
CREATING IMPLEMENTATIONS FROM PROMELA MODELS 9

Siegfried L�offler, Ecole Nationale Superieure des Telecommunications, Departe-

ment Reseaux, 46 Rue Barrault, 75634 Paris Cedex 13, France

Current address : Siegfried L�o�er, Hewlett{Packard Laboratories, Filton Road, Stoke Gif-
ford, Bristol BS12 6QZ, UK

E-mail address : loeffler@res.enst.fr

Ahmed Serhrouchni, Ecole Nationale Superieure des Telecommunications, Departe-

ment Reseaux, 46 Rue Barrault, 75634 Paris Cedex 13, France

E-mail address : ahmed@res.enst.fr

8 SIEGFRIED L�OFFLER AND AHMED SERHROUCHNI

It has to be mentioned that the compiler itself is not validated and most prob-
ably still contains quite a lot of bugs. Therefore the resulting implementations are
not 100% validated.

Another thing which is left to do is a validation of the protocol that we use for
the connection of clients and servers. A basic description of this protocol can be
found in [7].

4. Conclusions

With PROMELA / SPIN, Holzmann has attacked two of the main factors
inhibiting more widespread use of speci�cation or validation tools, namely di�culty
of use and the inherent limitations of the �nite state reachability methods.

However, for the step to the �nal implementation, some di�culties remain. The
major drawback of PROMELA in its current state is that the semantics are still
not exactly speci�ed, therefore allowing interpretations which may lead to problems
when implementing the design. Another problem is the missing capability of the
language to re�ne the speci�cation in a way that su�ces to describe details (like
timeouts) of an implementation.

Our extended SPIN tool is usable for the rapid prototyping of validated imple-
mentations of communication protocols. Because of our di�erent interpretation of
the \atomic" statement, it is possible for the implementation to behave not exactly
as expected. The generated implementation is not 100% validated because we had
to add code for a scheduler and for external communications which has not been
exhaustively veri�ed.

The main application �eld we see for the implementations generated with the
current version of our extended SPIN tool is the rapid prototyping of testing sce-
narios.

References

[1] Gerard J. Holzmann, AT&T, Design and Validation of Computer Protocols, Prentice Hall,

1991
[2] Gerard J. Holzmann, AT&T, What's New in SPIN Version 2.0, in \SPIN Documentation",

1995
http://netlib.att.com/netlib/att/cs/home/holzmann-spin.html

[3] Gerard J. Holzmann, AT&T, V2. Updates, in \SPIN Documentation", 1995
http://netlib.att.com/netlib/att/cs/home/holzmann-spin.html

[4] A. A. F. Loureiro, S. T. Chanson and S. T. Vuing, FDT Tools for Protocol Development, Forte
'92, Lannion, France, 1992

[5] E. Najm, F. Olsen, T�el�ecom Paris, Reactive PROMELA, 1st SPIN Workshop, Montreal, 1995
[6] Eric Moreau, J�erôme Paillet, PROMELA Compilateur | Document Technique, Rapport de

Stage, T�el�ecom Paris, 1994
[7] S. L�o�er, A Promela To C Compiler, Rapport de Stage, T�el�ecom Paris, 1996

http://www.res.enst.fr/~loeffler/abstract.html

[8] J. A. Chaves, Formal Methods At AT&T - An Industrial Usage Report, Forte 91, Sidney, 1991

[9] C. Jones, Formal Methods And Their Role In Industry, ASWEC 91, 1991
[10] R. P. Hautbois, P. de Saqui{Sannes, Results And Viewpoints On The Use Of Formal Lan-

guages, Workshop \Formal Methods, Modelling And Simulation For System Engineering",
St{Quentin En Yvelines, France, 1995

[11] R. Groz, J. F. Monin, M. Phalippou, D. Vincent, Current Application Of Formal Methods

In France T�el�ecom | CNET, Workshop \Formal Methods, Modelling And Simulation For

System Engineering", St{Quentin En Yvelines, France, 1995

CREATING IMPLEMENTATIONS FROM PROMELA MODELS 7

External Communications

We already mentioned that we added external events to the PROMELA models.
For the design of the implementations, this results in the necessity to �nd a way to
specify such events in PROMELA. Since we did not want to change the PROMELA
syntax by introducing new language constructs, we decided to implement such
external events using channels. These \external" channels are speci�ed exactly like
normal PROMELA channels, the only di�erence is that we pre�x their names with
\ext " in the speci�cation. This allows us to use the existing tools for simulation
and validation.

