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Abstract. — We consider a numerical scheme for Hamilton–Jacobi equations
based on a direct discretization of the Lax–Oleinik semi–group. We prove
that this method is convergent with respect to the time and space stepsizes
provided the solution is Lipschitz, and give an error estimate. Moreover, we
prove that the numerical scheme is a geometric integrator satisfying a discrete
weak–KAM theorem which allows to control its long time behavior. Taking
advantage of a fast algorithm for computing min–plus convolutions based on
the decomposition of the function into concave and convex parts, we show that
the numerical scheme can be implemented in a very efficient way.

1. Introduction

We consider Hamilton–Jacobi equations of the form

(1) ∂tu+H(t, x,∇u) = 0, u(0, x) = u0(x),

where H(t, x, v) is a Hamiltonian function H : R × Rn × Rn → R that is
separable, in the sense that we can write

(2) H(t, x, p) = K(p) + V (t, x),

for some convex function K and some smooth and bounded function V . The
typical cases of study we have in mind are the so called mechanical Hamilto-
nians, of the form

(3) H(t, x, p) =
1

2
|p+ P |2 + V (t, x)
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where P ∈ Rn is a given vector, |v|2 = v21 + · · ·+ v2n for v = (v1, · · · , vn) ∈ Rn,

and where V (t, x) is a suitably smooth and bounded function.
Since the pioneering works of Crandall and Lions [CL84] and Souganidis

[Sou85], the study of numerical schemes for the Hamilton–Jacobi equation (1)
has known many recent progresses, see for instance [LS95, LT01, Abg96,
JX98, BJ05] and the references therein, and more specifically [OS88, OS91,
JP00] for the popular (weighted) essentially nonoscillatory (ENO and WENO)
methods which are now widely commonly used in many application fields. Let
us finally mention a recent work by Soga ([Sog13]) which deals with situations
similar to the ones tackled in this paper.

Following a different approach, more in the spirit of [FF02, Ror06] (or
[AGL08] in an optimal control setting), the main aim of this paper is to show
how a direct discretization of the Lax–Oleinik representation of the viscosity
solution of (1) allows to define a new fast algorithm for computing u(t, x) pos-
sessing strong geometrical properties allowing to control its long time behavior
and obtain error estimates when the solution is Lipschitz.

Let us recall, see [Lio82, Fat05], that under some assumptions on H
(smoothness, uniform superlinearity and strict convexity over the fibers, see
Section 2 below), we can write

(4) u(t, x) = inf
γ(t)=x

u0
(
γ(0)

)
+

∫ t

0
L
(
s, γ(s), γ̇(s)

)
ds,

where the infimum is taken over all absolutely continuous curves γ : [0, t]→ Rn
such that γ(t) = x, and where L(t, x, v) is the Lagrangian associated with
H. The idea of this paper is to discretize directly (4) on a space–time grid,
by replacing the set of curves γ by the set of piecewise linear (or piecewise
constant) curves across the space grid points.

We first prove that such an approximation is convergent with respect to the
size of the space and time stepsizes, and under an anti–CFL condition (namely
that the ratio between the space and time stepsize should be small). We give
an error estimate under the assumption that u0 is Lipschitz.

Moreover, this numerical integrator turns out to be a geometric integrator
(see for instance [HLW06, LR04]) in the sense that it respects the long time
behavior of the exact solution u(t, x). Let us recall that in the case of periodic
Hamiltonians (both in time and space variables), the weak–KAM theorem (see
[Fat05, CISM00]) shows the existence of a constant H such that

1

t
u(t, x)→ H when t→ +∞.

Here, using a discrete weak–KAM theorem, see [BB07, Zav12], we prove that
the numerical scheme possesses the same long time property, with a constant
that is close to the exact constant H.
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Finally, we show that in the separable case mainly considered in this pa-
per (see (2) below), the discrete version of (4) is a min–plus convolution that
can be approximated using a fast algorithm with O(N) operations in many
situations if N is the number of grid points. This algorithm uses the decom-
position of u into concave and convex parts. Moreover, it easily extends to
any space dimension n using a splitting strategy, when the kinetic part of the
Hamiltonian is separable – see Remark 2.6 – which includes the case (3).

We then conclude by numerical simulations in dimension 1 to illustrate
the good behavior of our algorithm, as well as its very low cost in general
situations.

The paper is divided into three parts: in a first part (Section 2) we give a
convergence result over a finite time interval of the form [0, T ] where T is fixed.
In a second part (Section 3), we consider the case where the Hamiltonian is
periodic in time t and x. In this case, we can derive explicitly the dependence
on T in the error estimates, and prove a weak–KAM theorem for the numerical
scheme which gives informations concerning the long time behavior of the
scheme. In the third part (Section 4), we describe the implementation of the
method based on a fast algorithm to compute min–plus convolutions. We
conclude this part by showing numerical simulations.

Acknowledgement. — This work owes a lot to Vincent Calvez, who put the
authors in touch and took part to preliminary discussions. It is a great pleasure
to thank him a lot. We also would like to thank Vinh Nguyen for careful
reading through previous versions of the paper. The last author would like to
thank Antonio Siconolfi for bringing him to this subject. Finally, we thank
the anonymous referees for very helpful remarks on improving the content and
presentation of this manuscript.

2. Description of the scheme and convergence results

2.1. Hypotheses. — Recall that we consider a separable Hamiltonian
H(t, x, p) of the form (2). With this Hamiltonian we can associate by
Legendre transform the Lagrangian

L(t, x, v) = sup
p∈Rn

(
p · v −H(t, x, p)

)
,

and we compute that in our case,

L(t, x, v) = K∗(v)− V (t, x),

where K∗(v) is the Legendre transform of K. For instance in the special case
(3) we have

L(t, x, v) =
1

2
|v|2 − P · v − V (t, x).
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We make the following assumptions on K and V :

Hypothesis (i). — The function K∗ ∈ C2(Rn) is uniformly strictly convex
in the sense that there exists a constant c > 0 such that for all Y ∈ Rn, and
for all v ∈ Rn,

(5)
∂2K∗

∂v2
(v)(Y, Y ) > c|Y |2 .

Hypothesis (ii). — The function V (t, x) ∈ C2(R × Rn) is such that there
exists a constant B such that for j + q 6 2, and all (t, x) ∈ R× Rn,

(6) |∂jt ∂qxV (t, x)| 6 B,

where | · | denote the norm of differential operators acting on R× Rn.

Note that the bound (6) is straightforward under the additional assumption
that V (t, x, v) is periodic in (t, x), the case studied in the next section.

Remark 2.1. — The previous hypotheses imply that the Hamiltonian H and
the Lagrangian L are C2, convex and superlinear in respectively p and v:

(7) ∀ k > 0, ∀ t > 0, ∃A(k) <∞, L(t, x, v) > k|v| −A(k).

Under these assumptions, the viscosity solution of (1) can be represented
by the formula: for all t, δ > 0,

(8) ∀x ∈ Rn, u(t+ δ, x) = inf
γ(t+δ)=x

u
(
t, γ(t)

)
+

∫ t+δ

t
L
(
s, γ(s), γ̇(s)

)
ds,

where the infimum is taken on all absolutely continuous curves γ : (t, t+ δ)→
Rn verifying γ(t+δ) = x, see [Lio82, Fat05]. We will later on use the notation
u(t + δ, x) := T δt u(x). Moreover, the infimum is achieved on a curve γδt,x(s)

that is C2 and satisfies the Euler–Lagrange equation

(9)
d

ds

∂L

∂v

(
s, γ(s), γ̇(s)

)
=
∂L

∂x

(
s, γ(s), γ̇(s)

)
.

The notation T δt defines the Lax–Oleinik semi–group. In particular, we have

T σt+δ ◦ T δt = T δ+σt for non negative δ and σ. With these assumptions, we have
the following Proposition.

Proposition 2.2. — For all T > 0, and for all R > 0, there exists M(R, T )
such that for all x, y ∈ Rn satisfying |x− y| 6 R and for all t ∈ R, then every

solution of the Euler–Lagrange equation (9) minimizing the action

(10)

∫ t+T

t
L
(
s, γ(s), γ̇(s)

)
ds,

with fixed endpoints γ(t) = x and γ(t+ T ) = y, satisfies |γ̇(s)| 6M(R, T ) for

all s ∈ [t, t+ T ].
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Proof. — The Euler–Lagrange equation is written

∂2K∗

∂v2
(
γ̇(s)

)(
γ̈(s)

)
= −∂V

∂x

(
s, γ(s)

)
.

