
Satis�ability Testing with More Reasoning and Less Guessing

Allen Van Gelder Yumi K. Tsuji�

Baskin Center for Computer Engineering and Information Sciences

University of California, Santa Cruz 95064

UCSC-CRL-95-34

avg@cs.ucsc.edu tsuji@cs.ucsc.edu

April 21, 1995

Abstract

A new algorithm for testing satis�ability of propositional formulas in conjunctive normal form (CNF)

is described. It applies reasoning in the form of certain resolution operations, and identi�cation of

equivalent literals. Resolution produces growth in the size of the formula, but within a global quadratic

bound; most previous methods avoid operations that produce any growth, and generally do not iden-

tify equivalent literals. Computational experience indicates that the method does substantially less

\guessing" than previously reported algorithms, while keeping a polynomial time bound on the work

done between guesses. Experiments indicate that, for larger problems, the time investment in reasoning

returns a pro�t in reduced searching, and the pro�t increases with increasing problem size.

Experimental data compares six branching strategies of the proposed algorithm on a variety of prob-

lems, including several Dimacs benchmarks. These branching strategies were shown to perform di�erently

with statistical signi�cance. A new scheme based on Johnson's maximum satis�ability approximation

algorithm was found to be the best overall.

Both satis�able and unsatis�able random 3-CNF formulas with 50{283 variables and 4.27 ratio of

clauses to variables have been tested; this class is generally acknowledged to be relatively \hard" and

required extensive backtracking by other algorithms. Unsatis�able random problems were found to

deviate from the easy-hard-easy pattern.

The new algorithm solves random formulas with surprisingly little backtracking: the average number

of guesses was 3,267 for 200 variables at this ratio, and 57,503 for 283 variables. Larger unsatis�able

formulas from circuit-fault analysis, with 500{12,800 variables were solved with no backtracking in some

cases. Extensive statistics on guesses and time are reported. Statistical and experimental techniques and

traps are discussed. An exponential growth rate for random formulas is estimated.

Keywords: Satis�ability, Boolean formula, propositional formula, resolution, 2-satis�ability, k-closure.

To appear in Cliques, Coloring, and Satis�ability: Second DIMACS Implementation Challenge, Johnson,

D. S. and Trick, M. eds., American Mathematical Society, 1996.

�Authors were supported in part by NSF grant CCR-8958590.

1

1 Overview

The problem of Boolean, or propositional, satis�ability is the fundamental NP-complete problem and has

many practical applications as well. We assume the reader is generally familiar with it, and give de�nitions

only when needed for clarity. In Section 2, we present the idea of k-closure, an operation on a propositional

formula that is in conjunctive normal form (CNF). The method involves a limited use of resolution, called

k-limited resolution (De�nition 2.1). Starting from the given formula, derivation of clauses by k-limited

resolution continues until no further such derivations are possible. Since the number of such clauses in a

formula of n variables is O(nk), k-closure takes polynomial time. We describe an algorithm for satis�ability

based on k-closure in Section 3.

The k-closure approach is compared with other approaches, and some of its properties are described.

An earlier version of this algorithm (presented at the 1993 AAAI Spring Symposium) used 3-closure, but

some operations were much too expensive as implemented. The new version reported here, called 2cl, uses

2-closure, plus certain resolution operations on longer clauses (see Section 4). Two-closure is achievable in

quadratic time per eliminated variable.

Section 5 presents the experimental data comparing the di�erent branching strategies used by the

proposed 2cl algorithm on a variety of problems. The Student's paired t-test was applied to the number of

guesses for these branching strategies to demonstrate the statistical signi�cance of their di�erences. A new

scheme based on Johnson's maximum satis�ability approximation algorithm was found to perform the best

on random 3-CNF formulas, and was always close to the best on other varieties.

Section 7 addresses the question of whether the added time for reasoning that is occurred by 2cl pays

dividends in terms of reduced search space (as measured by the number of guesses). The time performance

of 2cl is compared to the traditional satis�ability algorithm of Davis, Putnam, Logemann and Loveland

[DP60, DLL62] on families of increasingly large random formulas. Above 2000 literals (about 150 variables)

2cl emerges as the clear winner.

Achieving acceptable performance depends strongly on e�cient data structures. We found that memory

was often more of a problem than time for large numbers of variables: for an n variable formula, it was not

feasible to use an n�n array to remember the 2-closure results. Space-e�cient data structures often require

some overhead in time. Keeping that overhead low was the primary implementation challenge. We believe

there is room for signi�cant additional improvement without changing the basic structure of the algorithm.

Appendix A provides further discussion on the statistical traps and techniques for NP-hard problems.

Concerning experimental techniques generally, it was found that variable reordering (Section 6.2) has a

signi�cant impact on the performance of satis�ability testing of Boolean formulas associated with structured

problems. We investigated the e�ect of variable reordering by shu�ing the variables in the input formula, so

that ties would be broken in a variety of ways; a seed for the random number generator used by this shu�ing

procedure can be changed at the invocation time. The e�ectiveness of this approach was experimentally

con�rmed for many of the Dimacs benchmark problems. Appendix B gives the results on the benchmark

problems for the Second DIMACS Challenge.

2 CNF Formulas and Closures

In this paper we regard a CNF propositional formula in the standard way as a set of clauses, where each

clause is regarded as a set of literals. Whether x is a positive or negative literal, ~x denotes its complement.

We may classify CNF formulas by their widest clause as 2-CNF, 3-CNF, etc. Sometimes the shortest clause

length is of interest, too. The empty clause is written as ;, and represents false.

2

Recall that clause C is said to subsume clause D, and D is subsumed by C if the literals of C are a subset

of those of D. A tautologous clause is one that contains both a literal and its complement, can be thought of

as true, and is considered to be subsumed by any clause. We assume familiarity with the terms resolution,

unit clause rule, and pure literal rule.

A Krom formula (or 2-CNF formula) has an associated implication graph: its nodes are literals of the

formula, and clause fx; yg induces directed edges ~x! y and ~y ! x. The notation a!! b means that there

is a path from literal a to literal b in the implication graph.

We shall use n to represent the number of variables, m for the number of clauses, and L for the number

of occurrences of literals, in a formula.

De�nition 2.1: Several notions of closure for sets of clauses will be used.

1. A set of clauses S is said to be closed under resolution, or simply closed , if no clause of S is subsumed

by a di�erent clause of S, and the resolvent of each pair of resolvable clauses is implied by (subsumed

by) some clause in S.

2. A closure of a CNF formula F is a CNF formula that derived from F by a series of resolutions (which

add clauses) and subsumptions (which delete clauses), and is closed.

3. The operation of k-limited resolution is de�ned to be resolution in which the operands and the resolvent

have at most k literals each.

4. A set of clauses S is said to be k-closed if no clause of S is subsumed by a di�erent clause of S, and the

resolvent of each possible k-limited resolution with operands in S is implied by (subsumed by) some

clause in S.

5. A k-closure of a CNF formula F is a CNF formula that derived from F by a series of k-limited

resolutions (which add clauses) and subsumptions (which delete clauses), and is k-closed.

It is easy to see that both closure and k-closure are unique.

