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Abstract

In this paper we present the research that has been done with Lin-
ear Dynamical Systems to generate almost uniformly elements from a
given set, and thus approximate some hard counting problems. We
also indicate how non-linear systems can help to parallelize the com-
putation. We end, presenting further applications of linear systems to
formalize heuristics.

1 Introduction

Many problems involving the counting of the number of solutions of com-
binatorial structures are well known to be difficult. Valiant defined the
class #P of computationally equivalent counting problems ([Val79b]). For
many problems in this class, their decision counterpart is in P. It is well
known that, unless the polynomial hierarchy collapses, P # #P. This fact
implies that for any #P-complete problem, exact counting is apparently
intractable ([Pap94]). The most notorious of these problems is to compute
the permanent of a dense matrix, that turns out to be equivalent to count-
ing the number of perfect matchings in a dense bipartite graph ([Val79a)).
The hardness of these counting problems motivated research on approxi-
mate counting. Pioneering work in this line was the paper [KLM89] where
they construct a Randomized Fully Approximation Scheme for some difficult
counting problems. Later, it was discovered that for the problems which are
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self-reducible, approximate counting is equivalent to almost uniform gener-
ation ([JVV86]). The almost uniform generation problem consist in picking
at random an element of a finite set according to some distribution, with
a relative error of at most € with respect to the probability that a given
element is chosen, under the uniform distribution.

A Monte-Carlo algorithm for approximating the permanent of dense pos-
itive matrices based in computing an unbiased estimator, was given by Kar-
markar, Karp, Lipton, Lovasz and Luby ([KKL*93]). Their estimator can
be easily computed in RNC, thus we get a RNC algorithm to approximate
the permanent of the adjacency matrix of a bipartite graph with minimum
degree (1/2+a) n where a > 0. Therefore there exists a RNC approximation
to the number of perfect matchings for “quite dense” bipartite graphs.

A technique that has proved to be very useful for solving the almost
uniform generation problem, is the Markov Chain technique. Given a prob-
lem, define a Markov chain where the states are all possible solutions, plus
possibly a small fraction of “non-solutions”, and the transitions are certain
probabilistic rules that allow us to remain in the same state or to pass to
a new state. Under certain properties of the underlying graph, it can be
proved that a polynomial (in the input size) random walk on the states
gives us an almost randomly generated element from the stationary distri-
bution of the chain. The difficulty of this method is to prove convergence
in a polynomial number of steps to the stationary distribution, usually ref-
ered to as the “rapid mixing” property. Broder used the Markov chain
technique to approximate the value of the permanent of a dense matrix
([Bro86]). The rapid mixing property of his chains was shown by Jerrum
and Sinclair ([JS89]). Over the past years, a large body of literature has
been devoted to the subject of almost uniform generation through Markov
chains and methods of proving rapid mixing. Excellent surveys can be found
in [Sin93, Vaz91, Kan94].

A question of interest is the possibility of parallelizing the almost uni-
form generation and approximate counting problems. Consider the Markov
Chain defined by Broder ([Bro89]) for almost uniform generation of perfect
matchings in dense bipartite graphs. Teng has proved that the problem of
computing the final node m’ of a sequential walk given that it starts from
a node m is P-complete ([Ten95]). This result does not exclude the pos-
sibility of generating in parallel an almost uniform perfect matching. The
Teng result excludes the possibility of a NC simulation of a given sequential
random walk, that is; given the walk and the initial state, compute in NC
the final state.

To obtain a parallel generator instead of using a Markov chain, we define
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a “genetic system”. Such a system starts from a set S of objects with a given
initial distribution Ilg, this will be the initial generation at time ¢ = 0. From
that initial population, new generations are grown by mating two randomly
selected parents. Define a mating rule to crossover objects: our rule will
be defined in such a way that for any two objects sampled according to
distribution II; at time ¢, form a new object that will be an element of the
next population. Formally, if » and v are the objects sampled from II; mate
them with probability p(u, v, w) to outcome the new element w. Then the
probability distribution of the population at time ¢ + 1 follows a non-linear
dynamic equation

Oit1(z) = Z I (w) Zp(u, v, 2)II(v).