In order to simulate or validate a model which communicates with other systems
via external channels, it su�ces to include proctypes describing those external
events into one single �le used for simulation and validation.

The external channels also allow us to divide one PROMELA speci�cation into
implementations which run in multiple UNIX processes and communicate with each
other via external channels. For this we have to create a PROMELA source code for
each UNIX process to be generated. Using \#include" preprocessor directives all
proctypes can then be included either in the source �le which is used for simulation
or in the source �les which are used for the compilation of the implementation.

The connection of the UNIX processes is realized in a client{server architecture.
The server always keeps track of the queue contents of the external channels in all
connected UNIX processes. If a client wants to read from an external channel, it
has to send a request to the server. On the other hand, the server noti�es all clients
if the contents of any of the external channels changes. To avoid having access
problems with two clients reading from the same channel we limited read access
to an external channel to one UNIX process per channel. If a UNIX process has
read from a channel, thereafter no other UNIX process is granted read access to
the same channel. This reduces the communication between the UNIX processes
and makes them much faster. Nevertheless, multiple proctypes are allowed to write
into the same channel queue.

For the inter{process communication between the UNIX processes, AF UNIX
domain sockets are used. This makes it easy to distribute the processes over multiple
machines by changing the AF UNIX domain into the AF INET internet domain.

Upon compilation of a PROMELA model, one can specify whether the compiled
UNIX process should be the server or a client by setting the appropriate switch.
Since all channel queues are kept within the server, it is advisable to make the
UNIX process the server which uses the external channels the most.

3. Future Work

The most important drawback in our extended SPIN environment is that it
is not yet possible to use synchronous channels for the communication between
UNIX processes. Almost as important is the missing capability for \sorted send"
and \random receive" operations between UNIX processes, which were added to
PROMELA with version 2.0 of SPIN. [2] [3]. Also introduced with SPIN Version
2.0 and not yet supported are some other language constructs like the \d step"
statement.

6 SIEGFRIED L�OFFLER AND AHMED SERHROUCHNI

This example shows that although we are using the same abstraction, treat it
with the same tool and even use the same internal data structures as in validation,
it is still possible to interpret the semantics of PROMELA di�erently.

Priorities. In Version 2.5 of SPIN, Holzmann added a mechanism to de�ne
process priorities for use during random simulations [3]. Those priorities could be
easily implemented in the scheduler, however they aren't yet. The priorities were
implemented to improve the debugging facilities. For validation they are not used
at all.

Timer Mechanisms

PROMELA was designed as a validation language. For the implementation of
a protocol, there are some important requirements that are not yet covered by the
language. For example it is absolutely necessary that one can de�ne a timeout.
Since the timeout statement in PROMELA has initially been designed to avoid
the blocking of a proctype, in PROMELA it is not possible to specify any value for
a timeout. For the validation it is su�cient to know that a timeout can occur in
a certain state. If it can occur, it does not matter how long it may take until this
happens since time is an element which does not exist in the validation.

The original timeout statement therefore is not supported for the implemen-
tation.

A solution to this problem could be to introduce a parameter that can be
given to the timeout statement. This would have the advantage that existing
PROMELA models could be modi�ed very easily. On the other hand, it would
have the disadvantage that a change to the language syntax would be necessary.

Since we did not want to change the syntax of PROMELA, we searched for
another possibility. As a replacement, a timeout mechanism which uses message
queues was implemented. This mechanism is close to the implementation of timers
in SDL where timers basically are modeled as messages.

For the communication with this timeout mechanism that is implemented in
the runtime scheduler, the following three message channel names, whose names
are reserved, were de�ned:

1. \set timer" This channel can be used to set a timer. The channel de�nition
\chan set timer=[1] of f byte, byte g;" has to be used to de�ne the
channel in the model. Afterwards, a message consisting of a timer identi�er
and a value (in seconds) for the timer can be transmitted in a message to
the implementation scheduler.

2. \timer" This queue is used by the implementation scheduler to send a mes-
sage if the timer expires. The channel de�nition \chan timer = [1] of f
byte g;" has to be added to the PROMELA model. The message consists
of the timer identi�er that was sent through the set timer channel.

