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A Survey on Combinatorial Group TestingAlgorithms with Applications to DNA LibraryScreeningHung Q. Ngo� Ding-Zhu Du�Jan 7, 2000AbstractIn this paper, we give an overview of Combinatorial Group Test-ing algorithms which are applicable to DNA Library Screening. Oursurvey focuses on several classes of constructions not previously dis-cussed in the literature, provides a general view on pooling designconstructions and poses several open questions arising from this view.1 IntroductionThe basic problem of DNA library screening is to determine which clone (aDNA segment) from the library contains which probe from a given collectionof probes in an e�cient fashion. A clone is said to be positive for a probe ifit contains the probe, and negative otherwise. In practice clones are pooledtogether in some manner to be tested against each probe, since checking eachclone-probe pair is expensive and usually only a few clones contain any givenprobe. An example is when Sequenced-Tagged Site markers (also called STSprobes) are used [22]. If the test result for a pool (of clones) is negative,�Department of Computer Science and Engineering, University of Minnesota, 200Union street, EE/CS Building, room 4-192, Minneapolis, MN 55455, USA. e-mail: fhngo,dzdg@cs.umn.edu. Support in part by by the National Science Foundation under grantCCR-9530306. 1



indicating that no clone in the pool contains the probe, then no further testsare needed for the clones in the pool.This problem is just an instance of the general group testing problem,in which a large population of items containing a small set of defectives areto be tested to identify the defectives e�ciently. We assume some testingmechanism exists which if applied to an arbitrary subset of the populationgives a negative outcome if the subset contains no defective and positiveoutcome otherwise. Objectives of group testing vary from minimizing thenumber of tests, limiting number of pools, limiting pool sizes to toleratinga few errors. It is conceivable that these objectives are often contradicting,thus testing strategies are application dependent.Group testing algorithms can roughly be divided into two categories :Combinatorial Group Testing (CGT) and Probabilistic Group Testing (PGT).In CGT, it is often assumed that the number of defectives among n items isequal to or at most d for some �xed positive integer d. In PGT, we �x someprobability p of having a defective. If the pools are simultaneously tested stimes, with later test pools collected based on previous test results, then theCGT algorithm is said to be an s-stage algorithm. Group testing strategiescan also be either adaptive or non-adaptive. A group testing algorithm isnon-adaptive if all tests must be speci�ed without knowing the outcomes ofother tests. Clearly, being non-adaptive is equivalent to being 1-stage. Agroup testing algorithm is error tolerant if it can detect or correct some eerrors in test outcomes. Test errors could be either 0 ! 1, i.e. a negativepool is identi�ed as positive, or 0! 1 in the contrast.Library screening applications introduce several new constraints to grouptesting. Firstly, s-stage group testing algorithms with small s (e.g. � 2)are often preferable [3, 2]. The common requirement is to have an adaptivealgorithm. Secondly, DNA screening is error prone since the pools haveto be puri�ed before probing. Hence, sometime tolerating several errors isdesirable [3]. Lastly, assembling pools is costly, so sometime robots are usedto assemble the pools. This makes coordinating the pools with some physicalarrangement of clones (such as a grid) important.There are three related surveys previously done in this area. The �rstwas a survey from Dyachkov and Rykov (1983, [10]) done in the context ofsuperimposed codes. The second was a monograph by Du and Hwang (1993,[8]), which gave a nice account of CGT algorithms. The third was an articleby Balding et al. (1995, [2]), which comparatively surveyed certain classesof non-adaptive algorithms. 2