We shall show that the system evolves towards a unique stationary distribu-
tion. This kinds of non-linear equations were previously studied. In general
quadratic dynamic systems are difficult and no too much is known abaout
their behaviour. For instance, it is known that a quadratic dynamic sys-
tem can solve any problem in PSPACE, using a polynomial amount of time
[Pud94, ARV94], therefore unless P=NP there is not polynomial time symu-
lation of a general quadratic dynamic system. There are results for some
particular ones, for example in the work of Rabani et al. [RSW92, RRS95].

The next section in this paper presents some general results on Markov
chain theory and the Markov chain method to sample almost uniformly. We
survey the sequential approach to solve a general problem, the monomer-
dimer system. Section 3 presents the non-linear approach to parallelize the
almost uniform sampling. We show the convergence of the system and how
to implement in parallel the defined mating rule. Finally section 4 surveys
some of the work done trying to formalize hillclimbing heuristics, together
with some final remarks.

2 Linear Sistems

We shall review some of the basic concepts of Markov chains. Recall that
a Markov chain p is an stochastic process, defined on a set of states S,
in terms of a transition matrix P = (p;;)i jes, where each p;; denotes the
probability of going from ¢ to j. Therefore, Vi € S, Zje s Pij = 1. Moreover,
at t = k, we define 7 as

(i) = ) i Te-1(j) (1)
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On the other hand, let X; be a stochastic variable such that, at time ¢, it
denotes the state where p is. Also let the initial distribution m(¢) (at ¢ = 0)
defined as follows: Vi € S, mo(i) = Pr{Xo=1:}.1f S ={1,2,8,...,m} and
7r = (mk(1),...,7k(m)) is the distribution at time ¢ = k, then

TT_k='7_I"k_.1°P='7?0'Pk. (2)

So every Markov chain defines a linear system and reciprocally any linear
system can be viewed as a Markov chain.
A Markov chain is irreducible if Vi, 5 € S, 3t such that pfj > 0. A

Markov chain is aperiodic if Vi,j € S, ged {tlpfj > 0} = 1. A Markov
chain is said to be ergodic if Vj € S, tli)m Pl = Teo(§) > 0. If p is ergodic
o0

then Too = (Moo (1), ..., Too(n)) is called the stationary distribution.
Let T=(1,1,...,1)7. As P is stochastic, then P-1 = 1. Let also

To(l) ... Too(m)
P* = lim [Ff] = P :
Too(l) vv. Too(m)

The following results could be found in any basic book of Markov chains
(see for ex. [Nor97, Sin93])

Theorem 1. A Markov chain p is ergodic if and only if it is irreducible
and aperiodic. Moreove, if a Markov chain u is ergodic then its stationary
distribution is the unique distribution that satisfies:

Too* P =T

Y Too(?) = 1.

i€S

To assure that the stationary distribution tends to be uniform, we need
further conditions on p. A Markov chain is symmetric if Vi,j € S, p;; =
pji. An ergodic Markov chain is reversible if Vi, j € S satisfy the Balance
Equation
oo () Pij = Moo () Pji-

The next two results can be found in any cannonical textbook on Markok
chains,

Proposition 1. Let p be ergodic. If 37, such that Vi,j € S : m.(i)pi; =
7o (f)pji and Y me () = 1, then p is reversible and T, = Tu.



Theorem 2. If u is an ergodic Markov chain with |S| = n and it is sym-
metric then

Vi€ S, moli) =+
n

Let us consider the problem of given a large and finite set S, and a
probability distribution 7 on S, sample an element in S according to 7. The
Markov Chain Technique gives an approximate solution of the previous
problem, and consists in the following steps: Construct a Markov chain p
with states S and stationary distribution 7. Starting from an arbitrary state
s € §, perform a random walk in the chain large enough to set a closed point
to equilibrium distribution. In the light of our previous comments p must
be ergodic and if p is ergodic and symmetric, then

_ 1 1
Too =1 =100, —
=SS
i.e. Ty is uniform.

Therefore, once we have a Markov chain y, to sample from 7, simulate
the Markov chain for a finite number of steps and get close to 7o,. The
question is, what is the rate of convergence?. Recall that for all k, 7 =
7oP¥, note that we need to control powers of P. Hence, we need to look at
the eigenvalues of P. The basic idea is to use spectral theory as it is done
in Graph Theory (see for example [Chu96]).