Using the uniform strict convexity of K∗ and the fact that ∂xV is uniformly
bounded, there exists a constant C depending only on T and K, such that

(11) ∀ s ∈ [t, t+ T ] |γ̈(s)|2 6 C.

This implies that for all s ∈ [t, t+ T ],

(12) |γ̇(s)− γ̇(t)| 6
∫ t+T

t
|γ̈(s)| ds 6 T

√
C.

Now as γ minimizes the action between t and t+T , comparing with the trivial
curve t 7→ x+ t(y − x)/T from x to y, we get∫ t+T

t
L
(
s, γ(s), γ̇(s)

)
ds 6

∫ t+T

t
K∗
(y − x

T

)
− V

(
s, x+

t

T
(y − x)

)
ds

6 TD(R/T ) + TB,

where D(M) = sup
|v|6M

|K∗(v)|, and B is given by (6). By superlinearity, we

deduce that ∫ t+T

t
|γ̇(s)| ds 6 TD(R/T ) + TA(1) + TB,

where A(1) is given by (7). Using (12), we thus obtain

T |γ̇(t)| 6
∫ t+T

t
|γ̇(s)|ds+ T 2

√
C 6 TD(R/T ) + TA(1) + TB + T 2

√
C.

This shows that |γ̇(t)| is bounded, and hence using again (12) that |γ̇(s)| is
bounded for all s, with a constant depending only on T , R and the constants
appearing in (5) and (6).

Remark 2.3. — The previous lemma is one of the main keys in the proof
of the convergence of our schemes (compare with [Fal87, FF02]). Here, it is
established thanks to the particular form of H, but it can be noted that it re-
mains valid under other technical assumptions (for example ifH is autonomous
and Tonelli as established in [Fat05, FM07], or if it is Tonelli and periodic
both in the space and in the time variable as proven in [Mat91, CISM00,
Itu96]). Actually, in these cases, it can be established that M(R, T ) only
depends on the ratio R/T . We will come back on these matters in Section 3
and give a proof of this result in the Appendix. Therefore, this section and
the next would still be valid for general Hamiltonians chosen in these classes,
however the convolution techniques of section 4 would fail.
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Finally, a clear consequence of Equation (11) is that the Euler–Lagrange
flow of L is complete.

2.2. A first discrete semi–group. — For a given h > 0 we define the
h-grid Gh = hZn endowed with the metric induced by the euclidian metric on
Rn. For a given continuous function u, we define u|Gh

: Gh → R its restriction
to the grid Gh.

A first idea to discretize the Lax–Oleinik semi–group is as follows. Given
t, τ > 0, let us define cτt,h : G2

h 7→ R as follows:

(13) ∀(x, y) ∈ G2
h, cτt,h(x, y) =

∫ t+τ

t
L
(
s, x+ (s− t)y − x

τ
,
y − x
τ

)
ds.

Let us introduce the following discrete Lax–Oleinik semi–group: if u : Gh →
R is any function, we set

∀x ∈ Gh, T τt,hu(x) = inf
y∈Gh

u(y) + cτt,h(y, x).

For a given integer N , we may define

(14) TNτt,h u = T τtN−1,h
◦ · · · ◦ T τt1,h ◦ T

τ
t0,hu

the composition of N times the discrete semi–group T τt,h, where for all i =
1, . . . , N − 1, ti = t+ iτ .

One of the nice features of this discretization is the following property: let
u : Rn 7→ R and N > 1 an integer, t ∈ R and τ > 0. Then

(15) (TNτt u)|Gh
6 TNτt,h (u|Gh

).

Indeed this semi–group consists in taking an infimum over a smaller set of
curves, compared to the Lax–Oleinik semi–group.

2.3. Fully discrete semi–group. — The main disadvantage is that to com-
pute this cost, a quadrature rule in time has to be used. In this subsection, we
prove how the Euler approximation of this integral yields a convergent scheme
which still satisfies a weak–KAM theorem similar to Proposition 3.1 under
suitable periodicity assumptions.

For a given h > 0 and τ > 0, we define the following cost function:

(16) ∀(x, y) ∈ G2
h, κτt,h(y, x) = τL

(
t, x,

x− y
τ

)
.

and we introduce the associated fully discrete Lax–Oleinik semi–group, which
acts on any function u : Gh → R as follows:

∀x ∈ Gh, T τt,hu(x) = inf
y∈Gh

u(y) + κτt,h(y, x).
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Using the explicit expression of L, we can rewrite this fully-discrete semi–group
as

(17) ∀x ∈ Gh, T τt,hu(x) = inf
y∈Gh

(
u(y) + τK∗

(x− y
τ

))
− τV (t, x).

involving the (min,plus)–convolution of u and K∗.

Remark 2.4. — This scheme is a particular case of the so called Semi–
Lagrangian schemes. Indeed, those are of the form

U(t+ τ, x) = inf
α∈A

U(t, x− hα) + τL(x, α),

where A is a given (usually compact) set of controls. Here, we take α = x−y
τ .

Note that the main feature of this choice is that it enables y to remain on
the grid, whereas standard semi-Lagrangian methods rely on an interpolation
procedure at each step. This particular form allows to use the fast convolution
techniques of Section 4.

Remark 2.5. — We can interpret this scheme as a discretization of the split-
ting scheme (see for instance [JKR01]) with time step τ based on the decom-
position

∂tu(t, x) +K
(
∇u(t, x)

)
= 0, and ∂tu(t, x) + V (t, x) = 0,

where the first part is integrated using the method described in the previous
section.

Remark 2.6. — In dimension n > 1, if we assume that for p = (p1, . . . , pn) ∈
Rn, K(p) = K1(p1) + · · · + Kn(pn) with convex Hamiltonian functions K∗i ,
i = 1, . . . , n, satisfying all the hypotheses (i), (ii) on R, then we immediately
see that for a given function u(x) = u(x1, . . . , xn), with x = (x1, . . . , xn) ∈ Rn,
we have

inf
y∈Gh

u(y) + τK∗
(x− y

τ

)
=

inf
yn∈Gn

h

[
τK∗n

(xn − yn
τ

)
+
[

inf
yn−1∈Gn−1

h

τK∗n−1
(xn−1 − yn−1

τ

)
+ · · ·

+
[

inf
y1∈G1

h

τK∗n
(x1 − y1

τ

)
+ u(y1, . . . , yn)

]
· · ·
]]

=

T τ,1t,h ◦ · · · ◦ T
τ,n
t,h u(x),

where we have decomposed Gh = G1
h × · · · ×Gnh and where

∀i ∈ [1, n], T τ,it,h u(x) = inf
yi∈Gi

h

τK∗i
(xi − yi

τ

)
+ u(x1, . . . , xi−1, yi, xi+1, . . . xn).
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This formula is essentially due to the fact that the Hamiltonians Ki commute,
i.e. satisfy {Ki,Kj} = 0 for (i, j) ∈ {1, . . . , n}2 which ensures that the flows
of ∂tu = Ki(∇u), i = 1, . . . , n commute. In this case, this allows to reduce the
computation of the minimum over the n dimensional gridGh to n minimization
problems over the one–dimensional grids Gih.

For a given integer N , and a given function u0 : Gh → R we define –
compare (14)

(18) ∀x ∈ Gh, uN (x) := T Nτt,h u(x) = T τtN−1,h
◦ · · · ◦ T τt1,h ◦ T

τ
t0,hu

0(x)

where ti = t + iτ . When no confusion is possible, we will also refer to T N
instead of T Nτt,h . Note that with these notations, an estimate of the form (15)
is no longer valid.

Remark 2.7. — The following monotonicity property holds true: if u(x) 6
v(x) for all x ∈ Gh, we easily observe that T Nu 6 T Nv.

Finally, we have the following convergence result:

Theorem 2.8. — Let T > 0, τ0 and h0 > 0 and u0 : Rn → R a bounded
Lipschitz function. For a given t0 ∈ R, let u(t, x) = T tt0u be the viscosity
solution (4) of the Hamilton–Jacobi equation (1) such that u(t0, x) = u0. Then
there exists a constant M(T ) such that for all h > 0 and τ > 0 such that
h < h0, τ < τ0 and the bound

(19)
h

τ
< h0

are satisfied, then for all N verifying Nτ 6 T ,

(20) ∀x ∈ Gh, |u(Nτ, x)− uN (x)| 6M(T )
(h
τ

+ τ
)
.

where the discrete solution uN : Gh → R is given by the formula (18) with
initial value u0 := u0|Gh

.

