https://doi.org/10.1090/dimacs/018/14

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 18, 1994

Specifying Parallel Programs in a Functional
Language:
The EPL Experience

BOLESLAW K. SZYMANSKI

ABSTRACT. This paper describes the research and development associated
with the parallel functional language called EPL — Equational Program-
ming Language — and its compiler. The emphasis is on opportunities and
challenges arising from the use of a functional paradigm for specifying par-
allel programs. The EPL approach is based on a two-level computation
description: the specification of the individual processes in EPL and the
description of their interactions in a macro data flow language, called con-
figuration. The EPL process specification targets loop and data parallelism,
while the interaction description is oriented towards task parallelism. The
EPL compiler performs an extensive program analysis and customizes the
generated parallel code to specific architectures. The parallel computation
decomposition and synchronization is based on the source program anno-
tations provided by the user and on the user’s defined configurations.

The paper provides a general description of the features of the EPL
system, the detailed technical results have been published elsewhere. It
concludes with a discussion of the general properties required of higher
level parallel programming languages and with an assessment of EPL from
that point of view.

1. Why Use a Functional Language for Parallel Programming

Parallel computation has become indispensable in the solution of large-scale
problems that arise in science and engineering. While the use of parallel com-
putation has been increasing, its widespread application has been hampered by

1991 Mathematics Subject Classification. Primary 68N15, 68N20; Secondary 68Q60, 68Q10.

The author was supported in part by ONR grant N00014-93-1-0076, by NSF grants CCR-
9216053 and ASC-9318184, and by a grant from IBM Corporation. The content of this entry
does not necessarily reflect the position or policy of the U.S. Government—no official endorse-
ment should be inferred or implied. :

The paper is in final form and no version of it will be submitted for publication elsewhere.

© 1994 American Mathematical Society
1052-1798/94 $1.00 + $.25 per page

201

Licensed to AMS.

202 B. K. SZYMANSKI

the level of effort required to develop and implement the needed software. Paral-
lel software often must be tuned to a particular parallel architecture to execute
efficiently; thus, it often requires costly redesign when ported to new machines.
Different categories of parallel architectures have led to a proliferation of dialects
of standard computer languages. Varying parallel programming primitives for
different parallel language dialects greatly limit parallel software portability.

Parallel computation can be viewed as an interwoven description of operations
that are to be applied to data values, and of data movement and synchronization
that dictate the form of data access and the computation order. The traditional
programming languages, like Fortran, C, or C++, provide a description of data
movements and synchronization through ad hoc architecture-dependent exten-
sions. Examples are various synchronization constructs, such as busy-wait, locks
or barriers, used in programs for shared-memory machines, send and receive with
different semantics employed by programs for message-passing architectures, and
dimension projection and data broadcast popular in programs for SIMD com-
puters.

Traditional imperative languages over-specify programs and as a result such
programs are hard to write and, more importantly, difficult to understand and
debug. The over-specification falls into one of the two classes:

(i) Data storage related: unnecessary details describing storage represen-
tation or management. For instance, the program may state that two
names must be mapped to the same storage instead of a separate space,
or a particular integer variable may be treated as a list of bits and not as
an encoded number. Another example is an explicit deallocation by the
program of part of its memory at a given point of the program execution.

(ii) Flow of control related: unnecessary details that specify the exact order
of program execution or allocation of the program’s resources. For in-
stance, the program may direct the compiler to execute two particular
loops in parallel or to execute a specific code on a particular processor,
etc.

Functional programming paradigm has been one of the main directions in
developing new languages that directly addresses the challenge of parallel pro-
gramming. Functional languages encourage the use of functional abstractions
in place of control abstractions. They employ type inferencing for consistency
checking in place of type declarations. The storage related details have no place
in functional languages because of their fundamental premise of value transfor-
mations. In addition, functional languages can easily separate the description
of operations to be performed on data values from the definition of data move-
ments and the synchronization needed to supply these data values to the proper
processor at the proper execution instance. Hence, a well-designed functional
language can shield the programmer from designing a detailed implementation,
a flow of control, or a synchronization, while automatically exploiting parallelism
that exists in a program.

Licensed to AMS.

SPECIFYING PARALLEL PROGRAMS IN A FUNCTIONAL LANGUAGE 203

In functional languages, computational abstractions are expressed through
functions. A first-order function takes data objects as arguments and produces
new data objects as results. What is abstracted by the function is the method
used to produce the new objects from the arguments. Much of the elegance of
functional languages stems from such semantics and from the absence of opera-
tional or machine-dependent details. It can be further advanced if the referential
transparency is supported by enforcing the single assignment rule. Under this
rule, each variable can be assigned a value only once. Thus, all references to
a variable yield the same value, no matter where the reference is placed in the
program. Because arguments of a function could be evaluated in any order, func-
tional programming languages exhibit significant amounts of implicit parallelism.
The above-discussed properties are also important in sequential programming.
However, compilers of conventional languages for sequential machines are less
complex and produce more efficient code than the compilers of functional lan-
guages. This advantage of conventional languages does not carry to parallel
programming.

Many large codes were written long before parallel processing was easily ac-
cessible, and their methods are based on efficient, sequential algorithms. Turning
such algorithms into algorithms that can be easily and efficiently parallelized is
not merely a job for an “optimizing” compiler, but requires reprogramming at a
fairly high level of the algorithm and data structure design. In general, the task
of automatically reprogramming computation into parallel programs is extremely
difficult and costly except for some very restricted classes of problems. Lower
level details of parallel implementation, such as identifying independent threads
of control flow, spawning parallel tasks, and deciding low-level details of data
representation, can be automated. Functional languages are a good basis for
building compilers capable of such automation, thanks to their simple semantics
and lack of notion of the execution state.

2. What is EPL

This paper describes Equational Programming Language (EPL). It is a sim-
ple, array-manipulation functional language designed for programming scientific
parallel computations. Scientific computations are particularly well suited for
parallel processing. It can be claimed that, so far, they have driven parallel
applications most aggressively. Although computationally vast, scientific com-
putations are typically quite regular both in terms of control flow patterns and
employed data structures. Often such computations are comprised of iterative
applications of numerical algorithms to all (or the majority of) the parts of the
data structures. We refer to such computations as iterative computations. Typ-
ically, the data structures used in scientific computations are some variations
of multidimensional arrays (sparse matrices, grids, jagged-edge arrays, and even
some hierarchical structures can be viewed as such). Correspondingly, the EPL

Licensed to AMS.