Recall from linear algebra that any n X n matrix M over K could be
considered as a linear operator V — V. Moreover, if M has A1, Ag, ..., Ay
n

real eigenvalues, not necessarilly all different, then M = E M H® with

=1
Hi.sz{ #0 ifi=j

0 if¢#j.
Moreover, if m diagonalizes, then H' - H* = H*.
Let P be the transition matrix of u with eigenvalues Ay,...,\,, and

assume that P diagonalizes. Then as P is stochastic A; = 1 and 1 = |A] >
[Ag] > ... > |As]. So,

P™ =) APH'=APH 4+ AMH
i>1 i>2

Let T = (n(1),...,m(n)) be the left eigenvector of 1 = A; and let [Ag| < 1 (if
Az = —1 then p is periodic). Then T, = 7 is the left eigenvector of A\; = 1



and if

H! =

then
lim P™ = H! +

lim Y APH'm~ H'+ lim |Xg|H?.
m—yoo m=—300 & m—yoo
1 >2
Therefore if p is an ergodic Markov chain with stationary distribution 7,
then |Ao| < 1.

To avoid that negative eigenvalues can delay the ratio of convergence, we
can increase the value of the self-loop in P and make all eigenvalues positive.

The following theorem is proved in [Sin93],

Theorem 3. If P is the transition matriz of an ergodic and reversible
Markov chain with eigenvalues Ay = 1> Ao > A3 > ... 2> A, > =1, then the
Markov chain with matriz P' = 1(I + P) is also ergodic and reversible, and
it has the same limit distribution Te,. The eigenvalues {\}};_, are similarly
ordered and X, = 1(1+ \)) > 0.

We wish to approach the stationary distribution in a random walk of
polynomial length. Define the relative pointwise distance at time ¢ is

ngj — Teo (J)l
ij€8  Too(])

To see how fast A(t) — 0 and get some bounds on A(t), the following bound
is useful for an ergodic and reversible Markov chain, (citeSinclair)
¢
alf < A < —128L
min 70 ()
historically the way to bound the convergence of Markov chains was coupling
([Lin92]). The big breakthrough of Jerrum and Sinclair was to use structural
properties of the graphs represented de Markov chains associated to certain
counting problems, to bound the convergence. Let us define the concept of
rapidly mixing Markov Chain.
The rate of convergence in a Markov chainp to its stationary distribution
oo 18 given by its mixing time function defined by 7;(¢) = min{t | V¢’ > ¢ :
A;(t)<el.



We say that a Markov chainis rapidly mixing if from any ¢ € S and
Ve :0 < € <1 we have

7(6) < poly (1l og 2.

Notice a Markov Chain y can be considered as a weighted directed graph
G = (V, E,w), where V is the set of states, p;; >0 => (4,5) € E, and the
weight of an edge w(3, j) is defined as the probability 7o (¢)p;;. Notice that
when tha Markov chainis reversible it holds w(s, j) = w(j, 1).

Let us give some topological definitions on the underlying graph G of
p. For S’ be a nonempty subset of S. The capacity of S’ measures the
probability of being in a state of S’ when reaching 7, and it is defined
Csr = Y e Too(1). The ergodic flow of S’ measures the probability of
leaving S, and it is defined Fgr = 3 ic s Too(4)pij. The probability of

jed

leaving S’ once inside S’ is given by ®5 = Fg//Cs. The conductance of
 is defined as @ = min{®g : S’ ¢ S|Cs < 1}. Notice the conductance of
1 measures the worst bottle-neck.
If the Markov chainy is reversible we have

V§' G S Fs = Fg = ®=min {max{®s,%g} : §' ¢ 5,5 #0}.

Then it is possible to bound A;, and hence the convergence, in terms of
the topological characteristic of x, ®. The following resul is from [J S89],

Theorem 4 (Jerrum-Sinclair). Let u be an ergodic and reversible Markov

chain. Then .

1—2@3)\231-—%—.

Corollary 1. If u is ergodic and reversible then

At) < -2

T ming Teo(d)
Moreover, if & < 1/2 then A(t) > (1 — 2®)t.

The following theorem gives us a characterization of rapid mixing in
terms of ®:

Theorem 5. Let u be an ergodic and reversible Markov chainwith Vi € S :

pii < 1/2, and such that if 7%, = minjes{moo (i)} then Inpi%, =1 < poly(|i]).
Then p is rapidly mizing if and only if ® > FoTylmﬁ VieS.



Therefore to prove that an ergodic and reversible Markov chainy is
rapidly mixing, we have to find a polynomial p such that ® > 1/p(|4]).

