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1. Introduction 

Polyhedral combinatorics studies combinatorial problems with the help of 
polyhedra. Let us first give a simple, illustrative example. Let G = (V, E) be a 
graph, and let c: E ___,. IR + be a weight function on the edges of G. Suppose we 
want to find a matching M in G with "weight" 

c(M) = L c(e) 
eEM 

( 1.1) 

as large as possible, Thus we want to "solve" 

max{c(M) IM matching in G}. ( 1.2) 

Denote for any matching M, the incidence vector of M in IRE by xM, i.e., 
xM(e):= 1 if eEM and :=O if ef!,M. Considering the weight function c: E~IR 
as a vector in IRE, we can write problem (1.2) as 

max{cTxMIM matching in G}. (1.3) 

This amounts to maximizing a linear function over a finite set of vectors. Hence 
we can equally well maximize over the convex hull of these vectors: 

max{c T x Ix E conv{xM IM matching in G}} . ( 1.4) 

The set 

conv{xM IM matching in G} ( 1.5) 

is a polytope in IR~, called the matching polytope of G. It follows that there exist 
a matrix A and a vector b such that 

conv{xM IM matching in G} = {x EIRE Ix~ 0, Ax :s: b} . 

Then problem ( 1.4) is equal to 

max{cTxlx~O,Ax:s:b}. 

( 1.6) 

( 1.7) 

In this way we have formulated the original combinatorial problem (1.2) as a 
linear programming problem. This enables us to apply linear programming 
methods to study the original problem. 

The problem at this point is, however, how to find the matrix A and the v~ctor 
b. We know that A and b exist, but we must know them in order to apply hnear 

programming methods. 
If G is bipartite, it turns out that the matching polytope of G is equal to the set 

of all vectors x E IRE satisfying 

x(e) ~ 0, e EE (1.8) 

L x(e) :s: 1 , v E V. 
e3v 
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That is, for A we can take the V x E incidence matrix of G and for b the all-one 
vector 1 in !Rv. 

It is not difficult to show that the matching polytope for bipartite graphs is 
indeed completely determined by (1.8). First note that the matching polytope is 
contained in the polytope defined by (1.8), since xM satisfies (1.8) for each 
matching M. To see the converse inclusion, we note that if G is bipartite, then the 
matrix A is totally unimodular, i.e., each square submatrix of A has determinant 
belonging to {O, + 1, -1}. This may be seen to imply that the vertices of the 
polytope determined by (1.8) are integral vectors, i.e., they belong to '7LE. Now 
each integral vector satisfying (1.8) must trivially be equal to xM for some 
matching M. Hence the polytope determined by (1.8) is equal to the matching 
polytope of G. 

For each nonbipartite graph, the matching polytope is not completely de­
termined by (1.8). Indeed, if C is an odd circuit in G, then the vector x EIRE 
defined by x(e) = t if e EC and 0 if e % C, satisfies (1.8) but does not belong to 
the matching polytope. 

In fact, it is a pioneering theorem in polyhedral combinatorics due to J. 
Edmonds that gives a complete description of the inequalities needed to describe 
the matching polytope for arbitrary graphs. 

When we have formulated the matching problem as LP problem (1.7), we can 
apply LP techniques to study the matching problem. Thus we can find a maximum 
weighted matching in a bipartite graph, e.g., with the simplex method. Moreover, 
the Duality Theorem of Linear Programming gives 

max{c(M) IM matching in G} = max{cTx Ix ~O. Ax~ 1} 

(1.9) 

In the special case of G bipartite and c being the all-one vector in IRE, we can 
derive from this the Konig-Egervary Theorem. The left-most expression in (1.9) 
is equal to the maximum size of a matching. The minimum can be seen to be 
attained by an integral vector y, again by the total unimodularity of A. This y is a 
{O, 1 }-vector in IRv, and is the incidence vector of some subset W of V intersecting 
every edge of G. Thus (1.9) implies that the maximum size of a matching is equal 
to the minimum size of a set of vertices intersecting all edges of G. 

As an extension, one can derive the Tutte-Berge Formula from the inequality 
system given by Edmonds for arbitrary graphs. 

Bipartite matching forms an easy example in polyhedral combinatorics. We now 
discuss the central idea of polyhedral combinatorics - taking convex hulls - in a 
more general framework. 

Let fJi be a collection of subsets of a finite set S, let c : S ~ IR, and suppose we 
are interested in 

max{.~u c(s) I U E fJi}. (1.10) 

(For example, S is the set of edges of a graph, and ;Ji is the collection of 
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matchings, in which case (l.10) is the maximum "weight" of a matching.) 
Usually, :Ji is too large to evaluate each set U in '!Jf in order to determine the 
maximum (1.10). (For example, the collection of matchings is exponentially large 
in the size of the graph.) Now (1.10) is equal to 

(1.11) 

where xv denotes the incidence vector of U in IRs, i.e., xu(s) = 1 ifs EU and 0 
otherwise. [Here we identify functions c: S ~ IR with vectors in the linear space 
IRs, and accordingly we shall sometimes denote c(s) by cs.] Since (1.11) means 
maximizing a linear function over a finite set of vectors, we could equally well 
maximize over the convex hull of these vectors: 

max{cTx Jx E conv{xu I U E :Ji}}. (1.12) 

Since this convex hull is a polytope, there exist a matrix A and a column vector b 
such that 

conv{xu I U E :Ji}= {x E !Rs I Ax,.;;:; b} . 

Hence ( 1.12) is equal to 

max { c T x I Ax ,.;;:; b} . 

(1.13) 

(1.14) 

Thus we have formulated the original combinatorial problem as a linear program­
ming problem, and we can appeal to linear programming methods to study the 
combinatorial problem. 

In order to determine the maximum (1.10) algorithmically, we could use LP 
algorithms like the simplex method or the primal-dual method. Sometimes, with 
the ellipsoid method the polynomial-time solvability of (1.10) can be shown. 
Moreover, by the Duality Theorem of Linear Programming, problem (1.14), and 
hence problem (1.10), is equal to 

(1.15) 

which gives us a min-max equation for the combinatorial maximum. Often this 
provides us with a "good characterization" [i.e., problem (1.10) belongs to 
NP n co-NP], and it enables us to carry out a "sensitivity analysis" of the 
combinatorial problem, etc. 

However, in order to apply LP techniques, we should be able to find matrix A 
and vector b satisfying (1.13). This is one of the main theoretical problems in 
polyhedral combinatorics. 

Often, one first "guesses" a system Ax,.;;:; b, and next, one tries to prove that 
Ax~ b forms a complete description of the polytope. Sometimes, like in bipartite 
matching, this can be shown with the help of the total unimodularity of A. 
However, in general A is not totally unimodular, and one has to try more 
complicated techniques to show that Ax,.;;:; b completely describes the polytope. In 
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this survey, we mention the techniques of "total dual integrality", "blocking 
polyhedra", "anti-blocking polyhedra", and "cutting planes". 

In several cases, the guessed system Ax .::; b turns out not to be a complete 
description, but just gives an approximation of the polytope. This can still be 
useful, since in that case the linear programming problem max { c T x I Ax :::;;; b} gives 
a (hopefully good) upper bound for the combinatorial maximum. This can be 
very useful in a so-called branch-and-bound algorithm for the combinatorial 
problem. 

Historically, applying LP techniques to combinatorial problems came along 
with the introduction of linear programming in the 1940s and 1950s. Dantzig, 
Ford, Fulkerson, Hoffman, Johnson and Kruskal studied problems like the 
transportation, flow, and assignment problems, which can be reduced to linear 
programming (by the total unimodularity of the constraint matrix), and the 
traveling salesman problem, using a rudimentary version of a cutting plane 
technique (extended by Gomory to general integer linear programming). 

The field of polyhedral combinatorics was extended and deepened considerably 
by the work of Edmonds in the 1960s and 1970s. He characterized basic polytopes 
like the matching polytope, the arborescence polytope, and the matroid intersec­
tion polytope; he introduced (with Giles) the important concept of total dual 
integrality; and he advocated the link between polyhedra, min-max relations, 
good characterizations, and polynomial-time solvability. Fulkerson designed the 
clarifying framework of blocking and anti-blocking polyhedra, enabling the 
deduction of one polyhedral characterization or min-max relation from another. 

In this chapter we describe the basic techniques in polyhedral combinatorics, 
and we derive as illustrations polyhedral characterizations for some concrete 
combinatorial problems. First, in sections 2 and 3, we give some background 
information on polyhedra and linear programming methods. 

For background and related literature we refer to Grotschel et al. (1988), 
Grotschel and Padberg (1985), Griinbaum (1967), Lovasz (1977, 1979), Pul­
leyblank (1983), Schrijver (1983b, 1986), and Stoer and Witzgall (1970). 

2. Background information on polyhedra 

For an in-depth survey on polyhedra (focusing on the combinatorial properties) 
we refer the reader to chapter 18. In this section, we give a brief review on 
polyhedra, covering those parts of polyhedral theory required for the present 
chapter. 

A set P ~!Rn is called a polyhedron if there exist a matrix A and a column 
vector b such that 

P = {x I Ax.::; b}. (2.1) 

If (2.1) holds, we say that Ax .::; b determines P. A set P ~ !Rn is called a polytope 
if there exist x 1 , ••• ,x, in !Rn such that P=conv{xp ... ,x,}. The following 
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theorem is intuitively clear, but is not trivial to prove, and is usually attributed to 
Minkowski (1896), Steinitz (1916), and Wey! (1935). 

Finite Basis Theorem for Polytopes 2.2. A set P is a polytope if and only if P is a 
bounded polyhedron. 

Motzkin, in 1936, extended this to: 

Decomposition Theorem for Polyhedra 2.3. P <;;; !Rn is a polyhedron if and only if 
there exist x 1 , •• • , x" y 1, • •• , Ys E !Rn such that 

P = P1X1 + · · · + A,x, + IL1Y1 + · · · + ILsY.,.1 A1, ···'A" /Lp ···'/Ls ;=oO; 

A. 1 +···+A.1 =l}. 

Now let P = {x I Ax~ b} be a nonempty polyhedron, where A has order m x n. 
If c E !Rn with c # 0 and 5 = max{cTx Ix E P}, then the set {x I c Tx = o} is called a 
supporting hyperplane of P. A subset F of P is called a face of P if F = P or if 
F = P n H for some supporting hyperplane H of P. Clearly, a face of P is a 
polyhedron again. It can be shown that for any face F of P there exists a 
subsystem A'x ~ b' of Ax~ b such that F = {x E PI A'x = b'}. Hence P has only 
finitely many faces. They are ordered by inclusion. Minimal faces are the faces 
minimal with respect to inclusion. The following theorem is due to Hoffman and 
Kruskal (1956). 

Theorem 2.4. A set F is a minimal face of P if and only if 0 # F <;;; P and 

F={xlA'x=b'} 

for some subsystem A'x ~ b' of Ax~ b. 

All minimal faces have the same dimension, viz. n-rank(A). If this is 0, minimal 
faces correspond to vertices: a vertex of P is an element of P which is not a 
convex combination of two other elements of P. Only if rank(A) = n, does P have 
vertices, and then those vertices are exactly the minimal faces. Hence: 

Theorem 2.5. Vector z in P is a vertex of P if and only if A'z = b' for some 
subsystem A'x ~ b' of Ax~ b, with A' nonsingular of order n. 

The matrix A' (or subsystem A' x ~ b') is sometimes called a basis for z. 
Generally, such a basis is not unique. P is called pointed if it has vertices. A 
polytope is always pointed, and is the convex hull of its vertices. 

Two vertices x and y of P are adjacent if conv{x, y} is a face of P. It can be 
shown that if P is a polytope, then two vertices x and y are adjacent if and only if 
the vector t(x + y) is not a convex combination of other vertices of P. Moreover, 
one can show: 
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Theorem 2.6. Vertices z' and z" of the polyhedron Pare adjacent if and only if z' 
and z" have bases A'x ~ b' and A"x ~ b", respectively, so that they have exactly 
n - 1 constraints in common. 

The polyhedron P gives rise to a graph, whose nodes are the vertices of P, two 
of them being adjacent in the graph if and only if they are adjacent on P. The 
diameter of P is the diameter of this graph. The following conjecture is due to W. 
M. Hirsch (cf. Dantzig 1963). 

Hirsch's Conjecture 2.7. A polytope in ~n determined by m inequalities has 
diameter at most m - n. 

This conjecture is related to the number of iterations in the simplex method 
(see section 3). See also Klee and Walkup (1967) and Larman (1970). [The 
Hirsch conjecture was proved by Naddef (1989) for polytopes all of whose 
vertices are {O, 1} - vectors.] 

A facet of P is an inclusion-wise maximal face F of P with F =fa P. A face F of P 
is a facet if and only if dim(F) = dim(P) - 1. An inequality c T x ~ 8 is called a 
facet-inducing inequality if P <;;; { x I c T x ~ 8} and P n { x I c T x = 8} is a facet of P. 

Suppose Ax~ b is an irredundant (or minimal) system determining P, i.e., no 
inequality in Ax ~ b is implied by the other. Let A+ x ~ b + be those inequalities 
a T x ~ {3 from Ax~ b for which a T z < f3 for at least one z in P. Then each 
inequality in A+ x ~ b + is a facet-inducing inequality. Moreover, this defines a 
one-to-one relation between facets and inequalities in A+ x ~ b +. If P is full­
dimensional, then the irredundant system Ax ~ b is unique up to multiplication of 
inequalities by positive scalars. The following characterization holds. 

Theorem 2.8. If P = {x I Ax~ b} is full-dimensional, then Ax~ b is irredundant if 
and only if for each pair a; x ~ b; and a J x ~ bi of constraints from Ax ~ b there is a 
vector x' in P satisfying a; x' = b; and aJ x" <bi. 

The polyhedron P is called rational if we can take A and b in (2.1) rational­
valued (and hence we can take them integer-valued). P is rational if and only if 
the vectors x 1, ••• , x" and y 1, ••• , y. in Theorem 2.3 can be taken to be 
rational. P is called integral if we can take x 1 , ••• , x,, and y 1 , ••• , y. in Theorem 
2.3 integer-valued. Hence P is integral if and only if P is the convex hull of the 
integer vectors in P or, equivalently, if and only if every minimal face of P 
contains integer vectors. 

