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NUMERICAL APPROXIMATION OF SOLUTION DERIVATIVES

OF SINGULARLY PERTURBED PARABOLIC PROBLEMS

OF CONVECTION-DIFFUSION TYPE

J. L. GRACIA AND E. O’RIORDAN

Abstract. Numerical approximations to the solution of a linear singularly
perturbed parabolic convection-diffusion problem are generated using a back-
ward Euler method in time and an upwinded finite difference operator in space
on a piecewise-uniform Shishkin mesh. A proof is given to show first order
convergence of these numerical approximations in an appropriately weighted
C1-norm. Numerical results are given to illustrate the theoretical error bounds.

1. Introduction

The solutions of singularly perturbed problems typically contain steep gradients
in narrow regions of the domain, often referred to as layer regions. Layer adapted
meshes, such as piecewise-uniform Shishkin meshes [5] or Bakhvalov meshes [4],
have been designed to concentrate a significant proportion of the mesh points into
these layer regions and thereby generate pointwise globally accurate piecewise–
polynomial approximations to the continuous solution, irrespective of the size of
the singular perturbation parameter. An additional feature of these layer-adapted
meshes is that accurate approximations to the first derivative of the solution can
be easily generated. For ease of reference, we shall refer to this additional feature
of layer-adapted meshes as flux-capturing. In this paper, we present a proof of this
flux-capturing property of Shishkin meshes in the case of a singularly perturbed
parabolic problem.

When estimating the error in a numerical approximation, relative errors are more
relevant than absolute errors. In many cases, the continuous solution is initially
normalized to have a maximum value of O(1), and then a pointwise bound in the
maximum norm on the absolute error is equivalent to a bound on the relative error,
measured in the maximum norm. In the context of singularly perturbed problems,
these comments are pertinent, as there are different scales involved in the problem.
In particular, the magnitude of the derivative can vary significantly within the
layer regions as compared to its behavior outside the layer regions. For this reason,
the appropriate norm to measure the error in approximating the flux needs to be
examined closely.

Given that the singularities appearing in the solution of singularly perturbed
problems are pointwise singularities, it is natural [5] to employ pointwise norms to
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measure accuracy. Below we will discuss the following discrete versions of C0, C1

and weighted–C1-norms, defined over a finite set of mesh points ΩN := {xi}Ni=0:

‖u‖ΩN := max
xi∈ΩN

|u(xi)|,

‖u‖1,ΩN := ‖D−u‖ΩN\{x0} + ‖u‖ΩN ,

‖u‖1,w,ΩN := ‖wD−u‖ΩN\{x0} + ‖u‖ΩN ,

where D−u is the discrete backward derivative defined by

D−u(xi) :=
u(xi)− u(xi−1)

xi − xi−1
.

However, the value of a nodal error estimate depends on the choice of mesh points.
Global accuracy over the entire domain is a more neutral measure. Hence, we will
consider the merits of various weighted–C1-norms defined over a measurable region
R as follows:

‖u‖1,w,R := ‖wux‖R + ‖u‖R, ‖u‖R := ess supx∈R|u(x)|.
For a singularly perturbed boundary value problem of the form

(1) εu′′ + au′ = f, x ∈ Ω := (0, 1); u(0) = A, u(1) = B; a(x) ≥ α > 0,

it was established in [5] that for a numerical solution UN generated using a standard
upwind finite difference operator and an appropriate piecewise-uniform Shishkin
mesh, one has a global error bound of the form

(2) ‖u− Ū‖1,ε,Ω := ε‖u′ − (Ū)′‖Ω + ‖u− Ū‖Ω ≤ CN−1 lnN,

where Ū denotes a piecewise linear interpolant over the domain Ω̄ of the discrete
solution UN . Throughout this paper, C denotes a generic constant that is indepen-
dent of the singular perturbation parameter ε and of all discretization parameters.
That is, the bound in (2) states that the numerical method is parameter-uniform
[5] in the ε-weighted norm ‖ · ‖1,ε,Ω.