Still it is necessary to compute or find bounds for the conductance. For
that, Jerrum and Sinclair considered a clever argument to estimate the bot-
tleneck of the Markov chain. Define a unique canonical path, between every
pair of states, and given a transition edge count the number of canonical
path going through it.

Given any S’ C Slet §(S) ={i € 8| Fj € §7: e = (i,5)}. We define
the edge magnification of the graph of u as

!
@)= min -Ié(—?—-ﬂ
o<|s'|< 8L S|

Notice that if d is the maximum degree of the graph of y then VS’ C S :
16(S")] > 18] - d. So 0 < &(p) < d.

Many Markov chains can be considered as a random walk in the graph
of p, with maximum degree d, where transitions from ¢ to j are made with
pobability 8/d for some constant § (0 < 8 < 1). In addition, Vi € S,
i has a self loop with probability 1 — Bdeg(¢)/d. In such a situation, the
conductance of the corresponding graph verifies & = [—h—d(ﬁl. Therefore, in
this kinds of Markov chains, to prove they are rapid mixing, it is enough to
find a polynomial p such that & = —ﬁi‘l > —T— If d < poly(|i]), we just
have to find a polynomial lower bound on the ecfge magnification ~.

2.1 Monomer-Dimer Systems

Let us see an generic example taking from [Sin93].

Given a graph G = (V,F) with |V| = n and |E| = p. For k €
{0,---,|n/2]}, let My (G) denote the set of matchings of size £ in G, and
M denote the set of all its matchings, that is M = Up M. We will also use
N to denote the number of matchings, i.e. N = |M|. From now on, G will
denote the input graph.

We start by defining a Markov chain D for a given weighted graph G,
here c(e) denotes the weight of edge e. The chain D contains as states the
set M of all matchings, and the transitions are defined as follows,

Definition of transitions in D :
Given a matching m € M,

(0) Sample uniformly a random edge e = (u,v).



(1) With probability 1/2 stay in m
otherwise

(1.1) (Deletion) If e is in m then with probability 1/(1 + ¢(e)) go to
matching m — {e}, otherwise stay in m.

(1.2) (Augmentation) If m U {e} is a matching then with probability
c(e)/(1+ c(e)) go to new matching m U {e}.

. (1.3) (Rotation) If u is unmatched in m and v is matched in m by
edge ¢’ = (v, w), then with probability c(e)/(c(e’) +c(e)) the new
matching is m~{e'}U{e}, and with probability c(e’)/(c(e/)+c(e))
keep m.

(1.4) Otherwise stay in m.

In figure 2.1 it is given an example of the Markov chaincorresponding to a
monomer-dimer system in which all edge weights are equal to a constant c.
The convergence of the monomer-dimer system can be found in [Sin93]

Theorem 6 (Sinclair). Given a weighted graph G, the Markov chain D
is reversible and ergodic. Moreover the stationary probability oo (?) =

Heem.' c(e)
szM Heémj c(e) '

In order to analyze the mixing time of such chain, using the conductance
argument, we suppose that there is and underlying order on all simple paths
(including cycles) in G. Fix for any path a start vertex, that must be and
endpoint if it is not a cycle. For any two given machings m; and mq their
symmetric difference is a set of disjoint cycles and paths. We start by sorting
this set of paths according to the fixed order. The canonical path from m, to
my involves the transformation of the initial matching into the final one, by
modifying in order all the paths and cycles, starting from the corresponding
start vertices.

To unwind a path that is not a cycle, we have two cases, first, the path
starts with an edge of my, in such a case we change edge by edge and finish
adding the last if necessary. Second, the path starts with an edge of m,
remove that edge and follow as in the previous case. An example of such
unwinding is given in figure 2

To unwind a cycle fix a direction to traverse its edges in such a way that
the first edge from the start vertex is in m; remove this edge and proceed
as in the corresponding path using as start vertex the endpoint that is not
the start vertex of the actual path.




Figure 1: Example with G = Ky and |E| =4
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Figure 2: An example of canonical path.



