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HOW TO SHOW A SET IS NOT ALGEBRAIC

CLINT MCCRORY

Abstract. We revisit Akbulut and King’s first example of a compact semialgebraic set

which satisfies Sullivan’s local Euler characteristic condition, but which is not homeomorphic

to an algebraic set. A nontrivial obstruction is computed using the link operator on the ring

of constructible functions.

There are many local topological conditions satisfied by real algebraic sets. The simplest

of these was discovered by Sullivan [5] more than thirty years ago: The link of every point

has even Euler characteristic. In low dimensions this is the only obstruction for a set to be

algebraic. More precisely, if a compact semialgebraic set of dimension less than three satisfies

Sullivan’s condition, then it is homeomorphic to an algebraic set. Akbulut and King [1] found

an example of a compact 3-dimensional semialgebraic set satisfying Sullivan’s condition which

is not homeomorphic to an algebraic set, and this is the example we will discuss.

The method we use to compute the obstruction is due to Parusiński and the author [2]. We

have also found an enormous list of independent obstructions in dimension four [3]. The yoga

of algebraically constructible functions used to prove our obstructions vanish for algebraic

sets is presented in the paper of Isabelle Bonnard in this volume.

Let X be a semialgebraic set in R
n, and let p ∈ X. The link Lp of X at p is the intersection

of X with a sphere of small radius ǫ > 0 centered at p. For sufficiently small ǫ the topological

type of Lp is independent of ǫ, and a neighborhood of p in X is homeomorphic to the cone

on Lp. (The link Lp is homeomorphic to the boundary of the simplicial star of p in X for

a semialgebraic triangulation of X.) Sullivan’s theorem is that if X is algebraic then for all

p ∈ X the Euler characteristic χ(Lp) is even.

For example, consider the Cartan umbrella X = {(x, y, z) | x2 = zy2} in R
3 (Figure 1). For

each real number t, let Ht be the horizontal plane z = t. For t > 0, X ∩Ht is the two lines

x = ±(
√
t)y, z = t. For t = 0, X ∩Ht is the line x = 0, z = 0. For t < 0, X ∩Ht is the point

x = 0, y = 0, z = t.

The space X has five strata:

• two 2-strata f = {x2 = zy2, y < 0}, f ′ = {x2 = zy2, y > 0},
• two 1-strata d = {x = 0, y = 0, z < 0}, e = {x = 0, y = 0, z > 0},
• one 0-stratum a = {(0, 0, 0)}.
The local topology of X is constant along each of these strata. If p ∈ X, then

• if p ∈ f ∪ f ′, Lp is topologically a circle, so χ(Lp) = 0;
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2 C. MCCRORY

• if p ∈ e, Lp is a graph with two vertices and four edges joining one vertex to the other,

so χ(Lp) = 2− 4 = −2;

• if p ∈ d, Lp is two points, so χ(Lp) = 2;

• if p = (0, 0, 0), Lp is a graph with two vertices and two edges which are both loops at

the same vertex (Lp is the union of a figure eight and a point), so χ(Lp) = 2− 2 = 0.
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Figure 1. The Cartan umbrella

On the other hand, the Whitney umbrella X = {(x, y, z) | x2 = zy2, z ≥ 0} is not algebraic,

because the link of the origin is a figure eight, which has Euler characteristic −1. (TheWhitney

umbrella is the image of the algebraic map (u, v) 7→ (uv, u, v2).)

Now χ(Lp) is a topological invariant, since it can be computed from the local homology of

X at p:

χ(Lp) = 1−
∑

k

(−1)k rankHk(X,X − {p}).

Thus the Whitney umbrella is not homeomorphic to a real algebraic set.

The known higher topological obstructions for a semialgebraic set to be algebraic are similar

to Sullivan’s obstruction. They are local—in fact they are mod 2 invariants of the links Lp—

and they are combinatorial in the sense that they depend only on the dimensions and incidence

of the cells of a semialgebraic cell structure on X.

Parusiński and the author [2] have found a way to describe such obstructions using the

ring of constructible functions on X and an operator on this ring generalizing the Euler

characteristic of the link. Here is a brief description of our method.