204 B. K. SZYMANSKI

language is defined in terms of a few constructs: generalized, jagged-edge arrays
and subscripts for data structures, recurrent equations for data value definitions,
ports for process interactions, and virtual processors for execution directives.
The canonical data structure is an irregular tree which, in its simplest form, can
be viewed as a multi-dimensional array. Structured files are provided for com-
munication with an external environment (in records) and with other processes
(through ports). EPL enforces a single-assignment rule, i.e., each data element
should be defined exactly once (the EPL compiler, however, is free to produce
imperative code including reassignment of variables). Equations, though syn-
tactically reminiscent of assignment statements, are best viewed as assertions
of equality. In EPL, a computation is represented by a collection of processes
that interact through ports. Such a representation is particularly convenient for
expressing task parallelism. Each process is specified with equations and data
declarations. Equations may be annotated by virtual processors on which they
are to be executed. A process definition is used by the EPL compiler to uncover
loop and data parallelism. An integration of different level parallelism in a single
computation is one of the design goals of the EPL system.

2.1. Iterations. One of the most important constructs in any functional
language is that of iteration. In EPL, iterations are constructed using subscripts.
A subscript assumes a range of integers as its value. Subscripts give EPL a dual
flavor. In the definitional view, they may be treated as universal quantifiers and
equations can be viewed as logical predicates. In such a view, the compiler must
produce a program that for the given input will produce such EPL variable values
that all predicates become satisfied. In the operational view, subscripts can be
seen as loop control variables and each equation can be seen as a statement
nested in loops implied by its subscripts.

There is a special class of subscripts, called sublinear subscripts, that are
used in scientific applications so often that a special construct devoted to them
has been introduced in EPL. Formally, an indirect subscript s defined over the
subscript 4 is an array s[i] associated with a condition cond][i] such that:

s[z] = if cond[1] then s[i — 1] + 1 else s[i — 1] and s[0] = 0.

It immediately follows from this definition that the sublinear subscript s[i] starts
with either the value of 1 or 0 and, then with each increase of i, it is incremented
by either 1 or 0. A sublinear subscript has an implicit range determined by the
number of times the defining condition yields true.

The sublinear subscripts are convenient in expressing such operations as creat-
ing a list of selected elements, operating on sparse matrices, or defining a subset
of the given set. Even more important is the fact that in the implementation
of a process no new iteration has to be created for computation associated with
the sublinear subscripts. Instead, all necessary computation can be nested in the
iterations created for subscripts in terms of which the considered sublinear sub-

Licensed to AMS.

SPECIFYING PARALLEL PROGRAMS IN A FUNCTIONAL LANGUAGE 205

script has been defined. Sublinear subscripts are also useful in defining dynamic
distribution of data to processors.

2.2. Reduction. A computation that frequently occurs in scientific applica-
tions is to apply a binary operation over an entire vector and store the result in
the last element of the vector. For example, in scientific computation there is
often a need to apply an associative operator (such as +, %, —, max, min, etc.)
selectively on the elements of an array. Scan and Reduce are language con-
structs in EPL and other parallel languages that allow such operations to be
succinctly written. Reduce applied to a vector of values produces a scalar result,
whereas scan creates a vector of partial results.

For example, let’s consider the Jacobi iterative solver of a system of linear
equations

Ax =y

where A is a nonsingular square matrix. If z(*) is the vector of solution at the
k-th iteration and z(**1) at the (k 4 1)-th iteration, the Jacobi iteration can be

written as
1 i-1 n
k k k
(21) wf = — | = ayal? = 3 g v
i j=1 j=it1 '
fori=1,...,n, where wgk) is the j-th element in the solution vector at the k-th

iteration. In EPL, this iteration can be written as:
Templi, j, k] = if(j == 0) then 0

else if (j # ¢) then Templi,j — 1, k] + A[i, j] * X[4, k] else Templ[i, j — 1, k];
X[, k] = (Y[i] — Temp[i, range.j, k — 1)) /A[i, 1];

or even shorter as
X(i,k) = (Y (i) — Reduce(+, Ali, j] * X [j, k — 1],i : i # j)/A[i, i];

Scan and reduce operations generate references of the form BJ...range.,...],
where range.i indicates the range of the reduced/scanned dimension of a mul-
tidimensional array B (in general, the EPL range variable prefix denotes the
size of its suffix). Such references are important in the memory allocation and
scheduling of EPL programs.

For a more detailed description of the language, see [20].

2.3. Configurations. In EPL approach, a parallel computation is viewed
as a collection of cooperating processes. Processes are defined as functional
programs (either by the user or by a program decomposition incurred by the
user’s annotations, see Section 2.4). Process cooperation is described by a sim-
ple macro dataflow specification, called a configuration. Configurations support
programming-in-the-large. The user can experiment with various configurations
to find the one that results in the most efficient code.

Licensed to AMS.

206 B. K. SZYMANSKI

The configurator uses the dependence graph created during configuration
analysis to generate an architecture-independent parallel description which is
fed to the code generator. Configurations define processes (and their aggre-
gates) and ports. Statements of the configuration represent relations between
ports in different processes. Some of these statements are generated during an-
notation processing (at the subprogram level, see Subsection 4.2); others must
be supplied by the user (to direct how the processes are to be integrated into a
computation).

Processes created dynamically can communicate with ports located at parent,
child, and sibling processes (each of those processes is just a copy of the same
program or program fragment, except the parent process that can be arbitrary).