By the completeness of resolution, a set of clauses that is closed under resolution is unsatis�able if and

only if it contains the empty clause, ;.
The size of the closure of formula F with n propositional variables may be exponential in n. However,

the k-closure has a size that is O(nk), and so can be computed in polynomial time if k is a constant. We

shall be interested primarily in k = 2 or 3.

2.1 Two-Closure

For a 2-CNF formula, all resolvents have at most two literals, so its 2-closure is also its closure. It follows

that computing the 2-closure provides a polynomial-time decision procedure for 2-SAT. Using the technique

of strongly connected components, it is possible to decide 2-CNF formulas more e�ciently by avoiding

the explicit construction of the 2-closure [APT79]. However, this method does not compute all available

inferences on satis�able 2-CNF; such inferences are valuable when the 2-CNF is embedded in a larger formula.

Larrabee's algorithm [Lar92] (in e�ect) uses the 2-closure of the 2-CNF part of more general CNF

formulas. This paper extends that idea by adding e�cient subsumption resolution, and by incrementally

updating the 2-closure and backtracking out of the updates when necessary. Pretolani [Pre95], as well as

Jaumard et.al. [JSD95] presented satis�ability algorithms that exploit 2-SAT relaxation. Combining some

resolution with searching was also reported by Billionnet and Sutter [BS92], but they do not give enough

speci�cs to permit a detailed comparison.

3

2.2 Three-Closure

For a 3-CNF formula F , it might happen that its 3-closure is also its closure, in which case absence or

presence of the empty clause ; immediately decides satis�ability. In general, of course, the 3-closure is not

the closure, as the resolvent of two 3-clauses is normally a 4-clause, which is not in the 3-closure. However,

the 3-closure might contain the empty clause ; anyway, demonstrating unsatis�ability.

De�nition 2.2: Suppose a set of clauses S contains a variable v such that some resolvent involving v as

the annihilated variable is not subsumed by any clause in S. Then v is said to have implicit information

associated with it.

If no variable has implicit information, then the set S is closed and the satis�ability question is trivial

(look for ;). It may also be possible to exploit the fact that one variable has no implicit information.

Theorem 2.1: If a variable x contains no implicit information in a CNF formula, then all clauses containing

that variable can be deleted without changing the satis�ability of the formula.

Proof : A valid step of the original (resolution-based) Davis Putnam procedure is to perform resolution with

x as the annihilated variable, then delete all clauses containing x. But, by De�nition 2.2, all resolvents of

this operation are already in the formula, or are subsumed by clauses already in the formula.

Unfortunately, testing for implicit information is very expensive. Nevertheless the concept can still be

useful. A 2-closed set of binary clauses has no implicit information, which leads to one of our principal

guidelines:

Fact It is never necessary to guess an assignment to a variable that occurs only in binary

clauses.

Although we do not want to pay to verify the presence of implicit information before choosing a variable to

branch on, we can restrict the choice to those that most probably do have such implicit information.

3 The \Ideal" Algorithm

The above considerations suggest an algorithm that performs 3-closure on the current formula, checks for

;, then checks whether there is any variable with implicit information. If so, then \guess" an assignment to

that variable. If this guess leads to an unsatis�able formula, then backtrack and \guess" the complementary

assignment. In both cases the guessed assignment is added to the current formula as a new unit clause, and

the algorithm is called recursively.

It is interesting to compare the above approach with the older algorithms for CNF satis�ability. The �rst

algorithm oriented toward CNF formulas was due to Davis and Putnam [DP60], and was based on variable

elimination through resolution. It used the unit clause rule and pure literal rule as heuristics for choosing

a variable, but when those were not applicable, it speci�ed to choose a variable from a shortest clause. All

possible resolutions with this variable are done, and clauses containing this variable (or its complement) are

eliminated. There is no \guessing" or branching, but longer and more numerous clauses may be created.

Subsumption checking is an option to reduce the size of the formula.

What is often referred to in current literature as the Davis-Putnam algorithm is actually a modi�cation

due to Davis, Logemann, and Loveland [DLL62], and will be called the DPLL algorithm here. Neither longer

clauses nor new clauses are created by DPLL. The DPLL algorithm uses the unit clause rule (a special case

of resolution), and the pure literal rule, but when these are inapplicable, it chooses a variable from a shortest

4

clause and \guesses" an assignment, essentially by adding that literal to the current formula as a new unit

clause and recursively calling the algorithm. If this guess leads to an unsatis�able formula, the complement

is guessed and the algorithm again called recursively; this step is called backtracking. If both guesses create

unsatis�able formulas, then the current formula is reported as unsatis�able. Section 7 presents performance

results for DPLL.

However, the chosen variable may or may not contain implicit information. For example, if the current

formula contains (v _ a), (~v _ b _ c), (a _ b _ c), and other clauses, but no more occurrences of v or ~v, then

v contains no implicit information, but might be chosen by DPLL as the branching or guessing variable.

Several variants of this procedure have been proposed, but all have the same property that the branching

variable may have no implicit information. The motivation for choosing a variable in a shortest clause is

probably to create more unit clauses.

The 3-closure method combines the ideas of resolution and assignment guessing. By only doing resolution

when the resolvent is three or fewer literals, we are assured of a polynomial bound (per guess) on this

operation. By always choosing a variable with implicit information for assignment guessing, we bring the

formula closer to one whose 3-closure is its closure. We add two further optimizations to reduce formula size:

1. The pure literal rule: requires no comment.

2. Equivalent literal recognition: if (~a _ b) and (~b _ a) are present, then all occurrences of b and ~b may

be replaced by a and ~a, respectively. This reduces the number of variables and usually causes many

clauses to be subsumed.

De�nition 3.1: In the context of a k-closure algorithm, we say that a k-CNF formula is k-stable if it is

k-closed, does not contain ;, has no pure literals, and has no equivalent literals, as described above.

Casual experimentation shows that it is quite di�cult to construct a 3-stable formula that also contains

binary clauses. One example is shown below.

An unusual feature of our \ideal" algorithm is that it may, and normally does, detect satis�ability without

constructing a satisfying assignment. Consider this formula

(a _ b); (x _ y); (~a _ ~x _ ~y); (~y _ ~b _ ~a); (b _ ~x _ ~y); (x _ ~b _ ~a);

It is seen to be 3-stable, and is in fact the smallest 3-stable formula containing binary clauses we have been

able to construct. Because it is closed, and does not contain the empty clause, it must be satis�able.

Some applications require an explicit satisfying assignment to be produced. Fortunately, this can be done

e�ciently by relying on the following observation:

Theorem 3.1: If literal x occurs in a closed formula S, then S has a model in which x is true.

Proof : The formula S has no implicit information, so ~x cannot be a logical consequence of S by the

completeness of resolution.

So a satisfying assignment for a closed k-stable formula S can be found recursively by choosing any literal

x in a non-unit clause of S, and then �nding a satisfying assignment for the closure of (S [(x)).

4 The Practical Algorithm

As mentioned before, to determine whether a variable contains implicit information it is necessary �rst that

the formula be 3-closed, and then all possible resolutions must be tried to see if any produce an unsubsumed

4-clause. We programmed a short-cut that chooses variable that is likely to have implicit information.

5

Once we abandon strict implicit information, there is little motivation for performing complete 3-closure.

However certain of these operations on \long" clauses (3 or more literals) are e�cient and very valuable.