Gartland [7] measured the errors from an exponentially fitted compact finite dif-
ference operator on a locally quasi-uniform exponentially graded mesh in a discrete
version of this ε-weighted norm ‖ · ‖1,ε,Ω. However, the number of mesh points re-
quired in the Gartland mesh depends (albeit logarithmically) on 1/ε. Moreover, in
the context of parameter-uniform numerical methods [5], exponentially fitted finite
difference schemes (which are designed to be nodally exact in the case of constant
coefficients) are limited to certain classes of singularly perturbed problems. An-
dreev [1] presented sharp bounds on the continuous solution measured in ‖ · ‖1,ε,Ω
and the discrete solution of a monotone three point difference scheme on arbitrary
non-uniform grids in a discrete version of the norm ‖ · ‖1,ε,Ω [2]. These results can
be used to derive parameter-uniform global error bounds in ‖ · ‖1,ε,Ω in the case of
problem (1).

Note that the error in the estimate of the derivative term in (2) has been nor-
malized by the factor ε, as ε‖u′‖Ω = O(1). However, the derivatives of the solution
only require scaling within the layer. For example, in the case of problem (1), we
note that

|u′(x)| ≤ C, x ≥ Cε ln(1/ε).

Hence the scaling by the factor ε in the error bound (2) is not appropriate if this
error bound is restricted to points outside the layer region [0, Cε ln(1/ε)].
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In [12] Kopteva and Stynes established an error estimate of the form

ε|u′(xi−0.5)−DU(xi)| ≤ CN−1 lnN, xi ≤ Cε lnN,

|u′(xi−0.5)−DU(xi)| ≤ CN−1 lnN, xi ≥ Cε lnN

(where DU denotes a discrete derivative of U) for Shishkin and (corresponding
bounds) for Bakhvalov meshes. The bound outside the computational layer region
[0, Cε lnN ] is now an unweighted C1 error bound.

In the context of nodal accuracy on a certain mesh ΩN , the discrete weighted
norm

‖u‖1,z,ΩN := ‖zD−u‖ΩN + ‖u‖ΩN , z(xi) :=

{
ε, if αxi ≤ ε lnN,
1, if αxi > ε lnN

appears to be a reasonable discrete norm to use to measure accuracy in the approx-
imating solutions of singularly perturbed problems. However, observe that in the
classical case of N−1 ≤ ε, the scaling factor of ε for mesh points within the region
(ε ln(1/ε), ε lnN) is not appropriate.

It is also worth remarking that, in the case of singularly perturbed ordinary
differential equations, if a scheme is nodally second order (ignoring logarithmic
factors) in ‖·‖ΩN on a Shishkin mesh, then it is nodally first order in the ε-weighted
C1-norm ‖ · ‖1,ε,ΩN . In particular, Andreev and Savin [3] analysed a modification
of Samarskii’s monotone finite difference operator on a piecewise-uniform mesh to
establish an error bound in ‖ · ‖ΩN of the form C(N−1 lnN)2, and thereby one
has an error bound of the form CN−1 lnN in the discrete norm ‖ · ‖1,ε,ΩN for the
scheme presented in [3].

In this paper, we confine our attention to a simple finite difference scheme on a
standard piecewise-uniform Shishkin mesh as it applies to a singularly perturbed
partial differential equation defined over a region G := Ω× (0, T ], which is a time-
dependent version of problem (1). More sophisticated finite difference operators
on various layer-adapted meshes, which are second order in space and first order
in time, exist in the literature. However, in contrast to the case of an ordinary
differential equation, one cannot directly deduce a first order error bound in the
discrete norm

‖u‖1,ε,GN,M := ε‖D−
x u‖ḠN,M\{(x0,tj)}M

j=0
+ ‖D−

t u‖ḠN,M\{(xi,t0)}N
i=0

+ ‖u‖ḠN,M ,

from such nodal error bounds. Kopteva [11] analysed a non-monotone finite dif-
ference scheme on a Shishkin mesh, which is second order in both space and
time; thereby, this scheme is first order in the discrete norm ‖ · ‖1,ε,GN (assum-
ing M = CN). In this paper, we choose to establish convergence in a global norm
(specified below) for a monotone finite difference scheme, which is only first order
in both space and time.

