
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 0000

Group Membership for Groups with Primitive

Orbits

NAMITA SARAWAGI, GENE COOPERMAN, AND

LARRY FINKELSTEIN

Abstract. This paper considers a permutation group G = 〈S〉 of degree
n with t orbits such that the action on each orbit is primitive. It presents

a O(tn2 logc(n)) time Monte Carlo group membership algorithm for some
constant c. The algorithm is notable for its use of a new theorem showing
how to find O(t log2 n) generators in O (̃|S|n) time under a more general
form of the above hypotheses. The algorithm relies on new combinatorial

methods for computing with groups [CF92] and previous work of Babai,
Luks and Seress [BLS88]. In addition, it makes extensive use of a struc-
ture theorem for primitive groups by Cameron [Cam81], which can be
derived from results of Kantor [Kan79] and the classification of finite sim-

ple groups.

1. Introduction

New combinatorial methods for computing with permutation groups have

recently been developed which have led to Monte Carlo algorithms for solv-

ing fundamental problems that have superior worst case asymptotic perfor-

mance [BCF+91, BCF++91, CF92]. The main objective of this paper is

to explore the power of these methods when additional assumptions are made

concerning the nature of the action on the underlying point set. In particular, we

prove the following result. We use the notation O (̃f(n)) to mean O(f(n) logc n)

for some constant c. This work is based on the thesis of Sarawagi [Sar92].

Theorem 1.1. Let G = 〈S〉 be a group acting on Ω, such that S ⊆ Sym(Ω),

|Ω| = n, G has t orbits, and the action of G on each orbit is primitive. Then
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a strong generating set for G can be determined in O (̃n|S|+ tn2) Monte Carlo

time.

The proof of Theorem 1.1 is based on the procedure SGS Primitive Orbits

in section 2 and given in Theorem 2.1.

The algorithm used to prove Theorem 1.1 relies on a classification of the orbits

of a permutation group (Theorem 3.8). This classification of the primitive orbits

makes extensive use of the classification of finite simple groups through a result

of Cameron [Cam81], which in turn relies on work of Kantor [Kan79]. For

our purposes, if G is a permutation group on an n-element set Ω and O is an

orbit of G with GO primitive, then O is a small base orbit if |GO| < |O|5 log |O|

(Definition 3.13). The Cameron orbits (Definition 3.7) include all orbits that

are not small base. In the latter case the structure of GO is well determined by

Theorem 3.9. In the special case where GO contains Alt(O) we use an elegant

algorithm for finding a 3-cycle due to Babai, Luks and Seress [BLS88]. If such

an orbit is not small base, it is called a giant (Definition 3.13), as in [BLS87].

Note that if O is a giant orbit, then |O| ≥ 35 (since otherwise |GO| < |O|5 log |O|).

The algorithm proceeds in two phases. As a pre-processing step, the giant

orbits are recognized and the points are re-ordered so that the points of the giant

orbits are last in the ordering.

The first phase, described in section 3, uses a typical Sims-type control struc-

ture [Sim]. One finds a strong generating set for the action of the group on

a non-giant orbit O, and generators for the pointwise set stabilizer of O. The

action of the stabilizer subgroup on the next non-giant orbit is then considered.

The key to this phase is controlling the number of Schreier generators for each

point stabilizer subgroup as we proceed through a sequence of base points in

O. Two techniques are used to achieve this control. First, it is noted that if

O is a Cameron orbit, then the action on O, of the point stabilizer subgroup,

is faithful on its second smallest orbit. Further, the length of that orbit is at

most 3
√
|O|. Second, a new theorem on reduction of generators is proved (The-

orem 3.15), which shows that if we are given O∼(t) generators for the current

point stabilizer subgroup, then one can efficiently construct a generating set of

size O∼(t) for the next point stabilizer subgroup which guarantees that the total

time to “process” the orbit is O∼(nt|O|) Monte Carlo time. This reduction is

accomplished using a generalization of combinatorial techniques first introduced

in [BCF+91] (see also [CF92] in this volume) rather than sifting. An interest-

ing consequence of these techniques is the following corollary to Theorem 3.15

(for H = G).

Corollary 1.2. Let G = 〈S〉 be a group acting on Ω with |Ω| = n, and

suppose G has t orbits, and the action of G on each orbit is primitive. Then

a generating set for G containing O(t log2 n) elements can be constructed in

O∼(n|S|) Monte Carlo time.
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In the second phase, described in section 5, one begins with generators for a

normal subgroup N of G which is the pointwise set stabilizer in G of all non-giant

orbits. Initially one works with the socle of N , denoted Soc(N). Because each

giant orbit has size at least 35, the projection of Soc(N) on a remaining orbit is

either trivial or a giant. The key to finding a strong generating set for Soc(N)

is the “fast-giant” technique developed by Babai, Luks and Seress [BLS88],

which allows the construction of a 3-cycle from a generating set for a giant

in O∼(n2) Las Vegas time. Also needed is a fast normal closure algorithm

described in [BCF+91] The full strong generating set can then be constructed

by viewing N/Soc(N) as a subgroup of an elementary abelian 2-group, and

employing techniques of linear algebra.

The algorithms we present in this paper are all Monte Carlo. A Monte Carlo

algorithm is a randomized algorithm whose reliability (probability of success)

can be increased at the cost of additional time. The Monte Carlo nature of the

main algorithm arises through multiple invocations of Monte Carlo subroutines.

