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COMPUTING POINTS OF BOUNDED HEIGHT IN

PROJECTIVE SPACE OVER A NUMBER FIELD

DAVID KRUMM

Abstract. We construct an algorithm for solving the following problem: given

a number field K, a positive integer N , and a positive real number B, deter-
mine all points in PN (K) having relative height at most B. A theoretical
analysis of the efficiency of the algorithm is provided, as well as sample com-
putations showing how the algorithm performs in practice. Two variants of
the method are described, and examples are given to compare their running
times. In the case N = 1 we compare our method to an earlier algorithm for
enumerating elements of bounded height in number fields.

1. Introduction

Let K be a number field of degree n over Q with ring of integers OK , and let N
be a positive integer. For any real number B ≥ 1, define

Ω(B) = {P ∈ PN (K) : HK(P ) ≤ B},
where HK is the relative height function on the set PN (K). In [22] Schanuel proved
that there is a constant c, depending only on N and on classical invariants of K,
such that

#Ω(B) ∼ c ·BN+1 as B → ∞.

Thus, Schanuel’s result provides a solution to the problem of estimating the number
of points of bounded height in a projective space over K. In practice it can prove
useful for various applications to have an algorithm corresponding to this counting
problem, so that one can generate all points in Ω(B) for any given B. In the
case N = 1, algorithms of this type have been used to compute bases for Mordell-
Weil groups of elliptic curves [20]; to compute preperiodic points for quadratic
polynomials [9]; and to find examples of abelian surfaces with everywhere good
reduction over quadratic fields [8]. For larger values of N an algorithm does not
seem to exist in the literature; the purpose of this article is to develop an efficient
algorithm that can be used for any value of N . One application of this more general
algorithm would be to list points of small height on projective varieties. This can
be useful, for instance, when computing rational points on curves. Let C be a
curve of genus g ≥ 2 defined over K, and let J be its Jacobian variety. For the
purpose of determining the set C(K) of K-rational points on C it is extremely
useful to have a set of generators for the group J (K). A common way of producing
generators is to search for points of small height on the associated Kummer variety
K = J /{±1}, which embeds in P2g−1. By listing points of small height in P2g−1(K)
one could therefore carry out an exhaustive search (within some bounds) for points
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on K. Thus, one may hope to determine generators for the group J (K), and with
additional work determine all points in C(K). We refer the reader to [25]–[27],
where this technique is made very explicit for hyperelliptic curves of genera 2 and
3.

A natural first approach to the problem of computing Ω(B) is to turn Schanuel’s
counting argument into an algorithm. Unfortunately, it is not clear that this so-
lution can be implemented in practice. Schanuel reduces the counting problem
to a question of estimating the number of lattice points inside a certain region in
Rn(N+1) (see Schanuel’s paper for details, or [15, Chap. 3, §5] for a sketch of the
argument). While there are methods for computing lattice points inside bounded
subsets of Euclidean space, these subsets must be relatively simple, and the dimen-
sion of the ambient space should be kept as small as possible. The region that
occurs in Schanuel’s paper is somewhat complicated (indeed, a substantial portion
of the paper is spent on proving that the region is bounded and has a sufficiently
smooth boundary), making it difficult to construct this region in a computer and
determine all lattice points inside it.

The method developed in the present article also involves a computation of
lattice points in a bounded region; however, the ambient space can be taken to be
either Rn or Rr, where r is the rank of the unit group of OK , and the bounded
region is in both cases a polytope; see Algorithms 5 and 6 below. The cost of this
simplification of the problem is not large: if we measure the efficiency of the method
by comparing the size of Ω(B) to the size of the search space S(B) (that is, the
set of all points generated by the algorithm while searching for points in Ω(B)),
then the inefficiency of the algorithm is bounded above by a constant as B tends
to infinity.

Theorem 1.1. There is a constant k, depending on N , K, and a choice of funda-
mental units in K, such that

lim sup
B→∞

#S(B)

#Ω(B)
≤ k.

In the particular case N = 1, where other methods already exist, our asymptotic
bounds on the size of the search space compare favorably to those of the other
methods: the algorithm of Pethő and Schmitt [20] produces a search space that is
larger than Ω(B) by a factor of B2n−2; the algorithm given in [10] improves this
to a factor of (logB)r. For the algorithm developed here, this factor is a constant
independent of B.

In addition to the efficiency of our algorithm there is another salient feature to
point out. Given a height bound B, the algorithm computes a subset C(B) ⊂ OK

(defined in §4) from which homogeneous coordinates of all points in Ω(B) can be
taken. The set C(B) depends on B,K, and a choice of fundamental units in K, but
is independent of the dimension of the ambient space PN . Thus, by taking tuples
of elements of C(B) of appropriate length, one can determine all K-rational points
of height bounded by B in any projective space over K.

This article is organized as follows. In §2 we set notation and record the theoreti-
cal results that are used in developing our algorithm. The main results of the paper
are in §3, where we use the ideal class group of K to partition the set Ω(B) into
subsets, and show how to reduce the computation of these subsets to a problem of
finding lattice points in polytopes. In §4 we discuss ways of improving the efficiency
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of our method. The special case where K has only finitely many units is treated
separately in §5. A proof of Theorem 1.1 is given in §6, and specific computations
illustrating the performance of the algorithm are given in §7.

2. Background and notation

2.1. Definition and computation of the relative height function. Let MK

denote the set of nontrivial places of K. To every place v ∈ MK there corresponds
an absolute value | |v on K extending one of the standard absolute values on Q.
We denote by Kv the completion of K with respect to | |v, and by σv the natural
inclusion K ↪→ Kv. Restricting | |v to Q and completing, we obtain a field Qv

which embeds into Kv yielding a finite extension Kv/Qv; the local degree of K at v
is the degree nv of this extension. Defining a function ‖ ‖v on K by ‖x‖v = |x|nv

v ,
we have the following product formula for every x ∈ K∗:∏

v∈MK

‖x‖v = 1.

For a point P = [x0, . . . , xN ] ∈ PN (K), the height of P (relative to K) is given
by

HK(P ) =
∏

v∈MK

max{‖x0‖v, . . . , ‖xN‖v}.

The product formula ensures that the height of P is independent of the choice
of homogeneous coordinates for P . For purposes of explicit computations with
absolute values and heights, a more concrete description of the places of K and of
the function HK will be needed.

LetM∞
K denote the set of places v for which | |v is Archimedean. For convenience,

we will often write v|∞ instead of v ∈ M∞
K . For every place v|∞ the completion Kv

can be identified with either R or C, so that the inclusion σv : K ↪→ Kv is identified
with either a real or complex embedding of K. The local degree nv is 1 if Kv = R

and 2 if Kv = C. Hence, if the embeddings K ↪→ C are explicitly known, one can
use the relation ‖x‖v = |σv(x)|nv

C to compute, for any x ∈ K, all the numbers ‖x‖v
with v|∞. Here, | |C denotes the usual complex absolute value. This observation
can be used to compute heights of points in PN (K), as shown below.

We define a function H∞ : KN+1 → R by

H∞(x0, . . . , xN ) =
∏
v|∞

max{‖x0‖v, . . . , ‖xN‖v}.

Let σ1, . . . , σr1 be the real embeddings of K, and τ1, τ1, . . . , τr2 , τr2 the pairs of
complex conjugate embeddings. It is a standard fact that the map v 
→ σv is a bi-
jection between M∞

K and the set {σ1, . . . , σr1 , τ1, . . . , τr2}. Using this fact we obtain
the following alternate definition of H∞ which is more suitable for computation:

(2.1) H∞(x0, . . . , xN ) =
∏
σ

max{|σ(x0)|C, . . . , |σ(xN )|C},

where σ ranges over all embeddings K ↪→ C. It is well known that for any point
P = [x0, . . . , xN ] ∈ PN (K) we have the relation

(2.2) HK(P ) = H∞(x0, . . . , xN )/N(a),

where a is the fractional ideal of OK generated by x0, . . . , xN . (For instance, see
[23, p. 136, 3.7].) Here, N(a) denotes the norm of the ideal a. In practice, when
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computing HK(P ) for a given point P , the formulas (2.2) and (2.1) will be used
instead of our initial definition of the height.