3. \del timer" This queue can be used to delete a timer before it expires. The
de�nition for the channel is \chan del timer = [1] of f byte g;" The
message should be the timer identi�er that was used when setting the timer.
In recursive proctypes, it is advisable to use the \ pid" Variable to compute
a unique timer identi�er.

To validate a model which uses those timer queues, an additional PROMELA
proctype has to be added to the speci�cation which describes the timer mechanism
in the scheduler, i.e. reads and writes the timer queues.

CREATING IMPLEMENTATIONS FROM PROMELA MODELS 5

all branches that it already tried to execute because an \else" statement
that might be one of the branches is only executable if there are no other
possible transitions. Since \else" is only executable if all other statements
in the proctypes state aren't, the scheduler has to do the random branch
selections until it has reached all other branches. If a completely random
choice is used, some unexecutable branches are probably chosen more than
once. Therefore, the scheduler uses more CPU time than necessary.

3. A third possibility is to choose the �rst branch to be executed in a random
manner. Afterwards the remaining transitions can be tested sequentially.
This costs almost no additional CPU time and has the advantage of intro-
ducing a random element into the implementation.

Since we wanted to have at least some random in our implementations, we de-
cided to implement the third algorithm. This also allows us to use implementations
for random simulations of the model.

BlockingProctypes. If there are no possibilities to execute any of the branches
in a certain state of a proctype, this proctype should block. If this is true for all
proctypes in a UNIX process (or if the current sequence of transitions is \atomic")
then it is not necessary to check continuously whether a transition has become exe-
cutable. The only types of events that could change this state of the UNIX process
are external messages from other processes or timeouts. So it is possible to block
the UNIX process until an external message event occurs or a timer expires. This
reduces the CPU load of the machine on which the implementation runs.

Atomic Sequences. In PROMELA, sequences of statements may be de�ned
as \atomic" sequences. An atomic sequence should, from the point of view of the
other proctypes, be seen as one single instruction that is not interruptible. During
the execution of an atomic sequence, the scheduler must not switch to another
proctype. However, starting with Version 2.0 of SPIN it is legitimate for an atomic
sequence to block [2] [3]. In this case it should | since Version 2.0 | be allowed
to switch to another proctype.

This is implemented di�erently in our scheduler. If an atomic sequence in the
implementation blocks, the scheduler will stay in this proctype until it unblocks,
even if this will never happen.

The reason why we decided to interpret the semantics of the \atomic" state-
ment di�erently is that we wanted to add external events to implementations. How-
ever, if an implementation blocks in a certain state because it would have to wait for
an external event, one can never know if this event will ever occur or not, because
it is not speci�ed in the same model. Therefore we can not know if it is necessary
to leave the atomic sequence in order to avoid a deadlock.

A solution to this problem could be to prohibit the use of external channels
inside atomic sequences. An easier solution is, in our opinion, to interpret the
semantics as they were interpreted by older versions of SPIN, i.e. not allowing the
change of proctypes inside atomic sequences at all. If a designer wants to allow a
proctype change in a certain state, he should specify this explicitly by breaking the
atomic sequence into multiple sequences which are separated by the operation in
which the proctype change is to be allowed.

Figure 4. Code Dependencies With SPIN

Scheduling in the Implementation

The state machine plus the additional C code for the implementation are com-
piled into a UNIX program. Thus multiple proctypes which are designed to run
in parallel are executed in one single UNIX process. For the switching between
the proctypes a scheduler which selects the next active proctype and takes care of
external communications and of timers is needed.

Non{Determinism. The most interesting feature of PROMELA as a lan-
guage is the possibility to describe non{determinism. If non{deterministic choices
are to be translated into executables (implementations), there are several possibil-
ities for dealing with it.

In \if..fi" and \do..od" statements, all executable branches from the current
state of the state machine can be chosen in an arbitrary manner. Before choosing
a branch, the scheduler therefore has to test if it is executable. The following three
strategies for the choice of the next transition can be imagined:

1. It must be allowed to simplify the implementation by just choosing always

the �rst executable branch. The scheduler starts with the �rst transition,
checks if it is executable, if it isn't, it tests the second one, and so on. This
makes it very compact and usually quite performant. The behavior of the
implementation will be the same each time it is started because there is no
random element in scheduling (except possible external events).