1. Krom subsumption resolution removes one literal from a long clause: fa; xg and f~a; x; y; : : :g resolve to
fx; y; : : :g, which subsumes the original f~a; x; y; : : :g.

2. Simple subsumption removes a long clause when a binary clause or unit clause implies it. This reduces

the \non-information" in long clauses, so branching choices will be more pertinent.

In addition, the following reduction might gain e�ciency.

Corollary 4.1: If a variable x (including ~x) occurs only in binary clauses in a 2-closed CNF formula (possibly

containing longer clauses), then all clauses containing that variable can be deleted without changing the

satis�ability of the formula.

Proof : Variable x has no implicit information, so Theorem 2.1 applies.

While removing such clauses is an option in our implementation, the situation seems to arise rarely, and

we have not observed clear-cut bene�ts in practice.

Our 2cl algorithm is a modi�cation of DPLL. Between guesses, DPLL repeatedly performs unit clause

simpli�cation and pure literal simpli�cation until no further simpli�cations are possible. Between guesses,

2cl repeatedly performs 2-closure (which includes unit clause simpli�cation), pure literal simpli�cation,

equivalent literal simpli�cation, Krom subsumption resolution, and simple subsumption, until a 2-stable

formula (De�nition 3.1) is attained.

The implementation for which we report experimental results maintains explicit 2-closure; that is, every

derivable, unsubsumed binary clause is represented explicitly in the data structure. Each literal is associated

with the sorted list of clauses containing it, so that it is reasonably e�cient to locate all long clauses containing

two speci�ed literals by the intersection operation. This secondary index supports Krom subsumption

resolution and simple subsumption.

Recall that the set of 2-clauses can be regarded as edges in an implication graph. Explicit 2-closure

amounts to maintaining its transitive closure.

The important information that may be present in the transitive closure that cannot be detected from

the strong component analysis is a path from a literal to its complement, x !! ~x, from which the unit

clause ~x can be inferred.

However, updating the transitive closure is potentially expensive: following a guess (a backtrackable

variable assignment), one new inferred edge can generate O(n2) secondary updates. Moreover, they all need

to be \retracted" upon backtracking. While e�cient transitive closure has been much studied, we are not

aware of any work that considers the need to backtrack out of updates to the graph. We use a straightforward

method in which the transitively closed graph is an array (indexed by variable) of adjacency lists. Each new

edge that is added is recorded in a \journal", and upon backtracking, the journal is used to \roll back" the

updates, as is common in database systems.

5 Experimental Results

This section presents experimental data on the proposed 2cl algorithm, with attention to variations that

all have the same reasoning component. See Section 7 for comparisons with DPLL, and discussion of the

trade-o� between reasoning and guessing.

Six branching strategies were tested on a variety of problems, including several Dimacs benchmarks.

These branching strategies were shown to perform di�erently with statistical signi�cance. A new strategy

6

based on Johnson's maximum satis�ability approximation algorithm proved the best for the class of random

3-CNF formulas. However, for the circuit fault-detection formulas the performance of the branching strategies

displayed a less clear pattern. Student's paired t-test was used to test for the signi�cantly di�erent means of

the number of guesses for these branching strategies. Such statistical tests must be applied with care; further

discussions on the statistical traps and techniques for NP-complete problems are found in Appendix A.

5.1 Typical Questions

There are numerous satis�ability algorithms and corresponding implementations. We consider the following

typical questions that arise in comparative evaluations of satis�ability programs:

1. Are there signi�cant di�erences among the observed performances of the given set of programs on the

same distribution of formulas?

2. Is the relative goodness of programs a�ected if we use di�erent distributions of formulas?

3. Is performance of an algorithm sensitive to the presentation of the formula? By \presentation" we

mean choice of variable numbering, clause order, etc.

5.2 Performance Measures

Our principal measure of resource usage, other than CPU time, is the number of \guesses", or branches. A

\guess" is a variable assignment that may change the satis�ability of the formula, so its complement may

have to be considered (or was considered earlier). The number of guesses has the advantage of being a

reproducible measure, so it is used for most presentations. See Appendix A for further discussion.

For the random formulas reported upon here, we have found by regression analysis that CPU time (for

SunSS10/41) for 2cl is modeled quite accurately by the equation

cpusec = �:264 + g(:00000304L+ :00000000451L2)

where g is the number of guesses and L is the number of literal occurrences. The root mean square error of

the model was 3.7 on data whose standard deviation was 111, so, informally, it explains 97% of the variation

observed. The regression data included all branching strategies, all tested clause/variable ratios, and most

tested formula sizes.

For structured formulas, no adequate regression equation was found. Statistics on guesses and CPU time

for both random and structured formulas are given in various tables and �gures, as discussed throughout

the paper.

5.3 Branching Strategies

To provide some answers to the above questions, we conducted satis�ability experiments on various classes of

formulas; we also compared six variants of our implementation of the 2cl algorithm described in Section 4.

These variants correspond to the six di�erent selection criteria for the branching variables.

For all criteria, a positive score and a negative score are computed for each variable. The variable's �nal

score is the product of the positive and negative components. The eligible variable (eligibility is de�ned by

each branching rule) with the maximum �nal score is chosen for branching.

Our use of the product, instead of the sum, appears to be unique in the literature. It is motivated by the

desire to reduce the size of each subproblem substantially. For example, if branching on x achieves reductions

7

Circuit Number of Branches
Family statistics maxscore minlen minlen23 maxlen maxlen23 dsj

ssa0432 Mean 184 527 184 511 184 268
StdDev 86 263 86 194 86 136

0 sat Min 70 220 70 278 70 80
7 unsat Median 202 494 202 496 202 320

Max 272 920 272 858 272 400
bf0432 Mean 1398 5066 1398 1853 1270 1407

StdDev 2641 8216 2641 1980 2233 2429
1 sat Min 6 12 6 14 6 6

20 unsat Median 250 1296 250 851 250 240
Max 10968 31214 10968 6310 8756 8412

ssa7552 Mean 25 3446 25 22 23 23
StdDev 5 6438 5 7 7 6

80 sat Min 12 7 12 8 9 7
0 unsat Median 25 31 25 25 24 22

Max 39 18040 42 37 39 34

Circuit CPU seconds for SunSS10/41
Family statistics maxscore minlen minlen23 maxlen maxlen23 dsj

ssa0432 Mean 0.68 1.27 0.73 1.07 0.68 0.77
Max 0.77 1.69 0.86 1.38 0.77 0.91

bf0432 Mean 6.67 20.33 6.81 11.07 6.41 5.85
Max 30.22 103.69 32.30 33.85 26.73 22.30

ssa7552 Mean 2.00 2.69 2.02 2.02 2.00 1.93
Max 2.86 6.04 2.86 2.81 2.87 2.77

Figure 1: The statistics for the number of guesses and the running time by the six branching strategies of

2cl on circuit fault-detection formulas. More information on the number of variables and literals for these

groups of formulas can be found in Figure 7.

of 4 and 18, while branching on y achieves reductions of 10 and 10, we prefer y, with the higher product,

rather than higher sum.

maxscore All variables are eligible; score is sum of occurrences in all clauses.

minlen Variables that occur in a minimumlength clause are eligible; score is sum of occurrences in minimum

length clauses.

minlen23 Variables that occur in a minimum length clause are eligible; score is sum of occurrences in all

clauses.

maxlen Variables that occur in a clause of length at least 3 are eligible; score is sum of occurrences in

clauses of length at least 3. (If there are only binary clauses, then this reverts to minlen.)

maxlen23 Variables that occur in a clause of length at least 3 are eligible; score is sum of occurrences in

all clauses. (If there are only binary clauses, then this reverts to minlen.)

dsj All variables are eligible; score is the weighted sum of occurrences in all clauses. Binary clauses count

twice as much as 3-clauses, and 3-clauses count twice as much as the clauses of longer length. This is

the modi�ed version of the weighting used in D. S. Johnson's maximum satis�ability approximation

algorithm [Joh74].