Let X be a semialgebraic set. An integer-valued function ϕ : X → Z is constructible if

it is a finite combination of characteristic functions of semialgebraic subsets Xi of X with

integer coefficients: ϕ =
∑

i ni1Xi
. It follows that there exists a semialgebraic cell complex

K on X such that ϕ is constant on each cell of K. (A semialgebraic cell complex is a locally

topologically trivial semialgebraic stratification such that each stratum is homeomorphic to a

Euclidean space and has compact closure.)

The set of constructible functions on X is a ring, with (ϕ + ψ)(p) = ϕ(p) + ψ(p) and

(ϕ × ψ)(p) = ϕ(p) × ψ(p). If ϕ =
∑

i ni1Xi
with the sets Xi compact, the Euler integral of
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ϕ is defined by
∫

X
ϕ =

∑

i niχ(Xi), where χ is the Euler characteristic. If ϕ is constant on

each cell of K and ϕ has compact support, then
∫

X

ϕ =
∑

C∈K

(−1)dimCϕ(C),

where ϕ(C) is the value of ϕ on the cell C.

The link operator Λ on the ring of constructible functions on X is the Euler integral of the

restriction of ϕ to the link of X at p,

(Λϕ)(p) =

∫

Lp

ϕ.

Sullivan’s theorem says that if X is an algebraic set with characteristic function 1X , the

values of the function Λ 1X are even. In other words, if Λ̃ = 1

2
Λ then Λ̃1X is integer-valued

(and hence Λ̃1X is a new constructible function on X).

The main result of [2] (Theorem 2.5, p. 536) implies that if X is an algebraic set, then all

the functions obtained from 1X using the arithmetic operations +, −, ×, and the operator Λ̃

are integer-valued. Furthermore this property is topological ([2] A.7, p. 550).

The following statement is a corollary: If Y is an algebraic link (the link of a point in an

algebraic set), then all the functions obtained from 1Y using the arithmetic operations +, −,

×, and the operator Λ̃ are integer-valued and have even Euler integral.
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Figure 2. The space Y

Now we apply our method to Akbulut and King’s example. Let Y be the topological space

shown in Figure 2. The space Y is homeomorphic to an algebraic set in projective 3-space,

the union of the projective Cartan umbrella wx2 = zy2 and the plane conic (w+z)2+x2 = z2,

y = 0. Realized in this way, Y has a semialgebraic cell structure with three 0-cells, five 1-

cells, and two 2-cells. The three 0-cells are labelled a, b, c in the figure. Four of the 1-cells

are labelled d, and one of the 1-cells (incident to the 2-cells) is labelled e. The two 2-cells are

labelled f .

The table below summarizes the computation of a constructible function ψ obtained from

1Y using the arithmetic operations +,−,×, and the operator Λ̃, such that
∫

Y
ψ is odd.
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The strategy for finding a suitable function ψ is based on the following observations. We

define an operator Ω̃ by Ω̃ ξ = ξ − Λ̃ ξ. The interesting fact Λ̃ Λ̃ = Λ̃ implies that Ω̃ Ω̃ = Ω̃,

Λ̃ Ω̃ = 0, and Ω̃ Λ̃ = 0. If ξ has even-dimensional support then the support of Λ̃ ξ is of lower

dimension. If If ξ has odd-dimensional support then the support of Ω̃ ξ is of lower dimension.

Let d be the dimension of Y . For decreasing dimensions k = d, d − 1, d − 2, . . . , we search

through the functions with support dimension k which are obtained from 1Y using +,−,×, Λ̃,
until we find one with odd Euler integral.

In the example at hand, since the dimension of Y is 2 we start with ϕ = Λ̃1Y , which

has support dimension 1, and we apply Ω̃ to the powers of ϕ to get functions with support

dimension zero.

Computation of the obstruction:

a b c d e f
∫

1Y 1 1 1 1 1 1 0

ϕ = Λ̃1Y 0 1 2 1 −1 0 0

ϕ2 0 1 4 1 1 0 0

Λ̃ϕ2 1 2 2 1 1 0 0

Ω̃ϕ2 = ϕ2 − Λ̃ϕ2 −1 −1 2 0 0 0 0

ψ = ϕ Ω̃ϕ2 0 −1 4 0 0 0 3

In the table the columns a, b, c, d, e, f correspond to the types of cells of Y . Two cells have

the same label if they have the same local topology at an interior point. This implies that

any function obtained from 1Y using +,−,×, Λ̃ will be constant on all cells with the same

label. The rows of the table are such functions, and the entries of the table give the values of

the function on each type of cell.