2.2. Results from Minkowski Theory. Let n = [K : Q] be the degree of K over
Q. The Minkowski embedding of K is the map

(2.3) Φ : K ↪−→
∏
v|∞

Kv
∼= Rn

given by x 
→ (σv(x))v. The stated isomorphism of real vector spaces is not canon-
ical, so we will make a choice: we fix the ordering σ1, . . . , σr1 , τ1, . . . , τr2 for the
embeddings of K, thus obtaining an ordering v1, . . . , vr1+r2 of the places v|∞. This
ordering induces an isomorphism,∏

v|∞
Kv

∼= Rr1 × Cr2 .

Identifying C with R2 in the obvious way we obtain the isomorphism (2.3), and in
particular, a more concrete description of the Minkowski embedding:

Φ(x) = (σ1(x), . . . , σr1(x),�τ1(x),�τ1(x), . . . ,�τr2(x),�τr2(x)) .

Under the map Φ, every nonzero ideal a of OK becomes a lattice of rank n
in Rn. More precisely, fixing an integral basis {ω1, . . . , ωn} for a, the vectors
Φ(ω1), . . . ,Φ(ωn) are linearly independent over R and generate Φ(a) as a Z-module.
We denote by F (a) the fundamental parallelotope spanned by these vectors:

(2.4) F (a) = {c1Φ(ω1) + · · ·+ cnΦ(ωn) : ci ∈ [0, 1) for all i}.

The volume of F (a) is given by

(2.5) VolF (a) = 2−r2 |ΔK |1/2N(a),

where ΔK is the discriminant of K; see [16, p. 115, Lem. 2]. Note that F (a)
depends on the choice of integral basis for a, but its volume does not.

Let r = r1 + r2 − 1 be the rank of the unit group O∗
K . Recall the standard

logarithmic map

(2.6) Λ : K∗ −→
∏
v|∞

R ∼= Rr+1

given by x 
→ (log ‖x‖v)v. Again, the above isomorphism is not canonical, so we
choose the isomorphism induced by the ordering σ1, . . . , σr1 , τ1, . . . , τr2 . Thus, we
obtain the more concrete description

Λ(x) = (log |σ1(x)|, . . . , log |σr1(x)|, 2 log |τ1(x)|, . . . , 2 log |τr2(x)|) .

A classical theorem of Dirichlet states that the image of O∗
K under the map Λ is a

lattice of rank r in the hyperplane consisting of all points (tv) such that
∑

v tv = 0.
Any collection of units ε = {ε1, . . . , εr} such that the vectors Λ(εj) form a basis for
the lattice Λ(O∗

K) is called a system of fundamental units in K. We fix a choice of
fundamental units and define

(2.7) F (ε) = {t1Λ(ε1) + · · ·+ trΛ(εr) : |tj | ≤ 1/2 for all j}.
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Note that F (ε) is the closure of a fundamental domain for the lattice Λ(O∗
K). In

each direction v we will need to consider how far from the origin the vectors in F (ε)
can be; thus, we define numbers Dv by

(2.8) Dv = max
η∈F (ε)

ηv.

We will also denote Dv by Dσ if v corresponds to the embedding σ ∈ {σ1, . . . ,
σr1 , τ1, . . . , τr2}. Using the finite subset

V (ε) = {t1Λ(ε1) + · · ·+ trΛ(εr) : |tj | = 1/2 for all j}
we obtain a different description of the numbers Dv that is better for computation:

(2.9) Dv = max
η∈V (ε)

ηv.

3. Points of bounded height with fixed ideal class

The starting point for our method is the observation that the set PN (K) can
be divided into ideal classes: to every point P = [x0, . . . , xN ] ∈ PN (K) there
corresponds the ideal class Cl(P ) of the fractional ideal generated by x0, . . . , xN ;
this is independent of the choice of homogeneous coordinates for P . Since there
are only finitely many ideal classes of OK , this observation reduces the problem of
finding all points in Ω(B) to the following:

Given a nonzero ideal a of OK , compute the set

Ω(a, B) = {P ∈ PN (K) : Cl(P ) = Cl(a) and HK(P ) ≤ B}.
We will therefore begin by considering this specialized version of the main prob-

lem. We assume here that the unit rank r is positive; the simpler case when r = 0
is treated in §5.

3.1. A search space for Ω(a, B). The main result of this section, namely Theorem
3.1 below, will allow us to construct a finite set of points containing Ω(a, B). Once
this larger set is known, one can eliminate extraneous points from it by computing
their heights and comparing to the bound B.

We define a region

P(a, B) ⊂
∏
v|∞

Kv
∼= Rn

as follows: letting Dv be the number (2.8) for every v|∞, the set P(a, B) consists
of all points (sv) ∈

∏
v|∞ Kv such that

|sv| ≤ (B ·N(a))1/n exp(Dv/nv) ∀ v|∞.

Note that as a subset of Rn, P(a, B) is a Cartesian product of r1 closed intervals
in R and r2 closed disks in R2. More precisely, P(a, B) consists of the points

(a1, . . . , ar1 ;x1, y1, . . . , xr2 , yr2) ∈ Rn

such that

|ai| ≤ (B ·N(a))1/n exp(Dσi
) and x2

j + y2j ≤ (B ·N(a))2/n exp(Dτj )

for all indices 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2.

Theorem 3.1. For every point P ∈ Ω(a, B) there exist x0, . . . , xN ∈ a such that
the following hold:

• P = [x0, . . . , xN ];
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• a is the ideal generated by x0, . . . , xN ;
• |NK/Q(xi)| ≤ B ·N(a) for all i;
• Φ(xi) ∈ P(a, B) for all i.

In order to prove the theorem we will need some auxiliary results.

Lemma 3.2. Define a map θ : KN+1 \ 0 −→
∏

v|∞ R by

θ(	α) =
(
logmax

i
‖αi‖v

)
v
,

where 	α = (α0, . . . , αN ). Then θ has the following properties:

• For every 	α ∈ KN+1 \ 0,
∑

v θ(	α)v = logH∞(	α).
• If u is a unit in OK , then θ(u	α) = Λ(u) + θ(	α).

Proof. Both properties follow immediately from the definitions. �

Lemma 3.3. For any λ ∈ K and Y ∈ KN+1 we have H∞(λY ) = |NK/Q(λ)| ·
H∞(Y ).

Proof. This is a consequence of (2.1). �

Proof of Theorem 3.1. Let P ∈ Ω(a, B). Since Cl(P ) = Cl(a), there are homoge-
neous coordinates [y0, . . . , yN ] for P such that a is the ideal generated by y0, . . . , yN .
Letting Y = (y0, . . . , yN ) ∈ KN+1, we have

H∞(Y ) = HK(P ) ·N(a) ≤ B ·N(a).

The vectors Λ(ε1), . . . ,Λ(εr) together with the vector (nv) of local degrees form a
basis for the Euclidean space

∏
v|∞ R, so we can write

(3.1) θ(Y ) = t · (nv) +
r∑

j=1

tj · Λ(εj)

for some real numbers t, t1, . . . , tr. Considering the sum of the coordinates of the
vectors on both sides of this equation, we find that

t = logH∞(Y )1/n.

Here, we are using the first property of the map θ listed in Lemma 3.2. Let nj be an

integer closest to tj for every j, so that |tj − nj | ≤ 1/2, and let u = ε−n1
1 · · · ε−nr

r ∈
O∗

K . We now choose a different set of homogeneous coordinates for P : set xi = uyi
and X = (x0, . . . , xN ) ∈ KN+1. Clearly, P = [x0, . . . , xN ] and a is generated by
x0, . . . , xN ; moreover, using Lemma 3.3 we see that H∞(X) = H∞(uY ) = H∞(Y ),
so our work above shows that

H∞(X) ≤ B ·N(a) and t = logH∞(X)1/n.

It follows from (2.1) that for every index i we have |NK/Q(xi)| ≤ H∞(X) ≤ B ·N(a).
It remains to show that Φ(xi) ∈ P(a, B) for all i.

Using the second property of θ stated in Lemma 3.2 we obtain by (3.1) that

θ(X) = θ(uY ) = Λ(u) + θ(Y ) = t · (nv) + η

for some η ∈ F (ε). Considering the equation θ(X) = t · (nv) + η one coordinate at
a time we find that

logmax
i

‖xi‖v = logH∞(X)nv/n + ηv ∀ v|∞,
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and so
max

i
‖xi‖v = H∞(X)nv/n exp(ηv) ∀ v|∞.

Thus, for every index i ∈ {0, . . . , N} we have

‖xi‖v ≤ H∞(X)nv/n exp(ηv) ≤ (B ·N(a))
nv/n exp(Dv) ∀ v|∞.

