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On Cutting Planes and Matrices 

A.M.H.GERARDS 

ABSTRACT. Continuing the work of Chvatal and Gomory, Schrijver proved 
that any rational polyhedron {x I Ax ~ b} has finite Chvatal rank. This 
was extended by Cook, Gerards, Schrijver, and Tardos, who proved that 
in fact this Chvatal rank can be bounded from above by a number only 
depending on A, hence independent of b . The aim of this note is to show 
that the latter result can be proved quite easily from the result of Chvatal 
and Schrijver. 

Introduction. Consider a rational polyhedron P, i.e., P = {x E Rn I Ax:;; 
b} with A E zm x n , b E zm . A cutting plane for P is an inequality 

T c x::; lc5J, 
with 

CE zn and <5 ~ max{cTx I XE P}. 

The set of vectors satisfying all cutting planes for P is denoted by P' . Ob
viously, P' satisfies 

(1) P1 <;P1 <:;,P, 

where P1 := convex hull (P n zn). Moreover, P' is a polyhedron again 
(Schrijver [5]) and satisfies 

(2) p = p' * p = pi . 

( 1) and (2) suggest the following procedure to get a system of inequalities 
Mx;;;; d such that P1 = {x E Rn I Mx;;;; d}. Namely, define 

(3) P(O):=P; pUl:=(P(i-t))' fori=l,2, .... 

From ( 1) and (2) we get 
p = p(O) :J p(l) :J p(2) :J ... :J p(i) :J ... :J p 

- - - - - - I' 

pUl = pU-1) <=> pUl = pi ( i = 1 ' 2' ... ) . 
(4) 
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Schrijver [5] proved that 

(5) 
for each rational polyhedron P there exists a t E N such 
that pUl = P1 . 

Cook, Gerards, Schrijver, and Tardos [3] extended this result by proving that 

for each matrix A E zmxn, there exists a t E N, such that 

(6) for each b E zm we have that 

{ X E Rn I Ax ~ b} (I) = { X E Rn I Ax :'.5 b} I . 

The aim of this note is to present a short proof of (6) using (5). 
REMARKS. 

(i) The procedure described above can be considered as a polyhedral ver
sion of Gomory's cutting-plane method for integer linear program
ming (Gomory [4]). Chvatal [2] proved (5), for the case that P is 
bounded in Rn . 

(ii) As C. Blair observed, (6) is equivalent to the result, due to Blair 
and Jeroslow [1], that "each integer programming value function is 
a Gomory function." For a discussion see Cook, Gerards, Schrijver, 
and Tardos [3]. 

(iii) In fact, Cook, Gerards, Schrijver, and Tardos [3] proved that t in 

(6) can be taken equal to 2n'+ 1 n 5n~(A)n+I, where ~(A) denotes the 
maximum of the absolute values of the subdeterminants of A . Since 
the proof of (6) given below relies on (5), it cannot be expected to 
give such an explicit bound. 

PROOFOF(6). Let AEZmxn andassumethat A violates(6). This implies 
the existence of a sequence 

(7) {bi'wi,ai}iEN withbiEZm, WiEZn, a;EZ foriEN 

such that 

(8) 
for each i EN, wTx ~ a; is valid for (P;)1 , but not valid 

for (PYi), where Pi := {x E Rn I Ax~ b;}. 

In the sequel we often use the following fact, which trivially follows from 
( 4). 

(9) (8) is invariant under taking subsequences of (7). 

By (9), it is obvious that we only need to consider one of the following two 
cases: 

Case l: Pi f. 0 = (Pi) 1 for each i EN; 
Case 2: (P;) 1 f.0 for each i EN. 

(Indeed, by (8) none of the Pi is empty, so (7) has to have a subsequence 
satisfying one of the two possibilities above.) 

We settle the cases separately. 
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Case 1: (8) is invariant under translation of the polyhedra Pi over an 
integral vector xi (i.e., replacing bi by bi+ Axi ). So we may assume that 
each Pi contains a vector in {x E Rn I 0 ~ x ~ 1}. This means that 
the "component sequences" {(bi)j}iEN are bounded from below for j = 
l, ... , m. Hence we may assume (by (9) and by renumbering indices j) 
that there exists a constant vector c = [c1 , ••• , ck]T such that 

(10) (bi)j=c1 foriENandj=l,. .. ,k, and 

( 11) { (bi) j} is strictly increasing for j = k + l , . . . , m . 

Split each system Ax ~ bi into the two subsystems A1 x ~ c and A2x ~ di 

(di:= [(bi)k+t, ... , (b;)m]T) and set Q := {x E Rn I A1x ~ c}. Let t EN 

such that QUl = Q1 ( t exists by (5)). For i > t we have that wix ~ ai is 
not valid for (PYil ~ Q(i) = Q1 • Hence Q1 is not empty, which by ( 11) 
implies that (Pi) 1 is not empty for some i E N. This .is a contradiction, so 
Case l cannot occur. 

Case 2: For each i E N , let xi E Pi n zn such that 

By translation, we may assume that, for each i E N, xi is the all-zero vector 
0 E Pi and that Cf.i = 0. Using the same arguments as used in Case 1 we 
may assume that Ax ~ bi can be split into two subsystems A1x ~ c and 
A2x ~ di, where c and di are as in Case I and satisfy ( 10) and ( 11 ). Again 
wedefine Q:={xERnlA1 x~c}. 

Before we proceed we construct a finite set L as follows. Choose an 
integral vector y F from each minimal face F of Q1 . Moreover, choose 
a collection v 1 , ••• , v k E zn such that v 1 , ••• , and v k generate the cone 
{x E Rn I A1x ~ O}. Because of 0 E Pi for each i, 0 E Q. Therefore c 2: 0, 
so that in fact VI' .•. 'vk E Q n zn. Define 

Let t EN such that Q{I) = Q1 ( t exists by (5)). For i > t we have that 
wix ~ 0 is not valid for (P/il ~ Q(i) = Q1 . Hence there exists for each 
i E N a vector z. E Q n zn with w T z > 0 . By standard linear programming 

I I I 

theory, we may assume that zi E L for each i E N. By ( 10), ( 11 ), and the 
fact that L is bounded, there exists an i E N, such that z,. E Pi . As zi E zn , 
this contradicts our assumption that max{wix Ix E Pinzn} = wixi = w;o = 
0 . So Case 2 cannot occur either. 

Since neither case is possible, ( 6) follows. o 
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