The subroutines have some small probability of returning an incorrect answer,

and multiple invocations of the algorithms can lead to a large overall probability

of error. However, all of the subroutines satisfy the property that if they run in

time c for some input, and if they are allowed to run for an additional factor of

time, t, then the probability of error will be ce−t. Under these circumstances,

one can always argue that if such an algorithm is invoked k times, then allowing

an additional factor of t = log k time for each invocation will cause the overall

probability of error to be bounded by c. The details of the argument are con-

tained in Theorem A.2 of the appendix of [CF92], and formal definitions and

related theorems are contained in the same appendix. Thus, some additional

number of log n factors suffice to retain a reasonably small probability of error

and for this reason, we may omit explicit proofs of reliability.

2. Overview of the Main Algorithm

In this section, we provide an overview of our main algorithm and the sup-

porting subroutines. In order to highlight the underlying algorithmic ideas, we

defer the formal timing analyses until later sections.

The ordering of Ω ultimately is determined by the algorithm as it processes

the orbits in a top down fashion. We will denote by Oj , the jth orbit which has

been processed and set O(i) = ∪i−1
j=1Oj for 1 ≤ i ≤ t + 1.

Procedure SGS Primitive Orbits

Input: (S,Ω) where 〈S〉 = G acts on Ω and has t primitive orbits

Output: A set U which is an SGS for G

Replace S by S′ such that G = 〈S′〉 and |S′| = O (̃t)

Test Giants(S,Ω)

Reorder Ω = ∪t
i=1Oi such that giant orbits are last
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Initialize S′′ ← S′, i← 1 and U ← ∅
While i ≤ t and Oi is a non-giant orbit do

(U ′, S′′)← SGS Non-Giant & Orbit Stabilizer(S′, S′′, Oi,Ω)

[U ′ is a SGS for GOi

O(i) and GO(i+1) = 〈S′′〉]
Add U ′ to U

Let A be the union of non-trivial orbits of 〈S′′〉
Add SGS Giant Orbits(S′′, A) to U

Return U

Theorem 2.1. The procedure SGS Primitive Orbits is correct and runs in

O (̃n|S|+ tn2) Monte Carlo time.

Proof. The first step is to ensure that |S| is not too large. This is accom-

plished using Theorem 3.3, which shows how to replace S by a generating set S′

so that |S′| = O (̃t) in O (̃n|S|) Monte Carlo time. The algorithm then classifies

the orbits into types giant and non-giant. This can be done in O (̃tn2) time (see

Section 4). Using this classification, the orbits are reordered so that the non-

giant orbits appear before the giant orbits. Let t′ be the number of non-giant

orbits.

For each i, 1 ≤ i ≤ t′, SGS Non-Giant & Orbit Stabilizer(S′, S′′, Oi,Ω)

is invoked. This routine outputs a SGS, U ′, for GO(t′+1)

and generators S′′ for

GO(t′+1) in O (̃tn|Oi|+n2) Monte Carlo time by Theorem 3.1. Furthermore, the

size of S′′ is O∼(t).

Continuing with i, t′ < i ≤ t, either GOi

O(t′+1) is a giant or acts trivially. If the

action is that of a a giant, the algorithm invokes the procedure SGS Giant Orbits

using the generators for GO(t′+1) . It is shown in Theorem 5.2 that this phase is

correct and takes O (̃tn2) Monte Carlo time. Hence SGS Primitive Orbits is

correct and runs in the stated time.

3. Non-Giant Primitive Orbits

The iterative step in the main algorithm for a non-giant orbit can be formu-

lated as follows. We are given a generating set S of size O∼(t) for the normal

subgroup N = GO(i) of G. We must produce a set U of strong generators for

NO(i)

and a generating set S′ for NO(i) = GO(i+1) of size O∼(t). This is accom-

plished by the next procedure.

Procedure SGS Non-Giant & Orbit Stabilizer

Input: (S, S′, O,Ω) where S, S′ ⊂ Sym(Ω), |S| = O (̃t), |S′| = O (̃t),

N = 〈S′〉 E G = 〈S〉, G has t primitive orbits and

O is a non-giant G orbit.

Output: A set U ⊂ N which is an SGS for NO

and a generating set S′′ for NO of size O (̃t).

Let x1 be an arbitrary point of O
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Let O′
x1

be the smallest orbit of Gx1
acting on O \ {x1}

Reorder the points of O such that x1 is first followed by O′
x1

Set S′′ ← S′, U ← ∅
For each consecutive base point xi (i ≥ 1) in O do

Let T be O∼(1) elements of 〈S′′〉 such that x
〈T 〉
i = x

Nx1,... ,xi−1

i

[T is constructed using Lemma 3.2(ii).]

Add T to U

Let C be a transversal for Nx1,... ,xi
in Nx1,... ,xi−1

built from T

Let Si be a set of Schreier generators for Nx1,... ,xi
built from S′′ and C

Replace S′′ by a generating set for Nx1,... ,xi
of size O∼(t) built from Si

[S′′ is constructed using the argument in Theorem 3.15]

Output U and S′′

Theorem 3.1. The procedure SGS Non-Giant & Orbit Stabilizer runs in

Monte Carlo time O∼(n|O|t) and outputs a generating set of size O∼(t) for the

point stabilizer of O.