2. Another possibility is to use a random number generator to choose between
the branches. The disadvantage of this method is that the same transition
branch may be chosen more than once. The scheduler has to keep track of

Figure 3. Overview Of The Code That SPIN Produces When
Called With The Option "-a"

The two branches of the abstract tree melt together into one (as shown in �gure 2)
since the same abstraction is used for validation and implementation. This is the
originality of our contribution that distinguishes it from most other tools for the
generation of implementations, which are usually separate programs [6].

2. Our PROMELA to C Compiler

As we already mentioned, the analyzer which SPIN produces when called with
the option \-a" is generated as C code. This code is structured in �ve �les, as
depicted in �gure 3.

In order to re{use the state machine which SPIN generates corresponding to
the PROMELA source we need the �les \pan.m" (the forward moves) and \pan.t"
(the transition matrix). In addition to those we use parts from \pan.c" (the main
analyzer code) and \pan.h".

Figure 4 shows an overview over the data dependencies with our extended SPIN
tool. The shaded regions in the �gure represent the extensions we made for the
generation of implementations. This is mainly the scheduler but also some code
that allows us to de�ne real{time timers and to communicate with other UNIX
processes.

Figure 2. Using The Same Tool For Validation And Implementation

The main goal when creating an implementation from PROMELA source code
obviously is to create a validated implementation which has certain provable charac-
teristics. To achieve this it is necessary to keep as close as possible to the validated
code, i.e. to stay as close to the validated abstraction in the tree in �gure 1.

This was our starting point for the generation of the implementation. We went
into the internal data structures of the validator generated by SPIN and tried to
re{use as much of it as possible. The big advantage we had from using SPIN for
this e�ort was that SPIN already generates C code for all transitions and actions.
In fact Holzmann already mentioned this possibility to create implementations by
proposing modi�cations to the validator as an exercise in his book [1] (p. 317, ex.
13{5).

By modifying the tool SPIN, isolating the state machine | the \motor" of the
validator | and extending it with additional new code (mainly a scheduler), we
achieve an implementation which has a very high �delity to the validated code.

,

Creating Implementations from PROMELA Models

Siegfried L�o�er and Ahmed Serhrouchni

Abstract. SPIN is a tool to simulate and validate Protocols. PROMELA, its

source language, is a formal description technique like SDL and Estelle that is
based on communicating state machines. Unlike most other tools, SPIN is in

the public domain and therefore is one of the most widely used formal veri�ca-
tion tools today. PROMELA allows to specify distributed automatawhich can

communicate using either message channels or shared memory. This contribu-
tion consists of an extension to SPIN which allows the creation of implementa-

tions from PROMELA speci�cations. This can be used for the creation of test
scenarios and the rapid prototyping of validated protocol implementations.

1. Introduction

FormalDescription Techniques (FDTs) are used in many �elds of software engi-
neering. One main application �eld is the validation of software designs, especially
telecommunication protocols, but they are equally applicable to other �elds such
as avionics, nuclear power control, medicine, railway control etc. [8] [9] [10] [11].

Usually the FDTs are used for the validation of a design concept. This valida-
tion can be achieved either by simulations of the design or with special validation
algorithms. After the concept has shown to ful�ll the requirements, the formal
speci�cation usually is used as a guideline for the programmer for the creation of
an implementation. However it can also be imagined that the formal speci�ca-
tion is automatically translated into an implementation. This has the advantage of
reducing the probability to introduce new design faults when translating it.

Such an automated generation of executable code from a formal speci�cation is
nothing new. Many e�orts have been dedicated to this task in the past [4]. Usually
di�erent tools are used for simulation, validation and creation of the implementa-
tion. The tools take the formal speci�cation as a starting point and use an abstract
tree like the one shown in �gure 1.

An advantage of PROMELA / SPIN [1] is that the same tool can be used for the
simulation and the creation of the validator. Nevertheless, even with PROMELA /
SPIN | although the same tool is used | the code that deals with the simulation
is quite di�erent from the code for the generation of the validator, since di�erent
data structures are created. For the validation, SPIN generates a validator which
is generated as C source code, whilst for the simulation it directly interprets the
PROMELA speci�cation.

.

1