In this paper, we give an overview of Combinatorial Group Testing Al-gorithms with applications to DNA Library Screening. Our survey focuseson several classes of constructions not previously discussed in the literature,provides a general view on pooling design constructions and poses severalopen questions arising from this view.The rest of the paper is organized as follows. Section 2 �xes up basicde�nitions and notations needed for the rest of the paper. It also gives a tax-onomy of non-adaptive group testing algorithms from which later sections areorganized. Section 3 discusses deterministic algorithms. Section 4 providesa new general perspective on constructing a class of deterministic poolingdesigns, from which several open problems popped up naturally. Section 5presents random algorithms, and section 6 introduces error-tolerance grouptesting algorithms. Section 7 concludes the paper.2 Preliminaries2.1 The Matrix RepresentationWe �rst emphasize that we are concerned only with combinatorially non-adaptive group testing strategies, for DNA library screening applicationsprefer parallel tests as we have mentioned earlier. The \combinatorial" partcomes from the assumption that there are at most d defectives in a populationof n items.Consider a t � n 01-matrix M . Let Ri and Cj denote row i and columnj respectively. Abusing notation, we also let Ri (resp. Cj) denote the setof column (resp. row) indices corresponding to the 1-entries. The weight ofa row or a column is the number of 1's it has. M is said to be d-disjunctif the union of any d columns does not contain another. A d-disjunct t � nmatrix M can be used to design a non-adaptive group testing algorithm onn items by associating the columns with the items and the rows with thepools to be tested. If Mij = 1 then item j is contained in pool i (and thustest i). If there are no more than d defectives and the test outcomes areerror-free, then it is easy to see that the test outcomes uniquely identify theset of defectives. We simply identify the items contained in negative poolsas negatives (good items) and the rest as positives (defected items). Noticethat d-disjunct property implies that each set of � d defectives correspondsuniquely to a test outcome vector, thus decoding test outcomes involves only3



a table lookup. The design a d-disjunct matrix is thus also naturally callednon-adaptive pooling design. We shall use this term interchangeably with thelong \non-adaptive combinatorial group testing algorithm".Let S( �d; n) denotes the set of all subsets of n items (or columns) withsize at most d, called the set of samples. For s 2 S( �d; n), let P (s) denote theunion of all columns corresponding to s. A pooling design is e-error detecting(correcting) if it can detect (correct) up to e errors in test outcomes. In otherwords, if a design is e-error detecting then the test outcome vectors form at-dimensional binary code with minimum Hamming distance at least e + 1.Similarly, if a design is e-error correcting then the test outcome vectors forma t-dimensional binary code with minimum Hamming distance at least 2e+1.The following remarks are simple to see, however useful later on.Remark 1 Suppose M has the property that for any s; s0 2 S( �d; n); s 6= s0,P (s) and P (s0) viewed as vectors have Hamming distance � k. In otherwords, jP (s)� P (s0)j � k where � denotes the symmetric di�erence. Then,M is (k � 1)-error detecting and bk�12 c-error correcting.Remark 2 M being d-disjunct is equivalent to the fact that for any set ofd+ 1 distinct columns Cj0 ; : : : Cjd with one column (say Cj0) designated, Cj0has a 1 in some row where all Cjk 's, 1 � k � d contain 0's.An important question to ask is \given n items with at most d defectives,at least how many tests are needed to identify the defectives?" The bestasymptotic answer to this question is dated back to Dyachkov and Rykov(1982, [9]) and Dyachkov, Rykov and Rashad (1989, [11]), which can besummarized by the following theorem.Theorem 1 Let t(d; n) denote the minimum number of pools needed for theS( �d; n) problem, then as n!1 and d!1d22 log d(1 + o(1)) logn � t(d; n) � d2 log e(1 + o(1)) logn2.2 A Taxonomy of Non-Adaptive Pooling DesignsWe give here a tentative taxonomy of non-adaptive pooling design as follows,from which later sections are organized4