Remark 2.9. — The following estimate is not new and not surprising. First,
since the scheme is monotonous, its convergence is known to be almost au-
tomatic (see [BS91]). Moreover, as we deal with a particular case of Semi–
Lagrangian scheme, such results are known (see [Fal87, FF02] and references
therein), in particular the convergence in O(h/τ) +O(τ) is common. For the
sake of completeness, we will give a proof in the appendix B.

Remark 2.10. — In the previous theorem, taking τ =
√
h obviously yields

a convergence of order O(
√
h). Finally, note that in the present setting, the

constant M depends on T in an uncontrolled way. However, under some extra
periodicity assumptions, this dependance will become linear later in the paper
(see Proposition 3.3).
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3. Long time behavior in the periodic case

We will now make the additional assumption that the potential function
V (t, x) is periodic, namely

Hypothesis (iii). — The function V is Z× Zn-periodic, in the sense that

∀(t, x) ∈ R× Rn, ∀(m,M) ∈ Z× Zn, V (t, x) = V (t+m,x+M).

Note that under this assumption, the estimate (6) is automatically satisfied
since we still assume that V ∈ C2(R× Rn).

3.1. Weak–KAM theorem and a priori compactness. — In this peri-
odic case, the weak–KAM theorem allows to study the long time behavior of
the solution of (1) defined by the Lax–Oleinik semi–group:

Proposition 3.1. — Assume that the hypotheses (i) and (iii) are satisfied.
Then there exists a unique constant H for which the equation

∀t > 0, T 1
t u
∗(t, ·) = H + u∗(t, ·),

admits a Z× Zn–periodic continuous solution: u∗ : R× Rn → R.
Moreover, for any uniformly bounded u : Rn → R, there exists a constant

Cu such that

∀ t > 0, |T t0u− tH|∞ 6 Cu.

Proof. — This result is very standard and a complete proof can be found in
[Fat05]. The existence of H and of u∗ is exactly the content of the weak–KAM
theorem (see [Fat97, Fat05] for the autonomous case, and [CISM00] for the
time periodic case). The second assertion is a consequence of the fact that

|T t0u− T t0v|∞ 6 |u− v|∞
for all continuous bounded functions u and v on Rn, where | · |∞ denotes the
L∞ norm on Rn.

The goal of this section is to prove that a similar result holds for the numer-
ical scheme described in the previous section, under the hypotheses (i) and
(iii).

In order to study the long time behavior of the method in this case, we
first give an a priori compactness result which refines the estimates given
in Proposition 2.2. The following proposition is mainly due to Mather (see
[Mat91] for the case of time periodic Lagrangians, or [Itu96, Lemma 7 and
Corollary 8] for space periodic Lagrangians).

Proposition 3.2. — Assume that H satisfies the hypotheses (i) and (iii).
For all Γ > 0, there exists a constant Γ′ such that for any minimizer of the
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Lagrangian action γ : [a, b]→ Rn with b− a > 1 and |γ(b)− γ(a)|/(b− a) 6 Γ
then we have

∀t ∈ [a, b], |γ̇(t)| 6 Γ′.

In other words, the constant M(R, T ) of Proposition 2.2 can be chosen to
be an increasing function of R/T .

For the sake of completeness, we will give in appendix a proof of this propo-
sition. Note that most of the proof – essentially taken from [Mat91] – does
not require the Hamiltonian to be periodic in space. In [Itu96] a similar result
is proven which requires the Lagrangian to be periodic in space, but not any
more in time.

3.2. Convergence estimates in the periodic case. — Using the previous
proposition, we can compute explicitly the time dependence of the constant
M(T ) in the error estimates of Theorem 2.8, and prove that it depends linearly
on the time in the periodic case. (see the Appendix B for a proof).

Theorem 3.3. — Let T0 > 1, τ0 and h0 > 0 and u0 : Rn → R a bounded
Lipschitz function. For a given t0 ∈ R, let u(t, x) = T tt0u be the viscosity
solution (4) of the Hamilton–Jacobi equation (1) such that u(t0, x) = u0. y
Then, there exists a constant M such that for all h > 0 and τ > 0 such that
h < h0, τ < τ0 and

(21)
h

τ
< h0,

and for all N satisfying Nτ > T0,

(22) ∀x ∈ Gh, |u(Nτ, x)− uN (x)| 6MNτ
(h
τ

+ τ
)
.

where the discrete solution uN : Gh → R is given by the formula (18) with
initial value u0 := u0|Gh

.

3.3. Discrete weak–KAM theorem and effective Hamiltonian. —
Recall that the function u(t, x) is defined on T1×Tn =

(
R/Z

)
×
(
Rn/Zn

)
. For

convenience, we will only treat the cases of rational time and space discretiza-
tions: We set

Λ =
{(1

k
,
1

`

)
| (k, `) ∈ N∗ × N∗

}
,

and in the sequel, we will only consider stepsizes (h, τ) ∈ Λ. We then will

denote by p the canonical projection from Rn to Tn, and by G̃h = Gh/Zn the
quotiented grid, where Gh is the grid above, defined on Rn.

Finally, we define a new cost function: For (h, τ) ∈ Λ and t > 0,

∀ (x̃, ỹ) ∈ (G̃h)2, κ̃τt,h(x̃, ỹ) = inf
p(x)=x̃
p(y)=ỹ

κτt,h(x, y),
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where κτt,h(x, y) is the fully discrete cost function defined in (16).

We then define the following semi–group: Let ũ : Tn → R and (h, τ) ∈ Λ,
then the fully discrete semi–group is

(23) ∀ x̃ ∈ G̃h, T̃ τt,hũ(x̃) = inf
ỹ∈G̃h

ũ(ỹ) + κ̃τt,h(ỹ, x̃).

As in the previous section, we define

T̃ Nτt,h = T̃ τtN−1,h
◦ · · · ◦ T̃ τt1,h ◦ T̃

τ
t0,h,

where ti = t+ iτ .

Remark 3.4. — We leave to the reader the verification that if ũ : Tn → R
is a function and if u : Rn → R is its lift (which is then Zn periodic), the
function T Nτt,h u is Zn periodic and that the function it canonically induces on

Tn is T̃ Nτt,h ũ. It comes from the fact that two infimums commute. Hence the
previous convergence result Theorem 3.3 can be read equivalently on Tn or
on the space of Zn periodic functions on Rn. However, it is easier to take
advantage of the compactness of Tn. This is why we introduce these new
costs, and define them with infimums.

We can use the discrete weak–KAM theorem to better understand the ap-
proximate semi–groups applied for a period 1 of time and obtain the following
proposition.

Proposition 3.5. — For any (h, τ) ∈ Λ, there exists a unique constant Hh,τ
such that there exists a function v∗h,τ : G̃h → R verifying:

T̃ 1
0,hv

∗
h,τ = v∗h,τ +Hh,τ .

Moreover, in u is any bounded initial datum on Gh at t = 0, then we have in
L∞

1

Nτ
T Nτ0,h u −→ Hh,τ ,

as N → +∞, where T Nτ0,h is defined in (18).

Proof. — The first part is just a reformulation of the discrete weak–KAM
theorem (see for example the appendix of [Zav12] or [BB07]) while the second
part is – as in the proof of Proposition 3.1 – a direct consequence of the fact
that our approximation operators are weakly contracting for the infinity norm
on bounded functions.

Remark 3.6. — Note that the previous proposition can be interpreted in the
(min,plus) framework: Equation (23) is the (min,plus) product of a vector ũ

by the matrix κ̃τt h. Then, for τ = 1/`, ` ∈ N∗, T̃ 1
0,hũ = T̃ `τ0,hũ is obtained by

successive matrix multiplications with ũ. Hence there exists a matrix Ch,τ
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such that T̃ 1
0,hũ(x̃) = inf

ỹ∈G̃h

ũ(ỹ) +Ch,τ (ỹ, x̃), with Ch,τ (ỹ, x̃) < +∞ for all ỹ, x̃.