The second part is to define an injective mapping from the set of canon-
ical paths that pass through a given transition ¢. Let ¢ be a transition from
matching m to matching m/, and let P(t) be the set of canonical paths that
contain t. For any pair of matchings such that the canonical path from m;
to mq goes through ¢ define o;(my, mg) = M1 @My @ (mUm'), and remove
the edge e of m; adjacent to the start vertex of the path currently treated
in case the resulting set of edges is not a matching. The difference m; @ mq
can be recovered from o;(mq,mg) using

o1(my, mz) ® (mUm') @e if tis an augmentation

o the current path is a cycle
my P mg =
! 2 and e is the removed edge

o¢(my, ma) ® (mUm') otherwise

It is possible to tell wether the path is a cycle or not, because we are un-
winding cycles in different direction than paths. We can recover the original
matchings using the path ordering. Hence o; is injective. Furthermore it
can be shown (see [Sin93])

Lemma 1. For any transition t and any (my, ma) € P(t) we have
Too (1) oo (M2) < 4| E|Chaaxtioo (04(m1, m2)),

where cmax = max{l, max.cg c(e)} and w; and wy is Teo (M) multiplied by
probability of the transition t.

Therefore the chain is rapidly mixing.

3 Genetic System

To simplify the presentation, we only consider the monomer-dimer Markov
chain M in the case that all weights are equal to a given fixed parameter
¢ > 0. Such chain M contains as states the set M of all matchings, and the
transitions are defined as follows,

Definition of transitions in M :

Given a matching m € M,
(0) Sample uniformly a random edge e = (u,v).
(1) With probability 1/2 stay in m

otherwise
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(1.1) If eisin m then with probability 1/(1+¢) go to matching m—{e},
otherwise stay in m.

(1.2) If mU{e} is a matching then with probability ¢/(14¢) go to new
matching m U {e}.

(1.3) If u is unmatched in m and v is matched in m by edge ¢’ = (v, w),
then with probability 1/2 the new matching is m — {e'} U {e},
and with probability 1/2 keep m.

(1.4) Otherwise stay in m.
As M is a restricted version of the monomer-dimer system we have

Theorem 7 (Sinclair). Given a fized c, the Markov chain M is reversible
and ergodic. Moreover the stationary probability T (i) = cl™l/ > ieM clmil,

In [Sin93] it is also shown that for graphs verifying

o < ol Q

for a polynomial function g, then taking ¢ = 2¢(n), the chain M converges
to an uniform stationary distribution on the subset of perfect matchings.
Furthermore in the limit distribution, the probability of getting a perfect
matching is bigger than 1/2. As every dense graph satisfies equation (3),
then the class of bipartite dense graphs is a subset of the class of graphs
satisfying (3). Notice that the stationary distribution is non-uniform o the
set M.

We define a genetic system G over the population of all matchings M
that will produce the next generation according to a mating rule grounded
in the transitions of M.

Definition 1 (Mating Rule). From parents m; and m,, sort randomly
the edges of m,. The offspring my, is the matching resulting of applying the
following procedure:

(1) With probability 1/2, my, = my.
Otherwise,

(2.1) For every edge in m, Nm; with probability 1/(1 + ¢) choose that
the edge does not belong to my,.

(2.2) For every edge e = (u, v) € m, such that u and v are unmatched
in my, with probability ¢/(1+ c) choose e to be in my.

13




(2.8) For every magzimal increasing path in m, \my, starting in a node
unmatched in my, and having even length, see Figure 3. Each
edge in the path comming from m,, with probability 1/2 choose
label 1, otherwise choose label 0. Beginning with the first edge in
the path, compute the longest prefiz formed with edges labelled 1
(if any). Then my, consists of the edges from m, in the prefiz,
and the edges from my after the first edge labelled 0.

Given three matchings m;, m; and mg, let P(i, j, k) denote the proba-
bility of getting my, as an offspring of m; and m;.

To define a system evolving in time ¢, start from a given initial generation
Tlo over M at t = 0. The generation at time ¢ + 1 is obtained from the
generation II; at time ¢, by sampling two matchings m; and m, according
to II;, and applying the mating rule to m; and m,. The system evolves
according to the following dynamical equation,

Mo (k)= > Mty Y P(,r,k) I(r) (4)
mieM meEM

Let us consider a probability distribution IT on the set M of all matchings
in G. Let us define a Markov chain M(I) on the set of states M, and using
the mating operation as rule for the transitions. Formally the transitions
are defined,

Given a matching m; € M,
(1) Sample a matching m, according to distribution II,
(2) move to the matching my defined by the mating of m; and m,..