1. Deterministic Designs. This refers to the fact that every pool is de-terministically determined. These designs can be further categorizedinto(i) Set-packing designs.(ii) Transversal designs.(iii) Designs whose d-disjunct matrices are directly constructed.2. Random Designs. In these designs, some or all of entries are randomlydetermined with parameterized probabilities, which could be optimizedbased on certain objective function(s). The categories are :(i) Random matrices.(ii) Random weight-w designs.(iii) Random size-k designs.(iv) Random designs which come from deterministic designs.3. Error Tolerance Designs. Although these designs are either determin-istic or random, they are worth being paid special attention.3 Deterministic Pooling Designs3.1 Set Packing DesignsFirst noted by Kautz and Singleton back in 1964 [16], packing designs withcertain parameters can be used to construct disjunct matrices. We �rst givesome basic de�nitions. A t-(v; k; �) packing design is a collection F of k-subsets (called blocks) of [v] := f1; 2 : : : ; vg such that any t-subset of [v] iscontained in at most � members of F . One useful situation for us is when� = 1, in which case the packing is called a (v; k; t)-packing. Notice that� = 1 means that no two members of F have t elements in common. Thus,by Remark 2 if k > d(t�1) a d-disjunct matrixM can be constructed from a(v; k; t)-packing by simply indexingM 's columns by the blocks andM 's rowsby members of [v]. Moreover, by Remark 1 we see that if k = d(t�1)+ q+1(q � 0) then M is q-error detecting and b q2c-error correcting.Naturally, the basic problem of packing design is to �nd the packingnumber D�(v; k; t), the size of a maximum t � (v; k; �) packing design. We5



write D(v; k; t) instead of D1(v; k; t) when � = 1. Maximum sized (v; k; t)-packings induce very good pooling designs [2]. Unfortunately, very little isknown about optimal packing designs. Most of what we know are for smallvalues of k and t. Mills and Mullin [19] gave a nice account on packingdesigns. To give the reader a sense of how di�cult this problem is, we quotea result on D(v; k; t) as follows. From the theorem, it is conceivable that�nding optimal set packing is just as hard as the main coding theory problem[24].Theorem 2 Let A(n; d; w) denote the size of a maximum constant w-weightbinary (n; d)-code, thenD(v; k; t) = A(v; 2k � 2t+ 2; k)Let U�(v; k; t) = �vk �v � 1k � 1 : : :�v � t+ 1k � t+ 1����then Sch}onheim [25] observed that D�(v; k; t) � U�(v; k; t). When the designis any t-(v; k; �) design then we have equality. In particular, since we want� = 1, Steiner Triple Systems (2-(v; 3; 1) designs) and Steiner QuadrupleSystems (3-(v; 4; 1) designs) could be used to construct disjunct matrices withsmall d's. Finite projective planes and a�ne planes are also t-designs with� = 1 but they don't give good pooling designs (too many tests). The onlyother noticeable result which concerns us is from Brouwer [6], who determinesall values of D(v; 4; 2). For a comprehensive treatment on design theory, thereader is referred to a very nice book by Beth, Jungnickel and Lenz [5].3.2 Transversal DesignsThe simplest form of transversal designs is called the grid design. To facilitatethe use of robots for pool assembling, the clones can be arranged into rowsand columns of a set of r � c grids, where each row and column contributesa pool. For simplicity, we can assume rc j n. Clearly, ambiguity can occur ifthere are more than one positive clone. The simplest example is when thereare two positives, say a and b, lying on di�erent rows and columns of a gridG. Obviously, testing G alone is not enough to identify a and b because the6