In the case of singularly perturbed parabolic problems, Shishkin [15] introduced
a sophisticated global metric which is designed to measure the pointwise relative
error in estimating the first derivative both within and outside the layer region. In
the case of the time dependent version of problem (1), this new weighted metric is,
in essence, of the form

‖v‖1,s,G := ‖svx‖G + ‖vt‖G + ‖v‖G, s(x, t) :=
ε

ε+ e−a(x1,t)x/ε
,
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where x1 is the first internal mesh point in the spatial direction. In [15], Shishkin
shows that the error bound (2) applies in the case of upwinding on a piecewise-
uniform mesh, but the same numerical scheme is not ε-uniformly convergent in
this new metric. Conditions can be imposed on the parameters in a generalized
piecewise-uniform Shishkin mesh (see [15, §6] for details) so that the numerical
approximations converge almost ε-uniformly in this metric ‖ · ‖1,s,G, to be precise,
at a rate of O(ε−νN−1), where ν > 0 is arbitrarily small. We refer the reader to
[15] for further details. Shishkin extended these ideas on suitable metrics to the
case of singularly perturbed elliptic partial differential equations in [14].

In this paper, we choose the simpler (but cruder) global metric of simply scaling
the first derivative by the constant ε within the layer and using no scaling factor
outside the layer. Hence, instead of ‖ · ‖1,s,G we will measure the errors in the
following weighted C1-norm:

‖v‖1,χ,G := ‖χvx‖G + ‖vt‖G + ‖v‖G,(3)

χ(x) :=

{
ε, if α|x− p| ≤ 2ε ln(1/ε),
1, if α|x− p| > 2ε ln(1/ε),

where p = 0 or p = 1 depending on the location of the boundary layer. In this
paper, we examine a problem with the boundary layer located on the right (where
p = 1). Note that the weighting function χ(x) is excessive in the region where
Cε � α|x− p| ≤ 2ε ln(1/ε).

In §2 the continuous problem is stated and parameter-explicit bounds on the
derivatives of the solution are established by decomposing the solution into regular
and singular components. In §3 the numerical method is described and appropriate
bounds on the nodal errors are given. These estimates are used in §4 and §5
to establish scaled nodal error bounds on approximations of the space and time
derivatives, respectively. In §6 the main result of the paper, which establishes an
error estimate in the norm ‖ · ‖1,χ,G, is given in Theorem 7. Some numerical results
are given in the final section of the paper.

2. Continuous problem

Consider the following class of singularly perturbed parabolic problems:

Lεu := −εuxx + a(x, t)ux + b(x, t)u+ c(t)ut = f(x, t), in G := Ω× (0, T ],(4a)

u = 0, on ΓB ∪ ΓL ∪ ΓR, 0 < ε ≤ 1; a(x, t) > α > 0, c(t) ≥ c0 > 0,(4b)

b(x, t) ≥ max{‖ax‖G, ‖at‖G, ‖ct‖G}+ β, β > 0,(4c)

where Ω := (0, 1), ΓB := {(x, 0) | 0 ≤ x ≤ 1}, ΓL := {(0, t) | 0 ≤ t ≤ T}, ΓR :=
{(1, t) | 0 ≤ t ≤ T} and Γ := Ḡ\G. Since the problem is linear, there is no loss
in generality in assuming zero boundary/initial conditions. The constraint (4c) on
the coefficient b(x, t) can be transferred to the time variable by using the change
of variable u = veγt, where γ > 0 is sufficiently large. We assume that the data of
the problem satisfy regularity and compatibility conditions so that the solution of
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problem (4) is such that u ∈ C6+γ(G)1(see [6] and [13]) and so that the analysis
presented below is applicable.