3. Background information on linear programming 

Linear programming, abbreviated by LP, studies the problem of maximizing or 
minimizing a linear function cTx over a polyhedron P. Examples of such a 
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problem are: 

(i) max{cTx!Ax~b}, 

(ii) max{cTxlx~O,Ax~b}, 

(iii) max{cTxlx~O,Ax=b}, 

(iv) min{cTxlx~O,Ax~b}. 

1657 

(3.1) 

It can be shown, for each of the problems (i)-(iv), that if the set involved is a 
polyhedron with vertices [for (ii)-(iv) this follows if it is nonempty], and if the 
optimum value is finite, then it is attained by a vertex of the polyhedron. 

Each of the optima (3.1) is equal to the optimum value in some other LP 
problem, called the dual problem. 

Duality Theorem of Linear Programming 3.2. Let A be an m x n matrix and let 
bEIR"' and cEIR". Then 

(i) max{cTxlAx~b} =min{yTbly~O,yTA=cT}; 

(ii) max{cTx Ix~ 0, Ax~ b} = min{yTb I y ~ 0, yTA ~ cT}; 

(iii) max { cTx I x ;3 0, Ax = b} = min { y Tb I y TA ~ c T} ; 

T I T I T T (iv) min{c x x;30,Ax~b} =max{y b y~O,y A~c}; 

provided that these sets are non empty. 

It is not difficult to derive this from: 

(3.3) 

Farkas's Lemma 3.4. Let A be an m x n matrix and let b E !Rm. Then Ax = b has 
a solution x ~ 0 if and only if /b ~ 0 holds for each vector y E !Rm with /'A~ 0. 

The principle of complementary slackness says: let x and y satisfy Ax~ b, 
y ~ 0, y TA= cT then x and y are optimum solutions in Theorem 3.2(i) if and only 
if Y; = 0 or a;1'x = b; for each i = 1, ... , m (where a;1' x = b; denotes the ith line in 
the system Ax= b). Similar statements hold for Theorem 3.2(ii)-(iv). 

We now describe briefly three of the methods for solving LP problems. The first 
two methods, the famous simplex method and the primal-dual method, can be 
considered also, when applied to combinatorial problems, as a guideline to 
deriving a "combinatorial" algorithm from a polyhedral characterization. The 
third method, the ellipsoid method, is more of theoretical value: it is a tool 
sometimes used to derive the polynomial-time solvability of a combinatorial 
problem. 

3.1. The simplex method 

The simplex method, due to Dantzig (1951a), is the method used most often for 
linear programming. Let A E IRmxn, b E !Rm, and c E IR". Suppose we wish to 
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solve max{ c T x I Ax~ b}, where the polyhedron P: = {x I Ax~ b} is a polyhedron 
with vertices, i.e., rank(A) = n. 

The idea of the simplex method is to make a trip, going from a vertex to a 
better adjacent vertex, until an optimal vertex is reached. By Theorem 2.5, 
vertices can be described by bases, while by Theorem 2.6 adjacency can be 
described by bases differing in exactly one constraint. Thus the process can be 
described by a series 

(3.5) 

of bases, where each xk := A; 1bk is a vertex of P, where Ak+iX ~ bk+i differs by 
one constraint from Akx~bk, and where cTxk+I ;,,,cTxk. 

The series can be found as follows. Suppose Akx ~bk has been found. If 
c TA; 1 ;;:.: 0, then x k is an optimal solution of max { c T x I Ax ~ b}, since for each x 
satisfying Ax~b one has Akx~bk and hence cTx=(cTA; 1 )Akx~(cTA; 1 )bk= 

T c xk. 
If cTA; 1 ;iO, choose an index i so that (cTA; 1);<0, and let z:=-A; 1e1 

(where e; denotes the ith unit basis vector in !Rn). Note that for A;:;;. 0, xk + Az 
traverses an edge or ray of P (i.e., face of dimension 1), or it is outside of P for 
all A> 0. Moreover, cT z = -cT A; 1e; > 0. Now if Az ~ 0, then xk + Az E P for all 
A;;.O, whence max{cTxlAx~b} =oo. If Az;f'O, let Ao be the largest A such that 
xk + Az belongs to P, i.e., 

. {bi-aJxk I · T } 
A0 : = mm a T z J = 1, ... , m, a i z > 0 . 

I 

(3.6) 

Choose an index j attaining this minimum. Replacing the ith inequality in 
Akx~bk by inequality aJx~bi then gives us the next system Ak+ 1x~bk+i· 

Note that xk+i =xk+A0 z, implying that if xk+i ~xk then cTxk+I >cTxk. 
Clearly, the above process stops if cTxk+i >cTxk for each k (since P has only 
finitely many vertices). This is the case if each vertex has exactly one basis - the 
nondegenerate case. However, in general it can happen that xk+ 1 = xk for certain 
k. Several "pivot selection rules", prescribing the choice of i and j above, have 
been found which could be proved to yield termination of the simplex method. 
No one of these rules could be proved to give a polynomial-time method - in fact, 
most of them could be shown to require an exponential number of iterations in 
the worst case. 

The number of iterations in the simplex method is related to the diameter of 
the underlying polyhedron P. Suppose Pisa polytope. If there is a pivot selection 
rule such that for each c E llln the problem max{cTx I Ax~ b} can be solved 
within t iterations of the simplex method (starting with an arbitrary first basis 
A 0x ~ b0 corresponding to a vertex), then clearly P has diameter at most t. 
However, as Padberg and Rao (1974) showed, the "traveling-salesman poly­
topes" (see section 10) form a class of polytopes of diameter at most 2, while 
maximizing a linear function over these polytopes is NP-complete. 

A main problem seems that we do not have a better criterion for adjacency 



Polyhedral combinatorics 1659 

than Theorem 2.6. Note that a vertex of P can be adjacent to an exponential 
number of vertices (in the sizes of A and b), whereas for any basis A' there are at 
most n(m - n) bases differing from A' in exactly one row. In the degenerate case, 
there can be several bases corresponding to one and the same vertex. Just this 
phenomenon shows up frequently in polytopes occurring in combinatorial 
optimization, and one of the main objectives is to find pivoting rules preventing us 
going through many bases corresponding to the same vertex (cf. Cunningham 
1979). 

3.2. Primal-dual method 

As a generalization of similar methods for network flow and transportation 
problems, Dantzig et al. ( 1956) designed the "primal-dual method" for LP. The 
general idea is as follows. Starting with a dual feasible solution y, the method 
searches for a primal feasible solution x satisfying the complementary slackness 
condition with respect to y. If such a primal feasible solution is found, x and y 
form a pair of optimal (primal and dual) solutions. If no such primal solution is 
found, the method prescribes a modification of y, after which we start anew. 

The problem now is how to find a primal feasible solution x satisfying the 
complementary slackness condition, and how to modify the dual solution y if no 
such primal solution is found. For general LP problems this problem can be seen 
to amount to another LP problem, generally simpler than the original LP 
problem. To solve the simpler problem we could use any LP method, e.g., the 
simplex method. In many combinatorial applications, however, this simpler LP 
problem is a simpler combinatorial optimization problem, for which direct 
methods are available (see Papadimitriou and Steiglitz 1982). Thus, if we can 
describe a combinatorial optimization problem as a linear program, the primal­
dual method gives us a scheme for reducing one combinatorial problem to an 
easier combinatorial problem. 

We shall now describe the primal-dual method more precisely. Suppose we 
wish to solve the LP problem. 

min{cTxlx;;;;.O,Ax=b}, (3.7) 

where A is an m x n matrix, with columns a 1, ••• , an, b E !Rm, and c E !Rn. The 
dual problem is 

(3.8) 

The primal-dual method consists of repeating the following primal-dual itera­
tion. Suppose we have a feasible solution Yo for problem (3.8). Let A' be the 
submatrix of A consisting of those columns a. of A for which y~aj = cj. To find a 
feasible primal solution for which the compl~mentary slackness condition holds, 
solve the restricted linear program 

min{A Ix', A;;;;.O; A'x' + bA = b} = max{yTb I yT A' ~O, yTb ~ 1}. (3.9) 
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If the optimum value is 0, let x[» A be an optimum solution for the minimum. So 
xb;;;;;. 0, A'x[1 = b, and A= 0. Hence by adding zero-components, we obtaiu a 
vector x0 ;;;;;. 0 such that Ax0 = b and (x0 )1 = 0 if y~ a1 < c1. By complementary 
slackness, it follows that x0 and y0 are optimum solutions for problems (3.7) and 
(3.8). If the optimum value in problem (3.9) is positive, it is l. Let u be an 
optimum solution for the maximum. Let (J be the largest real number satisfying 

(3.10) 

(Note that (} > 0.) Reset y0 : = y0 +(Ju, and start the iteration anew. 
This describes the primal-dual method. It reduces problem (3.7) to (3.9), 

which is often an easier problem, consisting only of testing feasibility of: x' ;;::: 0, 
A'x'=b. 

The primal-dual method can equally be considered as a gradient method. 
Suppose we wish to solve problem (3.8), and we have a feasible solution y 0 • This 
y 0 is not optimal if and only if we can find a vector u such that u Tb > 0 and u is a 
feasible direction in y0 [i.e., (y0 + 8u) TA ..,,; c T for some (} > O]. If we let A' consist 
of those columns of A in which y~ A..,,; c T has equality, then u is a feasible 
direction if and only if u TA' ..,,; 0. So u can be found by solving the right-hand side 
of problem (3.9). 

Application 3.11 (Maximum flow). Let D = (V, A) be a directed graph, let r, 
s E V, and let a "capacity" function c: A~ Q + be given. The maximum flow 
problem is to find the maximum amount of flow from r to s, subject to c: 

maximize L x(a) - L x(a) (3.12) 
a Ell+ (r) aEll -(r) 

subject to L x(a) - L x(a) = 0, v E V, v 716 r, s, 
aEll +(v) aEll -(u) 

O..,,;x(a)..,,;c(a), a EA. 

If we have a feasible solution x0 , we have to find a feasible direction in x 0 , i.e., a 
function u : A~ IR satisfying 

L u(a) - L u(a) > 0 , 
aEll+(r) aEll-(r) 

L u(a)- L u(a) = 0, v E V, v 716 r, s, 
aEll+(u) aEll-(u) 

u(a) ;a;.Q, a EA, x0 (a) = 0, 

u(a) ..,,;Q, a EA, x0 (a) = c(a). 

(3.13) 

One easily checks that this problem is equivalent to the problem of finding an 
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undirected path from r to s in D = (V, A) so that for any arc a in the path, 

if x0(a) = 0, then arc a is traversed forward, 

if x0(a) = c(a), then arc a is traversed backward, (3.14) 

if 0 <x0 (a) < c(a), then arc a is traversed forward or backward. 

If we have found such a path, we find u as in (3.13) (by taking u(a) = + 1 or -1 if 
a occurs in the path forward or backward, respectively, and u(a) = 0 if a does not 
occur in the path). Taking the highest 8 for which x 0 + eu is feasible in problem 
(3.12) gives us the next feasible solution. The path is called a flow-augmenting 
path, since the new solution has a higher objective value than the old. Iterating 
this process we finally get an optimum flow. This is exactly Ford and Fulkerson's 
algorithm (1957) for finding a maximum flow, which is therefore an example of a 
primal-dual method. [Dinits ( 1970) and Edmonds and Karp ( 1972) showed that a 
version of this algorithm is a polynomial-time method.] 

3.3. The ellipsoid method 

The ellipsoid method, developed by Shor (1970a,b, 1977) and Yudin and 
Nemirovskil ( 1976/1977, 1977) for nonlinear programming, was shown by 
Khachiyan (1979) to solve linear programming in polynomial time. Very roughly 
speaking, it works as follows, 

Suppose we wish to solve the LP problem 

max { cT x I Ax ~ b} , (3.15) 

where A E l!J"'x", b E Q"', and c E l!J". Let us assume that the polyhedron 
P: = {x I Ax~ b} is bounded. Then it is not difficult to calculate a number R such 
that P s; {x E W 1 llxll ~ R}. We construct a sequence of ellipsoids E 0 , E 1 , 

E2 , ... , each containing the optimum solutions of problem (3.15). First, E 0 := 
{x E IR" 1 llxll ~ R}. Suppose ellipsoid E1 has been found. Let z be its center. 

If Az ~ b does not hold, let aYx ~bk be an inequality in Ax~ b violated by z. 
Next let E 1+ 1 be the ellipsoid of smallest volume satisfying E,+ 1 :2 E 1 n {x I aYx ~ 
aY z}. If Az ~ b does hold, let E 1+ 1 be the ellipsoid of smallest volume satisfying 
Et+! d E, n {x I CTX ~cTz}. 

One can prove that these ellipsoids of smallest volume are unique, and that the 
parameters determining E1+ 1 can be expressed straightforwardly in those de­
termining E, and in ak, respectively c. Moreover, vol(E,+ 1 ) < e - 11311 • vol(Ei). 
Hence the volumes of the successive ellipsoids decrease exponentially fast. Since 
the optimum solutions of problem (3.15) belong to each E,, we may hope that the 
centers of the ellipsoids converge to an optimum solution of problem (3.15). 

To make this description more precise, an important problem to be solved is 
that ellipsoids with very small volume can still have a large diameter [so that the 
centers of the ellipsoids can remain far from any optimum solution of problem 
(3.15)]. Another, technical, problem is that the unique smallest elipsoid is usually 
determined by irrational parameters, so that if we work in rational arithmetic we 
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must allow approximations of the successive ellipsoids. These problems can be 
overcome, and a polynomially bounded running time can be proved. 

It was observed by Grotschel et al. (1981), Karp and Papadimitriou (1982) and 
Padberg and Rao (1980) that in applying the ellipsoid method, it is not necessary 
that the system Ax ::s; b be explicitly given. It suffices to have a "subroutine" to 
decide whether or not a given vector z belongs to the feasible region of problem 
(3.15), and to find a separating hyperplane in case z is not feasible. This is 
especially useful for linear programs coming from combinatorial optimization 
problems, where the number of inequalities can be exponentially large (in the size 
of the underlying data-structure), but can yet be tested in polynomial time. 

This leads to the following result ( Grotschel et al. 1981 ). Suppose we are given, 
for each graph G = (V, £), a collection 8frc of subsets of E. For example, 

( i) '?Ji a is the collection of matchings in G; 

(ii) '?!'a is the collection of spanning trees in G; (3.16) 

(iii) '?Ji 0 is the collection of Hamiltonian circuits in G. 

With any class (8JP0 I G graph), we can associate the following problem. 