The matrix Ch,τ has a unique eigenvalue Hh,τ , and v∗h,τ is an eigenvector (see

[BCOQ92] for details).

Let us recall that H is the effective Hamiltonian of H. It is obtained in
homogenization theory by solving the cell problem ([LPV87]) and is also the
constant found in the weak–KAM theorem (3.1). Using the refined conver-
gence result obtained in Theorem 3.3, we can estimate the error between the
effective Hamiltonian and the discrete effective Hamiltonian defined in Propo-
sition 3.5.

Theorem 3.7. — With the notations of Theorem 3.3, let (h, τ) ∈ Λ be such
that h 6 h0, τ 6 τ0 and h/τ 6 h0, then following inequality holds:∣∣Hh,τ −H∣∣ 6M

(h
τ

+ τ
)
,

where M is the constant coming from Theorem 3.3, and where Hh,τ is defined
in Proposition 3.5.

Proof. — Start with a bounded and uniformly Lipschitz continuous function
u : Rn → R. By Theorem 3.3, the following inequality holds if Nτ > T0 for
some chosen T0 > 1:

(24) ∀x ∈ Gh, |(TNτ0 u)(x)− T N (u|Gh
)(x)| 6MNτ

(h
τ

+ τ
)
,

where T N = T Nτ0,h . Dividing by Nτ and letting N go to ∞ yields that∣∣Hh,τ −H∣∣ 6M
(h
τ

+ τ
)
.

Remark 3.8. — One may wonder what is the behavior of the quantity
(TNτ0 u)|Gh

− T N (u|Gh
) as T = Nτ → ∞. The previous results show that it

has a linear growth, of rate H −Hh,τ . Comparing with weak–KAM solutions
yields that the second error term is always bounded. However, in some cases
more can be said. Indeed, in the autonomous case (L independent of t) Fathi
proved the convergence of the Lax–Oleinik semi–group ([Fat98]), that is,
for any initial condition u there exists a weak–KAM solution u∗ such that
(TNτ0 u)−NτH → u∗ uniformly. Moreover, it can be proved that the iterated
powers of a (min,+) matrix are periodic after a finite time. Therefore, for
N large enough, the sequence T N (u|Gh

), is periodic after a certain time. In
conclusion, in the autonomous case, one can write

(TNτ0 u)|Gh
− T N (u|Gh

) = Nτ(H −Hh,τ ) + wN ,

where wN is asymptotic to a periodic sequence.
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4. Fast (min,plus)–convolution

As we have seen in (17), the numerical scheme considered in this paper
involves the computation of the (min,plus)–convolution

inf
y∈Gh

(
u(y) + τK∗

(x− y
τ

))
, x ∈ Gh.

In dimension 1, if the grid Gh is discretized by retaining k points only, the
numerical cost is a priori of order k2. As we will see now, we can use a fast
(min,plus)–convolution algorithm that turns out to have a linear cost (i.e.
proportional to k) in many situations.

In order to ease the presentation, we will not deal with functions defined on
a grid, but on functions defined on finite and closed intervals.

Let a, b ∈ R with a < b. We write f : [a, b]→ R if f is such that{
f(x) <∞ if x ∈ [a, b]
f(x) =∞ otherwise.

For f : [a, b] → R, we say that f is respectively convex, concave, affine if
f|[a,b] is respectively convex, concave, affine. That is, the functions we consider
are defined on R, finite on a closed interval and are said to inherit the properties
they satisfy on this interval. Let f : [a, b] → R and g : [c, d] → R. The
(min,plus)–convolution (or convolution in the remaining of the paper) of f
and g is defined for all x ∈ R, by

(25) f ∗ g(x) = inf
y∈R

f(y) + g(x− y).

Recall that f ∗ g = g ∗ f . As f and g are finite only on an interval, it is easy
to see that for all x ∈ [a+ c, b+ d],

f ∗ g(x) = inf
y∈[a,b]

f(y) + g(x− y),

and for all x /∈ [a+ c, b+ d], f ∗ g(x) =∞.
We will only consider piecewise affine functions and decompose them ac-

cording to their affine components: there exist a0 = a < ai < · · · < an = b
such that

f = min
i∈{0,...,n−1}

fi,

where fi : [ai, ai+1]→ R is an affine function. For i = 0, . . . , n− 1, we denote
by f ′i =

(
f(ai+1) − f(ai)

)
/(ai+1 − ai) the slope of fi or the slope of f on

[ai, ai+1].

4.1. Convolution. — The fast algorithm to compute the convolution (25) is
based on a decomposition of g (= u) in piecewise convex and concave functions.
As the function f

(
= K∗(·/τ)

)
considered will always be convex

(
see equation

(5)
)
, we thus see that we are led to compute separately the convolution of
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convex by convex functions, and concave by convex functions defined on finite
intervals. As we will see, each block can be computed at a linear cost. In the
end, the global cost of the algorithm thus depends on the number of convex
and concave components on f , a number which might increase in the time
evolution of the numerical solution of the Hamilton–Jacobi equation. We will
come back later to this matter, but we emphasize that this procedure can be
very easily implemented in parallel, each convolution block being computed
independently.

We start with the following result, the proof of which can be found for
example [BT08].

Lemma 4.1 (convolution of a convex function by an affine function)
Let f : [a, b] → R be a convex piecewise affine function and g : [c, d] → R

be an affine function of slope g′. Then f ∗ g : [a + c, b + d] → R is a convex
piecewise affine function defined by

f ∗ g(x) =

 f(x− c) + g(c) if a+ c 6 x 6 α+ c,
f(α) + g(x− α) if α+ c < x 6 α+ d,
f(x− d) + g(d) if α+ d < x 6 b+ d,

where α = min{ai in the decomposition of f | f ′i > g′}.

∗ =

a α b c d a+ c b+ dα+ dα+ c

f g f ∗ g

g1

gc

g2

Figure 1. Convolution of a convex function by an affine function
and decomposition into three functions.

Figure 1 illustrates this lemma. In the rest of the section, we will use a
decomposition of such a convolution into three parts: f ∗ g = min(g1, gc, g2),
where

(i) g1 = f ∗ g|[c+a,c+α];
(ii) gc = f ∗ g|[c+α,d+α];
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(iii) g2 = f ∗ g|[d+α,d+b].
In other words, g1 is composed of the segments of f whose slope is strictly
less than that of g, gc corresponds to the segment g and g2 is composed of the
segments of f whose slope is greater than or equal to that of g. Note that gc

is also concave.
A direct consequence of this lemma is Theorem 4.2, stated in [LBT01]. A

complete proof is presented in [BJT08], but can also be deduced from previous
works about the Legendre transform: the Legendre transform is an involution
on the set of convex functions and can be computed in linear time (see [Luc97]
for example). Moreover, the transform of the (min,plus)–convolution of two
functions is the addition of the respective transforms of the two functions,
inducing an alternative linear-time algorithm.

Theorem 4.2 (convolution of a convex function by a convex function)
If f and g are convex and piecewise affine, then f ∗ g is obtained by putting

end–to–end the different linear pieces of f and g sorted by increasing slopes.

For sake of completeness, we give below Algorithm 1 for computing the
(min,plus)–convolution of two convex piecewise affine functions without having
to compute any Legendre transform.

Algorithm 1: Convolution of two convex functions

Data: f : [0, n]→ R a convex function with slopes (ri), g : [0,m]→ R a
convex function with slopes (ρi).

Result: h = f ∗ g
begin

i← 0; j ← 0; h(0)← f(0) + g(0);

while i+ j < n+m do
if i 6= n and (ri < ρj or j = m) then

h(i+ j + 1)← h(i+ j) + ri; i← i+ 1;

else
h(i+ j + 1)← h(i+ j) + ρj ; j ← j + 1;

We now turn to the case where f is convex and g is concave, and the
Legendre tranform cannot help anymore to design an algorithm as in [Bre89,
Luc97]. We begin with the following lemma:

Lemma 4.3. — Let f : [a, b] → R be a convex piecewise affine function and
g : [c, d] → R be a concave piecewise affine function which decomposition is
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g =
m

min
j=1

gj. Then

f ∗ g =
m

min
j=1

f ∗ gj .

Proof. — This is a direct consequence of the distributivity of ∗ over the min-
imum.