It is well-known that the differential operator associated with (4) satisfies a
comparison principle. From this, one can establish the stability estimate

|u(x, t)| ≤ min{x
α
,
t

c0
}‖f‖G.

Motivated by the bounds given in [9] and [15] we present the following bounds
on the derivatives of the regular and singular components of u. For the sake of
completeness, we outline a proof of these bounds here.

Theorem 1. The solution of (4) can be written in the form u = v +w, where the
regular component v ∈ C6+γ(G) satisfies

(5a) Lεv = f, in G; v = u, on ΓB ∪ ΓL,

and v = v∗ can be specified on the boundary ΓR so that

(5b)
∥∥∥ ∂k+mv

∂xk∂tm

∥∥∥
G
≤ C(1 + ε3−k−m), 0 ≤ k + 2m ≤ 6.

The singular component w satisfies the homogeneous differential equation

(6a) Lεw = 0, in G; w = 0, on ΓB ∪ ΓL; w = u− v, on ΓR,

and for all points (x, t) ∈ G its derivatives satisfy the pointwise bounds

(6b)
∣∣∣ ∂k+mw

∂xk∂tm
(x, t)

∣∣∣ ≤ Cε−k(1 + ε2−m)e−α(1−x)/ε, 0 ≤ k + 2m ≤ 6.

Proof. Using the stretched variables ζ := (1−x)/ε, η := t/ε and the a priori bounds
[13, pg. 320, Theorem 5.2], one deduces the bounds∥∥∥ ∂k+mu

∂xk∂tm

∥∥∥
G
≤ Cε−k−m, 0 ≤ k + 2m ≤ 6.

Consider the extended domain G∗ := {(0, A)× (0, B);A > 1, B > T}, with associ-
ated extended boundaries Γ∗

L,Γ
∗
B and a∗, b∗, c∗, f∗ are smooth extensions of a, b, c, f

to the extended domain G∗. The first order reduced operator L∗
0 is defined by

L∗
0z := a∗zx + b∗z + c∗zt, in Ḡ∗ \ (Γ∗

B ∪ Γ∗
L), z = z, on Γ∗

B ∪ Γ∗
L.

The regular component v is composed of the reduced solution v0, higher order terms
v1, v2 in an asymptotic expansion and a remainder term R, given by

v∗ = v∗0 + εv∗1 + ε2v∗2 + ε3R∗;

L∗
0v

∗
0 = f∗, in G∗, v∗0 = u, on Γ∗

B ∪ Γ∗
L;

L∗
0v

∗
i = (v∗i−1)xx, in G∗, v∗i = 0, on Γ∗

B ∪ Γ∗
L, i = 1, 2;

L∗
εR

∗ = (v∗2)xx, in G∗, R∗ = 0, on Ḡ∗ \G∗.

The bounds on the derivatives of v∗ (and hence v) are then easily deduced.
The singular component w can be decomposed as follows:

w(x, t) = (u− v)(1, t)Ψ(x, t) + εR(x, t),

1The space Cn+γ(D) is the set of all functions whose derivatives of order n are Hölder contin-
uous of degree γ > 0. That is,

Cn+γ(D) := {z :
∂i+jz

∂xi∂tj
∈ Cγ(D), 0 ≤ i+ 2j ≤ n}.
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where, for each value of t, the unit boundary layer function Ψ satisfies

−εΨxx + a(x, t)Ψx = 0, Ψ(0, t) = 0, Ψ(1, t) = 1.

Note that

Ψ(x, t) =

∫ x

r=0
e−

∫ 1
s=r

a(s,t)
ε ds dr∫ 1

r=0
e−

∫ 1
s=r

a(s,t)
ε ds dr

.