2.4. Annoctations. Annotations provide an efficient way of introducing the
user’s directives to assist the compiler in program parallelization. To be effec-
tive, annotations have to be carefully limited to a few constructs. They also
should preserve semantics of the original program. Annotations have been pro-
posed in many systems [4, 5, 9] and are used mainly as compiler directives. In
contrast, in our approach annotations are used in decomposing a program into
fragments. Annotations in the EPL system are introduced solely to limit the
feasible allocations of parallel tasks to processors. Hence, programs decorated
with annotations produce the same results as unannotated programs.

int: n; /* array size */
real: Ain[x,*], Ulx, *], L[x, *[;
subscript: i, j;

range.Ain = n; range(2).Ain = n;
range.Ulk] =n — k+1;
range.L(j] =7 — 1;

Tli, 3] : Alk,i,j] = if k==1 then Ainli, j]
elsif i == Piv[k] then Ak — 1,k, 5] — Llk,k — 1]« Ulk — 1,5 — k + 1]
elsif i == k then A[k — 1, Piv[k], j] — L[Piv[k],k — 1]« Ulk — 1,5 — k + 1]
else Ak — 1,4,j] — L[i,k — 1] * U[k — 1,5 — kI;
D[j]: L[j,k] = if j == k then 1
else Alk, j,k]/U[k, 1];
Dj]: Ulk,j — k] = Alk, Piv[k], j];
D[j]: Pivlk] = scan(maz, abs(Alk,3,k]),j : j >=k);

FIGURE 1. LU decomposition of a matrix A in EPL

In EPL, each equation can be annotated with the name of an array of virtual
processors on which it is to be mapped. Virtual processors can be indexed by
the equation’s subscripts to identify instances of equations assigned to individual
virtual processors. Such instances constitute the smallest granule of parallel
computation. An example of the use of EPL annotations in a program for the LU
decomposition of a matrix is shown in Figure 1. The program follows directly the

Licensed to AMS.

SPECIFYING PARALLEL PROGRAMS IN A FUNCTIONAL LANGUAGE 207

standard definition of LU decomposition with pivoting [10]. The input matrix
Ain is decomposed into two matrices: lower triangular L and upper triangular
U.

The program operates on the sequence of matrices A[i, *, x| starting with the
input matrix Ain. As discussed in [10], the computation can be partitioned into
the following tasks:

e diagonal: The n tasks D[j] that operate on the diagonal of the matrix
A.
e subarray: Tasks Tt, j] that operate on submatrices of the matrix A.
The presented annotation imposes this partitioning.

3. EPL Compiler

Parsin
Annotated and Synix
EPL Source Checking
................ -~ teccoheccccccccccccccancccccaccacccccces
g
_______ . Precompiler
. Array
: Annotation : : Graph
| Processing I : Construction
[TN
. i/ N
.
. .
Annomtlon : Dimension Type Completeness
Processor Propagation Inference Verification
| . [
! Annotation | ' Range Condition
| Process I<'_ P " —_—
. opagation Analysis
. Generation _ _, Y
................. -.---....\L....- et ettt eea e
Intra-Port Schedule
Depend Scheduli o S Acchitecture
P Op on
Analysis Description
I_C(;\ﬁ—ur:lk;\ o :
! Depefdence Lo Code =
LI . Object Code
| Generation | : Generation
Synthesizer : Scalable Code Generator

FIGURE 2. The structure of the EPL compiler

The basic techniques used in EPL compilation are data-dependence analysis
and data-attribute propagation. In a single program, the dependencies are repre-
sented in the compact form by the conditional array graph. A similar dependence
graph is also created for a configuration. It shows the data dependencies among
processes of the computation and is used for scheduling processes and mapping
them onto the processors. Figure 2 depicts the structure of the EPL compiler,

Licensed to AMS.

208 B. K. SZYMANSKI

grouping the components into the following parts (discussed later): Precompiler,
Annotation Processor, Synthesizer, and Scalable Code Generator. The stages of
the EPL compilation are:

(i) Array Graph Construction which transforms the source code into its in-
termediate form. The main components of this form are the array graph
and the symbol table. The array graph nodes represent the variables
and the equations. Each array graph edge represents the dependence
between the nodes and is labeled by its attributes such as the associated
subscript expressions, dependence type, and conditions under which the
dependence holds.

(ii) Dimension Propagation that checks correctness and assigns dimension-
ality to each EPL variable.

(iii) Type Checking which verifies that all variables and expressions have or
can be assigned consistent types.

(iv) Completeness Verification that performs various semantic checks and
verifies that each variable is defined over its entire domain.

(v) Range Propagation that finds equivalences between ranges of variables
and equations. The EPL compiler uses the concept of a range set as
an object to which all equivalent ranges are linked. Range propagation
links all dimensions which share a common bound into a range set.

(vi) Condition Analysis which establishes equivalence and/or exclusiveness
of predicates used in conditional equations. The found relations of pred-
icates are used in scheduling and verification.

(vii) Scheduler that finds an array graph evaluation order which is minimal
among all orders preserving the program semantics. Scheduler also de-
fines the scopes and nesting of the loops in the object program. The
output generated by the scheduler is used by the schedule optimizer and
the code generator.

(viii) Schedule Optimization is an architecture-dependent step that customizes
the generated schedule to the target architecture (see, for example, [11]
for SIMD specific optimizations).

The remaining stages are discussed below: Annotation Processing in Section 4.2,
Configuration Processing in Section 4.3 and Code Generation in Section 3.4.

3.1. Conditional Array Graph. The conditional array graph is defined as
G = (Vg, Eg, Mg)

where Vg = {v1,...,v,} is a set of nodes, Eg C Vg x Vg is a set of edges,
and Mg : Lg = {l1,... ,lm} — Vg U Eg is a labeling function. Each node v;
represents one of the following:
e Equation: Each equation from the program creates one node.
e Variable: Any variable that appears in equations is represented by a
node in the graph (i.e., primitive data structures, sublinear subscripts

Licensed to AMS.

SPECIFYING PARALLEL PROGRAMS IN A FUNCTIONAL LANGUAGE 209

and implied data structures created by prefixing variable names with
keywords like range).

e Interface structure: A structure declared in the program as a part of
an input or output file.

e File: Each file creates two nodes: representing respectively an opening
and closing of the file.

Generally a node in the array graph represents a program activity, e.g., record
nodes indicate a read or write operation, equation nodes represent the evaluation
of the equation. Nodes that do not trigger an activity (data nodes and sublinear
subscripts) generally indicate a stage in the computation. For example, data
nodes indicate that a field has been defined and is available for access.