Proof. The proof can be understood by quoting results from Sections 3.2

and 3.3 and deferring formal definitions and proofs of these results until those

sections.

We analyze the time to construct S′′ through each iteration of the loop, since

this will dominate the running time for the procedure. First observe that by

Lemma 3.17 the hypotheses of Theorem 3.15 are satisfied with regard to the

subgroup Nx1,... ,xi
.

If log |GO| ≤ 5 log2 n (O is a small base orbit), then there are O∼(t|O|) Schreier

generators, for Nx1,... ,xi
. By Theorem 3.15, this generating set can be reduced

to one of size O∼(t) in Monte Carlo time O∼(t|O|n). Since there are at most

O(log2 n) base points on O, the total time spent in a small base orbit O is

O∼(t|O|n).

If log |GO| > 5 log2 n, then O is a Cameron type orbit for which the smallest

orbit of Gx1
on O \ {x1} has length at most 3

√
|O|, by Lemma 3.12. There are

O∼(t|O|) Schreier generators for Nx1
and so the time to find O∼(t) generators

for Nx1
is O∼(t|O|n), as for the small base case. For successive point stabilizers

with i > 1, there are at most O∼(t
√
|O|) Schreier generators. One can replace

them with O∼(t) Schreier generators in O∼(t
√
|O|n) Monte Carlo time by The-

orem 3.15. Since there are at most 3
√
|O| base points on this orbit, that bounds

the number of iterations, and the total time spent on a Cameron type orbit is

also O∼(t|O|n).

3.1. Random Subproducts and Subgroup Chain Lengths. The algo-

rithms presented in this paper make heavy use of combinatorial methods for

computing with groups based on the notion of random subproducts. This has

led to a rich supply of new randomized tools for computing with groups. In
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this section, we will briefly review the specific ideas we require for this paper,

and refer the reader to [CF92] in this volume for a more through treatment,

including proofs.

A random subproduct of a sequence of group elements (g1, g2, . . . , gk) is a

product of the form g1
e1g2

e2 · · · gk
ek where ei ∈ {0, 1} are selected independently

from the uniform distribution over {0, 1}. Given a set, S, of generators of a

group, G, and a transversal T of a point stabilizer subgroup Gx in G, a random

Schreier subproduct is formed as follows. Form a random subproduct, g, of the

sequence of group elements in S (for h ∈ G, let h be the unique element in T

such that hh ∈ Gx), form all Schreier generators tg(tg)−1 for t ∈ T , and then

form a random subproduct on this set of Schreier generators.

Random subproducts and random Schreier subproducts, though not purely

random elements of G and Gx, respectively, have useful properties. The following

lemmas describe these properties.

Lemma 3.2. Let G = 〈S〉 be an arbitrary permutation group acting on Ω with

|Ω| = n.

(i) Let H < G be a proper subgroup. Then the probability that a random

subproduct r (formed using S) is not in H is at least 1/2.

(ii) There exists a constant c > 0 such that for arbitrary d ≥ 1, if S′ is a

set of cd log n random subproducts on S, then with probability at least

1− 1/nd, 〈S′〉 has the same orbit structure on Ω as G.

(iii) Let x ∈ Ω, T a transversal of Gx in G, and H < Gx is a proper subgroup

then the probability that a random Schreier subproduct, rx, formed using

S and T , is not in H, is at least 1/4.

The proof of (i) and (ii) can be found in [BCF+91] or [CF92]. The next

theorem is a generalization of Theorem 2.3 in [BCF+91]. For convenience, we

base the proof on the version appearing as Theorem 2.9 in [CF92].

Theorem 3.3. Let G = 〈S〉 be a finite group. Let H ≤ G, and let L̂ be a

known upper bound on the length of all subgroup chains from H to G. Then for

any fixed parameter p such that 0 < p < 1, with probability at least p one can

find a set Ŝ with |Ŝ| = O(L̂ log(1/(1 − p))) using O(|S| (log L̂) log(1/(1 − p)))

group operations such that 〈Ŝ,H〉 = G.

Proof. The proof is given as a modification of the proof of Theorem 2.9

in [CF92] (this volume). One must initialize the S′ of the original proof to T , a

generating set for H, instead of the empty set, and interpret the L of the original

proof as |T |+ L̂. Further, if one replaces 〈g1, . . . , gi−1〉 by 〈H, g1, . . . , gi−1〉 ev-

erywhere, then the logic of the proof generalizes verbatim to the current theorem.

The new generating set Ŝ is then chosen as S′ \ T , and 〈Ŝ,H〉 = G.

Theorem 3.4. (Cameron et al. [CST89]) Any subgroup chain of a permuta-

tion group of degree n has length at most 3n/2.



GROUP MEMBERSHIP FOR GROUPS WITH PRIMITIVE ORBITS 7

Another variation of the above theorem was proved by Babai [Bab86] with a

bound of 2n− 3.

Lemma 3.5. (Scott [Sco79]) Let G = H1 × . . . × Hr be the direct product

of non-abelian simple groups Hi, 1 ≤ i ≤ r. Let M be a subgroup of G which

projects onto each Hi for 1 ≤ i ≤ r. Then there exists a partition {B1, . . . , Bs}
of {1, . . . , r} such that M = D1× . . .×Ds where each Di is a diagonal subgroup

of ×j∈Bi
Hj.