Using the strict inequality a > α and ((1 − θ)t)me−t ≤ m!e−θt, 0 < θ < 1, t ≥ 0,
we have that ∣∣∣∂mΨ(x, t)

∂tm

∣∣∣ ≤ Ce−α(1−x)/ε, 0 ≤ m ≤ 3.

For the remainder term, R(x, t) = 0, (x, t) ∈ Γ and for all (x, t) ∈ G,

εLεR = −(u− v)(1, t)b(x, t)Ψ(x, t)− c(t)
(
(u− v)(1, t)Ψ(x, t)

)
t
.

Hence
|R(x, t)| ≤ Ce−α(1−x)/ε.

Using the stretched variables and the localized bounds on the derivatives [13,
pg. 352, (10.5)] one can deduce the bounds∣∣∣∂k+mR(x, t)

∂xk∂tm

∣∣∣ ≤ Cε−k−me−α(1−x)/ε, 0 ≤ k + 2m ≤ 6.

Hence,

(7a)
∣∣∣∂k+mw(x, t)

∂xk∂tm

∣∣∣ ≤ C(1 + ε1−m)ε−ke−α(1−x)/ε, 0 ≤ k + 2m ≤ 6.

We improve the above bounds on the time derivatives by noting that for m = 1, 2, 3,

∣∣∣Lε
∂mw(x, t)

∂tm

∣∣∣ ≤ C

m−1∑
j=0

∣∣∣∂jw(x, t)

∂tj

∣∣∣+ C

m−1∑
j=0

∣∣∣∂j+1w(x, t)

∂tj∂x

∣∣∣, (x, t) ∈ G,

∂mw(x, t)

∂tm
= 0, (x, t) ∈ ΓB ∪ ΓL,

∣∣∣∂mw(1, t)

∂tm

∣∣∣ ≤ C,

which implies that

(7b)
∣∣∣∂mw(x, t)

∂tm

∣∣∣ ≤ C(1 + ε2−m)e−α(1−x)/ε, 1 ≤ m ≤ 3.

From the equation (Lεw)tt = 0 we have that, for all t ≥ 0,

−ε
∂2

∂x2
wtt + a(x, t)

∂

∂x
wtt = g(x, t), x ∈ (0, 1), wtt(0, t) = 0, |wtt(1, t)| ≤ C,

|g(x, t)| ≤ C

3∑
j=0

∣∣∣∂jw(x, t)

∂tj

∣∣∣+ C

1∑
j=0

∣∣∣∂j+1w(x, t)

∂tj∂x

∣∣∣ ≤ C(1 + ε−1)e−α(1−x)/ε.

For each time t, we use this boundary value problem for wtt to deduce (use argument
from [5, pp. 46-47] with x → 1− x) that

(7c)
∣∣∣ ∂i+2

∂xi∂t2
w(x, t)

∣∣∣ ≤ C(1 + ε−i)e−α(1−x)/ε, i = 1, 2.

Collecting all these bounds together completes the proof. �
Remark 1. The proof of the bounds in Theorem 1 simplifies significantly in the
special case of a(x) being independent of time. In fact, in this particular case, all
the time derivatives of the solution u of (4) are ε-uniformly bounded.
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3. Numerical scheme

Consider a uniform mesh in time ω̄M = {kτ, 0 ≤ k ≤ M, τ = T/M} and
a piecewise-uniform Shishkin mesh Ω̄N [5] in space on which numerical approxi-
mations of the solution of problem (4) are generated. The subintervals [0, 1 − σ],
and [1 − σ, 1] are each uniformly subdivided into N/2 mesh intervals, where the
transition parameter σ is defined by

σ := min

{
1

2
, 2

ε

α
lnN

}
.