E Optimization Problem 3.17. Given a graph G = (V, E) and c E Q , find FE 8JP0 

maximizing 1:eEF ce. 

So if (8frc; I G graph) is as in (i), (ii), and (iii) above, Problem 3.17 amounts to 
the problems of finding a maximum weighted matching, a maximum weighted 
spanning tree, and a maximum weighted Hamiltonian circuit (the traveling 
salesman problem), respectively. 

The optimization problem is called solvable in polynomial time, or polynomially 
solvable, if it is solvable by an algorithm whose running time is bounded by a 
polynomial in the input size of Problem 3.17, which is !VI + jEj + size(c). Here 
size(c) := 1:eEE size(ce), where the size of a rational number p/q is log2 ((lp\ + 
1) + log2(\ql). So size(c) is about the space needed to specify c in binary notation. 

Define also the following problem for any fixed class (8frc; I G graph). 

Separation Problem 3.18. Given a graph G = (V, E) and x E QE, determine 
whether or not x belongs to conv{x FIFE 8fc}, and if not, find a separating 
hyperplane. 

Theorem 3.19. For any fixed class (8fc; I G graph), the Optimization Problem 3.17 
is polynomially solvable if and only if the Separation Problem 3.18 is polynomially 
solvable. 

The theorem implies that with respect to the question of polynomial-time 
solvability, the polyhedral combinatorics approach described in section 1 (i.e., 
studying the convex hull) is, implicitly or explicitly, unavoidable: a combinatorial 
optimization problem is polynomially solvable if and only if the corresponding 
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convex hulls can be described decently, in the sense of the polynomial-time 
solvability of the separation problem. This can be stated also in the negative: if a 
combinatorial optimization problem is not polynomially solvable (perhaps the 
traveling salesman problem), then the corresponding polytopes have no such 
decent description. 

The ellipsoid method does not give a practical method, so Theorem 3.19 is 
more of theoretical value. In some cases, with Theorem 3.19 the polynomial 
solvability of a combinatorial optimization problem was proved, and that then 
formed a motivation for finding a practical polynomial-time algorithm for the 
problem. 

One drawback of the ellipsoid method is that the number of ellipsoids to be 
evaluated depends on the size of the objective vector c. This does not conflict with 
the definition of polynomial solvability, but is not very attractive in practice. It 
would be preferable for the size of c only to influence the sizes of the numbers 
occurring when we perform the algorithm, but not the number of arithmetic 
operations to be performed. An algorithm for Optimization Problem 3.17 is called 
strongly polynomial if it consists of a number of arithmetic operations, bounded 
by a polynomial in IVI + IEJ, on numbers of size bounded by a polynomial in 
!VI+ IEI + size(c). Such an algorithm is obviously polynomial-time. 

Interestingly, Frank and Tardos (1985) showed, with the help of the "basis 
reduction method" (Lenstra et al. 1982): 

Theorem 3.20. For any fixed class (:Fe I G graph), if there exists a polynomial-time 
algorithm for Optimization Problem 3.17, then there exists a strongly polynomial 
algorithm for it. 

At the moment of writing, it is not yet clear whether this result leads to 
practical algorithms. 

Finally we note that it is not necessary to restrict :FG to collections of subsets of 
the edge set E. For instance, similar results hold if we consider collections :Fe of 
subsets of the vertex set V. Moreover, we can consider classes (:Fe I GE W), 
where <& is a subcollection of the set of all graphs. Similarly, we can consider 
classes (:F0 ID directed graph), (:FH I H hypergraph), (:FM IM matroid), and so 
on. 

More on the ellipsoid method can be found in Grotschel et al. ( 1988). 
We finally mention the method of Karmarkar (1984) for linear programming; 

this appears to be competitive with the simplex method, but its impact on 
polyhedral combinatorics is not yet clear at the moment of writing. 

4. Total unimodularity 

A matrix is called totally unimodular if each subdeterminant belongs to {O, + 1, 
-1}. In particular, each entry of a totally unimodular matrix belongs to {O, + 1, 
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-1}. The importance of total unimodularity for polyhedral combinatorics comes 
from the following theorem (Hoffman and Kruskal 1956). 

Theorem 4.1. Let A be a totally unimodular m x n matrix and let b E zm. Then 
the polyhedron P : = { x I Ax~ b} is integral. 

Proof. Let F = {x I A'x = b'} be a minimal face of P, where A'x ~ b' is a 
subsystem of Ax~ b. Without loss of generality, A'= [A 1 A 2 ], with A 1 nonsingu­
lar. Then A~ 1 is an integral matrix (as det A 1 = ± 1), and hence the vector 

(4.2) 

is an integral vector in F. 0 

In fact, Hoffman and Kruskal showed that an integral m x n matrix A is totally 
unimodular if and only if for each b E 7!..m, each vertex of the polyhedron 
{x E IR" Ix~ 0, Ax.;;; b} is integral. 

We mention a strengthening of Theorem 4.1 due to Baum and Trotter (1977). 
A polyhedron P in IR" is said to have the integer decomposition property if for 
each k EN and for each integral vector z in kP ( = { kx Ix E P}), there exist 
integral vectors x P •.• , x k in P so that z = x 1 + · · · + x k. It is not difficult to see 
that each polyhedron with the integer decomposition property is integral. 

Theorem 4.3. Let A be a totally unimodular m x n matrix and let b E zm. Then 
the polyhedron P: = {x I Ax.;;; b} has the integer decomposition property. 

Proof. Let k EN and z E kP n r. By induction on k we show that z = x 1 + · · · + 
xk for integral vectors x 1 , ••• ,xk in P. By Theorem 4.1, there exists an integral 
vector, say xk, in the polyhedron {x!Ax~b, -Ax .s;(k- l)b -Az} [since (i) the 
constraint matrix [_AA] is totally unimodular, (ii) the right-hand-side vector 
( (k _ 1 fb _ Az) is integral, and (iii) the polyhedron is nonempty, as it contains k- 1 z]. 
Then z - xk E (k - 1 )P, whence by induction z - xk = x 1 + · · · + xk- l for integral 
vectors x 1 , ••• , x k _ 1 in P. 0 

The following theorem collects together several other characterizations of total 
unimodularity. 

Theorem 4.4. Let A be a matrix with entries 0, + 1, and -1. Then the following 
characterizations are equivalent: 

(i) A is totally unimodular, i.e., each square submatrix of A has determinant in 
{O, +1, -1}; 

(ii) each collection of columns of A can be split into two parts so that the sum of 
the columns in one part, minus the sum of the columns in the other part, is a vector 
with entries 0, + 1, and -1 only; 
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(iii) each nonsingular submatrix of A has a row with an odd number of nonzero 
components; 

(iv) the sum of the entries in any square submatrix of A with even row and 
column sums, is divisible by four; 

(v) no square submatrix of A has determinant +2 or -2. 

Characterization (ii) is due to Ghouila-Houri (1962), (iii) and (iv) to Camion 
(1965), and (v) to R. E. Gomory (cf. Camion 1965). 

There are several further characterizations of total unimodularity. By far the 
deepest is due to Seymour (1980) (see chapter 10). For an efficient algorithm to 
test total unimodularity, see Truemper (1982). See also Truemper (1990). 

4.1. Application: bipartite graphs 

It is not difficult to see that the V x E incidence matrix A of a bipartite graph 
G = (V, E) is totally unimodular: any square submatrix B of A either has a 
column with at most one 1 (in which case det BE {O, ±1} by induction), or has 
two I's in each column (in which case det B = 0 by the bipartiteness of G). In 
fact, the incidence matrix of a graph G is totally unimodular if and only if G is 
bipartite. 

The total unimodularity of the incidence matrix of a bipartite graph has several 
consequences, some of which we will describe now. 

Definition 4.5. The matching polytope of a graph G = (V, £) is the polytope 
conv{xM IM matching} in IRE. Theorem 4.1 directly implies that the matching 
polytope of a bipartite graph G is equal to the set of all vectors x in IRE satisfying 

(i) Xe ~ 0 , e EE , 

(ii) L x, ~ l , u E V 
(4.6) 

e3v 

[since the polyhedron determined by ( 4.6) is integral]. 

Clearly, the matching polytope of G = (V, £)has dimension 1£1. Each inequali­
ty in ( 4.6) is facet-determining, except if G has a vertex of degree at most 1. It is 
not difficult to see that the incidence vectors xM, xM' of two matchings M, M' are 
adjacent on the matching polytope iff M 6. M' is a path or circuit, where /:!;. 

denotes symmetric difference. Hence, the matching polytope of G has diameter at 
most v(G). (This paragraph holds also for nonbipartite graphs.) 

The above characterization of the matching polytope for bipartite graphs 
implies that for any bipartite graph G = (V, £) and any "weight" function 
c:E~IR+: 

maximum weight of a matching = max { c T x Ix ~ 0, Ax ~ 1} , ( 4. 7) 

where A is the incidence matrix of A, 1 denotes an all-one column vector, and 



1666 A. Schrijver 

where the weight of a set is the sum of the weights of its elements. In particular, 

T I v( G) = max { 1 x x ~ 0, Ax ~ 1} . (4.8) 

Definition 4.9. The node-cover polytope of a graph G = (V, £) is the polytope 
conv{/" IN node cover} in !Rv. Again, Theorem 4.1 implies that, if G is 
bipartite, the node-cover polytope of G is equal to the set of all vectors y in !Rv 
satisfying 

(i) O~Yv~l, vEV, 

(ii) y u + y w ~ 1 , { v, w} E E . 
( 4.10) 

It follows that for any weight function w : V ~ IR +: 

minimum weight of a node cover= min{ wTy I y ~ 0, y TA~ 1} , ( 4.11) 

where A again is the V x E incidence matrix of G. In particular, 

( 4.12) 

Now, by linear programming duality, we know that problems ( 4.8) and ( 4.12) are 
equal, i.e., we have Konig's Matching Theorem: v(G) = T(G) for bipartite G. 

By Theorem 4.3, the matching polytope P of G has the integer decomposition 
property. This has the following consequence. Let k := Ll(G) (the maximum 
degree of G). Then (1, ... , I? EIRE belongs to kP, and hence is the sum of k 
integer vectors in P. Each of these vectors being the incidence vector of a 
matching, it follows that E can be partitioned into k matchings. So we have 
Konig's Edge-Coloring Theorem: the edge-coloring number y(G) of a bipartite 
graph G is equal to its maximum degree. 

We briefly mention some more examples of the consequences of Theorems 4.1 
and 4.3 to bipartite graphs. 

Definition 4.13. The perfect matching polytope of a graph G = (V, E) is the 
polytope conv{xM IM perfect matching} in IRE. It is a face of the matching 
polytope of G. For bipartite graphs, by (4.6), the perfect matching polytope is 
determined by 

(i) xe ~ 1 , e EE, 

(ii) L xe = 1 ' v E v. 
(4.14) 

e3u 

This is equivalent to a theorem of Birkhoff (1946): each doubly stochastic matrix 
is a convex combination of permutation matrices. 

One easily checks that the incidence vectors x M, x M' of two perfect matchings 
M, M' are adjacent on the perfect matching polytope if and only if MAM' is a 
circuit (cf. Balinski and Russakoff 1974). So the perfect matching polytope has 
diameter at most i IVI. The dimension of the perfect matching polytope of a 
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bipartite graph is equal to \E'\- \V\ + 1, where E' := UM\(nM), where the 
union and intersection both range over all perfect matchings (see Lovasz and 
Plummer 1986). 

Definition 4.15. The assignment polytope of order n is the perfect matching 
polytope of Kn,n. Equivalently, it is the polytope in IR." xn of all matrices (x;i )'.'.J= 1 

satisfying 

(i) xiJ;30, i,j=l, .. .,n, 
n 

(ii) Lx;,=l, j=l,. .. ,n, (4.16) 
i=l 

" 
(iii) L xii= 1 , i = 1, ... , n . 

j= 1 

(Such matrices are called doubly stochastic.) 

Balinski and Russakoff (1974) studied assignment polytopes, proving inter alia 
that they have diameter 2 (if n;?4). See also Balinski (1985), Bertsekas (1981), 
Goldfarb (1985), Hung (1983), Padberg and Rao (1974), and Roohy-Laleh 
(1981). 

Definition 4.17. The stable-set polytope of a graph G = (V, E) is the polytope 
conv{xc \ C stable set} in !R.v. By Theorem 4.1, for bipartite G, it is determined 
by 

(i) O~yv~l, 

(ii) Yu + Yw ~ 1 ' 

uEV, 

{u,w}EE. 
( 4.18) 

So if A is the V x E incidence matrix of the bipartite graph G, and w : V ~ IR + 

is a "weight" function, then 

maximum weight of a stable set= max{ w Ty I y ;3 0, /A~ l T} . ( 4.19) 

In particular: 

a(G) = max{lTy \ y ;::O, /.A~ IT}. ( 4.20) 

Definition 4.21. The edge-cover polytope of a graph G = (V, £) is the polytope 
conv{x F \ F edge cover} in IR.£. By Theorem 4.1, for bipartite G, it is determined 
by 

(i) O~xe~l, eEE, 
( 4.22) 

(ii) L Xe;? 1 , VE V , 
e3v 

assuming G has no isolated vertices. Hurkens (1991) characterized adjacency on 
the edge-cover polytope, and showed that its diameter is \El - p(G). 
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From ( 4.22) it follows that for any "'weight" function w: £--? IR+, 

minim um weight of an edge cover = min { wTx I x ~ 0, Ax ~ 1} . 

In particular: 

p(G)=min{1Txlx~O,Ax~l}. 

(4.23) 

( 4.24) 

By linear programming duality, (4.20) and (4.24) are equal, and hence we have 
Konig's Covering Theorem: a(G) = p(G) for bipartite G. 

By Theorem 4.3, the edge-cover polytope of a bipartite graph has the integer 
decomposition property, implying a result of Gupta (1967): the maximum number 
of pairwise disjoint edge covers in a bipartite graph is equal to its minimum 
degree. 

Let A be the incidence matrix of the bipartite graph G = (V, £), let w E zE, 
b E zv, and consider the linear programs in the following duality equations: 

T I T T T (i) max{w x x~O,Ax,,,;b}=min{y bly~O,y A~w}, 

(ii) min{wTxlx~O.Ax~b}=max{yTbly~O,yrA,,,;wT}. 
(4.25) 

By Theorem 4.1, these programs have integer optimum solutions. The special 
case b = 1 is equivalent to the following min-max relations of Egervary (1931): 

(i) the maximum weight of a matching is equal to the minimum value of 

LvEV Yu• where y: V--7 Z+ such that Yu+ Yu~ we \le= {u, u} E £; 
(4.26) 

(ii) The minimum weight of an edge cover is equal to the maximum value of 

LvEV Yu• where y: V--71'.+ such that Yu+ Yu,,,; we \le= {u, u} EE. 