Now, consider two functions f : [a, b] → R, convex, and g : [c, d] → R,
concave, with respective decompositions in fi : [ai, ai+1] → R, i ∈ {0, n − 1}
and gj : [cj , cj+1] → R, j ∈ {0,m − 1}. The following lemma, that considers
two consecutive affine functions of g, leads to an efficient algorithm to compute
the convolution of a convex function by a concave function.

Lemma 4.4. — Consider the convolutions f ∗ gj−1 and f ∗ gj. Let

αj = min{ai in the decomposition of f | f ′i > g′j}
and

αj−1 = min{ai in the decomposition of f | f ′i > g′j−1}.
Then

– ∀x 6 cj + αj, f ∗ gj(x) > f ∗ gj−1(x);
– ∀x > cj + αj−1, f ∗ gj−1(x) > f ∗ gj(x).

Proof. — First, as f is convex and g′j−1 > g′j , we have that αj−1 > αj . From
Lemma 4.1, for all x 6 cj + αj ,

f ∗ gj(x) = f(x− cj) + g(cj).

Either x 6 cj−1 + αj−1, then f ∗ gj−1(x) = f(x− cj−1) + g(cj−1) and

f ∗ gj(x)− f ∗ gj−1(x) = f(x− cj)− f(x− cj−1) + g(cj)− g(cj−1);

as x − cj−1 6 αj−1, then f(x − cj−1) − f(x − cj) 6 g′j−1 · (cj − cj−1) and

f ∗ gj(x)− f ∗ gj−1(x) > 0;
or x > cj−1 + αj−1, then f ∗ gj−1(x) = f(αj−1) + g(x − αj−1); as cj−1 <

x − αj−1 6 x − αj 6 cj , g(cj) − g(x − αj−1) = g′j−1 · (cj + αj−1 − x) and

f(αj−1)− f(x− cj) 6 g′j−1 ·(cj + αj−1 − x); then f ∗ gj(x)− f ∗ gj−1(x) > 0.
The second statement can be proved similarly.

Another formulation of Lemma 4.4 is that g1j > f∗gj−1 and that g2j−1 > f∗gj
and that the two functions intersect at least once. Hence g1j and g2j−1 cannot
appear in the minimum of f ∗ gj and f ∗ gj−1. By transitivity, there is no need
to compute entirely the convolution of the convex function by every affine
component of the decomposition of the concave function. If there are more
than two segments, successive applications of this lemma show that only the
position of the segments of the concave function must be computed, except
for the extremal segments.
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∗ =

α1 c0 c2c1

g0

g1f f ∗ g1

f ∗ g0

c1 + α1α0 c1 + α0

Figure 2. Convolution of a convex function by a concave function.

The following lemma shows that f ∗ gj and f ∗ gj−1 intersect in one and
only one connected component, as for a given abscissa, the slope of f ∗ gj is
less than the one of f ∗ gj−1.

Lemma 4.5. — Let x ∈ R be any real number for which both f ∗ gj and
f ∗ gj−1 are finite valued and differentiable. Then

(26)
d

dx
f ∗ gj(x) 6

d

dx
f ∗ gj−1(x).

Proof. — For x ∈ [a0, αj ], f ∗ gj(x+ cj) = f(x− cj) + g(cj) and f ∗ gj−1(x+
cj−1) = f(x) + g(cj−1). As f is convex and cj > cj−1, the result holds on
[a0 + cj , αj + cj ]. Similarily, the result holds for x ∈ [αj−1 + cj , an + cj ].

On [cj +αj , cj +αj−1], f ∗ gj is composed of segment gj concatenated with
the segments fi, i ∈ [αj−1, αj ], possibly truncated on the right and f ∗ gj−1
is composed of segments fi, i ∈ [αj−1, αj ] concatenated with gj−1, possibly
truncated on the left. As ∀i ∈ [αj−1, αj ], g

′
j−1 6 f ′i 6 g′j , the result holds.

If one sets by convention d
dxf ∗ gj(x) = −∞ for x < cj−1 + a0 and d

dxf ∗
gj(x) = +∞ for x > cj + an, then the inequality always holds.

The intersection of f ∗ gj−1 and f ∗ gj can then happen in one and only one
of the four cases:

1. g1j−1 and gcj intersect;

2. g1j−1 and g2j intersect;

3. gcj−1 and gcj intersect;

4. gcj−1 and g2j intersect.

The following theorem is another consequence of these lemmas and is more
precise about the shape on the convolution of a convex function by a concave
function.
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Theorem 4.6 (convolution of a convex function by a concave func-
tion)

The (min,plus)–convolution of a convex function by a concave function can
be decomposed in three (possibly trivial) parts: a convex function, a concave
function and a convex function.

Proof. — We use the notations defined in the former lemmas.
We now show by induction that the convolution of f by min

λ6j
gj , denoted hj ,

is composed of

(i) a convex part h1j , which is the a restriction of g0(x) = f(x− c0) + g(c0)

to [c0 + a0, βj ], with βj 6 c0 + an;
(ii) a concave part hcj , which is a minimum of some segments gλ, λ 6 j (up

to some translation) finite valued on [βj , γj ];
(iii) a convex part h2j , gj(x) = f(x − cj+1) + g(cj+1) for x ∈ [γj , an + cj+1],

γj > a0 + cj+1.

Note that with these conventions, the real numbers βj and γj are uniquely
determined at each step of the induction.

The case with j = 0 is a direct consequence of Lemma 4.1. The case with
j = 1 is a consequence of Lemmas 4.4 and 4.1. The graphs of f ∗ g1 and
f ∗ g0 intersect once and only once (where they are finite valued), and in
[c1 + α1, c1 + α0]. Depending on when this intersection occurs, the concave
part will be trivial, be made of only one (part of a) segment of g, or a minimum
of the two segments g0 and g1.

Suppose now that the result holds for hj and consider hj+1 = min(hj , f ∗
gj+1). The argument is exactly the same as for j = 1: hj and f ∗gj+1 can only
intersect once and only once. Indeed, hj is the minimum of functions such

that d
dxf ∗ gk(x) > d

dxf ∗ gj+1(x), and then d
dxhj(x) > d

dxf ∗ gj+1(x). Note
that this intersection has to occur after the point cj+1 + αj+1.

Moreover, as g2j does not intersect g2j+1 and that h2j is a part of g2j (by the

induction hypothesis), h2j does not intersect g2j+1.
Therefore, only one of the four following cases may occur.

1. hcj intersects gcj+1 and h1j+1 = h1j , h
c
j+1 = min(hcj , g

c
j+1), h

2
j+1 = g2j+1,

βj+1 = βj and γj+1 = αj+1 + cj+2.
2. hcj intersects g2j+1 at y and h1j+1 = h1j , h

c
j+1 = hcj , h

2
j+1 = g2j+1, βj+1 = βj

and γj+1 = y.
3. h1j intersects gcj+1 at y and h1j+1 = h1j , h

c
j+1 = hcj , h

2
j+1 = g2j+1, βj+1 = y

and γj+1 = αj+1 + cj+2.
4. h1j intersects g2j+1 at y and h1j+1 = h1j , h

c
j+1 is trivial and h2j+1 = g2j+1,

βj+1 = γj+1 = y.
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If the concave function is composed of m segments and the convex function
of n segments, then the convolution of those two functions can be computed
in time O(n + m logm). The logm term comes from the fact that one has
to compute the minimum of m segments (see [BT08] for more details). If
the functions are now defined on N, then, as no intersection point has to be
computed for the minimum, the time complexity is O(n+m). The correspond-
ing algorithm is given in Algorithm 2, where without loss of generality (the
(min,plus)–convolution is shift-invariant), the functions f and g are defined
on N and finite between respectively 0 and n, and 0 and m. The slopes of the
functions are thus f ′i = f(i)− f(i− 1) and g′i = g(i)− g(i− 1).

Algorithm 2: Convolution of a convex function by a concave function

Data: f : [0, n]→ R a convex function with slopes (ri), g : [0,m]→ R a
concave function with slopes (ρi).