By definition, this means that Φ(xi) ∈ P(a, B) for every i. �

Define a subset C(a, B) ⊂ OK by

C(a, B) = {x ∈ a : Φ(x) ∈ P(a, B) and |NK/Q(x)| ≤ B ·N(a)}.
Note that C(a, B) is finite, since there can only be finitely many points of the lattice
Φ(a) lying inside the bounded region P(a, B). Theorem 3.1 shows that every point
P ∈ Ω(a, B) has homogeneous coordinates coming from C(a, B), and thus provides
a finite search space for the points in Ω(a, B). More precisely, we have the following
description of Ω(a, B).

Corollary 3.4. The set Ω(a, B) consists of all points of the form P = [x0, . . . , xN ]
satisfying

• xi ∈ C(a, B) for all i;
• a is the ideal generated by x0, . . . , xN ; and
• H∞(x0, . . . , xN ) ≤ B ·N(a).

Proof. Let P ∈ Ω(a, B) be any point. By Theorem 3.1 we know that there exist
elements x0, . . . , xN ∈ C(a, B) such that P = [x0, . . . , xN ] and a is generated by
x0, . . . , xN . Moreover, sinceHK(P ) ≤ B, then (2.2) implies thatH∞(x0, . . . , xN ) ≤
B ·N(a).

Conversely, suppose that P = [x0, . . . , xN ] is any point whose coordinates satisfy
the conditions listed in the corollary. The last two conditions then imply that
Cl(P ) = Cl(a) and HK(P ) ≤ B, so that P ∈ Ω(a, B) by definition. �

Using this corollary we obtain the following initial step towards our main algo-
rithm.

Algorithm 1. Computing Ω(a, B).

(1) Create an empty list L.
(2) Compute the set C(a, B).
(3) For every tuple (x0, . . . , xN ) of elements of C(a, B):

If a is generated by x0, . . . , xN , then:
(a) Let P = [x0, . . . , xN ] ∈ PN (K).
(b) If H∞(x0, . . . , xN ) ≤ B ·N(a), then include P in L.

(4) Return L.

3.2. Exploiting group actions. Before considering how the steps of Algorithm 1
can be carried out in practice, we discuss a modification of the crucial step in the
algorithm, which is to compute the set C(a, B). Once this set has been computed,
the next step in Algorithm 1 is to build (N + 1)-tuples of elements of C(a, B)
and check the heights of the corresponding points in PN (K). We will show here
that it is possible to replace C(a, B) by a proper subset; this will have the effect
of reducing significantly the number of tuples that need to be considered when
computing Ω(a, B). In addition, we show how to use two group actions to reduce
the number of height computations that are carried out.
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Let μK denote the group of roots of unity in K. From the definitions it follows
that if x ∈ C(a, B) and ζ ∈ μK , then ζx ∈ C(a, B); hence, the group μK acts on
C(a, B). Let g0, g1, . . . , gt be elements representing all the orbits of this action. We
will see that in Algorithm 1, rather than considering all (N +1)-tuples of elements
of C(a, B), one can restrict attention to tuples of elements of the set {g0, g1, . . . , gt}.
Further reductions can be achieved by using two group actions on the set

KN+1
• = KN+1\{(0, . . . , 0)}.

First, the action of the symmetric group SN+1: for π∈SN+1 andX=(x0, . . . , xN ) ∈
KN+1

• ,
π ·X = (xπ−1(0), . . . , xπ−1(N)).

Second, the action of the group μN
K : for u = (ζ0, . . . , ζN−1) ∈ μN

K and X =
(x0, . . . , xN ) ∈ KN+1

• ,

u ·X = (ζ0x0, . . . , ζN−1xN−1, xN ).

For X ∈ KN+1
• we let

(3.2) O(X) = {[u · (π ·X)] : u ∈ μN
K and π ∈ SN+1} ⊂ PN (K),

where [Y ] denotes the equivalence class in PN (K) of the point Y ∈ KN+1
• .

Proposition 3.5. Let g0, g1, . . . , gt ∈ C(a, B) be elements representing all the orbits
of the action of μK on C(a, B). Let M be the set of all tuples X = (gi0 , . . . , giN )
such that:

• 0 ≤ i0 ≤ i1 ≤ · · · ≤ iN ≤ t;
• a is the ideal generated by gi0 , . . . , giN ; and
• H∞(X) ≤ B ·N(a).

Then
Ω(a, B) =

⋃
X∈M

O(X).

Proof. The definition of M implies that for any X ∈ M, the point P = [X] satisfies
HK(P ) ≤ B and Cl(P ) = Cl(a), so that P ∈ Ω(a, B). A simple calculation shows
that all the points in O(X) have the same height as P and the same ideal class;
therefore, O(X) ⊆ Ω(a, B). This proves one inclusion in the proposition.

To see the reverse inclusion, let P ∈ Ω(a, B). By Theorem 3.1 we can write
P = [y0, . . . , yN ] with yi ∈ C(a, B) generating the ideal a. For every index i we
have yi = zigei for some zi ∈ μK and some index ei ∈ {0, . . . , t}; hence,

P = [z0ge0 , . . . , zNgeN ].

Letting ζi = ziz
−1
N for i ∈ {0, . . . , N − 1} we obtain

P = [ζ0ge0 , . . . , ζN−1geN−1
, geN ].

By applying a permutation π of the set {0, . . . , N} we may arrange the indices ei
so that

eπ(0) ≤ · · · ≤ eπ(N).

Define elements x0, . . . , xN by xi = geπ(i)
, so that xπ−1(j) = gej . Then

P = [ζ0xπ−1(0), . . . , ζN−1xπ−1(N−1), xπ−1(N)].

Letting X = (x0, . . . , xN ) ∈ KN+1
• and u = (ζ0, . . . , ζN−1) ∈ μN

K , this means by
definition that

P = [u · (π ·X)] ∈ O(X).
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We claim that X ∈ M. First of all, we have X = (geπ(0)
, . . . , geπ(N)

) with increasing
indices eπ(i). Furthermore, from the construction of X it follows that the entries
x0, . . . , xN are associate—in some order—to y0, . . . , yN . In particular, the ideal
generated by x0, . . . , xN is equal to the ideal generated by y0, . . . , yN , which is a by
assumption. Finally, since all the points in O(X) have the same height, then

H∞(X)/N(a) = HK([X]) = HK(P ) ≤ B,

and hence H∞(X) ≤ B ·N(a). This shows that X ∈ M, which completes the proof
of the proposition. �

We deduce from Proposition 3.5 the following improvement of Algorithm 1 in
which fewer points must be considered and fewer height computations are needed.

Algorithm 2. Computing Ω(a, B).

(1) Create an empty list L.
(2) Compute representatives g0, g1, . . . , gt of the orbit space C(a, B)/μK .
(3) For every tuple of indices (i0, . . . , iN ) such that 0 ≤ i0 ≤ i1 ≤ · · · ≤ iN ≤ t:

(a) Let X be the point (gi0 , . . . , giN ).
(b) If a is generated by gi0 , . . . , giN and H∞(X) ≤ B ·N(a), then:

Include in L all the points in O(X).
(4) Return L.

Precise details on how to carry out step (2) are given in Algorithm 4.

Remark 3.6. With the notation of Proposition 3.5, it may very well happen that the
sets O(X) and O(Y ) for distinct tuples X,Y ∈ M have a nonempty intersection.
Furthermore, it may happen that the points of the form [u · (π · X)] constructed
when computing O(X) are not all distinct. Hence, in Algorithm 2 one may want
to remove duplicate points from the list L before returning it.

Remark 3.7. Everything stated in this section remains valid if the group μK is
replaced throughout by its subgroup {±1}. This observation will be used below to
give two different versions of our main algorithm.

3.3. Computing C(a, B). We turn now to the question of how the set C(a, B) can
be computed. Two approaches to this problem will be discussed, and in each case
it will be shown that one can compute either C(a, B)/μK or C(a, B)/{±1} instead
of the entire set C(a, B). By Proposition 3.5 and Remark 3.7, having a complete
set of representatives for either one of these orbit spaces is enough to determine
Ω(a, B) using Algorithm 2.