Corollary 3.6. Let W be the disjoint union of r sets Wi, each of size at

least 2. Suppose that H is a subgroup of G = Alt(W1) × · · · × Alt(Wr) and

H projects onto Alt(Wi) for each i. Then the length of any chain of proper

subgroups from H to G is at most 2r.

The proof follows easily from Lemma 3.5. If |Wi| 6= 4 for all i, then the

alternating groups are simple, and a bound of at most r on the chain can be

found. Otherwise, 2r subgroups may be needed.

3.2. Cameron Groups. We begin by defining a class of primitive groups

referred to as Cameron groups.

Definition 3.7. Let (k, r, s) be a triple of positive integers such that k ≥ 5

and s ≤ k/2. Let C be the disjoint union of r sets B1, . . . , Br each of size k

and let A = {X ⊂ C | ∀i, |X ∩ Bi| = s}. If G is a transitive subgroup of

Sym(C) for which each Bi, 1 ≤ i ≤ r, is a block of imprimitivity and if G

contains Alt(B1)× · · · × Alt(Br), then GA is a primitive group (as can be seen

by noting that the point stabilizer subgroup must be maximal in G). GA is said

to be a Cameron type group with parameters (k, r, s). GC is called the natural

or imprimitive Cameron action.

In the discussion to follow, we often directly identify elements X ∈ A with

subsets of C satisfying the property |X ∩ Bi| = s for 1 ≤ i ≤ r. Note that the

socle, Soc(G), has a faithful representation on C as Alt(B1)×· · ·×Alt(Br), and

that Soc(G) is a single minimal, normal subgroup. It is easy to verify that the

action of G on the set {X ⊂ C | |X ∩ Bi| = s} is primitive, by noting that the

point stabilizer subgroup must be maximal in G. Maximality follows from the

characterization of the point stabilizer subgroup in Lemma 3.14.

The motivation for defining Cameron groups is the following theorem due to

Cameron [Cam81]. It is based on the classification of finite simple groups, and

on work by Kantor on permutation representations of classical groups [Kan79].

Theorem 3.8. [Cam81] Let G be a primitive group acting on n points. If

|G| ≥ n5 log n, then n =
(
k
s

)r
and G is a Cameron group of type (k, r, s).

The following lemma gives some properties of a Cameron group. The calcu-

lations are based on those in [BLS87, BLS88], but have been re-calculated to

achieve tighter bounds. The logarithmic base is 2 unless otherwise specified.
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Lemma 3.9. Let G be a Cameron type group with parameters (k, r, s) acting

on A. Let |A| = n. Then,

(i) n =
(
k
s

)r
;

(ii) rs log(k/s) ≤ log n;

(iii) k ≤
√

2n when r > 1 or s > 1, otherwise k = n;

(iv) log |G| < (log n) log log n
s log(k/s) + k

s log n + k
s log n log s

log(k/s) ;

Proof. Part (i) is clear. Part (ii) follows from (k
s )rs ≤

(
k
s

)r
. In part

(iii), for fixed n, k is maximized when r = 1 and s = 2, and the bound

follows from (i). For part (iv), the inequality follows from |G| ≤ r!(k!)r ≤
r!

(
k
s

)rk/s
(s!)rk/s = r!nk/s(s!)rk/s. After applying part (ii), log |G| ≤ r log r +

k/s log n + rk/s log(s!) < (log n) log log n
s log(k/s) + k

s log n + k
s log n log s

log(k/s) .

Definition 3.10. Let G = GA be a Cameron type group with parameters

(k, r, s). For X ∈ A (and B1, . . . , Br as in Definition 3.7), define the GX -orbit

Σ1(X) to be the set

{Y ∈ A | ∃j, 1 ≤ j ≤ r, ∀i 6= j, |Y ∩X ∩Bj | = s− 1, Y ∩Bi = X ∩Bi}.

It is clear that Σ1(X) ⊂ A is an orbit of the point stabilizer subgroup GX .

The next lemma provides a finer estimate of calculations based on Theorem 4.1

of [BLS87].

Lemma 3.11. Let G = GA be a Cameron type group. For arbitrary X ∈ A,

the action of GX on Σ1(X) is faithful. If G is not a giant, then |Σ1(X)| ≤
3
√

n − 1, and therefore Σ1(X) ∪ {X} is a base for G of size at most 3
√

n. If

log |G| > 5(log n) log log n, then Σ1(X) is the smallest orbit of GX in A \ {X}.

Proof. The action of GX on C has orbits X ∩ Bj and (C \ X) ∩ Bj for

1 ≤ j ≤ r. To see that the action is faithful, we show that the kernel is trivial.

Let g ∈ GC
X be non-trivial. Let g′ ∈ GA

X correspond to g under the permutation

equivalence. There is a y ∈ Bj ⊆ C for some j, such that yg 6= y. If y ∈ X ∩Bj ,

choose Y ∈ Σ1(X) such that Y ∩ Bi = X ∩ Bi for i 6= j, and Y ∩ Bj =

((Bj ∩X)\{y})∪{z} for arbitrary z ∈ Bj \X. If y ∈ Bj \X, choose Y ∈ Σ1(X)

such that Y ∩ Bi = X ∩ Bi for i 6= j, but Y ∩ Bj = ((Bj ∩X) \ {z}) ∪ {y} for

arbitrary z ∈ Bj ∩ X. Since yg 6= y, it is clear that Y g′ 6= Y , and so GX is

faithful on Σ1(X).