Definition 4.27. The transportation polytope for a E IR7, b E IR: is the set of all 
vectors (x;i Ii= 1, ... , m, j = 1, ... , n) in IR""'" satisfying 

(i) xii~O, i=l, ... ,m, j=l, ... ,n, 

" 
(ii) Lx;i=a;, i=l, ... ,m, 

j=l 

n 

(iii) Lx;i=bi, j=l, ... ,n. 
i= 1 

( 4.28) 

It is related to the Hitchcock-Koopmans transportation problem (Hitchcock 1941, 
Koopmans 1948). Klee and Witzgall (1968) studied transportation polytopes, 
showing that x satisfying (4.28) is a vertex iff {{pi,qi}lxii>O} contains no 
circuits (where p 1 , ••• , Pm' qi' ... , q" are vertices). Moreover, the dimension is 
(m -1) (n -1) if a and b are positive (if the polytope is nonempty, i.e., if 
l:; a;= Li bi). Bolker (1972) and Balinski (1974) showed the Hirsch Conjecture 
for some classes of transportation polytopes. Bolker (1972) and Ahrens (1981) 
studied the number of vertices of transportation polytopes. 
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Definiti?n 4.29. Related is the dual transportation polyhedron, which is, for fixed 
c E !Rm n, defined as the set of all vectors (u; v) in !Rm x ~n satisfying 

u;+ui;;;.:cii' i=l, ... ,m, j=l, ... ,n. (4.30) 

It is not difficult to see that the dimension is m + n - 1, and that (u; u) satisfying 
(4.30) is a vertex iff { {p;, qi} I u; + vi = c;) is a connected graph on vertex set 
{pp ... , Pm• q1 , ••• , qn}. Balinski (1984) showed that the diameter of (4.30) is 
at most (m - 1) (n - 1), thus proving the Hirsch Conjecture for this class of 
polyhedra. Balinski and Russakoff (1984) made a further study of dual trans­
portation polyhedra, characterizing vertices and higher-dimensional faces by 
means of partitions. See also Balinski (1983), Ikura and Nemhauser (1983), and 
Zhu (1963). 

4.2. Application: directed graphs 

Total unimodularity also implies several results for flows and circulations in 
directed graphs. Let M be the V x A incidence matrix of a digraph D = (V, A). 
Then M is totally unimodular. Again this can be shown by induction: let B be a 
square submatrix of M. If B has a column with at most one nonzero, then 
det B E {O, ± 1} by induction. If each column of B contains a + 1 and a -1, then 
det B = 0. 

There are the following consequences. 

Definition 4.31. Let D = (V, A) be a digraph, let r, s E V, and let c E ~~ be a 
"capacity" function. Then the r-s-fiow polytope is the set of all vectors x in !RA 
satisfying 

(i) O~xa~Ca, aEA, 

(ii) 2°: Xa = 2°: Xa, U E V, V ¥- r, S. 

(4.32) 

aE8 -(v) aE8 +(v) 

Any vector x satisfying ( 4.32) is called an r-s-fiow (under c). By the total 
unimodularity of the incidence matrix of D, if c is integral, then the r-s-ftow 
polytope has integral vertices. Hence, if c is integral, the maximum value 
(:= Lae8 +(rl Xa - Laea-(r) xa) of an r-s-ftow under c is attained by an integral 
vector (Dantzig 1951b). 

4.33 (Max-Flow Min-Cut Theorem). By LP duality, the maximum value of an 
r-s-flow under c is equal to the minimum value of ~aEA YaCa, where YE IR~ is 
such that there exists a vector z in ~ v satisfying 

(i) ( 4.34) 
(ii) zr = 1 ' zs = 0. 

Again, by the total unimodularity of the incidence matrix of D, we may take the 
minimizing y, z to be integral. Let W := {u E VI zv;;:: l}. Then for a= (v, w) E 
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tJ +(W) we have Ya~ zu - zw ~ 1, and hence 

(4.35) 

So the maximum flow value is not less than the capacity of cut 8 + (W). Since it 
also cannot be larger, we have Ford and Fulkerson's Max-Flow Min-Cut 
Theorem. 

Definition 4.36. Given digraph D = (V, A) and r, s E V, the shortest-path polytope 
is the convex hull of all incidence vectors xP of subsets P of A, being a disjoint 
union of an r-s-path and some directed circuits. By the total unimodularity of the 
incidence matrix of D, this polytope is equal to the set of all vectors x E ~A 
satisfying 

(i) O:;:;;x.::;;;l, aEA, 

(ii) 2: x. = 2: x. , v E V, v ¥- r, s, (4.37) 
aE5 +(u) aE5 -(v) 

(iii) 2: Xa - 2: X 0 = 1. 
aEo «r) aEo -(r) 

So it is the intersection of an r-s-flow polytope with the hyperplane determined 
by (iii). Saigal ( 1969) showed that the Hirsch Conjecture holds for the class of 
shortest-path polytopes. 

Definition 4.38. For digraph D = (V, A) and /, u ERA, the circulation polytope is 
the set of all circulations between l and u, i.e., vectors x ERA satisfying 

(i) [a::;;;x.::;;;u 0 , aEA, 

(ii) Mx=O, 
( 4.39) 

where Mis the incidence matrix of D. By the total unimodularity of M, if I and u 
are integral, then the circulation polytope is integral. So if l and u are integral, 
and there exists a circulation, there exists an integral circulation. Similarly, a 
minimum-cost circulation can be taken to be integral. 

By Farkas's Lemma, the circulation polytope is nonempty iff there are no 
vectors z, w E !RA, y E IRv satisfying 

(i) z,w;;:.O, 

(ii) z-w+MTy=O, 

(iii) uTz-lTw<O. 
( 4.40) 

Suppose now l::;;;; u, and (4.40) has a solution. Then there is also a solution 
satisfying 0::;;;; y::;;;; 1, and hence, by the total unimodularity of M, there is a 
solution z, w, y with y a {O, 1}-vector. We may assume that z0 w0 = 0 for each arc 



Polyhedral combinatorics 1671 

a. Then, for W : = { v E V I y v = 1} , 

'V 'V T T 
L.J ua - L.J la = u z - l w < 0 . ( 4.41) 

aE5 -(W) aE8 +(W) 

Thus we have Hoffman's Circulation Theorem (Hoffman 1960): there exists a 
circulation x satisfying l ~ x ~ u iff l ~ u and there is no subset W of V with 

LaEo-(W) ua < LaEa+(W) la. 

4.42. More generally, for l, u E !RA and b', b" E !Rv, the polyhedron 

{x E !RA I l ~x ~ u, b' ~ Mx ~ b"} ( 4.43) 

is integral, if l, u, b' and b" are integral. Moreover, the total unimodularity of M 
yields a characterization of the nonemptiness of the polyhedron ( 4.43 ), extending 
Hoffman's Circulation Theorem. 

It is not difficult to see that ( 4.43) is an affine transformation of the polytope of 
vectors (x'; x"; y'; y") in !RA x !RA x !Rv x !Rv satisfying 

y~ ~ 0, y: ~ 0, 

a EA, 

vEV, 

L x~+ L x:+y~=b:+ L u.- L ~' 
aE8 t(v) uE5 -(u) aEB -(u) aE5 •(v) 

x~ + x: = u" - l. , a EA , 

y~+y:=b=-b~, vEV 

v EV, (4.44) 

(the transformation is given by x": = x~ + !"). Thus ( 4.43) is transformed into a 
face of the transportation polytope (4.27). In this way, several results for (4.43) 
can be derived from results for transportation polytopes. 

Let D = (V, A) be a directed graph, and let T <;;;;A be a spanning tree in D. 
Consider the T x (A\T) matrix N defined, for a ET and a'= (u, w) E A\T, by: 

{ 
0 if a does not occur in the v-w path in T , 

N , : = -1 if a occurs forward in the v-w path in T , 
a ,a 

+ 1 if a occurs backward in the u-w path in T . 
( 4.45) 

Then N is totally unimodular, as can be seen with the help of Ghouila-Houri's 
characterization (4.4) (ii). A vector x =(~:.)in !RA'T x !RT satisfies Mx = 0 (where 
M is the incidence matrix of D) if and only if x" = Nx'. Thus ( 4.39) can be 
reformulated as 

l.~x~~ua, aEA\T, 

l" ~ (Nx'),, ~ u. , a ET . 
( 4.46) 

By the total unimodularity of N, the polytope determined by ( 4.46) has integer 
vertices, if all la and u. are integer. 
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A special case is formed by the {O, 1 )-matrices with the consecutive ones 
property: in each column, the l's form an interval (fixing some ordering of the 
rows, as usual). This special case arises when Tisa directed path, and each arc in 
A\ T forms a directed circuit with some subpath in T. 

For related results, see also Hoffman (1960, 1979). 

5. Total dual integrality 

Total dual integrality appears to be a powerful technique in deriving min-max 
relations and the integrality of polyhedra. It is based on the following result, 
shown, implicitly or explicitly, by Gomory (1963), Lehman (1965), Fulkerson 
(1971), Chvatal (1973a), Hoffman (1974) and Lovasz (1976) for pointed poly­
hedra, and by Edmonds and Giles ( 1977) for general polyhedra. 

Theorem 5.1. A rational polyhedron P is integral if and only if each rational 
supporting hyperplane of P contains integral vectors. 

Proof. Since the intersection of a supporting hyperplane with P is a face of P, 
necessity of the condition is trivial. To prove sufficiency, suppose that each 
rational supporting hyperplane of P contains integral vectors. Let P = {x I Ax::;;; 
b}, with A and b integral. Let F = {x I A'x = b '} be a minimal face of P, where 
A'x:,;;;; b' is a subsystem of Ax:,;;;; b. If F does not contain any integral vector, there 
exists a vector y such that cT:= yTA' is an integral vector, while o := yTb' is not 
an integer (this follows, e.g., from Hermite's Normal Form Theorem). We may 
suppose that all entries in y are nonnegative (we may replace each entry Y; of y by 
Y; - ly;J). Now H := {x I cTx = o} is a supporting hyperplane of P, not containing 
any integral vector. 0 

Note that the special case where P is pointed can be shown without appealing 
to Hermite's Theorem: if x* is a nonintegral vertex of P, w.l.o.g. x~ ,E £'.. There 
exist supporting hyperplanes H = {x I cTx = cTx*} and fI = {x I cTx = cT x*} touch­
ing Pin x* such that c and c are integral and such that c T - cT = ( 1, 0, ... , 0). If 
both H and ff contain integral vectors, we know c T x * E Z and c T x* E £'.. 
However, (c - c)Tx* =x~_,El. 

Theorem (5.1) can be applied as follows. Consider the LP problem 

max{cTxlAxo:;;b}, (5.2) 

for rational matrix A and rational vectors b, c. 

Corollary 5.3. The following are equivalent: 
(i) the maximum value in (5.2) is an integer for each integral vector c for which 

the maximum is finite; 
(ii) the maximum (5.2) is attained by an integral optimum solution for each 

rational vector c for which the maximum is finite; 
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(iii) the polyhedron {x I Ax:,,;;;: b} is integral. 

Now consider the LP-duality equation 

max { c T x I Ax :,,;;;: b} = min { y Tb I y ;;;: 0, y TA = c T} . (5.4) 

Clearly, we may derive that the maximum value is an integer if we know that the 
minimum has an integral optimum solution and b is integral. This motivated 
Edmonds and Giles ( 1977) to define a system Ax:,,;;;: b of linear inequalities to be 
totally dual integral (TD!) if for each integral vector c, the minimum in (5.4) is 
attained by an integral optimum solution. Then we have the following conse­
quence. 

Corollary 5.5. Let Ax :,,;;;: b by a system of linear inequalities, with A rational and b 
integral. If Ax:,;;;:b is TD/ (i.e., the minimum in (5.4) is attained by an integral 
optimum solution y, for each integral vector c for which the minimum is finite), 
then {x I Ax:,,;;;: b} is integral (i.e., the maximum in (5.4) is attained by an integral 
optimum solution x, for each c for which the maximum is finite). 

Note that the notion of total dual integrality is not symmetric in objective 
function c and right-hand-side vector b. Indeed, the implication in Corollary 5.5 
cannot be reversed: the system x 1 ;;;: 0, x 1 + 2x2 ;;;: 0 determines an integral 
polyhedron in ~2 , while it is not TDI. However, Giles and Pulleyblank (1979) 
showed that if P is an integral polyhedron, then P = {x I Ax:,,;;;: b} for some 
TDI-system Ax:,,;;;: b with b integral. In Schrijver (1981) it is shown that if P is 
moreover full-dimensional, then there is a unique minimal TDI-system determin­
ing P with A and b integral (minimal under deleting inequalities). 

Related to total dual integrality is the notion of Hilbert basis: This is a 
collection {a 1 , ••• , a,,.} of vectors with the property that if an integer vector x is a 
nonnegative linear combination of the vectors a 1 , ••• , am, then it is an integer 
nonnegative linear combination of them. 

The relation to total dual integrality is as follows. Let Ax:,,;;;: b be a system of 
linear inequalities, and set P: = {x I Ax:,,;;;: b}. If a T x:,,;;;: f3 is an inequality from 
Ax:,,;;;: b and F is a face of P, we say a is tight in F if a T x = {3 for all x in F. Now 
Ax:,,;;;: b is TDI if and only if for each face F of P, the rows of A that are tight in A 
form a Hilbert basis. 

It was shown by Cook et al. (1986a) that if {a 1 , ••• , am} is a Hilbert basis 
consisting of integer vectors in !Rn, then any integer vector x that is a nonnegative 
linear combination of a 1 , ••• , am is in fact an integer nonnegative linear 
combination of at most 2n - 1 of these vectors. 

As a consequence one has that if Ax:,,;;;: b is TDI (inn variables, say), and A is 
integral, then for any c Er' min{yTb I y;;;: 0, YT A= cT} is attained by an integer 
vector y with at most 2n - 1 nonzero components (if the minimum is finite) .. 

For more on total dual integrality, see Cook (1983, 1986), Edmonds and Giles 
(1984), and Cook et al. (1984). 
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We now consider some combinatorial applications of total dual integrality. 