3.3.1. First approach. The elements of C(a, B) can be found by first computing the
larger set

C̃(a, B) = {x ∈ a : Φ(x) ∈ P(a, B)}
and then eliminating those elements of C̃(a, B) whose norms exceed the bound

B ·N(a). Note that the computation of C̃(a, B) is equivalent to finding all points
of the lattice Φ(a) that lie inside the region P(a, B); it would therefore be desir-
able to make this region as small as possible. The size of P(a, B) is tied to the
sizes of the numbers Dv for v|∞, which in turn are determined by the lengths of
the vectors Λ(ε1), . . . ,Λ(εr) forming a basis for the lattice Λ(O∗

K) ⊂ Rr+1. Thus,
a basis consisting of short vectors should be computed. This can be achieved by
first computing any system {ε1, . . . , εr} of fundamental units (for instance, using
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the method described in [6, §6.5.3]) and then applying the LLL reduction algo-
rithm [17], or faster variants such as the Nguyen-Stehlé algorithm [19], to the basis
Λ(ε1), . . . ,Λ(εr). Having obtained a set of “short” fundamental units in this way,
the corresponding numbers Dv can be computed using (2.9). The region P(a, B) is
then determined, and we need to find all points of the lattice Φ(a) that lie inside it.
For this purpose it will be convenient to work with a slightly larger region defined
as follows. Recall that P(a, B) consists of the points

(a1, . . . , ar1 ;x1, y1, . . . , xr2 , yr2) ∈ Rn

such that

|ai| ≤ (B ·N(a))1/n exp(Dσi
) and x2

j + y2j ≤ (B ·N(a))2/n exp(Dτj )

for all indices 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2. We define P ′(a, B) ⊂ Rn to be the region
consisting of all points

(a1, . . . , ar1 ;x1, y1, . . . , xr2 , yr2) ∈ Rn

such that

|ai| ≤ (B ·N(a))1/n exp(Dσi
) and max{|xj |, |yj |} ≤ (B ·N(a))1/n exp(Dτj/2)

for all relevant indices i, j. Clearly P ′(a, B) contains P(a, B), so in order to compute
Φ(a) ∩ P(a, B) it would suffice to compute Φ(a) ∩ P ′(a, B) and then eliminate
points that do not satisfy the inequalities defining P(a, B). Note that P(a, B) is
a Cartesian product of r1 closed intervals in R and r2 closed disks in R2. The
definition of P ′(a, B) differs from that of P(a, B) only in that each closed disk, say
of radius R, is replaced by a square of side length 2R containing the disk. The ratio
of the areas of the square and the disk is 4R2/πR2 = 4/π. Thus,

VolP ′(a, B)

VolP(a, B)
=

(
4

π

)r2

.

At the expense of increasing the size of the region in which we search for lattice
points (with a precise measure of the increase being given by the above equation),
we gain the advantage of having a region that is easier to work with computationally.
Indeed, P ′(a, B) is a polytope—i.e., the convex hull of a finite set of points—and
the problem of enumerating lattice points in polytopes has been well studied from
a theoretical as well as computational point of view [2, 3, 7].

In order to determine the points of the lattice Φ(a) that lie inside the polytope
P ′(a, B), we translate this problem into one of finding integer lattice points in a
different polytope. Let {ω1, . . . , ωn} be an integral basis for the ideal a, and let S be
the n × n matrix with column vectors Φ(ω1), . . . ,Φ(ωn). The linear isomorphism
Rn → Rn represented by the matrix S−1 transforms the lattice Φ(a) into the
lattice Zn and the polytope P ′(a, B) into a polytope X . Note that for any integers
s1, . . . , sn,

(3.3) s1Φ(ω1) + · · ·+ snΦ(ωn) ∈ P ′(a, B) ⇐⇒ (s1, . . . , sn) ∈ X .

Hence, C̃(a, B) is contained in the set of all numbers x of the form x = s1ω1 +
· · · + snωn with (s1, . . . , sn) ∈ Zn ∩ X . We can therefore determine all elements

of C̃(a, B) once the integer points in X are known; indeed, it suffices to construct
all numbers x of the above form and check the condition Φ(x) ∈ P(a, B). An
algorithm for computing integer lattice points in polytopes is described in [7] and
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implemented in the software package LattE [1]. There is also ongoing work to
include this algorithm in the Sage [24] software system.

To summarize this approach to computing C(a, B): first, a reduced basis for the
lattice Λ(O∗

K) is computed, and by using it the polytope P ′(a, B) is constructed.
Computing an integral basis {ω1, . . . , ωn} of a, an n×n matrix S is defined to have
columns Φ(ω1), . . . ,Φ(ωn). The map S−1 is then applied to P ′(a, B) to obtain a
new polytope X . Listing the integer points in X we obtain a finite list of all integer
tuples (s1, . . . , sn) with the property that the element x = s1ω1+· · ·+snωn satisfies
Φ(x) ∈ P ′(a, B). For all such elements x we then check whether Φ(x) ∈ P(a, B),

thus obtaining the set C̃(a, B). Finally, we compute the norms of all elements of

C̃(a, B) in order to check the inequality |NK/Q(x)| ≤ B ·N(a), and thus determine
all elements of C(a, B).

As noted in the previous section, for the purpose of computing Ω(a, B) it would
suffice to find elements representing all the orbits in C(a, B)/{±1}. With minor
modifications, the above procedure can be used to compute only these elements
instead of all C(a, B).

Proposition 3.8. Let H ⊂ Rn be the half-space consisting of all points whose first
coordinate is nonnegative. A complete set of representatives for the orbit space
C(a, B)/{±1} is given by all numbers of the form

x = s1ω1 + · · ·+ snωn

with (s1, . . . , sn) ∈ Zn∩H∩X satisfying Φ(x) ∈ P(a, B) and |NK/Q(x)| ≤ B ·N(a).

Proof. Note to begin that, by definition, all elements x of the above form indeed
belong to C(a, B). We claim that they represent all the orbits of the action of {±1}.
Let x be any element of C(a, B) and write

x = s1ω1 + · · ·+ snωn

for some integers s1, . . . , sn. Replacing x with −x if necessary, we may assume that
s1 ≥ 0. Since Φ(x) ∈ P ′(a, B), then (3.3) implies that (s1, . . . , sn) ∈ X and hence
(s1, . . . , sn) ∈ Zn ∩ H ∩ X . It follows that x is one of the elements listed in the
statement of the proposition. �

From Proposition 3.8 and the preceding discussion we obtain the following algo-
rithm.

Algorithm 3. Computing C(a, B)/{±1}:
(1) Create an empty list L.
(2) Compute an LLL-reduced system of fundamental units in K.
(3) Compute the numbers Dv for all places v|∞.
(4) Construct the polytope P ′(a, B).
(5) Compute an integral basis ω1, . . . , ωn for a.
(6) Let S be the n× n matrix with column vectors Φ(ωi).
(7) Construct the polytope X = S−1(P ′(a, B)).
(8) Find all integer lattice points in the polytope H ∩ X .
(9) For all such points (s1, . . . , sn):

(a) Let x = s1ω1 + · · ·+ snωn.
(b) If Φ(x) ∈ P(a, B) and |NK/Q(x)| ≤ B ·N(a), then include x in L.

(10) Return the list L.
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3.3.2. Second approach. One possible issue with the method for computing C(a, B)

discussed above is that in practice the set C̃(a, B) can be significantly larger than

C(a, B), so that the step of computing the norms of all elements of C̃(a, B) is
rather inefficient. We will therefore propose a different approach which reduces the
number of norm computations needed. There is, however, a trade-off between the
two approaches, since the second may require a substantial number of arithmetic
operations with fundamental units. If K is a number field for which these units are
extremely large, it may be better to use the first method.

In the second approach, rather than first finding all elements x ∈ a with Φ(x) ∈
P(a, B) and then checking the condition |NK/Q(x)| ≤ B·N(a), we first find elements
x satisfying this norm bound and then check whether Φ(x) ∈ P(a, B). In general,
there will be infinitely many elements x ∈ a with |NK/Q(x)| ≤ B ·N(a), since any
such x can be multiplied by a unit in OK to obtain another element of a with equal
norm. However, there are only finitely many possibilities for the ideal generated by
x, since there are only finitely many ideals of bounded norm in OK . We will show
here that the set C(a, B) can be determined by computing a finite list of principal
ideals and a finite set of units. This approach is based on ideas first introduced in
[10].