An edge e;) drawn between nodes ik can be of one of the following three
types:

e Hierarchical: A dependence that is implied via declared structures.
For example, in input structures, a record node is implied to be depen-
dent on the file node from that structure. This dependence documents
the fact that a record cannot be read until the file has been opened.

e Data: A dependence that is derived from equations. The node for the
data element being defined is made to be dependent on the equation’s
node and the equation node is, in turn, made dependent on the data
nodes for the data elements used in its definition (appearing on the right
side of the equation or in a subscripting expression on the left side).

o Parameter: A dependence implied by the presence of a range definition
for the EPL variable.

A labeling function M defines a label for each node and edge in the graph. The
node label I; = M (v;) includes information on the type and class of the node, its
dimensionality, ranges of the dimensions, and subscripts associated with these
dimensions. The edge label I; , = M (e; &) includes conditions under which the
dependence associated with the edge holds, the type of the dependence, and
subscripting information.

Typically, data flow analysis in procedural compilers ignores conditions guard-
ing the control flow paths; however, recognizing equivalent or exclusive guarding
conditions improves the checking and optimization capabilities of the compiler.
In the functional programming environment, such recognition can be done ef-
ficiently (at least for some common cases) because of the simple semantics of
the underlying language. The analysis of the conditional dependencies involves
traversing various computational paths in the equational program and collect-
ing a conjunctive set of inequalities for each path. When the conjunction of
the conditions is not satisfiable, the dependencies labeled by these conditions
never holds and therefore can be ignored in further analysis. We have designed
and implemented algorithms for conditional dependence analysis that are poly-
nomial in the size of the source program [2]. This is a significant improvement
over methods applied in conventional languages that are exponential in the input

Licensed to AMS.

210 B. K. SZYMANSKI

code size. The advantages of performing condition analysis are threefold:

e More efficient code is generated. Parallelism can be exposed to a greater
degree if some dependencies are eliminated. In addition, the equiva-
lent conditions are tested only once and the code dependent on them is
consolidated into one block.

e Storage use is optimized. The EPL compiler uses the windowing tech-
nique for representing the large dimensions through a small-sized window
in memory even in cases involving fairly complex subscript expressions.

e Program verification is improved. The single assignment rule can be
enforced by checking satisfiability of the conjunction and disjunction of
conditions in several equations defining the same variable. Verification of
noncircularity of variable definitions is also refined in a similar manner.

<ijk>

(i,range.j,k-1)

<i>

FIGURE 3. Array graph for Jacobi iteration

3.2. Memory Optimization and Scheduling. Programs written in EPL
obey the single assignment rule. A variable which is reassigned in a procedural
language is seen as a vector of values with a different subscript in each assign-
ment. This extra temporal dimension allows the program to be specified without
any reassignments but, unless optimized, may require an exorbitant amount of
memory. The problem is important for any functional language and the solution
presented here is a general one, not restricted to EPL. The essence of optimiza-
tion is to replace some of the dimensions of a variable by windows which hold
only a few elements of each windowed dimension at a time. Returning to the
example of Jacobi’s linear solver defined by Equation (2.1), it is easy to notice
that a procedural program (for example in Fortran) will require memory pro-
portional to the problem size n. However, a naively implemented EPL program
using variable Temp would require memory proportional to n?, quite unaccept-

Licensed to AMS.

SPECIFYING PARALLEL PROGRAMS IN A FUNCTIONAL LANGUAGE 211

able overhead. Figure 3 shows the array graph for the Jacobi iteration. The
dotted line in Figure 3 encloses a strongly connected component, SCC, i.e., a
maximal subgraph of the array graph such that for any pair of vertices v, w in
SCC there are directed paths from v to w and from w to v. Consider the SCC
consisting of nodes Temp and X. Elements of Temp are used to define elements
of X and vice versa. If the loop on k proceeds in the forward direction, the
edge with label (¢,7ange.j, k — 1) is redundant, because all elements computed
at (k — 1)-th iteration are available at the k-th iteration. Removal of this edge
renders the array graph schedulable. From the array graph, it is apparent that
X and Temp should be scheduled within the same loop on k. Moreover, in any
loop arrangement for the Jacobi iteration, we have to assure that the loop on
j surrounding the equation that defines Temp is completed before the equation
defining X uses those values of Temp (as implied by the edge (i, range.j, k—1)).
All these restrictions allow only five loop arrangements for the Jacobi iteration
as shown in Figure 4.

Careful analysis of the array references reveals that for a problem of size
n = 500, the optimized code will require about 1000 location for a window of size
1 for array T'emp and a window of size 500 x 2 for array X. Even more revealing
are the communication requirements of different solutions. In terms of local
memory requirements, the first, third and fourth loop arrangements are the best
and are all equivalent. However, if arrays X and T'emp are evaluated on separate
processors, the third solution is preferable since only a single element of Temp
is needed to evaluate a new value in the vector of X. This kind of consideration
can easily be included in compiler optimization by assigning greater penalty to
global communication delay than to allocated memory.

The execution ordering of the statements in a functional program is deter-
mined by a recursive procedure called the scheduler [20]. At each level of recur-
sion, the scheduler linearly orders all SCCs in the array graph of the program to
satisfy the existing data dependencies. It then attempts to schedule each SCC
by enclosing it in such loops that dependencies represented by some of the edges
inside the SCC are enforced by the loop execution. If successful, the scheduler
removes the loop-enforced edges from the SCC thereby creating a cascade of new
SCCs (components of the parent SCC) that can be ordered linearly. Removal
of the redundant edges at each level defines the loops that should surround all
statements represented by nodes within the parent SCC.

Each level of recursion produces one or more of such loops. Loops obtained
for an SCC M are always nested within those obtained in a previous recursion
for the SCC that contains M. By analyzing all SCCs at each level of recursion,
it is possible to obtain the loops that should surround each statement and the
partial order of the loop nests. In [14] we have proven that the loop arrangement
problem is NP-hard by reducing it to the weighted clique problem. The EPL
compiler uses an heuristic to find a suboptimal solution. Once a loop cluster is
selected, a simple linear algorithm can be used to find the best loop arrangements

Licensed to AMS.