two clones c and d collinear with both a and b are also candidates. To resolveambiguity, we wish to rearrange G into another grid (giving additional pools)so that c and d are not collinear with both a and b anymore. More grids areneeded if there are 3 or more positive clones. In fact, if we require a strongercondition that no two clones are collinear twice, called the unique collinearitycondition, then Hwang [14] showed that the existence of the grids is equivalentto the existence of certain set of mutually orthogonal Latin squares.Barillot et al. [4] generalized this idea to k-dimensional grids, where eachintersection point could be viewed as a vertex of the k-cube. A new grid G0can be obtained from an old grid G by a linear transformation representedby a matrix Ad�d. Thus a vertex x = (x1; : : : xd)T of G is mapped to vertexAx of G0. A third grid could either be obtained by using A twice (withtransformation matrix A2) or using a di�erent transformation matrixB (withtransformation matrix AB). They also extended the 2-dimensional grid tohigher dimension. The set of hyperplanes could be taken as pools, howeverthe pool size is usually large. Reducing pool size by taking lower dimensionis possible but that increases the number of tests. Pros and cons of thisapproach have not been studied.The general case of transversal design was mentioned by Balding et al. in[2]. Basically a pooling design is transversal if the pools can be partitionedinto parts, each of which is a partition of the clone population. Clearly thehypercube design is a special case of transversal designs. Not much has beenstudied toward this general direction. Connections of this problem to codingtheory is also speci�ed in [2].3.3 Direct ConstructionsMacula [17, 18] gave the following construction of a d-disjunct matrix. Let�(m; d; k) be a 01-matrix whose rows are indexed by the d-subsets of [m] andwhose columns are indexed by the k-subsets of [m] where m2 � k > d � 1 areintegers. �(m; d; k)ij = 1 i� the ith d-subset is contained in the jth k-subset.It is easy to see that �(m; d; k) is d-disjunct with �md � rows and �mk � columns.The number of tests to number of items ratio of �(m; d; k)'s (�md�=�md �) isnot so good in terms of the random bound given in Theorem 1. However,Macula showed that with high probability �(m; 2; k) could solve the S( �d; n)problem, e�ectively converting a deterministic construction to a probabilistic(random) one. This point will be discussed further in a later section. Inaddition,m and k could be chosen carefully in certain cases to suit one's need.7



However, the method of choosing these parameters needs more thoroughanalysis than just trial and error.4 On Constructions of d-disjunct MatricesIn set packing designs, the matrix M was row indexed by all elements of a[v] set, and column indexed by selected k-subsets of [v]. Looking at this ata di�erent angle, the rows were indexed by all points at rank 1 and columnsby sampled points at rank k of the Boolean Algebra lattice Bv (see Figure1) of all subsets of [v].On the other hand, Macula's construction involves taking all points atrank d as rows and rank k as columns of our d-disjunct matrix. Macula'sdesign rate wasn't so good because number of points at level d is too large.However, if we pick points at lower levels than d to be the rows, then thematrix is not d-disjunct anymore.
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Figure 1: The Boolean Algebra LatticeStretching this line of reasoning, one might hope to somehow take sampledpoints at di�erent ranks of Bv, not taking all points. Ngo and Du (1999, [21])took this approach and gave the following construction. Given integers m >k > d � 1. A matching of size l in Kv is called an l-matching. LetM(m; k; d)be a 01-matrix whose rows are indexed by the set of all d-matchings on K2m,and whose columns are indexed by the set of all k-matchings on K2m. Allmatchings are to be ordered lexicographically. M(m; k; d) has a 1 in rowi and column j if and only if the ith d-matching is contained in the jth k-matching. The fact that M(m; k; d) is d-disjunct is not di�cult to be seen.8



Noticing that a k-matching is a k subset of ��2m2 ��, because the set of edges ofK2m is exactly ��2m2 ��. From the above observation, this construction couldbe seen as taking from B[(2m2 )] sampled points at rank d as rows and sampledpoints at rank k as columns. Ngo and Du also showed that M(m; k; d) is3-error detecting and 1-error correcting.On another dimension, the Boolean Algebra is clearly not the only latticewe have to work on. Some obvious question arising would be1. Besides the Boolean Algebra Bv, what are other lattices we can use ?For example, one candidate is Cv;u, the lattice of all v tuples of Zu,which is a generalization of Bv, since Bv = Cv;2.2. Which conditions must hold to pick some two levels of the lattice toconstruct d-disjunct matrices ? To avoid being too vague and for theease of analysis, we could restraint ourselves to the lattices with someregularity constraint. An example would be to work on lattices wherethe number of points covering a point p at rank k and the number ofpoints covered by p depends only on k.3. In terms of error tolerance properties, can we from the lattice infersome information about the error correcting and detecting capabilityof the matrix being constructed ?With respect to question 1, Ngo and Du [21] found that picking points atlevels d and k of the lattice of all subspaces of GF (q)v would also work.5 Random Pooling DesignsRandom designs refer to the designs whose matrices are randomly determinedin some manner. The fact that a design is nondeterministic means that itis possible for some positives and negatives not to be identi�ed. Let M bea random t � n matrix, our algorithm of identifying the defectives is thesame as before, namely pointing those items contained in negative tests asnegative (these are called resolved negatives). Clearly, an item in a positivepool where all others in the pool are resolved negatives must be positive.These positive items are said to be resolved positives. Let �N ( �P ) denote thenumber of unresolved negatives (positives). Balding et al. introduced severalcriteria to compare designs such as P ( �N = �P = 0), P ( �N = 0), E( �P ), and9