Let I(a, B) be a set of generators for all the nonzero principal ideals that are
contained in a and whose norms are at most B · N(a). We assume that distinct
elements of I(a, B) generate distinct ideals. The elements of I(a, B) can be de-
termined by using known methods for solving norm equations in number fields:
applying the algorithm described in [11] (see also [12] and [21, §5.3, §6.4]) one can
find generators for all principal ideals of OK whose norms are of the form k ·N(a)
with 1 ≤ k ≤ B. Keeping only those generators that belong to a we obtain I(a, B).

For every place v|∞ we define real numbers Av and Lv by the formulas

Av = min
y∈I(a,B)

Λ(y)v,

Lv = (nv/n)(logB + logN(a)) +Dv − Av.

Lemma 3.9. Every nonzero element x ∈ C(a, B) can be written as x = u ·y, where
u ∈ O∗

K , y ∈ I(a, B), and

(3.4) ‖u‖v ≤ (B ·N(a))nv/n exp(Dv −Av) ∀ v|∞.

Proof. Let x ∈ C(a, B) be any nonzero element. Since |NK/Q(x)| ≤ B · N(a), the
ideal generated by x has norm at most B ·N(a), so xmust be associate to an element
of I(a, B). Hence, we can write x = uy for some unit u and some y ∈ I(a, B). By
definition, the fact that Φ(x) ∈ P(a, B) means that ‖x‖v ≤ (B ·N(a))nv/n exp(Dv)
for every place v|∞. Therefore,

‖u‖v = ‖x‖v‖y‖−1
v ≤ (B ·N(a))nv/n exp(Dv) exp(−Av). �

The above lemma shows that we can determine C(a, B) if we find all units u
satisfying the bounds (3.4); to do this, we reduce the problem to one of finding
integer points inside a polytope. Let U(a, B) ⊂ Rr be the polytope consisting of
all points (t1, . . . , tr) that satisfy the inequalities tj ≤ Lvj for 1 ≤ j ≤ r, and

t1 + · · ·+ tr ≥ −Lvr+1
. Let π : Rr+1 → Rr be the linear map that deletes the last

coordinate, and let Λ̃ = π ◦ Λ : K∗ → Rr. It is a standard fact that the image of
the unit group O∗

K under Λ̃ is a lattice of full rank in Rr generated by the vectors

Λ̃(ε1), . . . , Λ̃(εr). Let T be the r × r matrix having these vectors as columns.
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Lemma 3.10. For every unit u ∈ O∗
K satisfying the bounds (3.4) there exist a

root of unity ζ ∈ μK and an integer tuple (n1, . . . , nr) ∈ T−1(U(a, B)) such that
u = ζεn1

1 · · · εnr
r .

Proof. Let t1, . . . , tr be the coordinates of the vector Λ̃(u). By definition we have
tj = log ‖u‖vj , so (3.4) implies that tj ≤ Lvj . Moreover, the sum of the coordinates
of Λ(u) is 0, so

t1 + · · ·+ tr = − log ‖u‖vr+1
≥ −Lvr+1

,

and hence Λ̃(u) ∈ U(a, B). Write u = ζεn1
1 · · · εnr

r with ζ ∈ μK and n1, . . . , nr ∈ Z.
Then

n1Λ̃(ε1) + · · ·+ nrΛ̃(εr) = Λ̃(u) ∈ U(a, B).

Applying the linear map T−1 we conclude that (n1, . . . , nr) ∈ T−1(U(a, B)), and
this proves the lemma. �

In view of Lemma 3.10, the problem of computing C(a, B) is now reduced to
that of finding all integer points inside the polytope T−1(U(a, B)). As mentioned
earlier, this kind of problem can be solved using the algorithm developed in [7].

Putting together our results in this section we obtain the following method for
computing C(a, B): first, the set I(a, B) is determined, and using this the numbers
Av and Lv are computed for every place v|∞. (This requires previous knowledge of
a system of fundamental units inK from which the numbersDv are computed.) The
polytope T−1(U(a, B)) is then constructed, and all integer lattice points inside it are
found. For every such integer point (n1, . . . , nr), and for every root of unity ζ ∈ μK ,
we then construct all numbers of the form x = ζεn1

1 · · · εnr
r y with y ∈ I(a, B). If

Φ(x) ∈ P(a, B), then we keep x because it is an element of C(a, B); otherwise x is
discarded.

Using the above procedure we can compute the set C(a, B), and this could then
be used to compute Ω(a, B). However, to compute Ω(a, B) using Algorithm 2 it
is enough to determine representatives for the orbit space C(a, B)/μK instead of
computing all of C(a, B). A small change to the method described above will allow
us to compute only these representatives.

Proposition 3.11. Let g1, . . . , gt be all the numbers of the form g = εn1
1 · · · εnr

r y
with y ∈ I(a, B) and (n1, . . . , nr) ∈ Zr ∩ T−1(U(a, B)) satisfying Φ(g) ∈ P(a, B).
Then the numbers 0, g1, . . . , gt form a complete set of representatives for the orbit
space C(a, B)/μK .

Proof. Note first of all that, by construction, the numbers 0, g1, . . . , gt all belong
to C(a, B). Moreover, since no two elements of I(a, B) are associate, the orbits
of 0, g1, . . . , gt are all distinct. Let x ∈ C(a, B) be nonzero. By Lemmas 3.9 and
3.10 there exist y ∈ I(a, B) and (n1, . . . , nr) ∈ Zr ∩ T−1(U(a, B)) such that x =
ζεn1

1 · · · εnr
r y for some ζ ∈ μK . Thus, x is in the μK -orbit of the element g =

εn1
1 · · · εnr

r y. Since μK acts on C(a, B), this implies that g ∈ C(a, B), so in particular
Φ(g) ∈ P(a, B). It follows that g ∈ {g1, . . . , gt}, proving that x is in the μK-orbit
of one of the numbers g1, . . . , gt. �

We summarize the results of this section in the following algorithm.

Algorithm 4. Computing C(a, B)/μK :

(1) Create a list L containing only the element 0.
(2) Compute I(a, B) by solving norm equations as described above.
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(3) Compute an LLL-reduced system {ε1, . . . , εr} of fundamental units in K.
(4) Compute the numbers Dv, Av, and Lv for every place v|∞.

(5) Let T be the r × r matrix with column vectors Λ̃(ε1), . . . , Λ̃(εr).
(6) Construct the polytope T−1(U(a, B)).
(7) Find all integer lattice points inside T−1(U(a, B)).
(8) For all such points (n1, . . . , nr), and for every element y ∈ I(a, B):

(a) Let g = εn1
1 · · · εnr

r y.
(b) If Φ(g) ∈ P(a, B), then include g in L.

(9) Return the list L.

Algorithms 2, 3, and 4 provide two different ways of finding points of bounded
height with specified ideal class. We turn now to the more general problem of
determining all points of bounded height in PN (K).

4. A search space for all points of bounded height

Given a real number B ≥ 1, we wish to determine all points in the set

Ω(B) = {P ∈ PN (K) : HK(P ) ≤ B}.

If a1, . . . , ah are ideals representing the distinct ideal classes of OK , then we have

Ω(B) =

h⋃
i=1

Ω(ai, B),

the union being disjoint. In order to compute Ω(B) it therefore suffices to determine
ideal class representatives ai as above and then compute Ω(ai, B) for every index
i. The computational cost of obtaining the ideals ai can be high if K has very
large discriminant; see [18, Thm. 5.5] for a precise statement of the complexity
of a deterministic algorithm. If one is willing to assume the Generalized Riemann
Hypothesis, much faster methods are available; see, for instance, [5]. The main
algorithms of this article include the computation of the class group as a required
step; however, no assumptions are made as to which method is used for this.

Once the ideal class representatives a1, . . . , ah have been determined, what re-
mains in order to obtain Ω(B) is to compute Ω(ai, B) for every index i; this can be
done by applying Algorithm 2. Though this approach to computing Ω(B) would
certainly work, there are simple modifications that can be made to shorten the
computation. The crucial step for finding all the points in Ω(ai, B) using Algo-
rithm 2 is to compute the set C(ai, B) ⊂ OK . Thus, in the process of determining
all points in Ω(B) as described above, one would compute C(ai, B) for every i.
In practice there can be a significant amount of overlap between the various sets
C(a1, B), . . . , C(ah, B), so it can happen that the same elements of OK are being
computed several times. In order to avoid this redundancy, we will carry out one
computation of a set C(B) that contains all of the sets C(ai, B), and then for each
i the elements of C(ai, B) will be found by searching through C(B).