8

clauses samples maxscore minlen minlen23 maxlen maxlen23 dsj

300 100 16.78 15.91 16.61 15.31 16.83 17.20
� 3.18 � 3.17 � 3.12 � 2.79 � 3.21 � 3.28

400 100 40.45 32.30 40.39 105.51 40.45 34.82
� 43.67 � 33.59 � 40.90 � 148.54 � 43.64 � 33.42

427 100 92.00 75.70 85.95 226.43 92.00 70.30
� 70.17 � 56.71 � 65.33 � 189.58 � 70.17 � 51.33

450 100 101.84 77.33 91.74 230.79 101.84 78.47
� 47.85 � 32.63 � 41.72 � 129.46 � 47.85 � 32.54

550 100 45.36 31.50 39.72 74.60 45.36 36.64
� 14.35 � 9.06 � 12.59 � 28.84 � 14.35 � 10.34

Figure 2: The average number of guesses by the six branching strategies of 2cl on random 3-CNF formulas

(constant width model) with 100 variables and varying numbers of clauses. Standard deviations are pre�xed

by \�".

Jeroslow and Wang [JW90] have reported on a satis�ability algorithm that uses a somewhat similar

branching strategy, except they maximize over positive and negative components, where we multiply.

Their motivation is \most likely to satisfy".

Hooker and Vinay have challenged the \most likely to satisfy" explanation (see also Section 8), and have

proposed the \2-sided Jeroslow-Wang" rule, with the motivation \maximize size reduction" [HV94].

This rule is like dsj, except that it adds, where we multiply.

There may be multiple candidates for the choice of a branching variable. A tie between any two such

variables is broken by selecting a lower or higher variable number depending on the parity of their sum. We

provide further randomization by shu�ing the variable numbers at the preprocessing stage.

5.4 Observations on the Branching Strategies

The six branching strategies were run on some classes of circuit fault-detection formulas. Results appear in

Figure 1. We observed evident weakness of minlen strategy on the 432.bf family. Due to the small sample

sizes and large variance for these classes of formulas we have not been successful in establishing signi�cance

of the di�erences in the average number of guesses. Figure 7 presents additional results for dsj only on a

larger set of circuit fault-detection formulas.

The six branching strategies were also run on random 3-CNF formulas, which were generated according

to the \constant width" model: each triple of distinct variables is equally likely to be selected for a clause,

each variable is signed plus or minus with equal probability, and all clauses are drawn independently \with

replacement".

Results appear in Figure 2. The dsj and minlen branching strategies had the lowest overall averages.

Because of the poor performance of the minlen strategy on circuit fault-detection formulas, we chose dsj as

the best candidate. To determine the statistical signi�cance of the results, the dsj strategy was compared

against each of the other �ve on �ve samples of varying clause/variable ratio, making 25 cases in all.

The application of the Student's paired t-test [WEC91], using a published C-language implementation

[PTVF92], (reviewed in Appendix A) yields the conclusion that dsj branching strategy outperforms others

with statistical signi�cance (at level .02) in 16 cases, underperforms signi�cantly in 3 cases, and is not

signi�cantly di�erent in 6 cases. The details, including exact probability values, are given in Figure 3.

9

clauses samples maxscore minlen minlen23 maxlen maxlen23

300 100 0.2817 # � 0.0017 0.1188 # � 0.0000 0.3463
400 100 � 0.0091 0.2654 � 0.0139 � 0.0000 � 0.0090
427 100 � 0.0000 0.0997 � 0.0000 � 0.0000 � 0.0000
450 100 � 0.0000 0.5760 � 0.0000 � 0.0000 � 0.0000
550 100 � 0.0000 # � 0.0000 � 0.0000 � 0.0000 � 0.0000

Figure 3: Student's paired t-test signi�cance probabilities of the mean di�erence from the dsj branching

strategy on random 3-CNF formulas (constant width model) with 100 variables. We indicate the signi�cance

level of 0.02 for the paired t-test by \�". For each entry with a signi�cant mean di�erence, dsj performed

better unless it is also marked with \#".

satis�able unsatis�able
clauses variables samples branches time samples branches time

300 100 100 17.20 0.07 0 NA NA
400 100 93 27.74 0.33 7 128.86 1.46
427 100 61 41.31 0.52 39 115.64 1.49
450 100 17 32.18 0.43 83 87.95 1.19
550 100 0 NA NA 100 36.64 0.58

Figure 4: The di�erent di�culty patterns of satis�able and unsatis�able random 3-CNF formulas. Time is

in seconds for SunSS10/41.

These tests convinced us that the new dsj strategy was the best among the alternatives considered for

2cl. Most subsequently reported experiments use this strategy exclusively.

5.5 Satis�able vs. Unsatis�able Random Formulas

We have tested both satis�able and unsatis�able random 3-CNF formulas with 100 variables and from

300 to 550 clauses, including 427 clauses, believed to be the hardest point in the spectrum [MSL92, LT92].

The result for the dsj branching strategy appears in Figure 4. This �gure shows:

1. Unsatis�able random problems do not follow the easy-hard-easy pattern.

2. Satis�able problems are much easier on balance.

5.6 Growth Rate Function on Random 3-CNF Formulas

We have also tested a range from 50 to 283 variables maintaining the 4.27 clause-to-variable ratio. The

2cl algorithm has solved them with surprisingly little backtracking: for 200 variables, the average number

of guesses was 3,267; for 283 variables, the average number of guesses was 57,503. For 283 variables the

number of guesses ranged from 105 to 127,538 for satis�able, and from 25,834 to 182,006 for unsatis�able.

CPU times are reported in Section 7. Figure 5 summarizes the results.

Growth rate was analyzed separately for unsatis�able and satis�able formulas, since the satis�able are 3

to 4 times easier, and the fraction of satis�able formulas at a �xed ratio changes with the number of variables.

10

1

10

100

1000

10000

100000

500 1000 1500 2000 2500 3000 3500 4000

n
u

m
b

e
r

o
f

g
u

e
ss

e
s

(l
o

g
 s

ca
le

d
)

number of literals

Unsatisfiable Formulas
All Formulas

Satisfiable Formulas

Total Sample Branches
Result Vars literals Size Ave Stderr Stddev Min Median Max
unsat 50 642 87 14 0 4 6 14 30

71 909 87 38 1 12 18 36 72
100 1281 91 115 3 31 48 116 212
141 1806 83 540 14 132 208 524 944
200 2562 110 4860 159 1671 2164 4454 9836
283 3624 57 83706 4505 34010 25834 75780 182006

sat 50 642 113 9 0 5 3 8 29
71 909 113 18 1 12 4 14 58
100 1281 109 43 4 39 6 27 175
141 1806 117 168 17 181 10 105 1151
200 2562 90 1320 149 1409 18 835 7002
283 3624 43 22768 4057 26601 105 10618 127538

Figure 5: Growth rate of 2cl on random 3-CNF formulas using the dsj option. The average number of

guesses is plotted against the number of literals on a logscale. The formulas generated all have the clauses-

to-variables ratio of 4.27.