Application 5.6 (Arborescences). Let D = (V, A) be a directed graph, and let r be 
a fixed vertex of D. An r-arborescence is a set A' of !VI - 1 arcs forming a 
spanning tree such that each vertex v o;6 r is entered by exactly one arc in A'. So 
for each vertex v there is a unique directed path in A' from r to v. An r-cut is an 
arc set of the form o-(U), for some nonempty subset U of V\{r}. As usual 
o -(U) denotes the set of arcs entering U. 

It is not difficult to see that r-arborescences are the inclusion-wise minimal sets 
of arcs intersecting r-cuts. Conversely, the inclusion-wise minimal r-cuts are the 
inclusion-wise minimal sets of arcs intersecting all r-arborescences. 

Fulkerson (1974) showed: 

Fulkerson's Optimum Arborescence Theorem 5.7. For any "length" function 
l: A~ l+, the minimum length of an r-arborescence is equal to the maximum 
number t of r-cuts cl' ... 'cl (repetition allowed) so that no arc a is in more than 
l(a) of these cuts. 

This result can be formulated in polyhedral terms as follows. Let C be the 
matrix whose rows are the incidence vectors of all r-cuts. So the columns of C are 
indexed by A, and the rows by the collection ~:={Vi0¥VCV\{r}}. Then 
Theorem 5. 7 is equivalent to both optima in the LP-duality equation 

(5.8) 

having integral optimum solutions, for each I El~. So in order to show the 
theorem, by (5.5) it suffices to show that the maximum in (5.8) has an integral 
optimum solution, for each l: A~l, i.e., that the system x ~ 0, Cx ~ 1 is TDI. 
This can be proved as follows (Edmonds and Giles 1977). 

Proof of Theorem 5. 7. Note that the matrix C is generally not totally unimodular. 
However, in order to prove that the maximum (5.8) has an integer optimum 
solution, it suffices to show that there exists a "basis" that is totally unimodular 
and that attains the maximum. That is, it is enough to find a totally unimodular 
submatrix C' of C (consisting of rows of C) such that 

max{yTl I y ~ 0, yTC,;;;; lT} = max{zTl I z ~O, z TC',;;;; lT}. (5.9) 

Since the second maximum is attained by an integer optimum solution z (by the 
total unimodularity of C'), extending z by O's in the appropriate positions gives 
an integer optimum solution y for the first maximum. 

How can we find such a C'? The key observation is the following. Call a 
subcollection fffe of ~ laminar if for all T, U E f.F one has T C U or U C T or 
T n U = 0. Then, if C' is the matrix consisting of the rows of C with index in 
some laminar family f.F, C' is totally unimodular. 
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This last fact can be derived with Ghouila-Houri's characterization ( 4.4) (ii). 
Choose a set of rows of C', i.e., choose a subcollection C§ of fli. Define, for each U 
in<§, the "height" h(U) of U as the number of sets Tin <§with T ;;d U. Now split 
CfJ into <§odd and C§even' according as h(U) is odd or even. One easily derives from 
the laminarity of C€J that for any arc a of D, the number of sets in <§odd entered by 
a, and the number of sets in <§even entered by a, differ by at most 1. Therefore, we 
can split the rows corresponding to C§ into two classes fulfilling Ghouila-Houri's 
criterion. So C' is totally unimodular. 

So it suffices to find a laminar subcollection fJi or 'Je so that the corresponding 
matrix C' satisfies (5.9). This can be done as follows. We may assume that all 
components of l are nonnegative. (If some component is negative, the maximum 
in (5.8) is infinite.) Choose a vector y that attains the maximum in (5.8), and for 
which 

I Yu· IUI · IV\UI 
VE:}{ 

(5.10) 

is as small as possible. Such a vector y exists by compactness arguments. 
Define 

:ffe:={Uiyu>O}. (5.11) 

Then fJi is laminar. To see this, suppose there are T, U E fJi with T g U g T and 
TnU~0. Let c::=min{yr,Yu}>O. Next reset: 

Yr:= Yr - E, 

Yu:=yu-E, 

Y.rnu := YTnv + E, 

YTuu := YTull + E' 
(5.12) 

while y does not change in the other coordinates. By this resetting, l C does 
· · d. ( · a -en+ a -(u) a (TnU) + 

not mcrease m any coor mate smce c: · x c: · x ~ c: · x 
f · xa-(Tuu>), while y'rt does not change. However, the sum (5.10) did decrease, 
contradicting the minimality of (5.10). This shows that :¥ is laminar. 

We finally show that (5.9) holds. The inequality ~ is trivial, since C' is a 
submatrix of C. The inequality ~ follows from the fact that the vector y above 
attains the second maximum in (5.9), while y has O's in the positions corre­
sponding to rows of C not in C'. D 

A direct consequence is that the r-arborescence polytope of D = (V, A) (being 
the convex hull of the incidence vectors of r-arborescences) is determined by 

I xa;;e:I, 0~U\;;;;V\{r}. 
(5.13) 

aE8 -(U) 

This is a result of Edmonds (1967). It follows, with the ellipsoid method, that a 
minimum-length r-arborescence can be found in polynomial time if and only if we 
can test (5.13) in polynomial time. This last is indeed possible: given x E <Q)A, we 
first test if O ~ x ~ 1 for each arc a· if x < 0 or x > 1 for some a, we have a 

a ' a a 
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separating hyperplane. Otherwise, consider x as a capacity function on the arcs of 
D, and find an r-cut C of minimum capacity (with an adaptation of Ford and 
Fulkerson's algorithm): if C has capacity at least 1, then (5.13) is satisfied; 
otherwise, C yields a hyperplane separating x from the polyhedron determined by 
(5.13). 

For a characterization of the facets of the r-arborescence polytope, see Held 
and Karp (1970) and Giles (1975, 1978). 

One similarly shows that for any directed graph D = (V, A), the following 
system, in x E !RA, is TOI: 

xa;;;.O, aEA, 

L x.;;;. 1 , 0 # U ~ V, B + (U) = 0 , 
(5.14) 

aES-(U) 

which is a result of Lucchesi and Younger (1978). It is equivalent to: 

Lucchesi-Younger Theorem 5.15. The minimum size of a directed-cut covering in 
a digraph D = (V, A) is equal to the maximum number of pairwise disjoint directed 
cuts. 

Here a directed cut is a set of arcs of the form B - ( U) with 0 # U # V, 
B +(U) = 0. A directed-cut covering is a set of arcs intersecting each directed cut, 
or equivalently, a set of arcs whose contraction makes the digraph strongly 
connected. 

Note that the Lucchesi-Younger Theorem is of a self-refining nature: it implies 
that for any "length" function l: A~ 1'.+, the minimum length of a directed-cut 
covering is equal to the maximum number t of directed cuts cl' ... ' et 
(repetition allowed), so that no arc a is in more than l(a) of these cuts. [To derive 
this from Theorem 5.15, replace each arc a by a directed path of length l(a).] In 
this weighted form, the Lucchesi-Younger Theorem is easily seen to be equiva­
lent to the total dual integrality of ( 5 .14). 

Application 5.16 (Polymatroid intersection). Let S be a finite set. A function 
f: qf(S)~ IR is called submodular if 

f(T) + f(U);;;. f(T n U) + f(T U U) for all T, Uk S. (5.17) 

There are several examples of submodular functions. For example, the rank 
function of any matroid is submodular (see chapters 9 and 11). 

Let f1 , h be two submodular functions on S, and consider the following system 
in the variable x E IR5 : 

(i) x, ;;;.Q' sES, 

(ii) L Xs ~f1(U), uks, (5.18) 
sEU 

(iii) L Xs ~f2(U), u~s. 
sEU 
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Edmonds (1970, 1979) proved: 

Theorem 5.19. System (5.18) is TD!. 

Proof. The proof is similar to that of Theorem 5.7. Let c: 5__,.,z, and consider 
the LP problem dual to maximizing cTx over (5.18): 

. { ""' f ( ) ""' I :Jl>(S) ""' u :::>., } mm L.J y u 1 U + L.. z u / 2 ( U) y, z E IR + ; L.. ( y u + z u )x ~ c . 
U<;;,S U<;;,S U<;;,S 

(5.20) 

We show that this minimum has an integral optimum solution, by a version of the 
"uncrossing" technique. Let y, z attain this minimum, so that 

2 (yu+zu)·IV/·/S\UI (5.21) 
U<;;,S 

is as small as possible. Let 

%:={U~Slyu>O}. (5.22) 

We show that % forms a chain with respect to inclusion. Suppose not. Let T, 
U E % with Tg Ug T. Let E := min{JT, Yu} >0. Next reset as in (5.12). Again, 
the modified y forms, with the original z, an optimum solution of (5.20) [since 
xT+xu=xrnu+xTuu and f1 (T)+f1 (U)~f1 (TnU)+fi(TUU)]. However, 
(5.21) did decrease, contradicting its minimality. This shows that % forms a 
chain. Similarly, 

(5.23) 

forms a chain. 
Now (5.20) is equal to 

min{2 Yuf1(U)+ 2: zuJ~(U)lyEIR':,zEIR'!; 
UE:ffe UE'.'J 

u~:'I' YuXu + U~'fi ZuXu ~ c} (5.24) 

since y, z attain (5.20), using (5.22) and (5.23). 
The constraint matrix in ( 5 .24) is totally unimodular, as can be derived easily 

with Ghouila-Houri's criterion (4.4) (ii). Hence (5.24) has an integral optimum 
solution y, z. By extending y, z with 0-components, we obtain an integral 
optimum solution of (5.20). D 

This result has several corollaries, as we shall see. If / 1 and / 2 are integer-valued 
submodular functions, then the total dual integrality of ( 5.18) implies that ( 5.18) 
determines an integral polyhedron. In particular, let / 1 and / 2 be the rank 
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functions of two matroids (S, ..9\) and (S, .12 ). Then the following result of 
Edmonds ( 1970) follows. 

Corollary S.25. The polytope conv{x 1 llE.11 n.12 } is determined by (5.18). 

Proof. Note that an integral vector satisfies (5.18) iff it is equal to x1 for some I 
in .11 n J 2• o 

A special case is that if we have one matroid (S, j), with rank function, say, f, 
then its independence polytope ( =conv. {x 1 I I E Ji}) is determined by x,;;;;.: 0, 
s ES; I:seu xs ~f(U), U ~ S (Edmonds 1971). So Corollary 5.25 concerns the 
intersection of two independence polytopes. The facets of independence poly­
topes, and of the intersection of two of them, are described by Giles (1975). 
Hausmann and Korte (1978) characterized adjacency on the independence 
polytope. See also Edmonds (1979) and Cunningham (1984). 

Another direct consequence for matroids is: 

Edmonds' Matroid Intersection Theorem 5.26. The maximum size of a common 
independent set of two matroids (S,Ji1 ) and (S,Ji2 ) is equal to minucs (f1(U)+ 
f2 (S\U)), where f 1 and f2 are the rank functions of these matroids. -

Proof. By Corollary 5.25, the maximum size of a common independent set is 
equal to max{lTxlx satisfies (5.18)}, and hence, by the total dual integrality of 
(5.18), to 

min{2: (Yuf1(U)+zuf2(U))ly,zEl:(s>; L (yu+zu)Xu;;;.1}. 
u~s u~s 

It is not difficult (using the nonnegativity, the monotonicity and the submodularity 
of f 1 and / 2 ) to derive that this last minimum is equal to the minimum in Theorem 
5.26. 0 

For more consequences of Theorem 5.19, we refer to chapter 11. 
The proofs of Theorems 5.7 and 5.19 given above are examples of a general 

proof technique for total dual integrality studied by Edmonds and Giles (1977). 
First show that there exists an optimum dual solution whose nonzero components 
correspond to a "nice" colelction of sets (e.g., laminar, a chain, "cross-free"). 
Next prove that such nice collections yield a restricted linear program with totally 
unimodular constraint matrix. Finally, appeal to Hoffman and Kruskal's Theorem 
to deduce the existence of an integral optimum dual solution for the restricted, 
and hence for the original, problem. 

We now illustrate how total dual integrality helps in showing one of the 
pioneering successes of polyhedral combinatorics, the characterization of the 
matching polytope by Edmonds (1965). For the basic theory on matchings we 
refer to chapter 3. 
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Definition 5.27. The matching polytope of an undirected graph G = (V, E) is the 
polytope conv{xM IM matching} in IRE. Edmonds showed that this polytope is 
equal to the set of all vectors x in IRE satisfying 

(i) x,;a:O, eEE, 

(ii) L x,::;::; 1 ' v E v ' (5.28) 
e3u 

(iii) Lx,:o::;lilVIJ, U<;;;;V. 
Et;;,U 

Since the integral vectors satisfying (5.28) are exactly the incidence vectors xM of 
matchings M, it suffices to show that (5.28) determines an integral polyhedron. In 
fact, Cunningham and Marsh (1978) showed: 

Theorem 5.29. System (5.28) is TD!. 

This implies that for each w: E- Z, both optima in the LP-duality equation 

max{wTx Ix satisfies (5.28)} 

=min{L Yv+ L zulilVIJjyEIR~,zEIR':(V>; 
vEV U<;;V 

(5.30) 

are attained by integral optimum solutions. It means: for each undirected graph 
G = (V, E) and for each "weight" function w: E - Z 

max{ w(M) IM matching} 

=min{'L Yu+ L zultlVIJ jyEZ~,zEZ':W>; 
vEV U<;;V 

(5.31) 

Here w(E') := EeEE' w, for any subset E' of E. [Note that (5.31) contains the 
Tutte-Berge formula as special case, by taking w = l.] 

Proof of Theorem 5.29. We may assume that w is nonnegative, since replacing 
any negative component of w by 0 does not change any optimum in (5.31). 

For any w, let vw denote the left-hand term in (5.31). It suffices to show that vw 
is not less than the right-hand term in (5.31) (since ::;::; is trivial). Suppose (5.31) 
does not hold, and suppose we have chosen G = (V, E) and w: E-Z+ so that 
IV!+ !El + w(E) is as small as possible. Then G is connected (otherwise, one of 
the components of G will form a smaller counterexample) and w, ;;;.: 1 for each 
edge e (otherwise we could delete e). Now there are two cases. 

Case 1. There exists a vertex v covered by every maximum-weighted match-
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ing. In this case, let w' E :Z~ arise from w by decreasing the weights of edges 
incident to v by l. Then vw' = vw -1. Since w'(E) < w(E), (5.31) holds for w'. 
Increasing component Yv of the optimal y for w' by 1, shows (5.31) for w. 

