the fixed effects model implemented in the

pyseer software (PYSEER) in four scenarios with size of effects 1 (Upper

Left), 2 (Upper Right), 5 (Lower Left) and 10 (Lower Right). The AUCs

provided by LMM and LiMU are higher than those provided by LM and

PYSEER. For all cases, LiMU approaches LMM with a higher value of M .

For a small value of M , LiMU performs slightly better than LMM when there

is only a single significant locus, and LMM performs better than LiMU when

14



−2.5

0.0

2.5

5.0

−10 −5 0 5 10

Figure 5: The density plot for the first two components provided by metric
multidimensional scaling (MDS). The MDS is conducted on the pairwise
distance between the 100 thinned posterior samples for one of the 50 data
sets using R package treespace.

there are multiple significant loci.

3.2 Association study for MDR-TB in Lima, Peru

We carried out a genome-wide association study using the LiMU method to

control for population structure for 467 tuberculosis subjects (of which 158

had multidrug-resistant strains) collected in Lima, Peru. These data were pre-

viously studied in Grandjean et al. (2017), and in that work many homoplastic

variant sites were identified to be significantly correlated, indicating epistasis.

Our analysis further refines these results with the LiMU control for population

structure. We removed genotypes with minor allele frequency below 0.005,

yielding 9, 848 SNPs. We compared LM, the fixed effects model with the

genetic similarity matrix represented by MDS implemented in software pyseer ,
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Figure 6: Area under curve (AUC) as a function of M provided by LiMU,
linear regression (LM), linear mixed model with empirical genetic similariy
matrix (LMM), and the fixed effects model implemented in pyseer software
(PYSEER) in four scenarios with number of significant loci d = 1 (Upper
Left), 2 (Upper Right), 5 (Lower Left) and 10 (Lower Right).

LMM and the LiMU. For the LMM, we use the empirical genetic similarity

matrix, and the inference was carried out by the EMMA method. For LiMU,

we first ran MrBayes to get posterior samples of trees. We ran MrBayes with

one million iterations, with burnin given by the first half of the chain, and

we collected 50 thinned posterior tree samples. Given the expected genetic

similarity matrix based on each sampled tree, we use the EMMA method to

infer the LMM parameters. The genetic similarity matrix of the fixed effects

model in pyseer was computed using the consensus tree provided by the

MrBayes analysis. We consider multidrug-resistance (MDR) as the phenotype

of interest, and form a binary variable indicating MDR or non-MDR. All
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samples identified as resistant to either Rifampicin, or Isoniazid (but not

resistant to other drugs) are included in the non-MDR set.

We compared our methods to a classical linear regression GWAS with

t-tests. This linear analysis identified 100 genetic variants that significantly

associated with multidrug-resistance after Bonferroni (BF) correction, with

p-value < 0.05/9, 848. The LiMU identifies 23 significantly associated genetic

variants (red pluses in Figure 8) after BF correction (p-values < 0.05/9, 848).

LMM identifies 8 associated genetic variants (blue triangles) after BF correc-

tion. Figure 7 shows a Venn diagram of base pair positions for hits provided

by LMM and LiMU. pyseer identifies 96 associated genetic variants (grey

crosses) after BF correction. Both LMM and LiMU significantly correct hits

found through linear regression, suggesting that many of these hits are due

to population structure. Figure 8 displays the Manhattan plot for these

GWASs. Table 3 shows the p-values of the 3 most significant hits identified

by LiMU. We also summarize the posterior p-values through posterior median

and geometric mean, yielding values that are close to the p-values summarized

by mean (the − log10 p-values found by posterior median and geometric mean

match those found by the posterior mean to two decimal places).
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Figure 7: The base pair positions of LiMU and LMM hits.

Table 4 reports the timing (in seconds) for the three main steps of LiMU

(i.e. 1 million iterations of Mr. Bayes, computation of the genetic similarity
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data. The dashed horizontal line indicates the threshold after Bonferroni
(BF) correction. The base pair positions of LiMU hits are also provided.

matrix and REML for one LMM fit). One million iterations of Mr. Bayes run

costs 8, 414.99 second, computation of the genetic similarity matrix for one

thinned posterior sample takes 0.437 seconds, and one run of REML takes

4, 799.37 seconds.

The hits with BP 761160 and 761115 are non-synonymous mutations

(these alter the amino acid produced) in the rpoB gene, which is associated

with rifampin resistance (Goldstein, 2014; Lipin et al., 2007). The majority

of mutations that confer resistance to rifampin occur within an 81bp region

of rpoB, referred to as the rifampin-resistance determining region (RRDR).

And while neither of the sites identified here occur within the RRDR region,

there is still a chance that strains carrying these mutations may be rifampin-

resistant, or they may be compensatory mutations (Lempens et al., 2018; Ma

et al., 2021).

In addition, the hit with BP 2155176 is a non-synonymous mutation in

the katG gene, which is associated with isoniazid resistance. Rifampin and
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Table 3: Negative log P -values of LM, LMM, LiMU and pyseer for base
positions 761115, 761160, 2155176.