Then, the grid in the space variable Ω̄N = {xi} is given by

(8) xi =

{
iH, if 0 ≤ i ≤ N/2,
(1− σ) + (i−N/2)h, if N/2 ≤ i ≤ N,

where the step sizes are h := 2σ/N and H := 2(1−σ)/N . We denote the local step
sizes by hj := xj − xj−1 for j = 1, . . . , N , and we define the following sets of mesh
points:

ḠN,M := Ω̄N × ω̄M , GN,M := ḠN,M ∩G, ΓN,M := ḠN,M\GN,M .

We combine this mesh with a simple fully implicit finite difference operator, which
uses the classical upwind approximation for the space derivatives, to produce the
finite difference method:
(9){

LN,MU(xi, tj) = f(xi, tj), (xi, tj) ∈ GN,M , U(xi, tj) = 0, (xi, tj) ∈ ΓN,M ,
LN,MU(xi, tj) := (−εδ2x + aD−

x + bI + cD−
t )U(xi, tj),

where

Ui,j := U(xi, tj), D−
t Ui,j :=

Ui,j − Ui,j−1

τ
, δ2xUi,j :=

1

�i
(D+

x Ui,j −D−
x Ui,j),

D+
x Ui,j :=

Ui+1,j − Ui,j

hi+1
, D−

x Ui,j :=
Ui,j − Ui−1,j

hi
, �i :=

hi + hi+1

2
.

Throughout the analysis in this paper we assume that

(10) σ = 2
ε

α
lnN, C1N ≤ M ≤ C2N.

It is well-known that the finite difference operator associated with problem (9)
satisfies a discrete comparison principle. To obtain appropriate bounds of the error
in the maximum norm, consider the following decomposition of the numerical solu-
tion U = V +W, where the discrete regular V and singular W components satisfy
the problems

(11) LN,MV = f, V |ΓN,M = v|ΓN,M , LN,MW = 0, W |ΓN,M = w|ΓN,M .

In the next theorem we establish bounds on the error associated with the regular
and singular components, which are used later in the error analysis in the weighted
C1-norm ‖ · ‖1,χ,G.
Theorem 2. Assume (10). For all tj ≥ 0, we have the following bounds:

|(V − v)(xi, tj)| ≤ CtjN
−1, if xi ∈ [0, 1],

|(W − w)(xi, tj)| ≤ CN−2, if xi ∈ [0, 1− σ],
|(W − w)(xi, tj)| ≤ CN−2 + CtjN

−1 lnN, if xi ∈ (1− σ, 1],

where v, w are the solutions of problems (5a), (6a) and V,W are defined in (11).
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Proof. From the truncation error bound ‖LN,M (V − v)‖ḠN,M ≤ CN−1 and the
discrete maximum principle one has the nodal error bound

|(V − v)(xi, tj)| ≤ CtjN
−1.

For the singular component, we distinguish two cases depending on the location of
the grid point. First, outside the layer, we have that [5]

|(W − w)(xi, tj)| ≤ |W (xi, tj)|+ |w(xi, tj)| ≤ CN−2, xi ≤ 1− σ.

If xi ∈ (1− σ, 1), then the truncation error satisfies

|LN,M (w −W )(xi, tj)| ≤ C(τ + h|wxx(x
∗
i , tj)|+ εh|wxxx(x

∗∗
i , tj)|),

with x∗
i ∈ (xi − h, xi), and x∗∗

i ∈ (xi − h, xi + h). Using the inequalities

|wxx(x
∗
i , tj)| =

∣∣∣∣
∫ tj

0

wxxt(x
∗
i , s)ds

∣∣∣∣ ≤ Ctjε
−2e−α(1−xi)/ε,

|wxxx(x
∗∗
i , tj)| ≤ Ctjε

−3e−α(1−xi+1)/ε,

within the layer region, we obtain the truncation error bound

|LN,M (w −W )(xi, tj)| ≤ C(τ +
N−1 lnN

ε
tje

−α(1−xi+1)/ε), 1− σ < xi < 1.