The length of Σ1(X) is rs(k − s). If G is not a giant, then r > 1 or

s > 1, and Lemma 3.9(ii, iii) yields rs(k − s) ≤ (k − s)(log n)/ log(k − s) <

k (log n)/ log k ≤ 23/2
√

n < 3
√

n. Direct calculation shows that Σ1(X) is the

smallest orbit of GX in A \ {X} except possibly when s ≥ ⌊(k − 1)/2⌋. Con-

sider an orbit Σ2(X) with parameters t1 and t2 such that for all Y ∈ Σ2(X),

|Y ∩ Bi \ X| = t1 > 0 and |Y ∩ Bj \ X| = t2 > 0 for some i 6= j. (It is

clear that this property will be preserved for all points in the same orbit.) Then

|Σ2(X)| ≥ q
(

s
t1

)(
k−s
t1

)(
s
t2

)(
k−s
t2

)
> |Σ1(X)| when s = t < ⌊(k − 1)/2⌋. Here, q is
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the number of distinct intersection patterns, (|Y ∩B1 \X|, . . . , |Y ∩Br \X|), for

Y ∈ Σ2(X). It is easy to show that q ≥ r, using the transitivity of the action of

G on {B1, . . . , Br}. Next, consider an orbit Σ3(X) with parameter t such that

for all Y ∈ Σ3(X), |Y ∩Bi \X| = t > 1 and |Y ∩Bj \X| = 0 for some i and for

all j 6= i. Then |Σ3(X)| = r
(
s
t

)(
k−s

t

)
> |Σ1(X)| when s = t < ⌊(k − 1)/2⌋.

If Σ1(X) is not the smallest orbit, then s ≥ ⌊(k − 1)/2⌋, and one has the

estimates s ≥ 2, 2 ≤ k/s ≤ 5/2, n ≥ 10, and log s ≤ log log n. (The last

inequality follows from Lemma 3.9(ii).) Applying Lemma 3.9(iv) shows that

log |G| ≤ 5(log n) log log n. So, Σ1(X) is the smallest orbit of GX when log |G| >
5(log n) log log n.

Corollary 3.12. If G is primitive of degree n ≥ 2, and log |G| > 5 log2 n,

then G is of Cameron type and the second smallest orbit of its point stabilizer

subgroup, Gx, is Σ1(x). Further, the action of Gx on Σ1(x) is faithful. If G is

not a giant, then |Σ1(x)| < 3
√

n.

Proof. For n ≥ 2, Theorem 3.8 shows that G is of Cameron type. Since

5 log2 n > 5(log n) log log n for n ≥ 2, the remaining conclusions follow from

Lemma 3.11.

This motivates the next definition. The restriction of giants to groups of

degree n at least 35 avoids certain pathological case that would have arisen in

section 5 if n = 4 or n = 6.

Definition 3.13. A small base group is a group of degree n such that log |G| ≤
5 log2 n. A giant is a group of the form Sn or An that is not of type small base.

This implies that n > 10 for giants. An orbit of G is identified as large, small

base, or Cameron type according to whether the action of G on that orbit is a

group of the corresponding type.

Lemma 3.14. Let G = GA be a primitive Cameron group with parameters

(k, r, s) such that |A| = n and let GC be the imprimitive Cameron action.

Let X ∈ A and let Y1, . . . , Ym be a sequence of points in Σ1(X). Let H =

GX,Y1,... ,Ym
. Then H has a normal subgroup K such that KC has orbits Ui =

Xi ∩ Y1 ∩ · · · ∩ Ym and Vi = (Bi \Xi)∩ (Bi \ Y1)∩ · · · ∩ (Bi \ Ym), 1 ≤ i ≤ r and

KC = Alt(U1)×Alt(V1)× · · · ×Alt(Ur)×Alt(Vr). Furthermore, HC acts faith-

fully on (∪r
i=1Ui) ∪ (∪r

i=1Vi) (and hence permutes the set {U1, V1, . . . , Ur, Vr}).

Proof. Note that GX satisfies the conclusion. Note that X\Yi and Yi\X are

trivial orbits of GX,Y1,... ,Yi
for 1 ≤ i ≤ m. Each non-trivial orbit of GX,Y1,... ,Yi−1

is formed from the set difference of an orbit of GX,Y1,... ,Yi
and the union of the

two trivial orbits. So, the conclusion will continue to be satisfied for all i.

3.3. Main Result. There are two situations where we require reduction of

generators. The first is in SGS Primitive Orbits when we are given the initial

generating set S for G and want to reduce it to one of size O∼(t). The second

occurs in SGS Non-Giant & Orbit Stabilizer when we construct the Schreier
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generators for a point stabilizer and want to reduce it to one of size O∼(t) for

the next round. The hypotheses of the following result are designed to capture

both instances.

Theorem 3.15. Let G acting on Ω have t primitive orbits. Let H = 〈S〉 be a

subgroup of G that acts faithfully on A ⊆ Ω, where A is a union of some of the

G-orbits, O1, . . . , Ot. Each Oi is either a small base orbit or a Cameron orbit

or both. Without loss of generality, assume that the Cameron orbits appear as

O1, . . . , Or for r ≤ t. Assume that if GOi is a Cameron orbit with parameters

(ki, ri, si) and Ci supports the natural action of GOi , then the following holds for

HCi .