BP Position 761115 761160 2155176
LM 8.12 17.95 8.53

LMM 14.45 15.01 4.23
LiMU 7.92 17.51 8.06
pyseer 7.88 16.64 8.26

Table 4: Timing (in Seconds) for each step in LiMU. The experiments are
conducted on a 2.3 GHz Intel Core i9 processor.

Mr.Bayes GSM REML
Time (Sec) 8, 414.99 0.437 4, 799.37

isoniazid are first-line antimicrobials used to treat TB and strains resistant

to both are termed multi-drug resistant TB (MDR-TB) (Lipin et al., 2007).

There was also a hit identified by LiMU for a non-synonymous mutation

within rpoC, which has been previously shown be involved in compensation

of fitness costs associated with rifampin-resistance (De Vos et al., 2013). In

addition, there were hits within various PPE and PE-PGRS family genes,

and while the exact function of many of these genes is not well understood,

there is evidence that many are involved in the host-pathogen interaction

and infection (Qian et al., 2020). However, there can be technical challenges

with assembly and variant calling at these loci because of a high GC content

and excess of repetitive sequences (Ates, 2020), and further work would be

required to validate the variation found in these genes.

4 Discussion

Standard linear mixed models (LMMs) for genome-wide association studies

often assume a single known genetic similarity matrix as a random effect

(typically computed as the symmetric matrix resulting from inner products of

genetic variants). However, such an approach is inaccurate if genotypes are
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not densely sampled, or are of poor quality (S. Wang et al., 2021): in S. Wang

et al. (2021), it was found that uncertainty in genetic similarity matrices

(measured in standard deviation) varied from 0.223 to 0.031 as number of

markers varied from 20 to 1000. Uncertainty about the genetic similarity

matrix may degrade the quality of LMM estimates.

We have developed a linear mixed effects model for genome-wide associa-

tion studies incorporating uncertainty about the genetic similarity matrices,

in which the genetic similarity matrix is induced by a phylogeny based on

the genotype. To account for the uncertainty of phylogeny, we considered a

Bayesian framework for the underlying tree and derive the posterior samples

through Markov chain Monte Carlo methods (i.e. MrBayes). Our proposed

method, LiMU is computational more expensive than standard LMMs as we

require multiple runs of standard LMM, and use Bayesian sampling methods

to obtain posterior tree samples. However, LiMU allows us to consider the

uncertainty in the genetic similarity matrix (or phylogeny).

In LiMU, we first estimate posterior samples for the phylogeny, and then

estimate parameters of the LMM conditioned on the trees. Our method can

utilize any Bayesian phylogenetic inference methods that exist in current

literature (Bouckaert et al., 2014; Ronquist et al., 2012; L. Wang et al., 2020;

S. Wang and Wang, 2021). In addition, our method is flexible in the sense

that the estimates of phylogenies could be obtained from DNA, RNA, or any

data source arising from trees (including phylolinguistic data, for example).

Our simulations demonstrate the consistency of our methods, and improved

false positive rates over the LMM and pyseer. The ROC curve and AUC

provided by LiMU dominate those provided by the LMM, pyseer and a

linear model. Our simulations further show that the advantage of LiMU is

seen most clearly when the heritibility of the phenotype is high. There is

more uncertainty in the phylogeny for smaller data sets, and in this case

LiMU is preferable. We also demonstrate that LiMU is robust to model

misspecification and high genotyping error (LiMU outperforms other methods
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in simulations with high genotyping error, and with simulations in which the

phenotypes are not sampled from an LMM). We recommend that LiMU be

used for datasets with high genotyping error or small numbers of markers.

Our experiments involved less than 10,000 markers. If the number of markers

is much larger, then the genetic similarity matrix will have less uncertainty

and LiMU results may approach those of the LMM.

We apply our method to a genome-wide association study of 467 multidrug-

resistant TB (with around 10,000 markers) in a population from Lima, Peru.

In our real data analysis, LiMU found fewer hits than a linear model without

random effects. The hits we found involve non-synonymous mutations in the

rpoB and katG genes, and a non-synonymous mutation within rpoC, that is

associated with rifampin-resistance. These genes are known to be involved

with multi-drug resistance or host-pathogen interaction and infection. Our

simulations suggest that the false positive rate of LiMU is lower than that of

the LMM, and so these hits are likely to be true positives. Also, the hit we

identified at BP position 2155176 was not found by the LMM.

Our current approach is limited to sequences without recombination. We

could extend to data with recombination events in genealogies. The ancestral

recombination graph (ARG) describes the coalescence and recombination

events among individuals (Rasmussen et al., 2014). The ARG is composed

of a set of coalescent trees separated by break points. To compute expected

genetic similarity matrix for samples given an ARG, we could first compute

the expected genetic similarity matrices for each of the coalescent trees in the

ARG, then compute weighted average for those expected genetic similarity

matrices. The weights would be proportional to the number of loci between

each consecutive pair of break points. Finally, we could apply LiMU to this

weighted set of trees, computing their expected genetic similarity matrices.
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