Use the discrete barrier function

C(tjN
−1 lnN(1 + α(h/ε))i+2−N + τtj + CN−2)

and |(w −W )(1− σ, tj)| ≤ CN−2 to complete the proof. �

4. Nodal approximation of space derivatives

Consistency and stability form a classical argument in numerical analysis, which
is typically employed to deduce a nodal error bound. To bound the quantity
D−

x (U − u) at the mesh points, we use an argument of this type by employing

a bound on a quantity of the form ‖L̂N,M (D−
x (U −u))‖, where the finite difference

operator L̂N,M is monotone and is defined below in (13).
We denote the nodal error by e(xi, tj) := U(xi, tj)−u(xi, tj), and the associated

truncation error by T (xi, tj) := LN,Me(xi, tj). We define the discrete error flux to
be

U −
i,j := D−

x e(xi, tj), if 0 < xi ≤ 1.

The main purpose of this section is to deduce suitable bounds on U −.
We identify a discrete problem associated with the error flux defined over the

region

GN,M
H := GN,M ∩ {(H, 1)× (0, T ]}, ḠN,M

H := ḠN,M ∩ {[H, 1]× [0, T ]}.

We define a new finite difference operator δ̂2x by

δ̂2xZi,j :=
1

�i

(hi+1

hi
D+

x − �i

�i−1
D−

x

)
Zi,j ,

which has the property that

δ̂2xD
−
x Zi,j ≡ D−

x δ
2
xZi,j .

Note the following identity:

(12) D−
x (Pi,jQi,j) ≡ Pi,jD

−
x Qi,j +Qi−1,jD

−
x Pi,j .



NUMERICAL APPROXIMATION OF SOLUTION DERIVATIVES 589

Using these identities and D−
x (L

N,Me(xi, tj)) = D−
x T (xi, tj), we see that for all

mesh points within the region ḠN,M
H , the quantity U −

i,j satisfies

(13) L̂N,MU −
i,j = D−

x T (xi, tj)− e(xi−1, tj)D
−
x b(xi, tj), (xi, tj) ∈ GN,M

H ,

where for the internal points (xi, tj) ∈ GN,M
H ,

L̂N,MZi,j := (−εδ̂2x + a(xi−1, tj)D
−
x + (b+D−

x a)(xi, tj)I + c(tj)D
−
t )Zi,j ,

and L̂N,MZi,j := Zi,j for (xi, tj) ∈ ḠN,M
H \GN,M

H .

Remark 2. When bounding the term D−
x T (xi, tj) we will make use of the following

truncation error bounds:

|D−
x (ut −D−

t u)(xi, tj)| =
1

τ

∣∣∫ tj

t=tj−1

∫ tj

s=r

D−
x utt(xi, s)dsdr

∣∣
≤ Cτ‖uttx‖(xi−1,xi)×(tj−1,tj).(14a)

If hi−1 = hi, then

(14b) |D−
x (ux −D−

x u)(xi, tj)| ≤ Chi‖uxxx(x, tj)‖x∈(xi−2,xi),

and if hi−1 = hi = hi+1, then

(14c) |D−
x (uxx − δ2xu)(xi, tj)| ≤ Ch2

i ‖uxxxxx(x, tj)‖x∈(xi−2,xi+1).

From the assumption that β > ‖ax‖G, the discrete operator L̂N,M satisfies a
discrete comparison principle.

Now we deduce bounds on the regular V − := D−
x (V − v) and the singular

W − := D−
x (W −w) components of the discrete error flux U −. We begin with the

singular component. For the mesh points along the right hand boundary x = 1,
we will need an appropriate bound on the outgoing error flux |D−

x (W − w)|. We
achieve this by sharpening the nodal error bound given in Theorem 2, within the
layer region, to reflect the fact that (W − w)(1, tj) = 0.