11

Cpu secs (SunSS10/41) / Branches
Family Fmlas Solved Ave Stddev Min Median Max

ii8 14 7 203.88 283.01 0.07 108.14 779.27
31534 45902 8 22185 132210

ii16 10 2 1839.54 2476.61 88.31 88.31 3590.77
10674 14854 170 170 21177

ii32 17 16 251.91 571.64 0.36 1.78 1985.41
2753 6634 67 142 26215

Figure 6: Performance of 2cl with dsj branching strategy on \inductive inference" Dimacs benchmark

formulas.

of Mean Mean
Circuit # of Sat # of # of Number of Branches
Family Fmlas Fmlas Vars Lits Ave Stddev Min Median Max
ssa0432 7 0 501 2481 268 137 80 320 400
ssa2670 12 0 1530 7835 520449 260399 99642 507782 866328
ssa6288 3 0 12836 92216 0 0 0 0 0
ssa7552 80 80 1626 8208 23 6 7 22 34
bf0432 21 1 1183 8296 1407 2430 6 240 8412
bf1355 149 0 2829 19319 13254 9038 2 12742 31194
bf2670 53 16 1531 8366 109347 576585 2 2428 4174892

CPU seconds for SunSS10/41
Ave Stddev Min Median Max

ssa0432 7 0 501 2481 0.77 0.12 0.61 0.77 0.91
ssa2670 12 0 1530 7835 1539.60 639.34 177.16 1483.45 2424.46
ssa6288 3 0 12836 92216 39.45 6.10 32.41 42.95 43.00
ssa7552 80 80 1626 8208 1.93 0.28 1.47 1.92 2.77
bf0432 21 1 1183 8296 5.85 6.48 0.75 3.04 22.30
bf1355 149 0 2829 19319 41.81 20.85 2.94 37.70 86.29
bf2670 53 16 1531 8366 439.01 2436.85 0.79 14.18 17724.57

Figure 7: Performance of 2cl with dsj branching strategy on the Circuit formulas.

However, no signi�cant di�erence in growth rate was observed between these two groups. See Figure 5.

Our experiments for the dsj branching strategy indicate an exponential

growth rate of 2:0039L, where L is the number of occurrences of literals in the formula. The estimated

coe�cient, C = :0039, was obtained by �tting the equation

mean branches = A2C�L

to the observed values of 57,503 for L = 3624 and 3,267 for L = 2562. Based on the standard errors in

Figure 5, the standard error of C is about :0001. At this ratio variables occur an average of 12.81 times, so

the growth rate in terms of n variables appears to be 2:050n; this coe�cient's standard error is about :001.

5.7 Observations on the \Inductive Inference" Formulas

The Dimacs \inductive inference" benchmark formulas were attempted with spotty results. Results

appear in Figure 6. With a limit of 1 hour CPU time imposed, the algorithm only solved 25 out of 41

12

problems. All of the tests given in the result were done with the same variable shu�ing algorithm. Without

the variable shu�ing we observed that one more formula was solved within the given time limit; however,

one formula was no longer solved with the net result being very similar.

5.8 Observations on the Circuits Formulas

Figure 7 shows the 2cl result on all the \circuits" formulas that have been submitted to the DIMACS

database of cnf formulas. Perhaps the most remarkable result in this group is that the three unsatis�able

ssa6288 formulas, with an average of 12,836 variables, were solved with no guessing at all. We are not aware

of any other algorithm that has succeeded solving these formulas. All formulas in the group were solved,

although one required 5 CPU hours.

6 Experimental Techniques

This section discusses two techniques used in our experiments: the �rst one assures the randomness of the

formulas while maintaining the repeatability of the experiment; the second provides information about the

sensitivity of an algorithm to accidents in the presentation of the formula.

6.1 Seed Conversion

The basic assumption in the experiments on the randomly generated formulas is that the input formulas

are chosen independently at random from a speci�ed parent population and distribution. Such randomness

is typically simulated by a formula generator that uses a reliable \random number generator" whose initial

seed value is either produced internally or provided at invocation time by the user. In either case, unless one

remembers all the initial seeds, the repeatability of the experiment is lost. This becomes an unreasonable

burden for the experimenter, since easily remembered set of seeds can compromise the randomness factor.

For example, if the same initial seed was used to generate a formula of 400 clauses and one with 500 clauses,

both with the same number of variables, then there is a dependence between those two formulas; in fact,

one is a pre�x of the other.

To avoid this problem, for those experiments in Sections 5.4, 5.6 and 7, we used a script that converts

a user speci�ed seed in an easily remembered range, such as 1{200, into a unique actual seed to be used by

the formula generator via the following formula:

((v + 59 � c) � 123 + i) mod 1000000

where v, c, and i are the parameter values corresponding to the number of variables, the number of clauses,

and the user speci�ed seed, respectively. The same range, say 1{200, can be used for a variety of values of

v and c without incurring any dependence.

6.2 Internal Variable Shu�ing

To determine sensitivity to the formula presentation, we provide the option to shu�e internal variable

numbers at the preprocessing stage. By default, variables are internally numbered in order of �rst appearance,

and these numbers may determine how ties are broken. This shu�ing does not change the formula in an

essential way. It is also referred to as variable reordering.

The programs we used in this experiment have an execution time option to shu�e the variable numbers

in the input formula at the preprocessing stage. The default seed value is 0 to indicate no shu�ing, but

13

0.1

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

500 1000 1500 2000 2500 3000 3500 4000

n
u

m
b

e
r

o
f

g
u

e
ss

e
s

(l
o

g
 s

ca
le

d
)

number of literals

Guesses Growth Comparison: DPLL with maxscore, 2cl with maxscore, and 2cl with dsj

DPLL -maxscore
2cl -maxscore

2cl -dsj

number number Number of guesses
of of DPLL maxscore 2cl maxscore 2cl dsj

variables literals Mean StdErr Mean StdErr Mean StdErr

50 642 79 4 12 0 11 0
71 909 263 14 31 1 27 1
100 1281 1354 79 100 5 76 4
141 1806 10474 672 457 26 322 17
200 2562 322426 19625 5216 282 3267 166
283 3624 23420708 2232070 111590 9233 57503 4329

Figure 8: Growth rate comparison of 2cl and DPLL on random 3-CNF formulas. The average number of

guesses is plotted against the number of literals on a logscale. The formulas generated all have the clauses-

to-variables ratio of 4.27.

user may specify any integer as the seed for the variable shu�ing. This technique was used as a tool in

investigating the sensitivity of the algorithmic performance to the formula presentation. As indicated in

Section 5.7 and in Appendix B, variable shu�ing by 2cl could make a big performance di�erence in some

structured formulas. However, it made very little di�erence in random formulas.