Result: h = f ∗ g
begin

/* Initialization */

k ← 0;

while k 6 m+ n do h(k)← +∞; k ← k + 1;

i← 0; j ← 0; h(0)← f(0) + g(0);

/* First convex part of the convolution */

while f ′i 6 g′0 do
i← i+ 1; h(i)← f(i) + g(0);

/* Concave part of the convolution */

j ← j + 1; h(i+ j)← f(i) + g(j);

while j < m do
while g′j < f ′i−1 do i← i− 1;

h(i+ j)← min(h(i+ j), f(i) + g(j));

h(i+ j + 1)← min(h(i+ j + 1), f(i) + g(j + 1));

j ← j + 1;

/* Second convex part of the convolution */

while i < n do
i← i+ 1; h(i+m)← min(h(i+m), f(i) + g(m));

4.2. Application. — We now go back to our initial problem. As already
explained above, the computation of T τt,hu(t, x) given in (17) is made of two
steps:

– (min,plus)–convolution of u and h : x 7→ τK∗(xτ );
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– subtract τV (t, x).

Note that the (min,plus)–convolution described above is here defined on
functions that have an unbounded support. But in the periodic case, u is
1–periodic and h is convex with a global minimum. Then, to compute the
convolution, it is enough to compute it on a single period (the (min,plus–
convolution preserves the periodicity), and replace h by its restriction on a
support of size 2 centered on its minimum. If h = 1/k with the notation of
the previous section, then both functions u and h are defined on grids of size
k and 2k respectively.

The convolution of u and h can be efficiently computed following these steps:

1. Decompose u into convex and concave parts. This can be done in linear
time: the three first points determine if a part is concave or convex.
Then, this part is extended as much as possible while preserving the
concavity or convexity and so on.

2. For each convex or concave part, perform the convolution with h using
Algorithms 1 or 2.

3. Take the minimum of all these convolutions.

The complexity of this Algorithm is then O(ck), where c is the number of
components in the decomposition of u into concave/convex parts.

4.3. Implementation issues. — The main issue with this algorithm is that
c – the number of components in the decomposition of u – can become very
large, and then lead to a quadratic time complexity, which is the complexity
of a naive algorithm for computing the convolution. Experimentally, the rea-
son for this is that, due to the discretization of u, nearly affine parts, after
performing the convolution several times, are computed as fast alternations of
convex and concave parts. As shown in Figure 3, one solution to make the
computations more efficient would be to consider those parts are convex and
use Algorithm 1.

convexe(u, h)

h

u ∗ h

u

Figure 3. Approximation of the convolution: plain line shows the
convolution of u and h, and the dashed line shows the function com-
puted using Algorithm 1 when u is not convex, but has very small
variations.
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To do this, we decompose u into convex and concave parts with a tolerance
(we do not request for convex parts to have increasing increments, but the
increments to have an increase more than −η). We will discuss this in the
next section. The choice of an optimal tolerance η, as well as the comparison
with parallel implementations, will be the subject of further studies.

5. Numerical simulations

5.1. Pendulum. — We take the Hamiltonian (3) with P = 0 and V (t, x) =
1−cos(x) on (0, 2π]×R, with periodic boundary conditions. The initial value is
u0(x) = cos(x). In this case the corresponding solution develops a singularity
in the derivative in x = ±π and the solution is not smooth. The numerical
solution at T = 8 is plot in figure 4.

0 1 2 3 4 5 6

1

2

3

4

5

x D [0,2/]

u(
x)

Pendulum, T = 8

Figure 4. Solution of the Hamilton-Jacobi equation at T = 8 for
the potential 1− cos(x) (pendulum)

We perform different simulations with mesh size of the form π/K with
K = 2n for n = 1 to n = 13 corresponding to 2K grid points between 0 and
π (from 4 to 16384 grid points). The time discretization parameter τ is taken

to be
√
h so that we expect a global order of convergence O(

√
h).

The result is plot on figure 5 where the error is the relative error in L∞ norm
between the solution obtained with the algorithm described above at time T =
8 and the solution computed using the fifth-order WENO algorithm (WENO5,
see [JS96]) with 8192 grid points. Note that in this first simulation we take
the regularisation parameter η = 0. We observe the expected convergence
rate.
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Figure 5. Error versus mesh size h with τ =
√
h. Regularization

parameter η = 0 (pendulum)

In a second step we perform the same simulation, but with η = h, which
does not affect the convergence rate, but allows to go up to 2K = 218 = 262144
grid points for a few minutes of CPU time(1)
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Numerical error at T = 8
 slope 0.5

Figure 6. Error versus mesh size h with τ =
√
h. Regularization

parameter η = h (pendulum)

Using the same reference solution at T = 8, we perform several simulations
with different values of the regularization parameter. In Figure 7, we plot the
evolution of the error with respect to η and for different values of h.

(1)The CPU time required to obtain the solution with 218 grid points is about 19mn, using
MATLAB on a Mac power book 2,3 GHz Intel Core i7
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Figure 7. Error versus regularization parameter η for different val-
ues of h (pendulum)

In Figure 8 we plot the evolution of the CPU time with respect to η, and
in Figure 9, we plot the error versus the CPU time, for different values of h
and different values of η.
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Figure 8. CPU time versus regularization parameter η for different
values of h (pendulum).

As a conclusion of these simulations, it seems that the performances of the
algorithm seem to be optimized for η depending linearly of h in the case of
the pendulum.

5.2. Time dependent potential. — We now take the P = 1 and the
time dependent potential V (t, x) = cos(2x) sin(t). We still consider the initial
eigenvalue u0(x) = cos(x). In this case, a theorem of Bernard and Roquejoffre
([BR04]) states that the solution converges towards a function that is periodic
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Figure 9. Error versus CPU time for different values of h (pendulum).

in time (of period possibly greater than 2π) which is a priori not constant, in
contrast with the previous case. The shape of the solution is depicted in Figure
10.
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Time dependent potential, T = 8

Figure 10. Solution of the Hamilton-Jacobi equation at T = 8 for
the potential cos(2x) sin(t) (time dependent potential)

In Figures 11 we illustrate the convergence result obtained above in the case
τ =
√
h and observe the predicted rate of convergence h1/2. Again the exact

solution is computed at T = 8 with the WENO5 algorithm.
In figures 12, 13 and 14 we study the effect of the regularization parameter

η with the same data as in the previous case. We see that the same conclusion
can be drawn.
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Figure 11. Error versus mesh size h with τ =
√
h. Regularization

parameter η = 0 (time dependent potential)
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Figure 12. Error versus regularization parameter η for different val-
ues of h (time dependent potential)

A

Appendix: Proof of the a priori compactness Proposition 3.2

We start with a lemma.

Lemma A.1. — Assume that the hypothesis (i) and (iii) are satisfied. Re-
call that L(t, x, v) = K∗(v) − V (t, x). For any Γ > 1, there exists a constant
Γ′ such that for any x, y ∈ Rn and T > 0 and t > 1, if |x − y|/t < Γ and γ
that minimizes the quantity

inf
γ(0)=x
γ(t)=y

∫ t

0
L
(
T + s, γ(s), γ̇(s)

)
ds,
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Figure 13. CPU time versus regularization parameter η for different
values of h (time dependent potential)
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Figure 14. Error versus CPU time for different values of h (time
dependent potential)

then

∀ 0 6 a 6 a+ 1 6 t, |γ(a)− γ(a+ 1)| < Γ′.

Proof. — Without loss of generality, we will assume that L is positive. Indeed,
the potential V is bounded, and adding a constant doesn’t change the mini-
mizers. In this case, and under the hypothesis (i), there exists a nonnegative,
increasing function α : [0,∞)→ R which verifies lim

t→∞
α(t) =∞, such that

∀t, x, v, L(t, x, v) > α(|v|)|v|.
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The idea of the proof is that if γ at some point has a great velocity, then it
must be slow later. It is then better to“slow down”the fast part and accelerate
the “slow” one.

First, we set some notations. For all (x, y, t, T ) ∈ Rn × Rn × R+ × R, let

AtT (x, y) = inf
γ(0)=x
γ(t)=y

∫ t

0
L
(
T + s, γ(s), γ̇(s)

)
ds,

be the Lagrangian action.
We start by showing, that the superlinearity of L implies a superlinearity

of AtT . As already done a few times, we may bound the action by comparing
with a straight line, using that L is uniformly bounded on sets of the form
R× Rn ×B(0, R), where B(0, R) is the ball of radius R > 0 in Rn:

AtT (x, y) 6
∫ t

0
L
(
T + s,

(t− s)x+ sy

t
,
y − x
t

)
ds

6 tC+
( |x− y|

t

)
max

( |x− y|
t

, 1
)
,(27)

for some increasing function z 7→ C+
(
z
)

defined on R+. Let γ realizing the
infimum, and set

E =
{
s ∈ [0, t] such that |γ̇(s)| > |x− y|

2t

}
.