From the way the Markov chain has been defined, it evolves accordingly
to the following equation,

Mypr(k) = > () Y, P(rk)-TI(r). (5)
meEM mpEM
Notice that The I, k coefficient TI(l, k) in the transition matrix of M(II) is
given by TI(I,k) = ¥, enr Py 7y k) - II(r).
3.1 Convergence
We want to study the conditions under which the genetic system and the

Markov chain converge to the limit distribution Il of M.
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Figure 3: Two matchings and the set of maximal increasing paths.
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Lemma 2. Given a path {my,---,m,} on the underlying graph of M, the
stationary distribution Il verifies,

r—1 r—1
D) [T piitr = Hoo(r) [ | pi14-
i=1 i=1

Proof. The time reversibility of M implies Il (¢)-pi; = pji- oo (5), therefore

r—1 r—1
D[] pissr = Moo (1) - pr2 [ [ Piins
i=1

=2

= P21 - Moo (2) [ | Pisies
1=2

= ]_—[pz+lz ‘ sz i1

i=s

r—1
=[] pisri - Moo (r)
i=1

d

Given a matching m;, we denote by S(z) the set of edge sequences ob-
tained by sorting the edges in m;. Given three matchings my, m, and
my, and an element ¥ € S(r) let us denote by P(l,7, k) the probability
of going from m; to my followmg a sequence given by 7 in M, so we have
P(l,r k) = Y res(y P(I,7,k)/|S(r)|. Notice that P(l,r, k) € [0, 1] with
Y pP(l,rk) = 1. Using lemma 2 and the fact that, when P( P k) #£ 0
there is a matching m; of the same size as m, such that P(k,3,1), we get,

Lemma 3. Given three matchings m;, m, and my, we have
oo () - P(l,r, k) = P(k,r,1) - I (k).

This lemma gives us the property we need to prove convergence of both,
M(II) and G to the distribution Il

Theorem 8. Given a distribution 11 over the set of matchings of a graph
G = (V, E). If for every matching m with one edge we have I1(m) > 0, then
M(II), and G converge to the limit distribution of M.
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Proof. In order to prove the convergence of M(II), we show the time re-
versibility of M(II) with respect to the distribution II.,. Recall that the
probability of going from my; to my in M(II) is given by the equation
(I, k) = X2, ep PU 7, k) - TI(r), therefore using lemma 3 we have

Moo() - Il k) = Heo(1) - Y P(l,m, k) - TI(5)

mreM
= > Te(l)- P(l,r k) - II(r)
mrEM
= Y Te(k) P(k,r,1)-II(r)
mrEM

Let us prove the convergence of the genetic system G . Recall that the
system evolves according to the equation

Moy (k) = D (1) Y P(,r,k)-TL(r).

mieM mrEM

Substituting I, in the previous equation and using again lemma 3 we get,

Y Teo(l)- Y Pl,rk) - Hoo(r)

mEM mre€M
= Z Z Hoo(l)'P(lvrv k)'HOO(r)
mieM m.eM
= Y > (k) Pk,r1) - Te(r)
miEM m.eM
) Z HOO(T') Z P(k‘,f’,l)
mreM mieEM
k) D Teo(r) = Teo ()
mrEM

Therefore Il is a fix point for the system, let us see that it is the unique fix
point of the system. Suppose that A is another fix point, by the restriction
on the initial distribution, A must assign positive probability to any match-
ing. Therefore the Markov chain defined using the mating rule and the A
distribution converges to I, and A therefore A = II. O
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The column on the right
shows the evolution of the
genetic system G. At any

given time ¢ we may use the
distribution of states in G to
start a Markov chain u(m,).
All of these systems converge
to the same distribution 7.

Figure 4: The genetic system G and the Markov chains associated to every

distribution.
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3.2 RNC computation of the mating rule

Given two matchings m; and m, to compute in RNC the mating operation,
that gives birth to child my, consider the following procedure:

(1) With probability 1/2, my = my
Otherwise :

(2) In parallel assign an order to the edges in m,.

3) For every edge in the graph, check if it is in both matchings. If so with
g
probability 1 — 1/(1 + ¢) choose that the edge is in the offspring my.

(4) For every edge (u,v) € m, check whether u and v are unmatched in
my. If so, with probability ¢/(1+ ¢) choose (u,v) to be in mg.

(5) For each free node in m;, obtain the list of edges in m, that form a
maximal increasing path,
if it has even length.

(5.1) Toss the coin and assign labels 0/1 with equal probability to the
edges.

(5.2) Obtain the first edge a with label 0. All the edges before a that
belong to m, and all the edges after a that belong to m; form the
matching my.

otherwise keep the edges in m;.