Case 2. No vertex is covered by every maximum-weighted matching. Now let 
w' arise from w by decreasing all weights by l. We show that vw;:::;,, vw. + l t IV\J. 
This will imply (5.31) for w: since w'(E) < w(E), (5.31) holds for w'. Increasing 
component zv of the optimal z for w' by 1, shows (5.31) for w. 

Assume vw < vw' + LtlVIJ, and let M be a matching with vw. = w'(M), such that 
w(M) is as large as possible. Then M leaves at least two vertices in V uncovered, 
since otherwise w(M) = w'(M) + L~IV\J, implying vw;:::;,, w(M) = w'(M) + LtlVIJ 
= JJW, + LtiVIJ. 

Let u and v be not covered by M, and suppose we have chosen M, u and v so 
that the distance d(u, v) in G is as small as possible. Then d(u, v) > 1, since 
otherwise augmenting M by {u, v} would increase w(M). Lett be an internal 
vertex of a shortest path between u and v. Let M' be a matching with w(M') = vw 
not covering t. 

Now MD. M' is a disjoint union of paths and circuits. Let P be the set of edges 
of the component of MD. M' containing t. Then P forms a path starting in t and 
not covering both u and v (as t, u and v each have degree at most 1 in MAM'). 
Say P does not cover u. Now the symmetric difference M D. P is a matching with 
IM D. PI~ IMI, and therefore 

w'(M D.. P) - w'(M) = w(M D. P) - IM A PI - w(M) + IMI 
~ w(M A P)- w(M) = w(M') - w(M' A P) ~O. 

(5.32) 

Hence vw. = w'(M D. P) and w(M D. P) ~ w(M). However, MAP does not covert 
and u, and d(u,t)<d(u,v), contradicting our choice of M, u, and v. 0 

So (5.28) is TOI. A consequence is the following fundamental result of 
Edmonds (1965). 

Edmonds' Matching Polyhedron Theorem 5.33. The matching polytope of a graph 
is equal to the polyhedron determined by (5.28). 

In fact, Edmonds found Theorem 5.33 as a by-product of a polynomial-time 
algorithm for finding a maximum-weighted matching. In turn, with the ellipsoid 
method, Padberg and Rao (1982) showed that Theorem 5.33 yields a polynomial­
time algorithm finding a maximum-weighted matching, see (5.37) below. 

5.34. A consequence of Theorem 5.33 is a characterization of the perfect 
matching polytope of a graph G = (V, E), which is the polytope conv{xM IM 
perfect matching} in IRE. This polytope clearly is a face of the matching polytope 
of G (or is empty), viz. the intersection of the matching polytope with the 
(supporting) hyperplane {xEIRE\l.:eEExe=tlVI}. It follows that the perfect 
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matching polytope is determined by the following inequalities: 

(i) Xe ~ 0, e EE , 

(ii) 2:: Xe = 1 , V E V , (5.35) 
e3v 

(iii) 2:: x,~1, uc;v, IVlodd. 
eE8(U) 

(Note that (ii) and (iii) imply (5.28) (iii).) 

From the description (5.35) of the perfect matching polytope one can derive 
with the ellipsoid method a polynomial-time algorithm for finding a maximum­
weighted perfect matching (and through this a maximum-weighted matching). It 
amounts to showing that it can be tested in polynomial time whether a vector x 
satisfies (5.35). Padberg and Rao (1982) showed that this can be done as follows. 

For a given x E OE we must test if x satisfies (5.35). The inequalities in (i) and 
(ii) can be checked one by one. If one of them is not satisfied, it gives us a 
separating hyperplane. So we may assume that (i) and (ii) are satisfied. If !VI is 
odd, then clearly (iii) is not satisfied for U := V. So we may assume that !VI is 
even. We cannot check the constraints in (iii) one by one in polynomial time, 
simply because there are exponentially many of them. Yet, there is a polynomial­
time method of checking time. First, note that from Ford and Fulkerson's 
max-flow min-cut algorithm we can easily derive a polynomial-time algorithm 
having the following as input and output: 

Input: Subset W of V. 
Output: Subset T of V such that W n T =P 0 =PW\ T and such that x(o(T)) 

is as small as possible. (5.36) 

Here x(E'): = l:eEE' xe for any subset E' of E. We next describe recursively an 
algorithm with the following input and output specification: 

Input: Subset W of V with IWI even. 
Output: Subset U of V such that IW n VI is odd and such that x(o(U)) 

is as small as possible. (5.37) 

First, we find with algorithm (5.36) a subset T of V with W n T =P 0 =PW\ T and 
with x(o(T)) minimal. If IW n TI is odd, we are done. If IW n TI is even, call, 
recursively, the algorithm (5.37) for the inputs W n T and W n f, respectively, 
where f := V\T. Let it yield a subset U' of V such that IW n T n V'I is odd and 
x(o(U')) is minimal, and a subset U" of V such that IW n f n V"I is odd and 
x(o(U")) is minimal. Without loss of generality, W n f g U' (otherwise replace U' 
by V\U'), and W n T g U" (otherwise replace U" by V\U"). 

We claim that if x(o(TnV'))<x(o(TnU")), then U:=TnU' is output of 
(5.37) for input W, and otherwise U := f n U". To see that this output is justified 
suppose to the contrary that there exists a subset Y of V such that IW n YI is odd, 
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and x(o(Y)) < x(o(T n U ')) and x(o(Y)) < x(o( t n U")). Then either IW n Y n TI 
is odd or IW n Y n fl is odd. 

Case 1. IW n Y n TI is odd. Then x(o(Y)) ~x(o(U')), since U' is output of 
(5.37) for input W n T. Moreover, x(o(T U U') ~x(o(T)), since T is output of 
(5.36) for input W, and since W n (TU U') ¥-0 ¥- W\(T U U'). Therefore, we 
have the following contradiction: 

x(B(Y)) ~x(o(U ')) ~ x(B(T n U ')) + x(o(T u U ')) - x(o(T)) 

~x(o(T n U')) >x(B(Y)) (5.38) 

[the second inequality follows since x(o(A)) + x(o(B)) ~ x(o(A n B)) + 
x(o(A U B)) for all A, B ~ V]. 

Case 2. IW n Y n fl is odd: similar. 
Given the polynomial speed of the algorithm for (5.36), it is not difficult to see 

that the algorithm described for (5.37) is also polynomial-time. As a conse­
quence, we can test (5.35) (iii) in polynomial time. 

Further notes on TOI: for a deep characterization of certain TDI systems, see 
Seymour (1977). For an application of TDI to non-optimizational combinatorics 
(viz. Nash-Williams Orientation Theorem), see Frank (1980), and Frank and 
Tardos (1984). 

6. Blocking polyhedra 

Another useful technique in polyhedral combinatorics is a variant of the classical 
polarity in Euclidean space, viz. the blocking relation between polyhedra. It was 
introduced by Fulkerson (1970a, 1971), who noticed its importance to com­
binatorics and optimization. Often, with the theory of blocking polyhedra, one 
polyhedral characterization (or min-max relation) can be derived from another, 
and conversely. 

The basic idea is the following result. Let c 1' ... , c"', d 1 , .•• , d, E IR: satisfy 

conv{c 1, ••• , en,}+ IR'~ = {x E IR: I d/x~ 1forj=1, ... , t}. (6.1) 

Then the same holds after interchanging the ci and d1: 

conv{d1' ... ,d,}+lR:={xElR'~lcTx~lfori=l, ... ,m}. (6.2) 

In a sense, in (6.2) the ideas of "vertex" and "facet" are interchanged as 
compared with (6.1). The proof is a simple application of Farkas's Lemma. 

Theorem 6.3. For any c 1 , ••• , cm, d 1 , ••• , d, E lR:, (6.1) holds if and only if 
(6.2) holds. 

Proof. Suppose (6.1) holds. Then~ in (6.2) is direct, since ci.d1 ~1 for all i, j, as 
the C; belong to the right-hand side in ( 6.1), and since c ~ 0. 

To show ;;;;) in (6.2), suppose x~ conv{d1' ... , d,} + IR:. Then there exists a 
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separating hyperplane, i.e., there is a vector y such that 

(6.4) 

We may assume t;;:: 1 [since if t = 0, then ( 6.1) gives that 0 E { c 1 , ••• , cm}, and 
therefore x does not belong to the right-hand side of (6.2)]. By scaling y, we can 
assume that the minimum in (6.4) is l. Therefore, y belongs to the right-hand 
side of (6.1), and therefore to the left-hand side. Soy;;:: A1c1 + · · · + Amcn.r for 
certain A1 , ••• , Am;;:: 0 with A1 +···+Am= 1. Since y Tx < 1, it follows that C; x < 
1 for at least one i. Hence x does not belong to the right-hand side of (6.2). 

This shows (6.1) ::} (6.2). The reverse implication follows by symmetry. 0 

This theorem has the following consequences. For any X ~!Rn, we define the 
blocker B(X) of X by: 

B(X): = {x E IR: I yT x;;:: 1 for each y in X} . (6.5) 

Clearly, for c I• ••. ' cm ER:, if p is the polyhedron 

(6.6) 

then 

B(P) = {x E IR: I cix;;:: 1fori=1, ... , m}. (6.7) 

So B(P) is also a polyhedron, called the blocking polyhedron of P. If R = B(P), 
the pair P, R is called a blocking pair of polyhedra. By the following direct 
corollary of Theorem 6.3, this is a symmetric relation. 

Corollary 6.8. For any polyhedron of type (6.6), B(B(P)) = P. 

So both (6.1) and (6.2) are equivalent to: 

the pair conv{c 11 .•• , cm}+ IR: and conv{d 1 , ••• , d,} + IR: forms 
a blocking pair of polyhedra. (6.9) 

The following corollary shows the equivalence of certain min-max relations. 

Corollary 6.10. Let c1 , ••• , cm, d1, • •• , d, E IR:. Then the following are equiva­
lent: 

(i) for each l E !Rn: min{/T c1 , ••• , !Tern} 

= max{ A1 +···+A, I Al' ... , A1 E IR+; ~ AA.;:; I} ; 
J 

(6.11) 
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= max{ µ 1 + · · · + µm I µ 1, ••• , µm E IR +; L /L;C; ,,:;; w} . 
I 

(6.12 

Proof. By LP duality, the maximum in ( 6.11) is equal to min { zT x Ix E IR: 
d[ x;;?; 1 for j = 1, ... , t}. Hence, ( 6.11) is equivalent to ( 6.1). Similarly, ( 6.12) i 
equivalent to ( 6.2). Therefore, Theorem 6.3 implies Corollary 6.10. 0 

Note that by continuity, in (6.11) we may restrict l to rational, and hence t, 
integral vectors, without changing the condition. Similarly for ( 6.12). This i 
sometimes useful when showing one of them by induction. 

A symmetric characterization of the blocking relation is the "length-widt 
inequality" given by Lehman ( 1965): 

Lehman's Length-Width inequality 6.13. Let c 1 , ••• ,cm, dp ... ,d,EIR:. The 
(6.1) [equivalently (6.2), (6.11), or (6.12)] holds if and only if 

(i) dJ'c; ~ 1 for all i = 1, ... , m and j = 1, ... , t; 
(6.1~ 

(ii) min{!Tc 1, ••• J'c,,,} · min{wTd 1 , ••• , wTd,} ~{rw for all I, w EZ:. 

Proof. Suppose (6.14) holds. We derive (6.11). Let /EIR'~. By LP duality, tt 
maximum in (6.11) is equal to min{/TxlxEIR'~; d;'x~l for j=l, ... ,t}. L1 
this minimum be attained by vector w. Then by ( 6.14) 

T T T T T l w ~ (min l c;)(min w di) ~m.in I c; :3 / w. 
I J I 

So the minimum in (6.11) is equal to l 1 w. 
Next, suppose (6.1) holds. Then (6.11) and (6.12) hold. Now (6.14) (i) follm 

by taking !=di in (6.11). To show (6.14) (ii), let A1 , ••• , A" µ 1 , ••• , /.Lm atta 
the maxima in (6.11) and (6.12). Then 

This implies (6.14) (ii). 0 

It follows from the ellipsoid method that if c 1 , ••• , cm, d 1 , ••• , d 1 E IR: sat is 
(6.1) [equivalently, (6.2), (6.11), or (6.12)], then 

for each l E IR:: min {IT c 1' ... , lT cm} can be found in polynomial tin 
if and only if 
for each w E IR> min { w T d 1 , ..• , w T dJ can be found in polynom 
time. (6.1 
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This is particularly interesting if tor m is exponentially large (cf. the applications 
below). 

For more on blocking (and anti-blocking) polyhedra, see Araoz (1973), Araoz 
et al. (1983), Bland (1978), Griffin (1977), Griffin et al. (1982), Huang and 
Trotter (1980), and Johnson (1978). 

Application 6.18 (Shortest paths and network flows). The theory of blocking 
polyhedra yields an illustrative short proof of the Max-Flow-Min-Cut Theorem. 
Let D = (V, A) be a directed graph, and let r, s E V. Let c 1 , ••• , cm E IR~ be the 
incidence vectors of the r-s-paths in D. Similarly, let d 1 , ••• , d, E IR~ be the 
incidence vectors of the r-s-cuts. 

Considering a given function I: A-7 d'.'.+ as a "length" function, one easily 
verifies: the minimum length of an r-s-path is equal to the maximum number of 
r-s-cuts (repetitition allowed) so that no arc a is in more than /(a) of these cuts. 
[Indeed, the inequality min ~maxis easy. To see the reverse inequality, let p be 
the minimum length of an r-s-path. For i = 1, ... , p, let 

V; := {v E VI the shortest r-v-path has length at least i}. 

Then 8-(V1),. •• ,8-(VP) are r-s-cuts as required.] This implies (6.11). Hence 
(6.12) holds, which is equivalent to the Max-Flow Min-Cut Theorem: the 
maximum amount of r-s-flow subject to a capacity function w is equal to the 
minimum capacity of an r-s-cut. (Note that I:; f-t;C; is an r-s-flow.) In fact, there 
exists an integral optimum flow if the capacities are integer, but this fact does not 
seem to follow from the theory of blocking polyhedra. 