Let N = maxi N(ai) and let P(B) be the subset of
∏

v|∞ Kv
∼= Rn consisting

of all points (sv) such that

|sv| ≤ (B ·N)1/n exp(Dv/nv) ∀ v|∞.
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Note that P(B) contains P(ai, B) for every i. Define a setN of nonnegative integers
by

N = {0} ∪
h⋃

i=1

{k ·N(ai) : 1 ≤ k ≤ B},

and let
C(B) = {x ∈ OK : Φ(x) ∈ P(B) and |NK/Q(x)| ∈ N},

so that C(B) contains C(ai, B) for every i. The methods of §3.3 can be easily
adapted to compute C(B). Once this has been done, the various sets C(ai, B) can
be determined by checking, for every element x ∈ C(B), whether x satisfies the con-
ditions Φ(x) ∈ P(ai, B) and |NK/Q(x)| ≤ B ·N(ai). The sets C(a1, B), . . . , C(ah, B)
are thus obtained, and can then be used to determine all points in the sets Ω(ai, B).
Now, in order to compute Ω(ai, B) using Algorithm 2 it suffices to find represen-
tatives for the orbit spaces C(ai, B)/μK or C(ai, B)/{±1}, so it would be desirable
that group actions on C(B) could be used to find these representatives instead of
computing the entire set C(ai, B). This can indeed be done without any additional
work: the groups μK and {±1} act on C(B), and with minor changes the meth-
ods of §3.3 can be used to compute representatives for the orbits of these actions;
the details of this are discussed below. By selecting the elements that belong to
C(ai, B) for each i we obtain representatives for the orbit spaces C(ai, B)/μK or
C(ai, B)/{±1}. These representatives can then be used in Algorithm 2 to compute
Ω(ai, B).

Depending on which orbit space is computed, C(B)/{±1} or C(B)/μK , our dis-
cussion above yields a different method to compute Ω(B). We will henceforth
denote by M1 the algorithm that uses the action of {±1}, and by M2 the algorithm
that uses the action of μK .

For the algorithm M1, the methods of §3.3.1 should be applied to compute
C(B)/{±1}. Let P ′(B) ⊂ Rn be the region consisting of all points

(a1, . . . , ar1 ;x1, y1, . . . , xr2 , yr2) ∈ Rn

such that

|ai| ≤ (B ·N)
1/n

exp(Dσi
) and max{|xj |, |yj |} ≤ (B ·N)

1/n
exp(Dτj/2)

for all indices 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2. Note that P ′(B) contains P(B). Let
{ω1, . . . , ωn} be an integral basis for OK , and let S be the n × n matrix with
column vectors Φ(ω1), . . . ,Φ(ωn). Finally, let X be the polytope S−1(P ′(B)). A
minor modification of the proof of Proposition 3.8 yields the following result.

Proposition 4.1. Let H ⊂ Rn be the half-space consisting of all points whose first
coordinate is nonnegative. A complete set of representatives for the orbit space
C(B)/{±1} is given by all numbers of the form

x = s1ω1 + · · ·+ snωn

with (s1, . . . , sn) ∈ Zn ∩H ∩ X satisfying Φ(x) ∈ P(B) and |NK/Q(x)| ∈ N .

The above proposition suggests an algorithm for computing C(B)/{±1} that is
analogous (in fact, nearly identical) to Algorithm 3.

From our work up to this point we obtain the following description of M1. Briefly,
what the algorithm below does is to compute C(B)/{±1}, then intersect with each
set C(ai, B) to determine C(ai, B)/{±1}, and finally use Algorithm 2 to compute
each set Ω(ai, B).



438 DAVID KRUMM

Algorithm 5 (M1). Computing Ω(B) using the action of {±1}:
(1) Create an empty list L. This list will store the points belonging to Ω(B).
(2) Compute an integral basis ω1, . . . , ωn for OK .
(3) Determine ideals a1, . . . , ah representing the distinct ideal classes of OK .
(4) Compute an LLL-reduced system of fundamental units in OK .
(5) Construct the set N .
(6) Compute the numbers Dv for all places v|∞.
(7) Construct the polytope P ′(B).
(8) Let S be the n× n matrix with column vectors Φ(ωi).
(9) Construct the polytope X = S−1(P ′(B)).
(10) Create an empty set L. This set will store representatives for C(B)/{±1}.
(11) Find all integer lattice points in the polytope H ∩ X .
(12) For all such points (s1, . . . , sn):

(a) Let x = s1ω1 + · · ·+ snωn.
(b) If Φ(x) ∈ P(B) and |NK/Q(x)| ∈ N , then include x in L.

(13) For each ideal a ∈ {a1, . . . , ah}:
(a) Fix an ordering g0, g1, . . . , gt of the elements of L ∩ C(a, B).
(b) For every tuple of indices (i0, . . . , iN ) such that 0 ≤ i0 ≤ i1 ≤ · · · ≤

iN ≤ t:
(i) Let X be the point (gi0 , . . . , giN ).
(ii) If a is generated by gi0 , . . . , giN and H∞(X) ≤ B ·N(a), then:

Include in L all the points in O(X).
(14) Return the list L.
For the algorithm M2, the methods of §3.3.2 should be applied to compute

C(B)/μK . Let I(B) be a set of generators for all the nonzero principal ideals of
OK whose norms are in N . For every place v|∞, define real numbers

av = min
y∈I(B)

Λ(y)v,

�v = (nv/n)(logB + logN) +Dv − av.

Let U(B) ⊂ Rr be the polytope consisting of all points (t1, . . . , tr) that satisfy
the inequalities tj ≤ �vj for 1 ≤ j ≤ r, and t1 + · · ·+ tr ≥ −�vr+1

. Finally, let T be

the r× r matrix with column vectors Λ̃(ε1), . . . , Λ̃(εr). The results of §3.3.2 can be
modified in an obvious way to obtain the following result.

Proposition 4.2. Let g1, . . . , gt be all the numbers of the form g = εn1
1 · · · εnr

r y
with y ∈ I(B) and (n1, . . . , nr) ∈ Zr ∩ T−1(U(B)) satisfying Φ(g) ∈ P(B). Then
the numbers 0, g1, . . . , gt form a complete set of representatives for the orbit space
C(B)/μK .

From the above proposition we deduce an algorithm for computing C(B)/μK that
is analogous to Algorithm 4. We include this algorithm in the following complete
description of M2.

Algorithm 6 (M2). Computing Ω(B) using the action of μK :

(1) Create an empty list L. This list will store the points belonging to Ω(B).
(2) Determine ideals a1, . . . , ah representing the distinct ideal classes of OK .
(3) Compute an LLL-reduced system {ε1, . . . , εr} of fundamental units in K.
(4) Construct the set N .
(5) Compute the set I(B) by solving norm equations.
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(6) Compute the numbers Dv, av, and �v for every place v|∞.

(7) Let T be the r × r matrix with column vectors Λ̃(ε1), . . . , Λ̃(εr).
(8) Construct the polytope T−1(U(B)).
(9) Create the set L = {0}. This set will store representatives for C(B)/μK .
(10) Find all integer lattice points inside T−1(U(B)).
(11) For all such points (n1, . . . , nr), and for every element y ∈ I(B):

(a) Let g = εn1
1 · · · εnr

r y.
(b) If Φ(g) ∈ P(B), then include g in L.

(12) For each ideal a ∈ {a1, . . . , ah}:
(a) Fix an ordering g0, g1, . . . , gt of the elements of L ∩ C(a, B).
(b) For every tuple of indices (i0, . . . , iN ) such that 0 ≤ i0 ≤ i1 ≤ · · · ≤

iN ≤ t:
(i) Let X be the point (gi0 , . . . , giN ).
(ii) If a is generated by gi0 , . . . , giN and H∞(X) ≤ B ·N(a), then:

Include in L all the points in O(X).
(13) Return the list L.

To conclude our discussion we mention one optional modification that in many
cases leads to an improvement in the performance of both M1 and M2. For any
point P = [x0, . . . , xN ] ∈ PN (K) and any automorphism σ ∈ Aut(K/Q), we denote
by P σ the point

P σ = [σ(x0), . . . , σ(xN )] ∈ PN (K).

Note that P and P σ have the same height and have Galois-conjugate ideal classes.
Using this observation one sees that if c1, . . . , cs ∈ {a1, . . . , ah} are ideals represent-
ing the distinct orbits of the action of the group G = Aut(K/Q) on the ideal class
group Cl(OK), then

Ω(B) =

s⋃
i=1

G · Ω(ci, B).