(i) There exist mutually disjoint subsets V i
1 , . . . , V i

ℓi
of Ci such that HCi

acts faithfully on Ui = ∪ℓi

j=1V
i
j .

(ii) Alt(V i
1 )×· · ·×Alt(V i

ℓi
) is normal in HUi

(and so HUi

permutes the sets

{V i
1 , . . . , V i

ℓi
}).

(iii) ℓi ≤ 2ri ≤ 2 log n.

Then in O∼(|S|n) Monte Carlo time, one can construct a generating set S′ for

H such that |S′| = O(t log2 n).

The proof of Theorem 3.15 follows directly from Lemma 3.16 and Theorem 3.3.

Lemma 3.16. Assume the hypotheses of Theorem 3.15 Let M be a subgroup of

H generated by Ω(log n) random subproducts of S. Then L(M,H) = O(t log2 n).

Proof. Assume first that each of the orbits Oi is a Cameron orbit. Let

U = ∪t
i=1(∪ℓi

j=1V
i
j ), so that G acts faithfully on U and permutes the sets {V i

j |
1 ≤ j ≤ ℓi, 1 ≤ i ≤ t}.

For each V i
j , let di

j = min(|V i
j | − 2, 6) and define the set

(V i
j

di
j

)
to be the set of

all subsets of V i
j of size di

j . Let U = ∪t
i=1(∪ℓi

j=1

(V i
j

di
j

)
). Then H acts faithfully on

U and |U| ≤ ∑t
i=1(

∑ℓi

j=1 |V i
j |6) ≤

∑t
i=1 |Ui|6 ≤

∑t
i=1 |Ci|6 ≤

∑t
i=1 |Oi|6 ≤ n6.

By Lemma 3.2, Ω(log n) random subproducts on S will generate a subgroup M

which has high probability of having the same orbits on U as H. Since H
V i

j

{V i
j
}

contains Alt(V i
j ) it follows that

(V i
j

di
j

)
is contained in an orbit of MU . But any

element of MU that which takes one di
j subset of V i

j to another must stabilize V i
j .

So the set stabilizer M{V i
j
} is di

j-transitive on V i
j . So, M

V i
j

{V i
j
}

contains Alt(V i
j ).

We will use this property to show that L(M,H) = O(t log2 n). Note that the

orbits of M on U are the same as those of H on U .
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Define Ĥ = HU1×· · ·×HUt ≤ Sym(U). We will show that L(M, Ĥ) = O∼(t),

which suffices since M ≤ H ≤ Ĥ. Let

K̂ = 6 \
1≤i≤t

1≤j≤ℓi

Alt(V i
j ),

so that K̂ ≤ Ĥ. Consider the (possibly unfaithful) action of Ĥ on {V i
j |

1 ≤ j ≤ ℓi, 1 ≤ i ≤ t}. By (iii), there are at most 2t log n elements in this set.

Moreover, the kernel of the action contains K̂ with index at most 22t log n. It then

follows from this and the bound on the length of subgroup chains in symmet-

ric groups (Theorem 3.4), that L(K̂, L̂) = L(Ĥ/K̂) ≤ 2t log n + 3/2(2t log n) ≤
5t log n = O∼(t).

Since K̂ is normal in Ĥ, it remains to estimate L(M, K̂). Let M = M0 <

M1 < · · · < Mp = Ĥ be a proper chain of subgroups. By retaining only the

subgroups in the chain that satisfy Mi+1 ∩ K̂ > Mi ∩ K̂, we construct a new

chain

M ∩ K̂ = K0 < K1 < · · · < Kp′ ≤ K̂

for p′ ≤ p, such that for each r with 1 ≤ r ≤ p there is a unique s such that

Kr = Ms ∩ K̂. Note that L(M ∩ K̂, Ĥ) ≤ p′ + L(K̂, Ĥ). So, we must estimate

p′, which will be an upper bound on L(M, K̂).

We show that (Kr)
V i

j is either the alternating or trivial group. Let s corre-

spond to r, so that Ms∩K̂ = Kr. Note that Ms∩K̂⊳Ms and (Ms)
V i

j

{V i
j
}
≥ Alt(V i

j ).

So, (Ms ∩ K̂)V i
j ⊳ (Ms)

V i
j ∩Alt(V i

j ). Thus, if di
j 6= 4, then (Kr)

V i
j = (Ms ∩ K̂)V i

j

is either Alt(V i
j ) or the trivial group. Hence, this is true for all Kr, 1 ≤ r ≤ p′.

For each Kr, the action on each component with di
j 6= 4 must be alternating

or trivial. Let ur be the number of components on which there is an alternating

action. By Lemma 3.5, the action on the ur alternating components decomposes

into the direct product of vr ≤ ur actions, where each of the vr actions is a

diagonal of alternating actions on a subset of the {V i
j }. Further, if Kr+1 < Kr,

then ur+1 > ur or vr+1 > vr. Since up′ ≤ 2t log n and vp′ ≤ 2t log n, p′ ≤
4t log n. On the other hand, if each of the orbits have length 4, then a similar

argument, in conjunction with Corollary 3.6 shows that vp′ ≤ 4t log n and so

p′ ≤ 6t log n.