E( �N), where P (X = j) is the probability of X = j and E(X) is the expectedvalue of a random variable X. We would like the probabilities to be as closeto 1 as possible and the expected values to be as small as they can get.5.1 Random MatricesErd}os (as usual) and Renyi (1963, [12]) �rst introduced random methods insearch problems. Much later, Seb}o (1985, [26]) adopted the idea to grouptesting. To construct a random disjunct matrixM , we simply assign 1 to anentry of M with some �xed probability p. Given n and d, p and t could bechosen properly so that the probability of M being d-disjunct is higher thansome certain tolerable threshold.Although this method is not used in practice, partially due to its badperformance [2], the idea can be used to obtain very good bounds on thenumber t(d; n). Theorem 1 is an example of such random bounds.5.2 Random Weight-w DesignsIf a clone is contained in no pool, we don't have any information above theclone. If a clone is contained in every pool and it happens to be positive, alltests turn out to be positive and thus the amount of information we get isalso zero. On the same line of reasoning, a design with a clone contained intoo many or too less number of tests is not good. Moreover, if the numberof pools containing a clone varies, then the analysis would be very tediousif not impossible. Consequently, it is reasonable to attempt constructingrandom matrices with some constant weight w, where w could be chosento optimize some of the e�ciency criteria. This could be done by assigningthe columns randomly to w-subsets of [t]. These designs are called randomweight-w designs. Let the corresponding probabilities and expected valuesbe denoted by Pw(�) and Ew(�) respectively. Let W (i) denote the probabilitythat a particular set of i pools is exactly the set of pools not containing anypositive clones. The following formulas were obtained by Bruno et al. [7],and Hwang [15]. W (i) = tXh=i (�1)h�i�t� ih� i�"�t�hw �� tw� #d (1)10



Pw( �N = j) = tXi=0 �ti�W (i)�n� dj �"1� �t�iw �� tw� #n�d�j "�t�iw �� tw� #j (2)Ew( �N) = (n� d) wXi=1 �wi�"�t�iw �� tw� #d (3)An open question is to �nd w so that Ew( �N) is minimized. Notice thatthese formulas were calculated ignoring the fact that in practice we don'twant identical columns in the matrix. The reason being that taking intoaccount this fact makes the calculation really di�cult. Bruno et al. [7] alsoindicated that random weight-w designs perform better than the randomdesign discussed earlier.5.3 Random Size-k DesignsDually, instead of reasoning on the columns of M we could do the same onthe rows of M . A pool containing too few clones is wasted if these clones arenegatives, while a pool containing too many clones gives little information ifthere is a positive clone in it. Hence, we could as well randomly choose therows of M with some constant size k uniformly. Similar formulas as those inthe last sections were obtained by Hwang (1999, [15]):Pk( �N = n� d) = "1� �n�dk ��nk� #t (4)Pk( �N = j) = tXi=0 �ti�"�n�dk ��nk� #i "1� �n�dk ��nk� #t�i� n�dXl=j (�1)l�j�n� dl �"�n�d�lk ��n�dk � #ifor 0 � j < n� d (5)In the same paper, Hwang also gave formulas to compute Ex( �P ) for x 2fp; w; kg. Here Ep(X) denote the expected value ofX whenM is constructedusing the �rst random method with probability p.11