7 Time Trade-O�s for Reasoning vs. Guessing

14

0.1

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

500 1000 1500 2000 2500 3000 3500 4000

n
u

m
b

e
r

o
f

se
co

n
d

s
(l
o

g
 s

ca
le

d
)

number of literals

CPU Time Growth Comparison: DPLL with maxscore, 2cl with maxscore, and 2cl with dsj

DPLL -maxscore
2cl -maxscore

2cl -dsj

number of number of Mean CPU seconds for SunSS10/41
variables literals DPLL maxscore 2cl maxscore 2cl dsj

50 642 0.30 0.26 0.19
71 909 0.37 0.42 0.33
100 1281 0.84 1.34 1.02
141 1806 5.80 9.21 6.60
200 2562 214.65 195.96 123.84
283 3624 21500.14 7743.29 4256.60

Figure 9: Growth rate comparison of 2cl and DPLL on random 3-CNF formulas. The average number of

CPU seconds (Sun equivalent, as explained in text) is plotted against the number of literals on a logscale.

The formulas generated all have the clauses-to-variables ratio of 4.27.

The theme of 2cl is to reduce the size of the search space, as measured by the number of guesses, by

incorporating an e�cient reasoning component into the search. A natural question is whether the time

invested in reasoning pays dividends in terms of reduced search. To address this question we compared 2cl

with an e�cient implementation of DPLL. The same samples of random formulas reported in Section 5.6

were used, ranging from 50 to 283 variables at the 4.27 ratio; all sizes had 200 samples, except that 283 had

100 samples. Besides relative magnitudes, we were especially interested in growth rates.

Because the theme of DPLL is to guess as fast as possible, it is not consistent to spend time maintaining

the information needed to implement the dsj strategy. However, the maxscore strategy can be implemented

15

with little overhead, and proved to be far superior to the published strategy of choosing \any variable in

a minimum-length clause" (on random formulas, at least). Results are based on the maxscore strategy for

DPLL. We ran 2cl with both the maxscore and dsj strategies.

Figure 8 shows the growth rates in terms of guesses for both algorithms. Unsurprisingly, 2cl does less

guessing. The important observation is that exponential growth rate for guessing is much lower for 2cl than

for DPLL, as shown by the diverging lines. Assuming these rates persist to larger problems, it is inevitable

that 2cl will eventually require less time, because it spends only a polynomial factor greater time per guess

than DPLL.

Using the method of Section 5.6, where dsj was found to grow at the rate 2:0039L, here we �nd that

2cl with maxscore grows at 2:0042L, while DPLL grows at 2:0058L. (The standard errors of all of these

coe�cients is about :0001.)

Figure 9 shows the growth rates in terms of CPU time for both algorithms. DPLL was executed on

SunSS10/41 while 2cl was executed on a slower DECStation 5000/240. The CPU times measured on

DECStation 5000/24 were transformed to the SunSS10/41 equivalent times by using the conversion factor

of 0.5813. This graph con�rms that \the future is now". For the dsj branching strategy, the extra reasoning

begins showing a pro�t around 150 variables (2000 literals), and the margin widens rapidly for larger sizes.

Roughly speaking, by considering time instead of guesses, the DPLL curve translates downward relative to

2cl, but still has the greater slope. To show that the performance di�erence between 2cl and DPLL is

attributable to reasoning, and not a di�erence in branching strategies, we also ran 2cl with the less e�ective

maxscore strategy, which is the strategy that worked best for DPLL. We see the similar situation in this

case, although the cross-over point with the DPLL is higher, about 200 variables (2600 literals).

8 Conclusion and Future Work

The combination of reasoning and guessing seems to be bene�cial. Careful implementation is needed to keep

the cost of reasoning down. Further investigation is needed to determine whether the expensive 3-closure

operations can be done more e�ciently and put back into service. Analysis of the asymptotic complexity,

both of the worst case, and of the average case on random formulas, is another avenue of investigation. There

are some known results on the worst-case performance of satis�ability on CNF formulas using algorithms

that add various forms of reasoning to the basic DPLL framework [MS85, VG88, Sch93, Kul94, KL95]. For

random CNF formulas of length L at the 4.27 ratio studied here, the smallest known worst case bound is

2:046L. This is still far above our observed growth rate of 2:0039L.

Statistical techniques, including nonparametric methods [GC92], for the comparative evaluation of di�er-

ent strategies is another topic that can be further pursued. Distributions for NP-hard problems are typically

highly skewed. For most of the structured, i.e., nonrandom formulas, we observed that the maximumnumber

of guesses was 2 to 3 times the second largest number of guesses in the same sample. Consequently, it is

important to report a variety of statistics to give a good picture of the algorithm's behavior. Besides the

average and standard deviation, we have also reported the minimum, median, and maximum.

Hooker has advocated an empirical approach to algorithm analysis that involves hypothesis formation

and prediction, in analogy with natural sciences [Hoo94]. Many heuristics are proposed in the literature,

with informal explanations of why they work well. Hooker believes that the explanations should be examined

more critically, and proposes a framework for doing so: if the explanation is \correct", then we should be

able to make new predictions and verify them. If, on the other hand, the predictions are not borne out, then

that indicates that the intuitive explanation has somehow not really captured the reason for the heuristic's

observed success. In the latter case, we should begin looking for a better explanation. Hooker and Vinay have

16

reported on an application of this technique, as discussed in Section 5.3 [HV94]. Gent and Walsh indirectly

applied the technique to arrive at negative conclusions about the importance of greediness and randomness

in local search [GW93]. This technique seems to o�er great promise for discovery of better algorithms for

intractable problems.

Acknowledgements

We thank the anonymous referee for many suggestions on improving the paper. Many of the experiments

were facilitated by equipment that was donated by Sun Microsystems, Inc. Both authors were supported in

part by NSF grant CCR-8958590.

References

[APT79] B. Aspvall, M. Plass, and R. Tarjan. A linear-time algorithm for testing the truth of certain

quanti�ed Boolean formulas. Information Processing Letters, 8(3):121{123, March 1979.

[BS92] A. Billionnet and A. Sutter. An e�cient algorithm for the 3-satis�ability problem. Operations

Research Letters, 12:29{36, July 1992.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Communi-

cations of the ACM, 5:394{397, 1962.

[DP60] M. Davis and H. Putnam. A computing procedure for quanti�cation theory. Journal of the

Association for Computing Machinery, 7:201{215, 1960.

[GC92] J. D. Gibbons and S. Chakraborti. Nonparametric Statistical Inference. Marcel Dekker, Inc.,

1992.

[GW93] I. P. Gent and T. Walsh. Towards an understanding of hill-climbing procedures for SAT. In

Proceedings of the Eleventh National Conference on Arti�cial Intelligence; AAAI-93 and IAAI-

93 (Washington, DC, USA, 11-15 July 1993), pages 28{33. Menlo Park, CA, USA: AAAI Press,

1993.

[Hoo94] J. N. Hooker. Needed: An empirical science of algorithms. Operations Research, 42(2):201{12,

March-April 1994.

[HV94] J. N. Hooker and V. Vinay. Branching rules for satis�ability. In Third International Symposium

on Arti�cial Intelligence and Mathematics, Fort Lauderdale, Florida, 1994.

[Joh74] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and

System Sciences, 9:256{278, 1974.