Then we get, using that L > 0:

(28) AtT (x, y) =

∫ t

0
L
(
T + s, γ(s), γ̇(s)

)
ds

>
∫
E
L
(
T + s, γ(s), γ̇(s)

)
ds

> α
( |x− y|

2t

) ∫
E
|γ̇(s)|ds > α

( |x− y|
2t

) |x− y|
2

.

The last inequality comes from the fact that when γ is going at speed less
than |x− y|/2t for time t, it cannot travel more than |x− y|/2, therefore the
integral is greater than |x− y|/2 by the triangular inequality. In other terms,
equations (27) and (28) state that there are two positive functions C+ and C−

which can be easily made increasing, such that

(29) C−
( |x− y|

t

) |x− y|
t

6
AtT (x, y)

t
6 C+

( |x− y|
t

)
max

( |x− y|
t

, 1
)
.

Moreover, thanks to the superlinearity of L those functions are coercive.
Now consider

– Γ′′ > Γ such that 20C+(Γ) < C−(Γ′′),
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– Γ′′′ > Γ′′ such that Γ′′′/Γ′′ ∈ N∗ and 30C+(20Γ′′) < C−(Γ′′′),
– and finally Γ′ > Γ′′′ such that 40Γ′′′/Γ′′ < C−(Γ′)/C+(Γ).

Let us verify that Γ′ satisfies the requirements of our lemma.
Assume by contradiction that for some x, y ∈ Rn, t, T ∈ R+ such that

|x− y| < tΓ and γ realizing the action AtT (x, y), there is an a ∈ [0, t− 1] such
that |γ(a) − γ(a + 1)| > Γ′. As γ is a minimizer, we have (using that L > 0
and Γ > 1)

(30) tΓC+(Γ) > AtT (x, y) >
∫ a+1

a
L
(
T + s, γ(s), γ̇(s)

)
ds

> A1
T+a

(
γ(a), γ(a+ 1)

)
> Γ′C−(Γ′).

Hence we obtain

(31) t >
Γ′C−(Γ′)

ΓC+(Γ)
>

40Γ′′′

Γ′′
,

using the fact that Γ′ > Γ and the definition of Γ′.
We now assume that a < t/2, the other case may be treated similarly. Let

b ∈ [a, a + 1] be the smallest such that |γ(a) − γ(b)| = Γ′′′, and consider the
sequence

ci = b+ 2i
Γ′′′

Γ′′
, i ∈ {0, · · · , k},

where k is greatest possible integer such that ck 6 t. Note that using (31)
and a 6 t/2, we have k > 9, and that for i ∈ {0, · · · , k}, we have ci+1 − ci =
2Γ′′′/Γ′′.

We claim that there exists an i0 ∈ {0, · · · , k} such that

|γ(ci0)− γ(ci0+1)|
ci0+1 − ci0

6 Γ′′.

Indeed, otherwise we would have, using (29)

AtT (x, y) >
k−1∑
i=0

∫ ci+1

ci

L
(
T + s, γ(s), γ̇(s)

)
ds

>
k−1∑
i=0

|γ(ci0)− γ(ci0+1)|
ci0+1 − ci0

C−(Γ′′)

>

k−1∑
i=0

2Γ′′′

Γ′′
Γ′′C−(Γ′′).

By definition of k, we have that (k + 1) × 2Γ′′′/Γ′′ > t/2 − 1 while using
(31), we have t > 40Γ′′′/Γ′′ > 40 and 2Γ′′′/Γ′′ 6 t/18. Hence we deduce that
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k × 2Γ′′′/Γ′′ > t/3. As Γ′′ > Γ, the previous equation yields

AtT (x, y) >
t

3
ΓC−(Γ′′) > tΓC+(Γ),

which is absurd in view of (30).
Now we find a contradiction by constructing a curve δ which has an action

less than γ. Let [c, d] = [ci0 , ci0+1]. Recall that K := Γ′′′/Γ′′ is an integer. We
define the curve δ as follows:

– δ(s) = γ(s) if s ∈ [0, a] ∪ [d, t];

– on [a, b+K], δ coincides with the curve minimizing Ab+K−aT+a

(
γ(a), γ(b)

)
;

– on [b+K, c+K], δ is the translate of γ : δ(s) = γ(s−K);
– on [c+K, d] (recall that d = c+2K) δ coincides with the curve minimizing
AKT+c+K

(
γ(c), γ(d)

)
.

We now compute the difference of action between γ and δ, recalling that L is
1-periodic in time:∫ t

0
L
(
T + s,γ(s), γ̇(s)

)
ds−

∫ t

0
L
(
T + s, δ(s), δ̇(s)

)
ds

=

∫ b

a
L
(
T + s, γ(s), γ̇(s)

)
ds+

∫ d

c
L
(
T + s, γ(s), γ̇(s)

)
ds

−
∫ b+K

a
L
(
T + s, δ(s), δ̇(s)

)
ds−

∫ d

c+K
L
(
T + s, δ(s), δ̇(s)

)
ds

> Γ′′′C−(Γ′′′) +
2Γ′′′

Γ′′
Γ′′C−(Γ′′)

− Γ′′′

Γ′′
Γ′′C+(Γ′′)− Γ′′′

Γ′′
(2Γ′′)C+(2Γ′′) > 0.

This contradicts the minimality of γ.

Remark A.2. — In the previous proof, we only used the fact that L is peri-
odic in time. In [Itu96], a similar result is proved when L is periodic in space
(instead of in time). The idea of the proof is the same except that, when
constructing the curve δ, instead of translating it in time (in third part of the
construction), it is translated in space, while the “fast” part of γ between a
and b is replaced by a geodesic (straight line) between γ(a) and the closest
point from γ(a) in the grid γ(b) + Zn.

We now prove lemma 3.2:

proof of lemma 3.2. — Recall now that L is periodic both in time and in space
and that its Euler–Lagrange flow is complete. As in the previous lemma,
assume L > 0. Let Γ and Γ′ be as in the previous lemma, and γ be a minimizer
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such that |γ(0) − γ(t)|/t 6 Γ. The curve γ is then a trajectory of the Euler–
Lagrange flow. Let moreover 0 6 a 6 a + 1 6 t. Finally, by superlinearity of
L, let A(1) be given by Equation (7), such that L(t, x, v) > |v| − A(1). We
therefore obtain that, with the notations used in the previous proof,∫ 1

0
|γ̇(a+ s)|ds−A(1)

6
∫ 1

0
L
(
T + a+ s, γ(a+ s), γ̇(a+ s)

)
ds 6 C+(Γ′)Γ′.

Therefore, there is at least one point s0 ∈ [0, 1] such that

|γ̇(a+ s0)| 6 A(1) + C+(Γ′)Γ′ := D.

By periodicity of the Lagrangian, and completeness of the Euler-Lagrange
flow, there exists a constant D′ depending only on D, such that |γ̇| 6 D′ on
[a+ s0− 1, a+ s0 + 1]∩ [0, t] ⊃ [a, a+ 1]. Since a is arbitrary, this finishes the
proof.

B

Appendix: Proof of Theorem 2.8

proof of Theorem 2.8. — The Idea of the proof a rather common technique
which consists in interchanging the minimizing paths between the continuous
and the fully discrete semi–groups.

Let us denote by γt : [t, t + T ] → Rn a minimizer of (8). Recall that the
curve γt(s) is C2. Let us set y := γt(t) and x := γt(t+ T ). We have

T Tt u(x) = u(y) +

∫ t+T

t
L
(
s, γt(s), γ̇t(s)

)
ds.

By superlinearity (7), this implies that∫ t+T

t
|γ̇t(s)|ds 6 TA(1) + |T Tt u(x)− u(y)|.

Comparing with the trivial curve γ ≡ x in the definition of the Lax–Oleinik
semi–group, we have that

(32) T Tt u(x) 6 |u|∞ + T
(
B +K∗(0)

)
where B is the constant in equation (6) (Hypothesis (i)). Moreover, since L
is bounded below

(
meaning L(t, x, v) > b for some constant b, for all (t, x, v)

)
,

clearly, the action of any curve defined for a time T is greater than Tb which
implies immediately that

(33) T Tt u(x) > −|u|∞ + Tb.
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Hence, there exists a constant B1 depending only on L and |u|∞ such that

(34) |x− y| = |γt(t+ T )− γt(t)| 6
∫ t+T

t
|γ̇t(s)|ds 6 B1(1 + T ).