We have shown that the result holds in the case where all the orbits Oi are

Cameron orbits. The general case now follows easily by applying this result to

the action of G on the union of the Cameron orbits and observing that the kernel

of the action is faithfully represented on a union of small base group orbits of G

on Ω. The kernel has order at most 22t log2 n by Theorem 3.8, yielding a bound

of 2t log2 n for the subgroup chain length.

The final result in this section describes the situation in which Theorem 3.15

is invoked.
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Lemma 3.17. Let G acting on Ω have t primitive orbits and let N be a normal

subgroup of G. Let O be a G-orbit and x1, . . . , xℓ a sequence of base points in O

for NO chosen so that xi, 2 ≤ i ≤ ℓ is in the smallest orbit of Gx1
acting on O.

Let A be the union of O and all G-orbits Oj such that N
Oj

O is non-trivial. Then

Nx1,... ,xi−1
and A satisfy the hypotheses of Theorem 3.15, where Nx1,... ,xi−1

is

identified with H.

Proof. It is clear that N acts faithfully on A. Let Oj ⊆ A be a Cameron

type orbit with O 6= Oj . Since N
Oj

O is a non-trivial normal subgroup of GOj , N
Oj

O

contains the socle of GOj . This is also true for N
Oj
x1,... ,xℓ , and so the hypotheses

of Theorem 3.15 are satisfied with regard to Nx1,... ,xℓ
and Oj whenever Oj is

a non-giant Cameron orbit. It remains to verify the hypotheses when O is a

non-giant Cameron orbit. But this follows directly from Lemma 3.14 and the

assumption on how the sequence x1, . . . , xℓ is chosen.

4. A Monte Carlo Test for Giant Action

In the main procedure SGS Primitive Orbits, it is necessary to classify the t

primitive orbits of G into types giant and non-giant. In this section we present a

O (̃tn2) Monte Carlo time algorithm for accomplishing this task. The procedure

Test Giants is based on repeated application of Theorem 3.15. This allows for

a simple exposition of the algorithm.

Procedure Test Giants

Input: (S,Ω) where S ⊆ Sym(Ω), |S| = O (̃t),

G = 〈S〉 and G has t primitive orbits.

Output: Each orbit is identified as type giant or non-giant

For each orbit O of G do

If |O| < 35 then mark O as non-giant

Else set S′ ← S

Choose points x1, . . . , x6 in O

For i← 1 to 6 do

Let T be O∼(1) random subproducts of 〈S′〉 such that

x
〈T 〉
i = x

Gx1,... ,xi−1

i

If |x〈T 〉
i | 6= |O| − i + 1 then

Mark O as a non-giant and break from the loop

Let C be a transversal for Gx1,... ,xi
in Gx1,... ,xi−1

built from T

Let S′′ be a set of Schreier generators for Gx1,... ,xi
built from S′′ and C

Replace S′ by a generating set for Gx1,... ,xi
of size O∼(t) built from S′′

Theorem 4.1. Procedure Test Giants is correct and runs in Monte Carlo

time O(tn2).
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Proof. The algorithm simply tests whether GO is 6-transitive. The cor-

rectness of this approach is a consequence of the classification of finite simple

groups [Gor82]. In addition, we need to invoke Lemma 3.17 in order to ensure

that the the hypotheses of Theorem 3.15 apply. The time for each orbit is easily

seen to be O∼(t|O|n) from Theorem 3.15 and this then leads to the stated time

bound.

5. Giant Orbits

In this section, we describe the procedure SGS Giant Orbits. When this pro-

cedure is called, SGS Primitive Orbits has computed a set of O∼(t) generators

for the pointwise stabilizer of all the non-giant orbits. Since this subgroup is

normal, the action on the remaining non–trivial orbits must be of giant type.

This justifies the assumptions made for the input to SGS Giant Orbits. The

procedure constructs a strong generating set for the input group in two stages.

First, SGS Alt Orbits (described later) is invoked to compute a strong generat-

ing set for the alternating action on each orbit and then a standard linear algebra

argument is invoked in order to complete the strong generating set to one for

the entire group. Corollary 5.1 reveals the structure of G as a direct product of

alternating groups which act diagonally on subsets of the orbits.

Procedure SGS Giant Orbits

Input: (S,A) where 〈S〉 = G ≤ Sym(Ω), G acts faithfully on A ⊆ Ω,

A is a union of giant orbits O1, . . . , Ot of G and |S| = O∼(t).

Output: T such that T is a SGS for G with respect to an ordering

determined by the algorithm.

T ← SGS Alt Orbits(S,A)

[T is a SGS for G ∩ (Alt(O1)× · · · ×Alt(Ot))]

Let S′ = {s ∈ S | s|Oi
is odd for some Oi}

[Simulate Gaussian elimination on G/G′]

For i← 1 to t do

Let s′ be the first element of S′ such that s′|Oi
is odd (if it exists)

If such an s′ exists then

Set S′ ← S′ \ {s′}
Set s′ ← the residue of sifting s′ through T on Oi

[s′|Oi
is now a 2-cycle]

Set T ← T ∪ {s′}
Set S′ ← S′s′

−1

Replace each s ∈ S′ by the residue of sifting s through T on Oi

[S′Oi is now trivial]

Return T
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The next procedure makes use of a fast normal closure routine, developed

in [BCF+91], and described further in [CF92] (this volume). It also refers

to a procedure Three Cycle due to Babai, Luks and Seress and is described

in [BLS88]. If a group specified by a generating set of size O∼(n) contains the

alternating group, then this procedure will construct a three-cycle in O∼(n2) Las

Vegas time.