5.4 Random Designs from Deterministic DesignsMacula [18] showed that his matrix �(m; 2; k) could be used to solve theS( �d; n) problem with high probability of success. Clearly, this is desirablesince the test to item ratio of �(m; 2; k) is smaller than that of �(m; d; k) ingeneral. The probability, denoted by P�(n; d; k), can be shown to beP�(n; d; k) � 24Pki=1(�1)i+1�ki��(n�ik )d�1 ��(nk)�1d�1 � 35d
For example, when d = 5 and n � 1; 000; 000 we can pick �(44; 2; 5), whichhas 946 rows (tests), 1,086,008 columns (items), and p(44; 5; 5) � :97107.Borrowing this idea, Ngo and Du [21] also showed that M(m; k; 2) couldbe used to solve S( �d; n) with probability PM(n; k; d) of giving the right an-swer, wherePM(m; k; d) � 24Pkj=1(�1)j+1�kj��Pji=0(�1)i(ji)g(m�i;k�i)d�1 ��g(m;k)�1d�1 � 35d
Here, g(m; l) = �2m2l � (2d)!2dd! . For example, p(8; 6; 9) � 98:5%, with the numberof defectives d = 9, the number of items n = g(8; 6) = 18; 918; 900 and thenumber of test t = g(8; 2) = 5460.One can see from these formulas that the e�ciency benchmarks to com-pare pooling designs often involve complicated, hypergeometric types of for-mulas arising from inclusion exclusion enumerations. This makes the analysisdi�cult and tedious. Usually, what we can do is to plug in some particularvalues and do manual comparison, which is clearly not satisfactory theoreti-cally. More work needs to be done in asymptotic analysis of these formulasin order to give any satisfaction result if at all.6 Error Tolerance Pooling DesignsAs we have mentioned earlier, when DNA probing could be error prone, whichleads us to the greater challenge of designing pools that could tolerate somenumber of errors. This problem is the non-adaptive version of the searching12



game initiated by Ulam [28] back in 1976. Ulam's problem was to determinea chosen number u out of [n] using the minimum number of questions of theform: Is u 2 S, S � [n]. Moreover, the responder could lie once or twice.In general, the questions and answers could be q-ary, i.e. each question is apartition of [n] into q parts and each answer points out which part(s) anyof d unknowns belong to. Up to e lies is allowed. It is easy to see that ourproblem is the non-adaptive version of this so-called q-ary search problemwith lies where q = 2. Although quite a lot of research e�ort has been put onsolving this problem, we only have solutions for several special cases whereq and e are small.Adaptively, when d = 1; q = 2 Pelc [23] solved the case e = 1, Guzicki [13]solved the case e = 2, and Spencer [27] provided a nearly optimal solution(up to a constant) for general e. The q-ary case (with d = 1) was considerby Aigner [1] and Muthukrishnan [20] with complete solutions.Non-adaptively, several author have noticed that when d = 1, the designis equivalent to an e-error correcting code. Balding and Torney [3] studiedseveral instances of the problem when d � 2 where an optimal strategy ispossible. Macula [18] showed that his construction is error tolerable up tocertain calculatable probability. Ngo and Du construction [21] was shown tobe 3-error detecting and 1-error correcting in the worst case, but can toleratemore errors on average.We need deeper results and new breakthroughs in order to improve ourpresent knowledge of the most general case of the problem, especially in thenon-adaptive case. For example, we need good bounds similar to those inTheorem 1 given the number of items n, maximum number of defectives dand number of errors e.7 ConclusionsIn this paper, we have given an overview of up-to-date results on Combinato-rial Group Testing algorithms which are applicable to DNA library screening.We have been focusing more on new classes of constructions not previouslydiscussed and pointed out directions to generalize existing results. We alsohave discussed some related open questions popped up in this area.Finally, we would like to conclude that this is a young and active �eld withdeep connections to Coding Theory, Design Theory. We also would like topoint out that the theory Distance Regular Graphs, in particular Association13
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