The above implies that the polyhedra conv{ c 1 , ••• , cm} + IR~ and 
conv{d1 , ••• , d,} + IR~ form a blocking pair of polyhedra. By (6.17), the 
polynomial-time solvability of the minimum-capacitated cut problem is equivalent 
to that of the shortest-path problem; note that this latter problem is much easier. 

Application 6.19 (r-arborescence). Let D = (V, A) be a digraph and let r E V. Let 
c1 , ••. , cm be the incidence vectors of r-arborescences, and let d 1 , • •• , d, be the 
incidence vectors of r-cuts (cf. Application 5.6). 

From (5.13) we know that (6.1) holds. Therefore, by Theorem 6.3, also (6.2) 
holds. It means that for any "capacity" function w E IR ~, the minimum capacity 
of an r-cut is equal to the maximum value of µ,1 + · · · + µ,k where µ, 1 , ••• , µk ~ 0 
are such that there exist r-arborescences T 1, ••• , Tk with the property that for 
each arc a, the sum of the µ,i for which a E Ti is at most c0 • 

Hence the convex hull of the incidence vectors of sets containing an r-cut as a 
subset, is determined by the system (in x E !RA) 

(i) 0.::; x0 .::; 1 , a EA , 

(ii) L x0 ~ 1 , T r-arborescence. 
(6.20) 

a ET 

Edmonds (1973) in fact showed that (6.20) is TOI (again, this does not seem to 
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follow from the theory of blocking polyhedra). It is equivalent to: the minimum 
size of an r-cut is equal to the maximum number of pairwise disjoint r-arboresc­
ences. 

The theory of blocking polyhedra can also be applied to directed cuts and 
directed-cut covers (cf. Theorem 5.15). Again it follows that the convex hull of 
incidence vectors of sets containing a directed cut as a subset, is determined by 
( 6.20), with "r-arborescence" replaced by "directed-cut cover". However, in this 
case the system is not TDI (cf. Schrijver 1980b, 1982, 1983a). 

Similar arguments apply to T-joins and T-cuts. 

7. Anti-blocking polyhedra 

The theory of anti-blocking polyhedra, due to Fulkerson (1971, 1972), is to a 
large extent parallel to that of blocking polyhedra, and arises mostly by reversing 
inequality signs and by interchanging "min" and "max". We here restrict 
ourselves to listing results analogous to those given in section 6, the proofs being 
similar. 

Let c1 , ... ,cm, d 1 , ••• ,d1 EIR 1
: be such that dim((c 1 , ••• ,c1J)= 

dim( (d 1 , ••• , d,) = n. Then the following are equivalent: 

(conv{cl, ... 'cl/l} + IR") n IR': = {x E IR'~ I d/x ~ 1forj=1, ... 't}' 

(7.1) 

(conv{d,, ... , d,} + IR'~) n IR'~ = {x E IR'~ ic:1x ~ 1fori=1, ... , m}. 

(7.2) 

Define for any subset X of IR" the anti-blocker A(X) of X by: 

A(X) := {x E IR: I y 1 x ~ 1 for each y in X} . 

Clearly, if 

P:=(conv{c 1, ••• ,cm}+IR'~)n!R'~, (7.4) 

then 

A(P) = {x E IR'~ lc:rx ~ 1 for i = 1, ... , m} . (7.5) 

A(P) is called the anti-blocking polyhedron of P. If R = A(P), the pair P, R is 
called an anti-blocking pair of polyhedra. Again, this is a symmetric relation: 

For any polyhedron P of type (7.4 ), A(A(P)) = P. (7.6) 

Each of the following are equivalent among themselves and to (7 .1) and (7 .2 ): 

(a) The pair (conv{cp ... , cm}+ IR'~) n IR: and (conv{d 1 , ••• , d,} + IR'~) 



(b) 

(c) 

(d) 

Polyhedral combinatorics 

n IR: forms an anti-blocking pair of polyhedra; 

For each l E IR:: max{lTc 1 , ••• , lTcm} 

= min{ A1 +···+1\ j Ap ... , A1 E IR+; L AA;;:.:: l}; 
J 

For each w E IR:: max{wTd 1 , ••• , wTd1} 

= min{ J.L1 + ... + J.Lm I J.L1 ' ••• ' J.Lm E IR + ; 2: ,U;C; ;;>- w} ; 
I 

(i) dJ C; ~ 1 for all i = 1, .... , m and j = 1, ... , t, 

(ii) max { l Tc 1 , • • • , l Tc m} · max { w T d 1' . . . , w T d 1} ;;:.:: l T w for all 

l, w E z:. 
This last characterization is again due to Lehman ( 1965). 
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(7.7) 

(7.8) 

(7.9) 

(7.10) 

Application 7.ll (Perfect graphs). The theory of anti-blocking polyhedra yields a 
proof of Lovasz's Perfect Graph Theorem (cf. chapter 4). This line of proof 
was developed by Fulkerson (1970b, 1972, 1973), Lovasz (1972), and Chvatal 
(1975). 

Define for any graph G = (V, E), the stable-set polytope STAB(G) of Gas the 
convex hull of the incidence vectors of stable sets in G. Clearly, any vector x in 
the stable-set polytope satisfies 

(i) Xu;;:.:: 0, VE V, 

(ii) L Xu~ 1 , K ~ V, K clique, 
(7.12) 

uEK 

since the incidence vector of any stable set satisfies (7.12). Note that the polytope 
determined by (7.12) is exactly A(ST AB( G)). The circuit on five vertices shows 
that generally A( STAB( G)) can be larger than STAB(G). Chvatal (1975) showed 
that STAB(G) is exactly determined by (7.12) if and only if G is perfect. 
Anti-blocking then yields the Perfect Graph Theorem. 

First observe the following. Let Ax~ 1 denote the inequality system (7.12) (ii). 
So the rows of A are the incidence vectors of cliques. By definition, G is perfect if 
and only if the (dual) linear programs 

max { w T x I x ;;:.:: 0, Ax ~ 1} = min { y T 1 j y ;;;;. 0, y TA ;;:.:: w T} 

have integral optimum solutions, for each {O, 1}-vector w. 

(7.13) 

Chvatal's Theorem 7.14. G is perfect if and only if its stable-set polytope is 
determined by (7.12). 

Proof. (I) First suppose G is perfect. For w: V __.,.. Z+, let aw denote the maximum 
weight of a stable set. To prove that the stable-set polytope is determined by 
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(7.12), it suffices to show that 

aw = max { w T x I x ~ 0, Ax :s: 1} (7 .15) 

for each w: v~z+. This will be done by induction on EvEV WV. 

If w is a {O, l}-vector, then (7.15) follows from the remark on (7.13). So we 
may assume that w u ~ 2 for some vertex u. Let eu = 1 and e0 = 0 if v ¥- u. 
Replacing w by w-e in (7.13) and (7.15) gives, by induction, a vector y~O so 
that yTA ~ (w - e)T and lt = aw-e· Since (w - e)u ~ 1, there is a clique K with 
YK > 0 and u EK. We may assume that XK :s: w -e. Denote a:= XK· 

Then aw-a < aw. For suppose aw-a =a",. Let S be any stable set with 
l:vES (w - a)v = aw-a· Since aw-a = aw, Kn s = 0. On the other hand, since 
w-a,,,;w-e:s:w, we know that f:vEK(w-eL=aw-e and hence, by com­
plementary slackness, IK n SI= 1, which is a contradiction. 

Therefore, 

aw = 1+aw-a=1 + max{(w - a)Tx Ix~ 0, Ax :S: l} 

~ max { w T x I x ~ 0, Ax :s: 1} , (7.16) 

implying (7.15). 
(II) Conversely, suppose that the stable-set polytope is determined by (7 .12), 

i.e., that the maximum in (7 .13) is attained by the incidence vector of a stable set, 
for each w E Z'.~. To show that G is perfect it suffices to show that the minimum 
in (7.13) also has an integer optimum solution for each {O, l}-valued w. This will 
be done by induction on f:vEvW 0 • 

Let w be {O, 1 }-valued, and Jet y be a, not necessarily integral, optimum 
solution for the minimum in (7 .13 ). Let K be a clique with y K > 0, and let a = x K 

(we may assume a :s: w). Then the common value of 

max{(w - a)Tx Ix~ 0, Ax:s: 1} = min{yTl I y ~ 0, yT A~ (w - a)T} 

(7.17) 

is less than the common value of (7 .13), since by complementary slackness, each 
optimum solution x in (7.13) has aTx= L However, the values in (7.13) and 
(7 .17) are integers (since by assumption, the maxima have integral optimum 
solutions). Hence they differ by exactly 1. Moreover, by induction the minimum 
in (7.17) has an integral optimum solution y. Increasing component YK of y by 1, 
gives an integral optimum solution of (7 .13). D 

Equivalent to Theorem 7.14 is: 

G is perfect <::> STAB(G) = A(STAB(G)). (7.18) 

Note that the stable-set polytope of G is determined by (7 .12) if the stable-set 
polytope and the clique polytope of G form an anti-blocking pair of polyhedra. 
Here the clique polytope is the convex hull of the incidence vectors of cliques. 
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The theory of anti-blocking polyhedra then gives directly the Perfect Graph 
Theorem of Lovasz (1972): 

Lovasz's Perfect Graph Theorem 7.19. The complement of a perfect graph is 
perfect. 

Proof. If G is perfect, then STAB(G)=A(STAB(G)). Hence STAB(G)= 
A(A(STAB(G)))=A(STAB(G)). Therefore, G is perfect. D 

By (7.14), with the ellipsoid method, a maximum-weighted stable set in a 
perfect graph G can be found in polynomial time if and only if a maximum­
weighted clique in a perfect graph G can be found in polynomial time. Since the 
complement of a perfect graph is a perfect graph again, this would not give any 
reduction of one problem to another. 

However, an alternative approach does give a polynomial-time algorithm to 
find a maximum-weighted stable set in a perfect graph ( Grotschel et al. 1981, 
1986, 1988). Let G = (V, £)be a graph, with V= {1, ... , n}, say. Consider the 
collection M(G) of all matrices Y=(yij)7.i~o in IR(n+I)x(n+t) satisfying 

(i) Y is symmetric and positive semi-definite; 

(ii) y 00 =1, Yo; = Y;; , i = 1, ... , n ; (7.20) 

(iii) Y;i = 0 if i ¥ j, {i, j} EE. 

These conditions imply that M(K) is a convex set (not necessarily a polytope). 
Let TH( G) be the set of all vectors x E IR" for which there exists a matrix Y in 

M(G) so that X; =Yu for i = 1, ... , n. So TH(G) is the projection of M(G) on the 
diagonal coordinates [excluding the (0, 0) coordinate]. 

Now TH(G) turns out to be an approximation of STAB(G), at least as good as 
A(STAB( G)), in the following sense: 

Theorem 7.21. STAB(G) ~ TH(G) ~ A(STAB( G)). 

Proof. The first inclusion follows from the fact that for each stable set S ~ V, the 
incidence vector x5 belongs to TH(G), as it is the projection of the matrix Y in 
M(G) defined by: 

.. ={1 ifi,jESU{O}, 
Y •1 O otherwise . 

(7.22) 

To see the second inclusion, first note that trivially each vector in TH(G) is 
nonnegative (since the diagonal of a positive semi-definite matrix is nonnegative). 
It next suffices to show: if x E TH(G) and u is the incidence vector of a stable set 
in G, then u Tx ~ l. To prove this, let x be the projection of YE M(G). Since Y is 
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positive semi-definite we know: 

(1 -uT)Y(!J;;.o. (7.23) 

As yii = 0 if {i, j} E £,and as u is the incidence vector of a clique Kin G, (7.23) 
implies 

1-2 L Y;o + L Yu ~o. (7.24) 
iEK iEK 

Theorem 7.21 implies that if STAB(G)=A(STAB(G)), i.e., if G is perfect 
then STAB(G) = TH(G). Now any linear objective function w T x can be maxi­
mized over TH(G) in polynomial time. This follows from the fact that any linear 
objective function can be maximized over M(G) in polynomial time, since we can 
solve the separation problem over M(G) in polynomial time. [The latter follows 
from the fact that we can test, for any given Yin IR(n+J)x(n+I>, the constraints in 
(7.20) in polynomial time, in such a way that we find a separating hyperplane (in 
the space IR(n+I)x(n+IJ) if Y does not belong to M(G).] 

So as a consequence we have: 

Theorem 7 .25. There exists a polynomial-time algorithm finding a maximum­
weight stable set in any given perfect graph. 

By symmetry, the same holds for finding a maximum-weight clique in a perfect 
graph. 

Application 7.26 (Matchings and edge-colorings). Let for any graph G = (V, £), 
Pmat(G) denote the matching polytope of G. By scalar multiplication, we can 
normalize system (5.28) determining P mar(G) to : x ~ 0, Cx ~ 1, for a certain 
matrix C (deleting the inequalities in (5.28) corresponding to U t;;;; Vwith IVI ~ 1). 
The matching polytope is of type (7.4 ), and hence its anti-blocking polyhedron 
A(P mar(G)) is equal to {z E IR! I Dz ~ l}, where the rows of D are the incidence 
vectors of all matchings in G. So by (7.8), taking l = 1: 

{ i(V)I } . T T T 
max Li(G), max L 1 IVIJ = mm{y l I y ~ 0, y D;:: 1 } . 

U~V,JUJ;;.2 2 
(7.27) 

Here ( U) denotes the collection of all edges contained in U. 
The minimum in (7.27) can be interpreted as the fractional edge-coloring 

number 1*(G) of G. If the minimum is attained by an integral optimum solution 
y, it is equal to the edge-coloring number 1(G) of G, since 

y(G) = min{yTl I y ~O, yTD ~ lT, y integral}. (7.28) 

By Vizing's Theorem, y(G) = Li(G) or y(G) = Li(G) + 1 if G is a simple graph. If 
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G is the Petersen graph, then ~(G) = y*(G) = 3 while y(G) = 4. Seymour (1979) 
conjectured that for each, possibly nonsimple, graph one has y(G) ~ max{~(G) + 
1, ry*(G)l}. 

8. Cutting planes 

For any set P ~ ~n, let the integer hull of P, denoted by P1, be 

Pi:= conv{x Ix E P, x integral} . 

Trivially, if P is bounded, then P, is a polytope. Meyer (1974) showed that if P is 
a rational polyhedron, then Pi is a rational polyhedron again. 