It is easy to implement steps (1) to (4) with a CREW PRAM in O(logn)
steps and u processors. The data structure we use to represent a matching
is an array with 2n positions, numbers between 1 and n represent nodes in
one bipartition and numbers between n + 1 and 2n the other one. A value
J in position %, j # 0 means that edge (7, 7) is in the matching, when j =0
¢ is unmatched. That is we keep a doubly linked list of edges given to any
edge in the matching both possible orientations. To implement step (5) we
add pointers to de data structure. For an edge e = (y, 2) in m; the number
of edges in m, that touches e may be 0,1, or 2. If this number is 0 we we
link the edge to itself. When there is only one €, assuming that ¢’ = (/, z),
we link (z',z) with (2,2'). And in the case that there are two edges €', ",
such that e’ is previous to €”, suposse the ¢ = (2/,z) and €’ = (y,y’), we
link (z/,z) with (z,y) and (z,y) with (y,y') (see figure 5). Finally each
node ¢ unmatched by m; is linked to the corresponding node position in m,.
The additional pointer structure can be computed in O(1) time with O(n)
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processors with a CREW PRAM. Starting from the edges leaving free points
in my, use pointer jumping to obtain the maximal paths and compute their
length. Keep those paths which have even length. All this can be done in
O(logn) using O(n) processors in a randomized CREW PRAM, including
the label assignment. Finally step (6) can be implemented with the same
bounds, using again the pointer jumping technique.

Theorem 9. The mating that defines the genetic system G can be computed
in RNC.

4 Local Search and Optimization Problems

One of the characteritzation of algorithmics in recent time is the use of
heuristics greedy type. Those heuristics sems to work quite well in practice
for some problems but the theoretical foundations of why or how they work
is an open and difficult topic of research.
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Let us recall that given a combinatorial search space S and an objective
function f: S — R*, a maximization problem consists on finding o* € S
such that Yo € S: f(0) < f(0*), ie to find a maximum. A minimization
problem consists on finding o* € S such that Vo € S: f(co) > f(o%), ie to
find a minimum.

For example the Graph Bisection problem consists in given G = (V, E)
with |V| = n = 2k, find V1,V, € S with [Vi| = [Vo|=n/2 and iUV =V
such that |[{{u,v}: u € V], v € V,}| is miminum.

Here the search space S is the set of all possible bisections and f(o) is
the number of crossing edges. The deciosinal version of this problem is also
NP complete.

A black-box heuristic is a randomized search heuristic operating on a
connected neighborhood structure H on the vertex set S. Usually, the edge
neighbors of a particular state are defined under some measure of distance
that is natural to the combinatorial problem under consideration. The term
Black-box was coined by Ari Juels in his PhD dissertation [Jue90].

The choice of the neighborhood represents a key decisions in the appli-
cation of an algorithm and affects much of its performance.

An heuristic that has been used to solve efficiently some difficult opti-
mization problems is hillclimbing. It has the following generic structure,

function HillClimbing(S, N, f)
Select initial state o € S
while movement is possible do
Randomly select o/ € N(o)
if f(¢’) > f(o) then — could also be > —
=0
end if
end while
return o
end

The algorithm terminates when it encounters a local maximum (or mini-
mum), i.e. an state o such that Vo' € N(o): f(o) > f(o'). A local maxi-
mum can be on a “peak” (its objective function value is strictly greather than
all its neighbors) or in a “plateau” (its objective function value is greather
or equal than all its neighbors. This is why one must decide to choose a >
or a > sign in the algorithm and be carefull in the last case to avoid cycling.

For instance, in [KP92] the authors prove that hillclimbing finds a satis-
fying truth assignment, if one exists, with high probability.

The problem of the hillclimbing algorithm is that once a local optimum
is found the algorithm returns it, but this local optimum can be different
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of the global optimum. In order to enable the algorithm to accept downhill
moves, the Metropolis algorithm is parametrized by a temperature ¢t and
proceeds as follows:

function Metropolis(S, N, f,t)
Select initial state o € S
while movement is possibie do
Randomly select 6/ € N(o)
A = f(o) - (o)
with probabilitymin (1,e~4/t) do
o:=0
end with
end while
return o
end

Observe that uphill movements will be automatically accepted, whereas
downhill movements are accepted randomly in function of the height (A)
of the movement and the temperature t. With a high temperature the
probability of descending is high; with a small temperature, it is low. In the
limit, as ¢ — oo Metropolis makes a random walk and as t — 0 Metropolis
becomes the hillclimbing algorithm.