[JSD95] B. Jaumard, M. Stan, and J. Desrosiers. Tabu search and a quadratic relaxation for the

satis�ability problem. In D. S. Johnson and M. Trick, editors, Cliques, Coloring, and Satis�ability:

Second DIMACS Implementation Challenge., DIMACS Series in Discrete Mathematics and

Theoretical Computer Science. American Mathematical Society, 1995.

[JW90] R. Jeroslow and J. Wang. Solving propositional satis�ability problems. Annals of Mathematics

and Arti�cial Intelligence, 1:167{187, 1990.

17

[KL95] O. Kullmann and H. Luckhardt. Various complexity upper bounds for decisions on propositional

tautology. Information and Computation, 1995. To apppear.

[Kul94] O. Kullmann. Methods for 3-SAT-decision in less than 1:5045n steps. Technical report, University

of Frankfurt, 1994.

[Lar92] T. Larrabee. Test pattern generation using Boolean satis�ability. IEEE Transactions on

Computer-Aided Design, 11(1):6{22, January 1992.

[LT92] T. Larrabee and Y. Tsuji. Evidence for a satis�ability threshold for random 3CNF formulas.

Technical Report UCSC{CRL{92{42, UC Santa Cruz, Santa Cruz, CA., October 1992.

[MS85] B. Monien and E. Speckenmeyer. Solving satis�ability in less than 2n steps. Discrete Applied

Mathematics, 10:287{295, 1985.

[MSL92] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT problems. In

Proceedings of the Tenth National Conference on Arti�cial Intelligence (AAAI-92), San Jose,

CA., pages 459{465, July 1992.

[Pre95] D. Pretolani. E�ciency and stability of hypergraph SAT algorithms. In D. S. Johnson and

M. Trick, editors, Cliques, Coloring, and Satis�ability: Second DIMACS Implementation Chal-

lenge., DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American

Mathematical Society, 1995.

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C.

Cambridge University Press, second edition, 1992.

[Sch93] I. Schiermeyer. Solving 3-satis�ability in less than 1:579n steps. In Computer Science Logic. 6th

Workshop, CSL '92 (San Miniato, Italy, 28 Sept.-2 Oct. 1992) LN Comp. Sci. 702 (1993), pages

379{94. Berlin, Germany: Springer-Verlag, 1993.

[VG88] A. Van Gelder. A satis�ability tester for non-clausal propositional calculus. Information and

Control, 79(1):1{21, October 1988.

[WEC91] J. Welkowitz, R. B. Ewen, and J. Cohen. Introductory Statistics for the Behavioral Sciences.

Harcourt Brace Jovanovich College, fourth edition, 1991.

A Statistical Traps and Techniques for NP-Complete Problems

NP-hard problems can produce highly skewed distributions of certain performance measures. Care is needed

to avoid erroneous interpretations and unjusti�ed conclusions.

Consider the performance of 4 algorithms on randomly generated formulas from the same family. The

table below shows averages for independent samples of 1000 runs, in cpu times and branching.

Average Average
Algorithm CPU Secs. Branches

A 3.36 120.75
B 3.42 124.23
C 3.44 124.65
D 3.61 130.44

18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Branches
CPU

Figure 10: Cumulative distribution of 100 independent samples of the Student signi�cance statistic S

Algorithms B and C look pretty indistinguishable. But with 1000 samples, clearly A is better than D, right?

Wrong ! All four runs were made with the same deterministic algorithm, with independent randomly

generated formulas. This data is not \cooked up". It is the summary of our only attempt to prove our point,

not the worst case over many attempts.

Trap 1 Look only at the averages.

It is well known that standard deviations or other measures of dispersion are necessary to know the accuracy

of averages, but we see a great many tables with just averages, and no measures of their accuracy. In the

above data, the standard deviations were greater than the averages.

A fairly standard way to test for a signi�cant di�erence between two average values is the Student's t-test

[WEC91]. This test was derived assuming that both samples were drawn from Gaussian distributions with

the same variance, but possibly di�erent means (average values).

Trap 2 Use the Student t-test without knowing whether the actual distribution is approximately Gaussian.

The Student t-test has a reputation for being \robust", that is, not overly sensitive to the distribution

assumptions. However, exponential time algorithms can stress those assumptions beyond the limits foreseen

by traditional statisticians.

Is the Student t-test still reliable, although the distribution is decidedly non-Gaussian? Under ideal

conditions, if two samples are drawn from the same distribution, the end result of their Student t-test, call it

S, is a uniformly distributed random variable in the range 0 to 1. That is why, upon observing S to be 0.05

in an experiment, one can say, \If the two distributions were identical (the null hypothesis), the probability

of getting an S this small or smaller is 0.05."

19

So construct some samples where you know the null hypothesis holds! Calculate the Student statistic (S,

not t) over numerous independent pairs of such samples. These values of S should appear to be uniformly

distributed. If not, the distribution is too skewed for the Student t-test to be accurate.

We carried out this experiment using our program with both the number of branches and the CPU time

in seconds as the measures. We ran 100 pairs of samples, each consisting of 100 independent formulas (20000

runs in all). In every case, 2cl with the dsj branching rule was run with a random input from the same

family of formulas (100 variables, 400 clauses). This yielded 100 independent S values whose cumulative

distribution is plotted in Figure 10. The slightly concave appearance suggests that the distribution is shifted

a little to the high end, making it conservative. Because our program is designed to reduce branching, we

suspect the skewness is lower than might be exhibited in other programs.

As mentioned, exponential time algorithms can stress the assumptions on underlying distributions beyond

the limits foreseen by traditional statisticians.

Trap 3 Fail to distinguish between random variables with no known upper bounds or known variances and

those for which these quantities are estimable and of reasonable size.

Informally, the problem is this: to know how accurate an estimate of the mean is, one must know the

standard deviation. But again, only an estimate of the standard deviation is available, so how does one

know how accurate that is?

Standard statistical methods handle this question by assuming that the underlying distribution is Gaus-

sian. This is not realistic in this setting. The only constraint on the distribution that we can expect in

practice is a �rm upper bound.

Some examples having �rm upper bounds include:

� Any probability is bounded between 0 and 1 and has standard deviation at most 0:5.

� The size of the optimum, for most optimization-based NP-complete problems is easily bounded by a

low degree polynomial.

On the other hand, the CPU time required to solve a random problem in a given family normally has no

known upper limit or known variance. As mentioned, without knowing something about the distribution,

one cannot say how accurate is an estimate of the variance, calculated from a sample.

We strongly advocate measuring something in addition to CPU time, for performance evaluation. The

alternate measure should preferably be strongly correlated to CPU time, but it should be a measure for

which an upper bound is known for the whole sample space, a priori . For example, in simple DPLL, 2n is

an easy upper bound on the number of branches. Closer analysis can sharpen that. Therefore, some �rm

statistical statements can be made about the accuracy of an estimate of the average number of branches

required over some sample space.

Trap 4 Use the Student t-test when the pairs test is applicable.

To compare two algorithms' performance, it is common sense to eliminate as much noise as possible, by

running them on the same set of problems. But it is a common mistake to try to work with averages and

standard deviations of the two samples, rather than all the data. The pairs test compares two algorithms,

input by input, and computes the di�erence in the performance measure for each input. Thus the noise due

to varying di�culty of inputs is eliminated. The standard deviation of the di�erence may well be an order

of magnitude lower than the standard deviations of the samples themselves, and much higher discrimination

results.