Most of the combinatorial results given above consist of a characterization of 
the integer hull P1 by linear inequalities for certain polyhedra P. For example, the 
matching polytope is the integer hull of the polyhedron determined by the 
inequalities (5.28) (i), (ii). For most combinatorial optimization problems it is not 
difficult to describe a set of linear inequalities, determining a polyhedron P, in 
which the integral vectors are exactly the incidence vectors corresponding to the 
combinatorial optimization problem. Hence, P1 is the convex hull of these 
incidence vectors. However, it is generally difficult to describe P, by linear 
inequalities (cf. section 9). 

The cutting-plane method was introduced by Gomory (1960) to solve integer 
linear programs. Chvatal (1973a) (and Schrijver 1980a, for the unbounded case) 
derived from it the following iterative process characterizing P,. 

Define for any polyhedron P ~ IR": 

P'·-.- n 
H rational affine 

half space with ff ;;JP 

(8.2) 

where a rational affine halfspace is a set H:= {xJcTx,;;;5}, with cEQ" (c#O) 
and 5 E Q. Clearly, we may assume that the components of c are relatively prime 
integers, which implies 

(8.3) 

This usually makes the set P' easy to characterize. 
For instance, for any rational m x n matrix and b E Qm we have 

{xl Ax,;;;b}' = {xl(uTA)x,;;; luTbj for all uEQ'_:' with uTA integral}, 
(8.4) 

(here l · J denotes component-wise lower integer parts). 
The halfspaces H 1 (more strictly, their bounding hyperplanes) are called cutting 

planes. 
It can be shown that if P is a rational polyhedron, then P' is also a rational 

polyhedron. Trivially, P ~ H implies P1 ~ Hp and hence P1 ~ P'. Now generally 
P" # P', and repeating this operation we obtain a sequence of polyhedra 
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P, P', P", pm, .. . , satisfying 

P ::J P' ::J P" ::J pm ::J · · · ::J P . - - - - - I (8.5) 

Denote the (t + 1 )th set in this sequence by pU)_ Then: 

Theorem 8.6. For each rational polyhedron P there exists a number t with 
pUl =PI. 

A direct consequence applies to bounded, but not necessarily rational, 
polyhedra. 

Corollary 8.7. For each polytope P there exists a number t with pUl =PI. 

Blair and Jeroslow (1982) (cf. Cook et al. 1986b) proved the following 
generalization of Theorem 8.6. 

Theorem 8.8. For each rational matrix A there exists a number t such that for each 
column vector b one has: {x I Ax~ b} (rl = {x I Ax~ b} 1• 

Hence we can define the Chvatal rank of a rational matrix A as the smallest 
such number t. The strong Chvatal rank of A then is the Chvatal rank of the 
matrix 

(8.9) 

It follows from Hoffman and Kruskal's Theorem ( cf. Theorem 4.1) that an 
integral matrix A has a strong Chvatal rank 0 if and only if it is totally 
unimodular. Similar characterizations for higher Chvatal ranks are not known. In 
Examples 8.10 and 9.3 we shall see some classes of matrices with strong Chvatal 
rank 1. 

For more on cutting planes, see Jeroslow (1978, 1979), and Blair and Jeroslow 
( 1977' 1979' 1982). 

Example 8.10 (The matching polytope). For any graph G = (V, E), let P be the 
polytope determined by (5.28) (i), (ii). So P1 is the matching polytope of G. It is 
not difficult to show that P' is the polytope determined by (5.28) (i)-(iii). Hence 
Edmonds' Matching Polyhedron Theorem 5.33 is equivalent to asserting P' =PI. 
So the matching polytope arises from (5.28) (i), (ii) by one "round" of cutting 
planes. 

It can be derived from Edmonds' Matching Polyhedron Theorem that each 
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integer matrix A= (a;J satisfying 

m 

2: la;J~2, j= 1, ... ,n, (8.11) 
i~l 

where A has order m x n, has strong Chvatal rank at most 1. 

9. Hard problems and the complexity of the integer hull 

The integer hull P 1 can be quite intractable compared with the polyhedron P. This 
has been shown by Karp and Papadimitriou ( 1982), under the generally accepted 
assumption NP?" co-NP. 

First note that the ellipsoid method (cf. section 3) can also be used in the 
negative: if NP?" P, then for any NP-complete problem there is no polynomial­
time algorithm for the separation problem for the corresponding polytopes. More 
precisely, if for each graph G = (V, E) :!Fe; is a subset of r?J(E), and if Optimi­
zation Problem 3.17 is NP-complete, then (if NP?"P) the Separation Problem 
3.18 is not polynomially solvable. 

In fact, Karp and Papadimitriou showed that for any class (:!Fe I G graph), if 
Optimization Problem 3.17 is NP-complete, and if NP?"co-NP, then the class of 
polytopes conv { x F I F E g;c;} has difficult facets, i.e. , 

there exists no polynomial <P such that for each graph G = (V, E) 
and each c E zE and 0 E Q with the property that CT x ~ 0 defines a 
facet of conv {x F I F E :!fr c;}, the fact that cT x ~ o is valid for each x F 

with FE g;c; has a proof of length at most <P(IVI + 1£1 + size(c) + 
size(o )). (9.1) 

The meaning of (9.1) might become clear by considering description (5.28) of the 
matching polytope: although (5.28) consists of exponentially many inequalities, 
each facet-defining inequality is of form (5.28), and for them it is easy to show 
that they are valid for the matching polytope. 

Another negative result was given by Boyd and Pulleyblank (1984): Jet, for a 
given class (g;c; I G graph), for each graph G = (V, £) the polytope P 0 in IRE 
satisfy (P0 ) 1 =conv{xFIFEg;c;} and have the property that 

given G = (V, £) and c EIRE, find max{ cT x \ x E Pc;} (9.2) 

is polynomially solvable. Then if Optimization Problem 3.17 is NP-complete and 
if NP?"co-NP, then there is no fixed t such that for each graph G, cPc)(tl = 
conv{xF \FE :!F0 }. 

Similar results hold for subcollections :!fr0 of r?J(V) and for directed graphs. See 
also Papadimitriou (1984) and Papadimitriou and Yannakakis (1982) for the 
complexity of facets. 

Example 9.3 (The stable-set polytope). Let G = (V, E) be a graph, and let 
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STAB(G) be the stable-set polytope of G. Let P(G) be the polytope in !Rv 
determined by 

(i) xv ;?; 0, v E V , 

(ii) L xv~ 1, KCV, K clique. 
(9.4) 

vEK 

So P(G) = A(STAB( G)) (cf. Section 7). 
Clearly, STAB(G) C P(G). In fact, since the integral solutions to (9.4) are 

exactly the incidence vectors of stable sets, we have 

STAB(G) = P(G) 1 • (9.5) 

Chvatal (1973a, 1984) showed that there is no fixed t such that P(Gf) = P(G), 
for all graphs G (if NP#- co-NP, this follows from Boyd and Pulleyblank's result 
mentioned above), even if we restrict G to graphs with a(G) = 2. 

By Chvatal's Theorem 7.14, the class of graphs with P(G)i = P(G) is exactly 
the class of perfect graphs. In Example 8.10 we mentioned Edmonds' result that if 
G is the line graph of some graph H, then P(G)' = P(G)p which is the matching 
polytope of H. 

The smallest t for which P(G)<r) = P(G) 1 is an indication of the computational 
complexity of the stability number o:(G). Chvatal (1973) raised the question of 
whether there exists, for each fixed t, a polynomial-time algorithm determining 
o:(G) for graphs G with P(G)(t) = P(G) 1• This is true fort= 0, i.e., for perfect 
graphs (Grotschel et al. 1981). 

Minty (1980) and Sbihi (1978, 1980) extended Edmonds' result of the polyno­
mial solvability of the maximum-weighted matching problem, by describing 
polynomial-time algorithms for finding a maximum-weighted stable set in K1 3-

free graphs (i.e., graphs with no K1,3 as induced subgraph). Hence, by (3.9), the 
separation problem for stable-set polytopes of K1,3-free graphs is polynomially 
solvable. Yet no explicit description of a linear inequality system defining 
STAB(G) for K1,3-free graphs has been found. This would extend Edmonds' 
description of the matching polytope. It follows from Chvatal's result mentioned 
above that there is no fixed t such that P(G)<1l = P(G) 1 for all K1,3-free graphs 
(see Giles and Trotter 1981). 

Perhaps the most natural "relaxation" of the stable-set polytope of G = (V, E) 
is the polytope Q(G) determined by 

(i) xv ;?; 0, v E V , 

(ii) xv+xw~1, {v,w}EE. 
(9.6) 

Again, Q(G), = STAB(G). Since Q(G);;;;;) P(G), there is no t with Q(G)<'l = 
Q(G), for all G. It is not difficult to see that Q(G)' is the polytope determined by 
(9.6) together with 

ICl-1 L xv~ 2 , C is the vertex set of an odd circuit. (9.7) 
vEC 

It was shown by Gerards and Schrijver (1986) that if G has no subgraph H which 
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arises from K 4 by replacing edges by paths such that each triangle in K4 becomes 
an odd circuit in H, then Q(G)' = STAB(G). Graphs G with Q(G)' = STAB(G) 
are called by Chvatal (1975) t-perfect. 

Gerards and Schrijver showed more generally the following. Let A =(a;) be an 
integral m x n matrix satisfying 

n 

L la;1 1~2, i = 1, ... , m. (9.8) 
j=! 

Then A has strong Chvatal rank at most 1 if and only if A cannot be transformed 
to the matrix 

1 1 0 0 
l () 1 0 
1 () 0 1 
() 1 1 0 
0 1 0 1 
() () 1 1 

(9.9) 

by a series of the following operations: deleting or permuting rows or columns, or 
multiplying them by -1; replacing [l, c;] by D - be T, where D is a matrix and b 
and c are column vectors. 

Chvatal (1973a) showed that for G = K,, the smallest t with Q(Gtl = STAB(G) 
is about log n. 

Chvatal (1975) observed that the incidence vectors of two stable sets C, C' are 
adjacent on the stable-set polytope if and only if C Li C' induces a connected 
graph. For more on the stable-set polytope, see Fulkerson (1971), Chvatal 
(1973a, 1975, 1984, 1985), Padberg (1973, 1974, 1977, 1979), Nemhauser and 
Trotter (1974, 1975), Trotter (1975), Wolsey (1976b), Balas and Zemel (1977), 
Ikura and Nemhauser (1985), Grotschel et al. (1986), and Lovasz and Schrijver 
(1991). 

Example 9.10 (The traveling-salesman polytope). For any graph G = (V, E), the 
traveling-salesman polytope is equal to conv{x 11 I H i;;;; E, H Hamiltonian circuit}. 
As the traveling salesman problem is NP-complete, by Karp and Papadimitriou's 
result, the traveling-salesman polytope will have "difficult" facets [ cf. (9 .1 )] if 
NP -¥- co-NP. 

Define the polyhedron Pi;;;; IRE by: 

(i) 0 ~ xe,,;;; 1 , e EE , 

(ii) L Xe = 2 , VE V , (9.11) 
e3u 

(iii) .L x,~2. ui;;;;v, 3~1u1~iv1-3. 
eES(U) 

Since the integral solutions of (9.11) are exactly the incidence vectors of 
Hamiltonian circuits, P1 is equal to the traveling-salesman polytope. Note that the 
problem of minimizing a linear function c T x over P is polynomially solvable, with 
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the ellipsoid method, since system (9.11) can be checked in polynomial time [(iii) 
can be checked by reduction to a minimum-cut problem]. So if NP =F co-NP, by 
Boyd and Pulleyblank's result, there is no fixed t such that p<rl = P1 for each 
graph G. 

The system (9 .11), however, has been useful in solving large-scale instances 
of the traveling salesman problem: for any c E QE, the minimum of c T x over 
(9.11) is a lower bound for the traveling salesman problem, which can be 
computed with the simplex method using a row-generating technique. This lower 
bound can be used in a "branch-and-bound" procedure for the traveling salesman 
problem. 

This approach was initiated by Dantzig et al. (1954, 1959), and developed and 
sharpened by Miliotis (1978), Grotschel and Padberg (1979a,b), Grotschel 
(1980), Crowder and Padberg (1980), and Padberg and Hong (1980) (see 
Grotschel and Padberg 1985, and Padberg and Grotschel 1985 for a 
survey). 

Grotschel and Padberg (1979a) showed that the diameter of the traveling­
salesman polytope for G =Kn is equal to in(n - 3). They also proved that for 
complete graphs all inequalities in (9.11) are facet-defining. 

For more about facets of the traveling-salesman polytope, see Held and Karp 
(1970, 1971), Chvatal (1973b), Grotschel and Padberg (1975, 1977, 1979a,b), 
Maurras (1975), Grotschel (1977, 1980), Grotschel and Pulleyblank (1986), 
Grotschel and Wakabayashi (1981a,b), and Cornuejols and Pulleyblank (1982). 

Papadimitriou and Yannakakis (1982) showed that it is co-NP-complete to 
decide if a given vector belongs to the traveling-salesman polytope. Moreover, 
Papadimitriou (1978) showed that it is co-NP-complete to check if two Hamilto­
nian circuits H, H' yield adjacent incidence vectors (see also Rao 1976). 

On the other hand, Padberg and Rao (1974) showed that the diameter of the 
"asymmetric" traveling-salesman polytope (i.e., convex hull of incidence vectors 
of Hamiltonian cycles in a directed graph) is equal to 2, for the complete directed 
graph with at least six vertices. Grotschel and Padberg (1985) conjecture that also 
the "undirected" traveling-salesman polytope has diameter 2. 

Other hard problems 9.12. The following references deal with polyhedra associ­
ated with further difficult problems. Set-packing problem: Fulkerson (1971), 
Padberg (1973, 1977, 1979), Balas and Zemel (1977), and Ikura and Nemhauser 
(1985). Set-covering problem: Padberg (1979), Balas (1980), and Balas and Ho 
(1980). Set-partitioning problem: Balas and Padberg (1972), Balas (1977), 
Padberg (1979), and Johnson (1980). Linear ordering and acyclic subgraph 
problem: Grotschel et al. (1984, 1985a,b), and Jiinger (1985). Knapsack problem 
and O,l-programming: Balas (1975), Hammer et al. (1975), Wolsey (1975, 1976a, 
1977), Johnson (1980), Zemel (1978), and Crowder et al. (1983). Bipartite 
subgraph and maximum-cut problem: Grotschel and Pulleyblank (1981), 
Barahona (1983a,b), and Barahona et al. (1985). 

For more background information on hard problems, see Grotschel ( 1977, 
1982). 
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