Formally, let d(o) be the degree of o and D = max,ecs{d(c)}. The
Metroplis algorithm can be seen as a Markov chainon H with transitions
defined by

1. Seif loop with Pr = 1/2 when o = 0.

2. Choose: ¢/ with probability

1/D if o' € N(o)
Pr(c'y =< 1-d(o)/D if o' =0)
0 otherwise.

3. With probability min(1,e~24/%) go to o'.

Let u; be the above chain. Its transition matrix is P = [p,.] with
Poot = Pr(c’) - min(1,e~2/?). Define m,(c) = L(:,)—ﬁ, where m; represents
the stationary distribution for y;. It is straightforward to prove that ur is
ergodic and reversible. Moreover notice that when t — oo, we have e/t — 1
and thus 7 is the uniform distribution (1/|S|). On the other hand, when
t — 0, m; becomes more sharply peacked arround optimal solutions in S.
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Therefore, fixing t, the Metropolis algorithm is just a “sufficiently long”
random walk on the Markov chaing;.

The Monomer-Dimer procedure described in Section could be seen as
a Metropolis algorithm for the problem of finding a matching of maximum
cardinality in a graph. Using that chain, it can be proved the following
result [SH88],

Theorem 10. Let D = |E| and ¢ = e'/*. Then for graphs such that
M1 /M, < poly = ¢ and running Metropolis for O(n) steps, with proba-
bility 1 — n—_}_l a perfect macthing is found.

Another classical example is the Graph Bisection, taht we already men-
tioned above. Jerrum and Sorkin considered the problem for the following
restricted graph model [JS93],

In the model G4 p r, a graph G has 4n nodes, half colored white and half
black. Edges between nodes with the same color are included independently
with probability p, while those between nodes of different colors are included
with probability » with » < p. For sufficiently large values of p — r, these
graph instances will contain a bisection * (the one in which white and black
nodes are separated) which is very likely to be the unique minimum. This
is refered to as the planted bisection.

The value p—r characterises the difficulty. For p = r = 1/2, the expected
cut of the planted bisection is #2/8. In the case p=1/2 and r = p — n?~2
for 3/2 < A < 2, the expected cut of the planted bisection is n?/8 — n® /4.

Given a bisection §, we define b(8) as its cut. We refer o(l,r) as the
operation of swapping two vertices r € V; and [ € V. We define N(f) as the
set of all possible states obtainable from 3 by a single move o. We finally
define B as the set of all possible bisections of G. The Metropolis algorithm
is given:

function Metropolis(G) is
Choose By uniformly from B
fori:=1..tdo
Choose randomly 8’ € N(3)
AC = b(f") - b(f)
with probabilitym do
g:=p
end with
end for
return §
end
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Its Markov chainis given by the set of states B and the following transitions:
1) With probability 1/2, stay in the same state; 2) Choose 8’ € N(8) and
with probability rei—c—ﬁ move to it. The transition matrix is P = [pgg/]
with pgg = Pr(8’) - I—_T_—e—i—m. As we have an ergodic chain, it converges to
a stationary distribution ng.

Jerrum and Sorkin proved the following result,

Theorem 11. Let € > 0, p—r = n!~0+2 T = n8/6+c, Select G € Ganpr-
At constant temperature, the metropolis algorithms reaches the unique 8* in
O(n?*€) steps with overwhelming probability .

Ari Juels [Jue90] demonstratres that these results are, in some measure,
also extrapolable to the hillclimbing algorithm. Jerrum and Sorkin [JS93]
also prove that T is too high to be effective on small instances. There have
been other work on proving formalizing Metropolis algorithms, for instance
Nolte and Schrades use simmilar ideas to the ones developed by Jerrum and
Sorking, to give a kind of Metropolis algorithm for [NS97] 3-colorability,
restricted to some particular kind of graphs.

The authors believe that an important and difficult topic of research
is the formalization of hillclimbing type algorithms, and their parallel im-
plementation and formalization. For the parallel implementation, non-linear
systems could be of help. But they have the inconvenience that little is know
about the theory of non-linear dynamic systems. In fact another important
and difficult open area of research is to formalize and study the convergence
of genetic algorithms of which the systems studied in section 3 are just an
oversimplified model.
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