Thus, in order to compute Ω(B) it suffices to determine the ideals ci, compute the
sets Ω(ci, B), and then let the group G act on these sets. We are not aware of any
method for computing the ideals c1, . . . , cs that does not involve first computing
the full list a1, . . . , ah; hence, this approach carries the additional cost of having
to divide the class group into G-orbits. However, one finds in practice that if s
is substantially smaller than h, then the reduction in the number of ideals a for
which the set Ω(a, B) must be computed easily makes up for this additional cost.
Whether this modification will yield improvements in performance is difficult to
determine a priori, since there appear to be no results in the literature that would
allow a comparison of s and h in terms of standard invariants of K. Thus, we
suggest that this approach only be taken when the class group computation is not
costly, and B is large. In such cases, the additional cost incurred by computing
G-orbits is minimal, and the savings in time are substantial because every set of
the form Ω(a, B) would require a significant amount of time to be computed.

5. The case of unit rank zero

We discuss here the problem of enumerating all points in the set Ω(B) when K
is a number field with finite unit group (i.e., K = Q or an imaginary quadratic
field). The reasons for treating this case separately are twofold: first, the height
function takes a particularly simple shape in this case, reducing the problem to a
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computation of elements of OK with bounded norm; second, for the computation
of ideal class groups of imaginary quadratic fields there are specialized algorithms
that are faster than the methods that apply to arbitrary number fields [4, 13, 14].

A method for listing all points in Ω(B) when K = Q is easily deduced from the
following proposition. We will be using here the notation introduced in §3.2.
Proposition 5.1. Let M denote the set of all tuples (x0, . . . , xN ) ∈ ZN+1 such
that 0 ≤ x0 ≤ · · · ≤ xN ≤ B and gcd(x0, . . . , xN ) = 1. Then

{P ∈ PN (Q) : HQ(P ) ≤ B} =
⋃

X∈M
O(X).

Proof. This is a simple exercise using the fact that, for any point P ∈ PN (Q),
we have HQ(P ) ≤ B if and only if it is possible to write P = [a0, . . . , aN ] with
ai ∈ Z ∩ [−B,B] for all i and gcd(a0, . . . , aN ) = 1. �

We assume henceforth that K is an imaginary quadratic field. As has been noted
earlier, in order to find all points of bounded height in PN (K) it suffices to find all
points of bounded height with given ideal class. For any nonzero ideal a of OK and
real number B ≥ 1, define

Ω(a, B) = {P ∈ PN (K) : Cl(P ) = Cl(a) and HK(P ) ≤ B}.
The following proposition reduces the problem of computing Ω(a, B) to the com-
putation of the set

C(a, B) = {γ ∈ a : NK/Q(γ) ≤ B ·N(a)}.
Proposition 5.2. Let g0, g1, . . . , gt ∈ C(a, B) be elements representing all the orbits
of the action of μK on C(a, B). Let M be the set of all tuples X = (gi0 , . . . , giN )
such that 0 ≤ i0 ≤ i1 ≤ · · · ≤ iN ≤ t and a is the ideal generated by gi0 , . . . , giN .
Then

Ω(a, B) =
⋃

X∈M
O(X).

Proof. Let σ, σ be the embeddings K ↪→ C. For any element α ∈ K we have
NK/Q(α) = σ(α)σ(α) = |σ(α)|2. Hence, for any tuple (x0, . . . , xN ) ∈ KN+1 we
obtain

(5.1) H∞(x0, . . . , xN ) = max{NK/Q(x0), . . . , NK/Q(xN )}.
Suppose that P ∈ Ω(a, B). Since Cl(P ) = Cl(a), there are homogeneous coor-

dinates [x0, . . . , xN ] for P such that a is generated by x0, . . . , xN . The condition
HK(P ) ≤ B is then equivalent to H∞(x0, . . . , xN ) ≤ B ·N(a), so by (5.1) we see
that xi ∈ C(a, B) for every i. The remainder of the proof is entirely analogous to
the proof of Proposition 3.5. �

Let a1, . . . , ah be ideals representing the ideal classes of OK . If we can determine
representatives for each orbit space C(ai, B)/μK , then Proposition 5.2 can be used
compute Ω(ai, B) for each i, and thus Ω(B) is obtained. Though it is possible to
compute each set C(ai, B) separately, it would be more efficient to apply some of
the ideas introduced in §4; in particular, we should compute one set C(B) that
contains all of the sets C(ai, B). Define

N = {0} ∪
h⋃

i=1

{k ·N(ai) : 1 ≤ k ≤ B},
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and let
C(B) = {γ ∈ OK : NK/Q(γ) ∈ N},

so that C(B) contains every set C(ai, B). Note that the group μK acts on C(B). A
set L of representatives of the orbits of this action can be found by solving norm
equations in K, for instance, using the algorithm given in [11]. Having done this,
representatives of C(ai, B)/μK can be obtained for every index i by intersecting L
with C(ai, B). We are thus led to the following algorithm.

Algorithm 7. Computing Ω(B) when K is imaginary quadratic:

(1) Create an empty list L. This list will store the points belonging to Ω(B).
(2) Determine ideals a1, . . . , ah representing the ideal classes of OK .
(3) Construct the set N .
(4) Create an empty set L. This set will store representatives for C(B)/μK .
(5) For every number m ∈ N :

Include in L all elements of OK with norm m, modulo units.
(6) For each ideal a ∈ {a1, . . . , ah}:

(a) Fix an ordering g0, g1, . . . , gt of the elements of the set L ∩ C(a, B).
(b) For every tuple of indices (i0, . . . , iN ) such that 0 ≤ i0 ≤ i1 ≤ · · · ≤

iN ≤ t:
If a is generated by gi0 , . . . , giN , then include in L all the points in
O(X).

(7) Return the list L.
As in the case of number fields with positive unit rank, Algorithm 7 can be

improved by using the action of the group Gal(K/Q) on the ideal class group of
OK . See the final paragraphs of §4 for details.

6. Efficiency of the algorithm

In this section we carry out an analysis of the efficiency of our method for com-
puting points of bounded height in PN (K). As a measure of the efficiency of the
algorithm we consider how many points it generates in the process of searching for
points in Ω(B), and how this quantity compares to the size of Ω(B). The case
K = Q being trivial in view of Proposition 5.1, we assume henceforth that K is
different from Q.

Since the problem of computing Ω(B) is reduced to computing sets Ω(a, B) for
a finite list of ideals a, we focus first on determining how efficient our method for
computing such sets is. For this analysis we use Algorithm 1, which is the simplest
description of our method. We define the search space of Algorithm 1 to be the set

(6.1) S(a, B) = {[x0, . . . , xN ] ∈ PN (K) : xi ∈ C(a, B) for all i}.
The elements of S(a, B) are all the points that would be considered in the algorithm
while searching for points in Ω(a, B). Since the size of the search space is largely
determined by the size of C(a, B), we begin by understanding the latter. We will
bound the size of C(a, B) by the size of the set

C̃(a, B) = {x ∈ a : Φ(x) ∈ P(a, B)} ⊇ C(a, B).

Proposition 6.1. There is a constant c, depending only on K and the choice of
fundamental units, such that

#C̃(a, B) = cB +O(B1−1/n).
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For the proof of the proposition we will need a classical result concerning lattice
points in homogeneously expanding domains; we refer the reader to Lang’s book [16,
Chap. VI, §2] for details. We say that a subset T of Rn is k-Lipschitz parametrizable
if there exists a finite number of Lipschitz maps [0, 1]k → T whose images cover T .
Recall that a map f : [0, 1]k → Rn satisfies the Lipschitz condition if there exists a
constant α such that

‖f(x)− f(y)‖ ≤ α · ‖x− y‖
for all x, y ∈ [0, 1]k.

Lemma 6.2. Let D be a bounded subset of Rn and L a lattice in Rn with fundamen-
tal domain F . Assume that the boundary of D is (n− 1)-Lipschitz parametrizable.
Then the number of lattice points in tD, for t ∈ R>0, satisfies

#(L ∩ tD) =
VolD

VolF
· tn +O(tn−1).

Remark 6.3. In discussing the above lemma, Lang neglects to show that the con-
dition of ∂D being (n− 1)-Lipschitz parametrizable implies that D is measurable,
so that the volume of D is well defined. Furthermore, Lang does not mention that
the O constant depends on the number of maps parametrizing ∂D. For a proof of
both of these statements, see [28, Thm. 5.4].