Remarking that γt is also a minimizer of the action (10) under the constraint
γ(t) = y and γ(t + T ) = x, we can apply Proposition 2.2 which shows that
there exists a constant M1 = M

(
B1(1 + T ), T

)
depending only on T , L and

|u|∞ such that

(35) ∀ s ∈ [t, t+ T ], |γ̇t(s)| 6M1.

Assume now that N is an integer such that Nτ 6 T . For all i = 0, . . . , N
we define

xi = h

⌊
1

h
γt(ti)

⌋
where for i = 0, . . . , N , ti = t+ iτ and where the function b·c is the floor func-
tion, coordinate by coordinate. With these points, we associate the continuous
piecewise linear path λ defined by

(36) λ(s) = xi + (s− ti)
xi+1 − xi

τ
, for s ∈ [ti, ti+1].

By definition of the points xi, we have

(37) ∀ i ∈ [0, N ], |xi − γt(ti)| = |λ(ti)− γt(ti)| 6 h
√
n.

Now, using the bound (35), we have for all i = 0, . . . , N − 1,

|xi+1 − xi| 6 2h
√
n+

∫ ti+1

ti

|γ̇t(s)|ds 6 2h
√
n+ τM1.

But this inequality implies that for all i = 0, . . . , N − 1,

∀ s ∈ [ti, ti+1], |λ(s)− xi| 6 2h
√
n+ τM1,

while |γt(s)− γt(ti)| 6 τM1 upon using (35). Hence we get

(38) ∀ s ∈ [ti, ti+1], |λ(s)− γt(s)| 6 3h
√
n+ 2τM1.

Moreover, we have for s, σ ∈ [ti, ti+1],

|γ̇t(σ)− γ̇t(s)| 6 τC,

upon using (11). Hence for s ∈ [ti, ti+1], we have

|γt(ti+1)− γt(ti)− τ γ̇t(s)| 6
∫ ti+1

ti

|γ̇t(σ)− γ̇t(s)|dσ 6 τ2C,

and hence for all s ∈ [ti, ti+1]∣∣∣∣γt(ti+1)− γt(ti)
τ

− γ̇t(s)
∣∣∣∣ 6 τC.
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Using (37), we obtain easily that for all i = 0, . . . , N − 1,

(39) ∀ s ∈ [ti, ti+1], |λ̇(s)− γ̇t(s)| 6 τC +
2h

τ

√
n.

Note that using (19) and (35), the previous equation implies that for all i =
0, . . . , N − 1,

(40) ∀ s ∈ [ti, ti+1], |λ̇(s)| 6M2

for some constant M2 = τ0C + h0
√
n+M1 independent of h and τ .

Now by definition of λ, we have

(41)
∣∣∣ ∫ Nτ

0
L
(
s, γt(s), γ̇t(s)

)
ds−

∫ Nτ

0
L
(
s, λ(s), λ̇(s)

)
ds
∣∣∣

6
N−1∑
i=0

∫ ti+1

ti

∣∣∣L(s, γt(s), γ̇t(s))− L(s, λ(s), λ̇(s)
)∣∣∣ds.

Using (6) (coming from Hypothesis (ii)), the fact that K∗ is C2 and the
bounds (35) and (40), there exists a constant M3, depending on L, M1 and
M2, such that the previous error term is bounded by

M3

N−1∑
i=0

∫ ti+1

ti

(
|γt(s)− λ(s)|+ |γ̇t(s)− λ̇(s)|

)
ds.

Using (38) and (39), this shows that there exists a constant M4 independent
on h and τ , such that

(42)

∣∣∣∣∫ t+Nτ

t
L
(
s, γt(s), γ̇t(s)

)
ds−

∫ Nτ

0
L
(
s, λ(s), λ̇(s)

)
ds

∣∣∣∣ 6M4

(h
τ

+ τ
)
,

where we used the fact that h 6 τ0h/τ .
Finally, the term we wish to estimate is∣∣∣ ∫ t+Nτ

t
L
(
s, γt(s), γ̇t(s)

)
ds−

N−1∑
i=0

κτt,h(xi, xi+1)
∣∣∣

6
N−1∑
i=0

∫ ti+1

ti

∣∣∣L(s, γt(s), γ̇t(s))− L(s, λ(s), λ̇(s)
)∣∣∣ds

+
N−1∑
i=0

∫ ti+1

ti

∣∣∣L(s, λ(s), λ̇(s)
)
− L

(
ti, λ(ti), λ̇(ti)

)∣∣∣ds.
To bound the second term, we observe first that for s ∈ [ti, ti+1], the deriva-

tive λ̇(s) = (xi+1 − xi)/τ does not depend on s. Hence using (6) and (40) the
function

[ti, ti+1] 3 s 7→ L
(
s, λ(s), λ̇(s)

)
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is C1 with uniformly bounded derivative. Thus we obtain that there exists a
constant M5 such that∣∣∣L(s, λ(s), λ̇(s)

)
− L

(
ti, λ(ti), λ̇(ti)

)∣∣∣ 6M5(s− ti).

This proves that
(
compare (42)

)
(43)

∣∣∣∣∣
∫ t+Nτ

t
L
(
s, γt(s), γ̇t(s)

)
ds−

N−1∑
i=0

κτti,h(xi, xi+1)

∣∣∣∣∣ 6M6

(h
τ

+ τ
)
,

for some constant M6 independent of h and τ .
Now by definition of T N , we have using (37) and the Lipschitz nature of u,

T N (u|Gh
)(x) 6 u(x0) +

N−1∑
i=0

κτti,h(xi, xi+1)

6 (TNτt u)|Gh
(x) +

∣∣u(x0)− u
(
γt(0)

)∣∣+M4

(h
τ

+ τ
)

6 (TNτt u)|Gh
(x) +M

(h
τ

+ τ
)

(44)

for some constant M independent on h and τ . This proves a first inequality
in the estimate (20) with the notations of the Theorem.

To prove the reverse inequality, let us fix x ∈ Gh. We consider a sequence
yi, i = 0, . . . , N with yN = x and

(45) T N (u|Gh
)(x) = u(y0) +

N−1∑
i=0

κτti,h(yi, yi+1),

and we define the curve

η(s) = yi + (s− ti)
yi+1 − yi

τ
, for s ∈ [ti, ti+1].

Note that in a similar manner to what we did to prove the inequalities 32 and
33, using the fact that u is bounded, and comparing with the trivial sequence
made of a constant point (with (6)) on the one hand, and the fact that L,
hence the κτti,h are bounded below on the second hand show that there exists
a constant D1 such that

|T N (u|Gh
)|∞ 6 D1.

By superlinearity of L (and of the κτti,h) and using again the fact that u is
bounded, we thus see, as in 34 that there exists a constant D2 such that for
all i = 0, . . . , N − 1, ∣∣∣∣yi+1 − yi

τ

∣∣∣∣ 6 D2,
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which in turn implies that

∀ s ∈ [ti, ti+1], |η(s)− η(ti)| 6 τD2.

As the derivative of η(s) with respect to s is uniformly bounded by D2 and
constant on the time intervals [ti, ti+1], and as L is C1 with uniformly bounded
derivative on R× Rn ×B(0, D2), we obtain

(46)

∣∣∣∣∣
N−1∑
i=0

κτti,h(yi+1, yi)−
∫ Nτ

0
L
(
s, η(s), η̇(s)

)
ds

∣∣∣∣∣ 6 τD3

for some constant D3. Using the definition of the exact semi–group, we thus
have

(TNτt u)|Gh
(x) 6 u

(
η(tN )

)
+

∫ Nτ

0
L
(
s, η(s), η̇(s)

)
ds

6 T N (u|Gh
)(x) + τD3

upon using (45) and (46). This proves the result.

proof of Theorem 3.3. — In the proof of Theorem 2.8, equation (34) then gives
using Proposition 3.2 (with T > T0 > 1) that the constant M1 defined in (35)
does not depend on T = Nτ and depends in fact only on T0. It then follows
that M2 and M3 also are independent of T = Nτ , while M4 is proportional to
the time of integration, that is Nτ . The rest of the proof can then be carried
on giving the result.
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