212 B. K. SZYMANSKI

Loop on k
Loop on 1
X[l = (Y[l - Templi) /Al
Loop on 1
Loop on j
Templi] = Templi} + Ali,]+ X[jl;
/* Window on X: [500, 1] on Temp: [500, 1, 1] */
Loop on &
Loop on i
X[i] = (Y[i) — Templi, range.j])/A[, i;
Loop on j
Loop on 4
Templs, j] = Templi, j — 1] + A[i, j] » X [J, kJ;
/* Window on X: [500, 1] on Temp: [500, 500, 1] */
Loop on k
Loop on i
Loop on j

Temp = Temp + Ali, j] * X[4, kl;
X[i, k+ 1] = (Y([i] — Temp])/Als, 4];
/* Window on X: [500, 2] on Temp: [1, 1, 1] */

Loop on &
Loop on ¢
Loop on j
Templi] = Templ) + Ali,) « X[j];
Loop on ¢
X[i] = (Y[i] — Templil)/Ali, il
/* Window on X: (500, 1] on Temp: [500, 1, 1] */

Loop on &
Loop on j
Loop on ¢
Templi, j) = Templi, j — 1] + Ali, i) * X[j};
Loop on i
X[i] = (Y[i] — Templi, range.j]) /AL, il;
/* Window on X: [500, 1] on Temp: [500, 500, 1] */

FIGURE 4. Different implementations of Jacobi iteration in a
procedural language

Licensed to AMS.

SPECIFYING PARALLEL PROGRAMS IN A FUNCTIONAL LANGUAGE 213

for the selected loop cluster and the best windows for variables enclosed in it [14].

3.3. SCC Scheduling in Presence of Conditional Dependencies. As
discussed above, the computation represented by an SCC is enclosed in a set
of loops. The scheduler can ignore any dependencies that are labeled with the
subscript expression of i-k (i is a subscript or sublinear subscript, and k> 0
is a constant) for loops with an increasing loop control variable, and i+k for
loops with the decreasing loop control variable. Such an elimination of certain
dependencies may decompose an SCC into parts that can again be enclosed into
loops and decomposed further. In the case of SCCs with both types of subscript
expressions present in an SCC, more subtle analysis is needed. An SCC with
diverging subscripts (henceforth referred to as diverging SCC) recursively defines
some variable(s) in different evaluation directions for those subscripts. Part of
the SCC requires an ascending loop in certain dimensions, while another part
requires a descending loop in the same dimensions. The EPL compiler uses
the condition analysis to verify that the computation can be split into loops in
different directions and that these loops can be scheduled in such a way that the
recursion refers to instances of the variable(s) that have already been calculated.

Such scheduling requires that the diverging SCC be split into separate SCCs
that share common data. All subscript expressions for the dimension being
scheduled have to be either i and i-k or i and i+k in each split SCC. For each
variable defined in the diverging SCCs, the EPL compiler builds a defined area
structure. This structure is a linked list of upper and lower bound expressions.
The existence of a defined area structure indicates that part of the dimension
between the upper and lower bound expression in the structure (including the
upper and lower bound) is defined.

The compiler first identifies initialization areas of the dimension that are not
defined recursively and then enters them into the defined area structure. Next,
it repetitively looks for diverging SCCs with recursive equations that border on
the defined areas (those are identified by their condition sets). These SCCs are
scheduled and the sections of the dimension that they define are added to the
defined area structure.

Each diverging SCC defines a subsection of an array variable that is an entry
point node for this SCC. The expressions for the bounds of the area being defined
are derived directly from the equation conditions within the SCC. In each diverg-
ing SCC, there is a conditional equation defining the entry point node, called an
alternate equation. Part of the condition in the alternate equation must specify
bounds for the subscript, called the bounding predicate. The condition may be a
disjunction of the Boolean terms, but it must have a common subscript bound
expression across the disjunct terms. The bounding predicates are extracted
from the equation’s condition and create the bounds for the diverging SCC. The
bounds for the initial defined areas are derived from the nonrecursive equation
(not appearing in the SCC but attached to an entry point node) in the same

Licensed to AMS.

214 B. K. SZYMANSKI

manner.

The compiler also identifies the depth of the recurrence. Part of the diverging
SCC with a negative (positive, respectively) depth is considered schedulable
when its minimum (maximum, respectively) bound, offset by its depth, falls
within a defined area.

The diverging SCCs arise naturally in programs that describe phenomena
which spread outward from the defined initial region. Definitions of this type
can be found in simulations of the protein folding [2], fractals, growth of crys-
tals, shock waves, etc. A natural way to describe such behavior is to define the
outward spread of the values in terms of conditional relations between discrete
structures or between the elements of multidimensional structures. The condi-
tions of the relations dictate the direction of the spread. If the conditions for
the dependencies were ignored, the dependencies modeling such behavior would
appear to be cyclic (due to equations that would define the values as spreading
in conflicting directions).

3.4. Code Generation for Massively Parallel Computers. Data struc-
tures used in scientific computation can be viewed as a function é from an index
domain ID to a value domain VD. An index domain, in general a set of tuples of
integers < i1,49,...,1, >, is often a subset of the Cartesian product of integer
intervals, for regular n-dimensional arrays. For example, ID = I3 x I X ... x I,
where I; = [1, I;mag,j]. Often an inverse function 6~ does not exist. Following
the standard higher-level programming language notation, we denote the value
of the function § at point < 41,... ,ip > as v[i1,... ,in].

Program execution can be seen as an evaluation of the arrays at various index
points (elements of the index domain). The order of execution is restricted only
by data dependencies that rarely impose the total order.

Figure 5 shows the conceptual stages of mapping the index domain of a vari-
able to the processor domain, the memory domain and the time domain. The
goal is to find a mapping that results in the minimum execution time. In Figure 5,
V PD represents a virtual processor domain. It is defined by the computer inter-
connection network. For example, in a k-dimensional mesh-connected architec-
ture of size N, processors can be thought of as arranged in a k-dimensional array,
with VPD = [1,n1] % [1,na]x...x[1,nk], where N = ny*nox...xn,. The proces-
sor pll1,la, ... , 1] is connected with processors p[ly,... ,l;+1,... ,lk], 1 < j <k
provided that processor p[li,...,l; £1,...,lx] exists (I; = 1 mod n;, in the case
of torus-connected architecture). To facilitate data alignment and time schedul-
ing, we assume that a virtual processor domain VPD is compatible with the
index domain ID. Local memory domain L can be viewed as a multidimensional
cube with the volume equal to the actual local memory available on each pro-
cessor. Virtual processors in V PD has local memory of the same structure as
the domain L, except each is of unlimited size. The execution time steps are
represented by time domain T = [1,tmaz], Whete tyq, is the total number of

Licensed to AMS.