Proof of Proposition 6.1. To prove the proposition we apply Lemma 6.2 to the
lattice L = Φ(a) and the set D = P(a, 1). Note that D is bounded and convex,
since it is defined as a Cartesian product of closed intervals in R and closed disks
in R2. It follows from [29, Thm. 2.6] that the boundary of D is (n − 1)-Lipschitz
parametrizable. Hence, the conditions of Lemma 6.2 are satisfied.

One can see from the definitions that P(a, B) = B1/nP(a, 1); thus, applying the
lemma we obtain

(6.2)

#C̃(a, B) = # (Φ(a) ∩ P(a, B)) = #
(
Φ(a) ∩B1/nP(a, 1)

)
=

VolP(a, 1)

VolF (a)
·B +O(B1−1/n),

where F (a) is the fundamental parallelotope defined in (2.4). The region P(a, 1) ⊂
Rn is a Cartesian product of intervals of length 2 ·N(a)1/n exp(Dv), where v ranges
over the real places of K, and disks of radius N(a)1/n exp(Dv/2), where v ranges
over the complex places. Therefore,

VolP(a, 1) =

( ∏
v real

2 ·N(a)1/n exp(Dv)

)
·

⎛⎝ ∏
v complex

π ·N(a)2/n exp(Dv)

⎞⎠
= 2r1πr2N(a) exp(

∑
v Dv).

By (2.5) we have VolF (a) = 2−r2 |ΔK |1/2N(a), so the coefficient of B in (6.2) is
the constant c given by

(6.3) c =
2r1(2π)r2 exp(

∑
v Dv)

|ΔK |1/2 .

This proves the proposition, since c depends only on standard invariants of K and
on the numbers Dv, which are determined by the choice of fundamental units. �
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Having proved asymptotic bounds on the size of C̃(a, B), we can now bound the
size of the search space S(a, B).

Proposition 6.4. Let m = N + 1 and define a constant C by

(6.4) C =
w · ζK(m) exp(m

∑
v Dv)

R ·mr
,

where w is the number of roots of unity in K; R is the regulator; r is the rank of
the unit group; and ζK is the zeta function of K. Then

lim sup
B→∞

#S(a, B)

#Ω(a, B)
≤ C.

Proof. We have #S(a, B) ≤ (#C(a, B))m ≤ (#C̃(a, B))m, so Proposition 6.1 im-
plies that

(6.5) #S(a, B) ≤ cmBm +O(Bm−1/n).

Now, Schanuel [22] showed that

(6.6) #Ω(a, B) = Bm ·mr · R/w

ζK(m)

(
2r1(2π)r2

|ΔK |1/2

)m

+ O(Bm−1/n).

(The correct error term is different in the special case where K = Q and N = 1,
but we are assuming in this section that K is not Q.) The result follows by dividing
(6.5) and (6.6) and letting B → ∞. �

We can now prove our main result concerning the size of the search space of our
method for computing Ω(B). If a1, . . . , ah are ideals representing the distinct ideal
classes of OK , then

Ω(B) =

h⋃
i=1

Ω(ai, B),

so Ω(B) can be obtained by computing Ω(ai, B) for every index i. With sets
S(ai, B) defined as in (6.1), the search space of this method is the set

S(B) =
h⋃

i=1

S(ai, B),

whose size we now compare to that of Ω(B).

Theorem 6.5. Let h be the class number of OK and let C be the constant defined
in (6.4). Then

lim sup
B→∞

#S(B)

#Ω(B)
≤ hC.

Proof. From the definitions it follows that

#S(B)

#Ω(B)
≤

h∑
i=1

#S(ai, B)

#Ω(B)
≤

h∑
i=1

#S(ai, B)

#Ω(ai, B)
.

The theorem is then a consequence of Proposition 6.4. �
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7. Sample Computations

The main algorithms of this paper, namely M1 and M2 (Algorithms 5 and 6),
have been implemented using Sage [24]. We give below a series of computations
of points of small height in projective spaces using these algorithms. Since our
methods apply in particular to the space P1, and listing points of bounded height
in P1 is equivalent to listing elements of K with bounded height, we also compare
our methods to the algorithm developed in [10] for finding elements of small height
in number fields. All computations have been done on a MacBook Pro with a 2.7
GHz processor and 16 GB of memory.

7.1. Comparison of M1 and M2. The three tables shown below summarize the
results of computations of points of bounded height in PN (K) for three number
fields K and for N = 1, 2, 3. In all cases, the height bound B was taken to be
20. The purpose of these examples is to compare the running times of M1 and M2
when applied over number fields of various degrees and projective spaces of various
dimensions. The results suggest that M2 is a significantly better method than M1,
and indeed we have not found any examples—among many computations—where
M1 performs better than M2. Theoretically, M1 has an advantage over M2 in that
it does not require arithmetic operations with fundamental units; however, this on
its own does not seem to make M1 a faster method. The difference in running times
is largely due to the fact that M2 generates all points in Ω(B) starting from the set
C(a, B)/μK rather than the larger set C(a, B)/{±1}.

Table 1. Computations over the field K = Q(
√
17)

N M1 time M2 time Points found
1 0.98 s 0.26 s 504
2 39 s 10 s 20,401
3 2,465 s 513 s 607,344

Table 2. Computations over the field Q( 3
√
2)

N M1 time M2 time Points found
1 0.43 s 0.27 s 452
2 25 s 14 s 23,725
3 2,707 889 s 888,872

Table 3. Computations over the field Q( 4
√
−1)

N M1 time M2 time Points found
1 11 s 0.41 s 842
2 10,483 s 51 s 72,091
3 - 10,407 s 4,926,644
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7.2. Elements of bounded height in number fields. Let K be a number field
and let x ∈ K. The height of x is defined to be the number HK(x) = HK(P ),
where P = [x, 1] ∈ P1(K). The problem of listing all elements of K up to a given
height bound was studied in the article [10], where an algorithm – denoted here
by DK – was developed to solve this problem. Since the methods M1 and M2 can
be applied to list all elements of bounded height in P1(K), it is natural to wonder
which algorithm (M1, M2, or DK) is fastest in this context. Given that M1 appears
to be generally slower than M2, we will compare only M2 and DK.

The four tables shown below list the running times for several computations
done with M2 and DK over quadratic, cubic, and quartic number fields, and with
several different height bounds B. In the tables, the underlying number field K is
either given explicitly as an extension of Q, or a defining polynomial for it is given
in the variable x. We will denote by g a root of the defining polynomial of K, so
that K = Q(g).

As indicated by these computations, neither algorithm is always better than the
other, at least in their current implementations. There are examples where M2 is
significantly faster than DK (see Tables 4 and 5), and there are cases where the
opposite happens (see Tables 6 and 7). This phenomenon appears to be tied to the
size of the fundamental units chosen for K: when the units are relatively small, DK
performs better than M2, but when the units are fairly large, M2 is faster. The
fields K used for the computations in the tables below illustrate the effect of the
size of the fundamental units on DK and M2. All of these fields have unit rank 1.
Fundamental units for the fields in Tables 4 and 5, where M2 performs best, are
given by

10771703481902106796084652 · g − 1196823028442576899590849641

and

17597170123512678762361 · g2 + 1494282241689424625747666 · g
+ 7084465262325346055314439,

respectively. In contrast, fundamental units for the fields in Tables 6 and 7, where
DK performs best, are given by

28g + 295 and g3 + 2g2 + 2g − 2.

Table 4. Elements of bounded height in Q(
√
12345)

B DK time M2 time Elements found
100 1.25 s 0.76 s 479
1,000 92 s 40 s 73,007
5,000 3,358 s 1,299 s 1,826,367

Table 5. Elements of bounded height in K : x3 − x+ 123

B DK time M2 time Elements found
100 0.82 s 0.51 s 263
1,000 55 s 19 s 27,603
5,000 1,682 s 475 s 731,755
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Table 6. Elements of bounded height in Q(
√
111)

B DK time M2 time Elements found
100 1.32 s 1.97 s 2,875
1,000 49 s 96 s 275,615
5,000 1,402 s 3,019 s 6,795,587

Table 7. Elements of bounded height in K : x4 − x+ 11

B DK time M2 time Elements found
100 0.69 s 0.82 s 299
1,000 13 s 23 s 42,067
5,000 202 s 431 s 1,092,203
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