Procedure SGS Alt Orbits

Input: (S,A) as in SGS Giant Orbits

Output: a SGS, T , for G ∩ (Alt(O1)× · · · ×Alt(Ot))

with respect to an ordering determined by the algorithm.

Initialize T ← ∅
Let all orbits be unmarked.

Mark the first orbit, O1, of G

Let x ∈ O1 and S′ a set of Schreier generators for Gx1
formed from S

For i← 2 to t do

If S′ has a fixed point on Oi then mark Oi

[In our setting, this is true if and only if GOi

O1
is trivial.]

Let T ′ be a SGS for GO1 ∩Alt(O1) whose elements act as 3-cycles on O1

[By invoking 3-Cycle]

Replace each element in T ′ by its square [This ensures that T ′ ⊆ Alt(Ω)]

For each unmarked orbit O of G do

Let S′′ be a generating set for SO1∪O of size O∼(1)

[Found by applying Theorem 3.15]

Set σO ← Element Fixing an Orbit(S′′, O1, O)

Let O be the set unmarked orbits on which σ0 acts non-trivially

Let O = ∪O∈OO and nO = |O|
Let σ′

O
be the residue of sifting σO through T

[σ′
O
|O = σO|O and is trivial elsewhere.]

Let S′
O

be a set of O(n) generators for the normal closure of 〈σ′
O
〉 in G

[The “fast normal closure” routine is used”]

Let S′′
O

be a reduced set of O∼(n0) generators for 〈S′
O
〉

Set T ← Prepend (SGS Alt Orbits(S′′
O

, O), T )

Mark all orbits in O

Set T ← Prepend(T ′, T )

Return T

Procedure Element Fixing an Orbit

Input: (S,O1, O2) where O1 and O2 are unlinked giant

orbits for G = 〈S〉 and |S| = O∼(1).

Output: An element of GO1
which acts non-trivially on O2.
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σ ← Three Cycle (S,O1)

Set σ ← σ2 [to ensure that σ ∈ Alt(O1 ∪O2)]

Let σ|O1
= (a b c), σ|O2

= δ

If δ is non-trivial then

Let U be a set of O∼(1) generators for Ga,b,c

[Found by repeated application of Theorem 3.15 ]

Let g be an element of U such that [g, σ] = [g, δ] 6= 1

[Since Alt(O2) ≤ 〈S〉O2 , δ is not centralized by S]

Return([g, σ])

Else [δ = (a b c)]

Let T be a SGS for GO1 constructed from (a b c) with T ⊆ GO2

For each s ∈ S do

Let s′ ∈ GO1
be the residue of s sifted through T

If s′ 6= 1 return(s′)

5.1. Giant Orbits: Proof of Correctness. The proof of correctness for

SGS Alt Orbits follows directly from the following result.

Corollary 5.1. Assume that G ≤ Sym(Ω) and that Soc(G) acts as the full

alternating group on each orbit Oi, 1 ≤ i ≤ t of G. Then there exists a partition

of {O1, . . . , Ot} into subsets {B1, . . . , Bs} such that Soc(G) is the direct product

of alternating groups, with each direct factor acting as a diagonal subgroup on

the orbits in precisely one of the blocks Bi and fixes pointwise the orbits in the

other blocks. Furthermore, if σ ∈ Soc(G), then the normal closure of 〈σ〉 in G

is the product of the diagonal subgroups corresponding to the blocks Bi on whose

orbits σ acts non-trivially.

Theorem 5.2. Let G = 〈S〉 act on Ω with |Ω| = n. Assume that G has t giant

orbits and that |S| = O∼(t). Then the procedure SGS Giant Orbits constructs

a SGS for G in O∼(tn2) Monte Carlo time.

Proof. The proof of correctness and the timing for SGS Giant Orbits is

clear once the corresponding results have been proved for SGS Alt Orbits.

The correctness of SGS Alt Orbits relies on Corollary 5.1. As long as there

are unmarked orbits, the procedure will construct a non-identity element σ′
O

which fixes pointwise each marked orbit and acts non-trivially on the union O of

a subset of unmarked orbits. In the notation of Corollary 5.1, O is the union of a

certain number of the B′
is. Thus the normal closure of σ′

O
in G is a direct factor

of Soc(G) consisting of the pointwise stabilizer in Soc(G) of Ω \ O. A recursive

call is made and once a strong generating set has been computed it is prepended

to the set T which holds elements of the strong generating set currently being

accumulated.
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In analyzing the timing, it is straightforward to show that the top-level call

to SGS Alt Orbits takes time O(tn2) aside from the recursive calls to smaller

problems. By induction, each recursive call to a subproblem takes time O(nOn2),

where nO is the number of orbits Oi in O and O is a union of blocks Bj as given

in Corollary 5.1. Since a recursive call at the top-level never involves an orbit

Oi more than once, the total time spent on the recursive calls is O∼(tn2).
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