SPECIFYING PARALLEL PROGRAMS IN A FUNCTIONAL LANGUAGE 215

VD

2

N

8: Data Structure mapping T

ID -

a: Alignment -
mapping .~ -
- Data-driven scheduling

or

Wavefront mapping

FIGURE 5. Functional view of code generation

time steps needed to complete the computation.

In such a view, there are three major mappings that need to be found to gen-
erate optimized code for massively parallel architectures: Alignment Mapping,
Time Mapping and Memory Mapping.

Data alignment challenge is to select such a mapping a of index domains onto
the virtual processor domain that communication of array operation arguments
is minimized. Data alignment performed by the EPL compiler was presented
in [16] and is not discussed here due to the space limitation. Time mapping
of iterative computations is usually done either through data-driven schedul-
ing or wavefront mapping [15]. Both methods explore the fact that iterative
computations often allow the simultaneous evaluation of many array elements.
Data-driven scheduling starts the execution of an index point as soon as all data
that this point is dependent on becomes available. However, data dependencies
often hold under conditions that involve input data and therefore can be re-
solved only in run-time. Consequently, data-driven scheduling typically relies on
run-time distributed synchronization. In the case of functional programs with
single assignment and recurrent relations, the compile-time data-driven schedul-
ing is decidable [13]. Such a scheduler has been implemented in the compiler for
EPL language and is discussed in Section 3.3. As discussed in Section 3.2, the
EPL scheduler determines also a memory mapping. Wavefront scheduling for
EPL programs was presented in [15] and is not discussed here due to the space
limitation.

Licensed to AMS.

216 B. K. SZYMANSKI

4. Parallelism in EPL

4.1. Levels of Parallelism. In EPL, compile-time parallelism is sought on
three levels:

(i) Task Parallelism is dictated by the process definitions and their in-
terconnections into a configuration. The configuration graph (the graph
obtained by representing processes as nodes and port interconnections
as edges) is decomposed into parallel tasks by the EPL compiler. Send
and Receive operations necessary for process coordination are also gen-
erated. Since the optimal decomposition is NP-hard for multiprocessors
[1], the EPL compiler uses an heuristic described in [12].

(ii) Loop Parallelism is sought at the level of equation clusters. Each re-
currence equation can be annotated by a process name to assist the com-
piler in parallelizing computation across the subscripts. This is very sim-
ilar to the loop parallelism in imperative languages like Fortran. Within
the EPL framework, separate processes are generated by the compiler for
each equation cluster. To minimize interprocess dataflow, the compiler
uses an heuristic to impose an hierarchy among the generated processes.
The details of these heuristics are given in Section 4.2.

(iii) Data Parallelism is explored at the level of instances of equations or
their clusters [11]. This source of parallelism is of the greatest impor-
tance in SIMD architectures. Mapping of arrays onto the processors
dictates communication costs of fetching the arguments and storing the
results of operations. The problem of finding the mapping optimal in
that respect is known as the data alignment problem and is discussed
in relation to EPL programs in [16]. The execution order of array ele-
ment evaluation is important for SIMD code efficiency. A compile-time
method of defining such an order, known as wavefront determination, is
discussed in [15].

Task parallelism relies on the existence of separate, relatively independent
processes or functions that can be executed simultaneously. In the traditional
approach, the user is required to handle the error-prone and difficult task of
synchronizing these independent processes. The configurator eases the burden
of harnessing task parallelism by automating the definition of interprocess coor-
dination.

Data parallelism, popular in massively parallel systems, relies on large data
structures to be processed and assigns individual elements of such structures to
a single processor (either virtual or real). The same sequence of instructions
is applied simultaneously to all elements of the processed structures. It is also
necessary to decide which elements of the different structures should be placed
on the same processor in order to minimize the cost of fetching arguments for
operations involving those elements.

Licensed to AMS.

SPECIFYING PARALLEL PROGRAMS IN A FUNCTIONAL LANGUAGE 217

Annotations, relevant to both task and data parallelism, provide the user with
the means of rapid-prototyping alternative parallelizations of the program. For
example, supplying proper annotations, the user can experiment with various
combinations of column- and row-wise parallelizations of the matrix programs.

4.2. Annotation Processing. Annotation processing includes:
e creating parallel tasks defined by annotated fragments of the original
program,
e declaring ports needed to interconnect created tasks into a network,
e interconnecting ports according to the task communication graph to
preserve data dependencies between created tasks.
Each annotated fragment of the source program becomes a separate task. All
data elements defined in the task are local to it!. All needed non-local data
have to be received from the other tasks. The annotation processor analyzes the
flow of data incurred by the decomposition of the source program and builds a
corresponding representation of this flow in the form of the task communication
graph. Then, the annotation processor supplements the code of each task by
port declarations and send and receive statements that are needed to implement
the required intertask data flow. To minimize the communication generated
by the added statements, the annotation processor embeds a tree in the task
communication graph.

: n
ul
INPUT LU
Ainput

LI+ Kl
OUTPUT ULk(*]
1

1
| i-range cluster \\
.......... AL
R 1T\

[
1
l| ;' j-range
|
\
\

: cluster THIG]

FIGURE 6. Communication tree for EPL program

We developed heuristics [12] which select the embedding that satisfies the
following criteria:

L1We refer to this principle as Erecutor Owns rule. It is an inverse of the more commonly
used Owner Computes rule. In [16] we have shown an example of computation for which
neither of the rules yields an optimal solution.

Licensed to AMS.

218 B. K. SZYMANSKI

e Dimension nesting: If two tasks with different number of dimensions
are connected in the task communication graph, the task with more di-
mensions should be located lower in the spanning tree. If, for example,
tasks T'[¢, j] in Figure 6 were located above the tasks D[j] in the span-
ning tree, the addressing and creation of child tasks in 7" would involve
executing an if-then statement in all ¢ x j T tasks.

e Range nesting: Whenever possible, tasks sharing the same range
should be clustered together in the spanning tree. Variables that share
ranges tend to appear in the same equations. Thus, clustering such
variables together decreases the number of cross-process references to
distributed variables.

e Data flow: The total communication cost of the selected spanning tree
should be the smallest among all spanning trees satisfying the above two
criteria.