The last column is the Euler integral of the function. To compute the Euler integral we

take into account that there are four cells of type d and two cells of type f . Thus, for example,

for the first row we have
∫

1Y = (1 + 1 + 1)− (4 · 1 + 1) + (2 · 1) = 0, and for the second row

we have
∫

ϕ = (0 + 1 + 2)− (4 · 1 + (−1)) + (2 · 0) = 0.

The computation of ϕ = Λ̃ 1Y is similar to our first example, the Cartan umbrella. The

link of the point a is the union of a figure eight and a point, which has Euler characteristic

0, so ϕ(a) = 0. The link of b is the union of a figure eight and three points, which has Euler

characteristic 2, so ϕ(b) = 1. The link of c is four points so ϕ(c) = 2. The link of a point of

type d is two points so ϕ(d) = 1. The link of a point of type e is a graph with two vertices

and four edges from one vertex to the other, which has Euler characteristic −2, so ϕ(e) = −1.

And the link of a point of type f is a circle, which has Euler characteristic 0, so ϕ(f) = 0.

The computation of Λ̃ϕ2 is similar. For example, the link of a is the union of a figure

eight and a point. The point is of type d, at which ϕ2 takes the value 1. The vertex of the

figure eight is of type e, at which ϕ2 also takes the value 1. The 1-cells of the figure eight are

of type f , at which ϕ2 takes the value 0. Thus the Euler integral of ϕ2 on the link of a is

(1 + 1)− 0 = 2, so Λ̃ϕ2(a) = 1.

The result of our computation is
∫

Y

ψ = 3, ψ = (Λ̃1Y )
(

(Λ̃ 1Y )
2 − Λ̃(Λ̃ 1Y )

2
)

.
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Thus Y is not homeomorphic to an algebraic link.

Akbulut and King’s example X is the suspension of Y , the union of two cones with base

Y . Now X can be realized as a semialgebraic set in a Euclidean space, with Y the link of the

vertex of either cone. Since the Euler characteristic of Y is 0, X satisfies Sullivan’s condition.

Since Y is not homeomorphic to an algebraic link, it follows that X is not homeomorphic to

an algebraic set.

A more direct way to prove that X is not homeomorphic to an algebraic set is to find a

function η obtained from 1X using +,−,×, Λ̃ such that η is not integer-valued. It is not hard

to see that the operators Λ̃ and Ω̃ are interchanged by restriction to a link (see [3] 1.3(d), p.

499). More precisely, if Y is the link of p in X, and ξ is a constructible function on X, then

(Λ̃ ξ)|Y = Ω̃(ξ|Y ), (Ω̃ ξ)|Y = Λ̃(ξ|Y ).
We apply this to the Akbulut-King example. Since (1X)|Y = 1Y , we have (Ω̃1X)|Y = Λ̃ 1Y .

In other words, if ϕ′ = Ω̃1X then ϕ′|Y = ϕ. Thus ϕ′ Λ̃(ϕ′)2|Y = ϕ Ω̃ϕ2. So if p is one

of the two suspension vertices of X then Λ̃(ϕ′ Λ̃(ϕ′)2)(p) = 1

2

∫

Y
ϕ Ω̃ϕ2 = 3

2
. The function

η = Ω̃(ϕ′ Λ̃(ϕ′)2) is supported at the two vertices ofX, and at each of these vertices η(p) = −3

2
.

Akbulut and King [1] analyze five local topological obstructions for a 3-dimensional semi-

algebraic set to be algebraic—the local mod 2 Euler characteristic and four new invariants.

They prove that these five obstructions are independent, and that the vanishing of these

obstructions is a sufficient condition for a compact 3-dimensional semialgebraic set to be

homeomorphic to an algebraic set.

The situation in dimension four is not so simple. There are at least 243 − 43 independent

local topological obstructions [3], but it is not known whether the vanishing of all these

obstructions is a sufficient condition for a compact 4-dimensional semialgebraic set to be

homeomorphic to an algebraic set.

Significant progress toward the description of a set of sufficient conditions in dimension four

has been made by Michelle Previte [4] using Akbulut and King’s resolution towers. However,

the relation between resolution tower obstructions and our constructible function invariants

remains a mystery.

References

[1] S. Akbulut, H. King, Topology of Real Algebraic Sets, MSRI Publ. v. 25, Springer, New York 1992.
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