20

clauses samples maxscore minlen minlen23 maxlen maxlen23

300 100 0.3589 0.1937 0.4205
400 100 � 0.3071 0.5954 � 0.2929 � 0.3070
427 100 0.4811 � 0.0611
450 100 0.8049
550 100 � 0.0602

Figure 11: Student's t-test signi�cance probabilities of the mean di�erence from the dsj branching strategy

on random 3-CNF formulas. Only those entries that are not signi�cant at level 0.02 are shown. Those

marked by \�" showed signi�cance in Figure 3, based on the paired t-test for same data.

The phenomenon is illustrated with the data for comparison of dsj with �ve alternative strategies, from

Section 5.4. Figure 11 shows the insigni�cant entries (at level 0.02) that would result from using the non-

paired t-test. Of these, those that were signi�cant in Figure 3 are marked with a \�". For this data and

signi�cance level, the paired t-test �nds 5 out of 11 additional signi�cant di�erences.

B Second DIMACS Challenge Satis�ability Benchmark Results

GENERAL INFORMATION

Authors: Allen Van Gelder and Yumi K. Tsuji (University of California, Santa Cruz)

Title: Satis�ability Testing with More Reasoning and Less Guessing

Name of Algorithm: 2cl

Brief Description of Algorithm: Complete: Combination of branching and limited resolution

Type of Machine: SunSS10/41

Compiler and
ags used: gcc (version 2.4.5) -O2

MACHINE BENCHMARKS

User time for instances:

r100.5 r200.5 r300.5 r400.5 r500.5

0.04 0.93 8.05 49.06 189.29

ALGORITHM BENCHMARKS

Authors' Comments:

� Parameters: For this Appendix, the following invocation parameter values were used.

{ Branching Strategy: The program can use any of the six di�erent branching strategies; we

selected the one based on Johnson's maximum satis�ability approximation algorithm.

{ Randomization: The program shu�es the order of the variables; there is an invocation param-

eter to set a seed value for the random number generator used by this shu�ing procedure. The

multiple runs presented in the Appendix were produced by varying this initial seed.

21

� Additional columns in the Table:

We have two additional columns in the Appendix table. The column named RelStdErr refers to the

relative standard error of the mean. It is calculated as the percentage of the standard error of the

mean with respect to the mean: (Std:Dev �100)=(Mean�pn). The last column,Median, refers to the

int((n+ 1)=2)-th value in the ordered list of the \cpu" values of the runs in each sample.

� Failed Runs:

The failed runs given in the table had the maximum time limit set to 7 hours. For the ii32d3 and

par32-2-c formulas, we have also tried 100 di�erent seeds to do the variable scrambling with the time

limit set to 10 minutes for each; they had all failed.

� Note on the Special sequences:

We found that moving the �rst 52 clauses to the end of the formula permitted the program to succeed

in 2 seconds with 2046 guesses on pret60 25 and pret60 75. These runs are not included in the table.

22

Results on Benchmark Instances: Time
Name Runs(Fail) Min Avg (StdDev) Max Result
aim-100-2 0-no-1 100 0.06 43.45 (22.31) 93.88 No
aim-100-2 0-no-2 100 0.09 24.19 (17.28) 65.61 No
aim-100-2 0-no-3 100 0.52 14.48 (7.35) 29.89 No
aim-100-2 0-no-4 100 0.03 25.64 (17.79) 69.16 No
aim-100-2 0-yes1-1 100 0.53 0.73 (0.09) 0.98 Yes
aim-100-2 0-yes1-2 100 0.04 0.50 (0.41) 1.25 Yes
aim-100-2 0-yes1-3 100 0.64 0.85 (0.11) 1.25 Yes
aim-100-2 0-yes1-4 100 0.04 0.22 (0.12) 0.58 Yes
bf0432-007 100 20.77 22.85 (1.59) 35.71 No
bf2670-001 100 4.03 4.43 (0.29) 6.57 No
dubois20 100 18.34 36.51 (11.42) 94.87 No
dubois21 100 23.60 64.27 (21.24) 151.00 No
f400 2 (1) 10869.85 Yes
f800 DNR
f1600 DNR
f3200 DNR
f6400 DNR
g125.17 1 (1)
g125.18 1 (1)
g250.15 DNR
g250.29 DNR
ii32b3 100 2.88 16.47 (32.31) 113.78 Yes
ii32c3 100 2.67 3.03 (0.35) 4.40 Yes
ii32d3 101(101)
ii32e3 100 2.34 2.53 (0.11) 2.98 Yes
par16-2-c 100 5.05 145.04 (95.65) 310.45 Yes
par16-4-c 100 2.42 145.28 (87.76) 352.39 Yes
par32-2-c 101(101)
par32-4-c 1 (1)
par8-2-c 100 0.12 0.26 (0.07) 0.44 Yes
par8-4-c 100 0.15 0.23 (0.04) 0.35 Yes
pret150 25 1 (1)
pret150 75 1 (1)
pret60 25 100 4.73 50.82 (29.81) 169.44 No
pret60 75 100 5.18 49.83 (28.43) 140.98 No
ssa0432-003 100 0.45 0.55 (0.06) 0.79 No
ssa2670-141 100 148.70 164.58 (8.16) 193.66 No
ssa7552-038 100 1.76 1.85 (0.05) 2.04 Yes
ssa7552-158 100 1.05 1.14 (0.05) 1.30 Yes
ssa7552-159 100 1.07 1.14 (0.05) 1.38 Yes
ssa7552-160 100 1.36 1.44 (0.04) 1.57 Yes

23

Benchmark (cont.) Avg Rel.Std Median
Name Time Err (%) Time
aim-100-2 0-no-1 43.45 5.13 47.08
aim-100-2 0-no-2 24.19 7.14 22.01
aim-100-2 0-no-3 14.48 5.08 15.46
aim-100-2 0-no-4 25.64 6.94 25.06
aim-100-2 0-yes1-1 0.73 1.26 0.73
aim-100-2 0-yes1-2 0.50 8.22 0.17
aim-100-2 0-yes1-3 0.85 1.30 0.83
aim-100-2 0-yes1-4 0.22 5.68 0.18
bf0432-007 22.85 0.69 22.67
bf2670-001 4.43 0.64 4.38
dubois20 36.51 3.13 33.97
dubois21 64.27 3.30 62.54
f400 10869.85
f800

f1600

f3200

f6400

g125.17

g125.18

g250.15

g250.29

ii32b3 16.47 19.62 3.09
ii32c3 3.03 1.14 2.87
ii32d3

ii32e3 2.53 0.44 2.52
par16-2-c 145.04 6.59 191.52
par16-4-c 145.28 6.04 133.18
par32-2-c

par32-4-c

par8-2-c 0.26 2.75 0.25
par8-4-c 0.23 1.78 0.23
pret150 25

pret150 75

pret60 25 50.82 5.87 46.11
pret60 75 49.83 5.71 47.41
ssa0432-003 0.55 1.04 0.55
ssa2670-141 164.58 0.50 162.22
ssa7552-038 1.85 0.27 1.85
ssa7552-158 1.14 0.41 1.14
ssa7552-159 1.14 0.43 1.14
ssa7552-160 1.44 0.29 1.45

24