A tree created from annotations of the LU decomposition program from Fig-
ure 1 is shown in Figure 6. The double-outgoing arrows indicate a broadcast of
messages (from a task to a group of tasks) and double-incoming arrows corre-
spond to the inverse operation of gathering the data.

4.3. Configuration Processing. The goal of configuration processing is to
establish scheduling constraints for the overall computation and to synthesize a
parallel computation from the decomposed parts. The latter task is performed
by the EPL compiler part called synthesizer which generates codes for invoking
and synchronizing parallel tasks.

In a parallel computation, individual process correctness is a necessary but
not sufficient condition for the correctness of the entire computation. If a task
has input and output ports that belong to a cycle in the configuration graph,
then this task’s input messages are dependent on the output messages. Such
dependencies (in addition to dependencies imposed by the statements of a task)
have to be taken into account in generating the object program for individual
tasks; otherwise, loss of messages, process blocking, or even a deadlock can arise.

Tasks that belong to a cycle in the task communication graph can execute
concurrently only if they are all enclosed in the same loop including the respective
send and receive statements. Such tasks are called atomic, since they cannot be
broken into parts without splitting the loop. For example, if a send statement
is executed in a separate loop from the corresponding receive, then all messages
must be sent before any one can be received. The successors of a such nonatomic
task cannot start until its predecessors in the task communication graph finish
sending all messages.

The algorithm for finding external data dependencies has been presented in
[19]. The analysis starts by inspecting all atomic processes and then propa-
gates transitive dependencies along the paths of the task communication graph
restricted to atomic processes. As a result, a configuration dependence file is cre-

Licensed to AMS.

SPECIFYING PARALLEL PROGRAMS IN A FUNCTIONAL LANGUAGE 219

ated and later used by the synthesizer and the code generator. This file contains
a list of the additional externally-imposed data dependencies (edges and their
dimension types) that need to be added to the task array graph. One task may
have several such files, each associated with a different configuration in which
the task participates.
Each edge in the configuration dependence file may have the following effects
on the program generated from the array graph:
e an additional constraint is imposed by an edge if there is no equal or
stronger internal dependency between the considered nodes, or
e an error is discovered when there are internal dependencies incompatible
with the edge.

o> CContgumtions >

(Configure_1)

Inter Task
Analysis

Synchronization
Code

FIGURE 7. Two stages of dependence analysis

Hence, as shown in Figure 7, the dependence analysis for the synthesized
computation has to be done in two stages.

5. Conclusion and Comparison with Other Approaches

In this section we characterize EPL in terms of criteria that identify important
properties of parallel languages [18].

Licensed to AMS.

220 B. K. SZYMANSKI

Architecture Independence. The same source code is used by the EPL
compiler to produce different parallel executables for different architectures. Cur-
rently, EPL compiler includes code generators for MPL and C* languages for
SIMD architectures (MasPar and CM-200), Dynix C for the shared-memory Se-
quent Balance, and message-passing C for the Stardent computer. There is on-
going work on C code generators for the CM-5 and SP1 architectures. Netherthe-
less, the user may still prefer to use different annotations or even different EPL
programs for different architectures to achieve the optimal performance.

Parallelism Specification. A high-level language should shield the user
from having to specify each and every detail of parallel execution. Below we
discuss the level of user involvement in defining the parallel execution of EPL
programs.

e specifying data and program decomposition
Only a partial specification is expected from the user. An EPL com-
putation consists of cooperating functional processes that define an ini-
tial decomposition of the program. Parallel tasks are created by the
EPL system through merging and splitting EPL processes based on the
communication-to-communication ratio on the target architecture. The
programmer can use explicit annotations to define the part of an EPL
process that is to be assigned to a single virtual processor. The anno-
tations define the lower limit on the granularity of decomposed tasks to
improve the efficiency of generating program decomposition. If, during
the process decomposition, a task is created that includes all compu-
tation designated to some virtual process, this task will not be further
divided by the EPL system.

e specifying mapping
Mapping of the parallel task (created from processes by the EPL system)
to the physical processors is done entirely by the EPL system. However,
the quality of the mapping is decided by the quality of the decomposition
which, in turn (see point above), is partially defined by the user who
defines the EPL processes.

o defining communication
At each process description there is no difference between communi-
cation and regular input/output; both are seen as externally provided
input to the process. The necessary communication code is generated
by the EPL compiler.

e defining synchronization
Again, the user is shielded from this aspect of parallel programming.
The synchronization generated by the EPL compiler is derived from the
data dependency imposed by the EPL processes.

Software Development Methodology. EPL relies on functional decom-
position of the computation into processes. Processes are described in an equa-
tional language and their cooperation is described as a configuration. Programs

Licensed to AMS.

SPECIFYING PARALLEL PROGRAMS IN A FUNCTIONAL LANGUAGE 221

describing processes are compiled by the EPL compiler and a configuration is
processed by the configurator, i.e., the compiler for the configuration language.
Hence, there is a separation of programming-in-the-large from programming-
in-the-small. The process written as a functional program may be refined by
user-supplied annotations. The parallel code is generated through a series of
transformations. First, the flow of control is established and minimum synchro-
nization necessary for preserving program’s correctness is found (in EPL terms,
a schedule of a process is created), which is still architecture-independent. Then,
the decomposition and mapping takes place (creating another equivalent form
of the source program). Finally, input/output and communication statements
specific to the target architecture are generated and the final parallel code is
produced.

e structure of the development process
In EPL, the equational program for a process is written very indepen-
dently from the programs of other processes. Only clearly defined in-
terfaces (data structures exchange with the environment) are of concern
for the process program writer.

e exposition of the decision points
Preparing a configuration for the overall computation forces the user to
decide on the method of writing the program at the global level without
considering low-level details.

e record of constructs
Thanks to their conciseness and lack of implementation details (i.e., in-
put/output, communication, flow of control), computation configuration
and equational programs for its processes form a good basis for program
documentation.

e preservation of correctness
The parallel code is produced in three major transformations that were
designed to be correctness-preserving.

e limit of proofs to derivation system
Proof of the correctness-preserving properties of the EPL transformation
has not been made formally, however these properties strongly influence
their design and implementation.

Cost Measures. There is a part of the system, called the Timer, that
provides the user with the execution time estimates for equational programs. As
in [8], the Timer relies on a set of simple architecture measurements that can
be established by running benchmarks of the Timer on the given architectures.
However, we do not have a mechanism for determining the overall computation
execution cost (i.e., execution cost at the level of a configuration) at this time.
For SPMD models, Timer is sufficient; however, in a more general setting, there
is a need for a better tool. Timer results are used in transformations of equational
programs into schedules and during program decomposition and mapping.

Licensed to AMS.

222 B. K. SZYMANSKI

No Preferred Scale of Granularity. There is no upper or lower limit on
the grain size in EPL with the exception of the statement instance; i.e., EPL
does not explore parallelism on the level of expressions and below.

Efficiently Implementable. Our experience with the current EPL imple-
mentation indicates that the EPL generated code is no more than 20%-50%
slower than the equivalent hand-written code. However, we have not yet mea-
sured the efficiency of larger applications (or even a large number of smaller
ones).

Usually a large parallel computation can be efficiently designed as a set of in-
teracting processes which represent logical partition of the problem. Each process
is typically further functionally decomposed into procedures and subroutines. A
hierarchical view of a parallel computation supported by the macro-data flow
EPL configuration is helpful in extracting task parallelism. Program decompo-
sition based on annotations and computation synthesis based on configurations
can support efficient parallel code generation for this kind of parallelism. In
addition, annotations support rapid prototyping and performance tuning of a
parallel computation.

Using functional paradigm for EPL process specification results in absence
of control statements in EPL programs. Hence, functional paradigm simplifies
program analysis and enhances compiler ability to produce an efficient code.
However, majority of parallel code optimization problems are NP-hard; hence,
development of proper heuristics is important.

REFERENCES

1. S.H. Bokhari, A shortest tree algorithm for optimal assignments across space and time in
a distributed processor system, IEEE Trans. Software Engineering, SE-7 (1981).

2. J. Bruno, Analyzing Conditional Data Dependencies in an Equational Language Compiler,
Ph.D. Thesis, Rensselaer Polytechnic Institute-Troy, 1989.

3. M. Chen, Y. Choo and J. Li, Crystal: theory and pragmatics of generating efficient parallel
code, Parallel Functional Languages and Environments (B. K. Szymanski, ed.), ACM Press,
New York, 1991, pp. 255-308.

4. B. M. Chapman, P. Mehrotra, and H. P. Zima, Vienna Fortran - a Fortran language
extension for distributed memory multiprocessors, Languages, Compilers and Run-Time
Environments for Distributed Memory Machines (J. Saltz and P. Mehrotra, eds.), Elsevier,
Amsterdam, 1992, pp. 39-62.

5. G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng and W. Wu, Fortran
D language specification, Technical Report COMP TR90079, Rice University-Houston,
1991.

6. A. Gerasoulis and T. Yang, On the granularity and clustering of directed acyclic task
graphs, IEEE Trans. Parallel and Distributed Systems, 4 (1993).

7. R.E. Gomory and T.C. Hu, Multi-terminal network flows, SIAM J. Applied Math., 9
(1961) 551-570.

8. T. Fahringer and H.P. Zima, A static parameter based performance prediction tool for par-
allel programs, Proc. Seventh ACM International Conference on Supercomputing (Tokyo,
July 1993), ACM Press, New York, 1993.

9. P. Hudak, Para-functional programming in Haskell, Parallel Functional Languages and
Environments (B. K. Szymanski, ed.), ACM Press, New York, 1991, pp. 159-196.

10. R. E. Lord, J. S. Kowalik, and S. P. Kumar. Solving linear algebraic equations on an

Licensed to AMS.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

SPECIFYING PARALLEL PROGRAMS IN A FUNCTIONAL LANGUAGE 223

MIMD computer, J. ACM, 30 (1983) 103-117.

B. McKenney and B. K. Szymanski, Generating parallel code for SIMD machines, ACM
L. Programming Languages and Systems, 1, (1992) 59-71.

C. Ozturan. Ezpressing parallelism in EPL, Technical Report CS90-29, Rensselaer Poly-
technic Institute-Troy, 1990.

A. Pnuelj, N. S. Prywes, and R. Zahri, Scheduling equational specifications and nonpro-
cedural programs, Automatic Program Construction Techniques (Biermann, Guiho, and
Kondratoff, eds.), McMillan, New York, 1984, pp. 273-287.

B. Sinharoy and B. K. Szymanski. Memory optimization for parallel functional programs,
Computer Systems in Engineering (to appear).

, Finding optimum wavefront for iterative algorithms, J. Parallel Algorithms and
Applications, 2 (1994). .

, Data and task alignment in distributed memory architectures, J. Parallel and
Distributed Computing, 21 (1994) 61-74.

S. K. Skedzielewski, Sisal, Parallel Functional Languages and Environments (B. K. Szy-
manski, ed.), ACM Press, New York, 1991, pp. 105-159.

D. Skillicorn, A Model for Practical Parallelism, Cambridge University Press, Cambridge,
U.K. (to appear).

K. Spier and B. K. Szymanski, Interprocess analysis and optimization in the Equational
Language Compiler, Proc. CONPAR-90, Lecture Notes in Computer Science, Springer-
Verlag, Berlin and New York, 1990.

B. K. Szymanski, EPL - parallel programming with recurrent equations, Parallel Functional
Languages and Environments (B. K. Szymanski, ed.), ACM Press, New York, 1991, pp.
51-104.

B. K. Szymanski and N. S. Prywes, Efficient handling of data structures in definitional
languages, Science of Computer Programming 10 (1988) 221-245.

DEPARTMENT OF COMPUTER SCIENCE, RENSSELAER POLYTECHNIC INSTITUTE, TROY, NEW
YoRrK 12180
E-mail address: szymansk@cs.rpi.edu

Licensed to AMS.