Lemma 1. Assume (10). For the solutions w,W of the problems (6a) and (11),
and for sufficiently large N ,

(15) ε|D−
x (W − w)(1, tj)| ≤ CN−1(lnN)2, tj ≥ 0.

Proof. For each tj ≥ 0, consider the discrete function ψ(xi, tj) as the solution of
the discrete problem

−εδ2xψ + (a(xi, tj) + βtj)D
−
x ψ = 0, xi ∈ (1− σ, 1), ψ(1− σ, tj) = 1, ψ(1, tj) = 0.

Note that the mesh is uniform within (1− σ, 1)× (0, T ]. Define the discrete flux to
be

F j
i := D−

x ψ(xi, tj) < 0,

which satisfies the inequalities

h

N∑
i=N/2+1

F j
i = −1, F j

i = F j
N

N−1∏
k=i

(
1 +

(a(xk, tj) + βtj)h

ε

)−1
, i < N.

Hence, for sufficiently large N ,

|D−
x ψ(1, tj)| ≤

1−
(
1 + (‖a‖G + βT )

h

ε

)−1

h
(
1−

(
1 + (‖a‖G + βT )

h

ε

)−N/2) ≤ C

ε
.
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Here we have used the inequality

(1 +K
lnN

N
)N/2 > eK

lnN
2 (1−K lnN

2N ),

and N is sufficiently large. Note also that for xi ∈ (1− σ, 1),(
−εδ2x+(a(xi, tj)+βtj)D

−
x

)
D−

t ψ(xi, tj) = −(D−
t a(xi, tj)+β)D−

x (ψ(xi, tj−1)) ≥ 0,

where we have used the identity (12) and D−
t ψ(1− σ, tj) = D−

t ψ(1, tj) = 0. Also

|(D−
t a(xi, tj) + β)D−

x (ψ(xi, tj−1))| ≤ Cε−1
(
1 +

αh

ε

)i−N
.

Using a discrete comparison principle, we deduce that

D−
t ψ(xi, tj) ≥ 0, |D−

t ψ(xi, tj)| ≤ C
(
1 +

αh

ε

)i+1−N
.

Now we define a barrier function to deduce appropriate bounds for W −
N,j . First, we

note that, at each time level tj , the grid function xi − 1+ σψ(xi, tj) is the solution
of the problem

(−εδ2x + a(xi, tj)D
−
x )(xi − 1 + σψ(xi, tj))

= a(xi, tj)− σβtjD
−
x ψ(xi, tj), xi ∈ (1− σ, 1),

(xi − 1 + σψ(xi, tj))xi=1−σ = (xi − 1 + σψ(xi, tj))xi=1 = 0.

So, by the discrete maximum principle xi − 1 + σψ(xi, tj) ≥ 0. Note that

LN,M (xi − 1 + σψ(xi, tj)) ≥ a(xi, tj) + σ(c(tj)D
−
t − βtjD

−
x )ψ(xi, tj) ≥ a(xi, tj).

Define the discrete barrier function

B1(xi, tj) := C‖LN,M (W − w)‖x∈(1−σ,1)

(
xi − 1 + σψ(xi, tj)

)
+ CN−2,

where LN,M (W−w) is the truncation error associated with the singular component.
Recall that in the boundary layer region

‖LN,M (W − w)‖x∈(1−σ,1) ≤ Cε−1N−1 lnN.

We then have that |(W − w)(xi, tj)| ≤ B1(xi, tj) for xi ∈ [1− σ, 1]. Therefore,

ε|W −
N,j | =

ε

h
|(W − w)(1− h, tj)|

≤ Cε‖LN,M (W − w)‖x∈(1−σ,1)(1 + σ|D−
x ψ(1, tj)|) + CN−1

≤ CN−1(lnN)2,

which is the required result. �
Theorem 3. Assume (10). Then, for all tj ≥ 0,

(16)
|D−

x (W − w)(xi, tj)| ≤ CN−1, if xi ≤ 1− σ,
ε|D−

x (W − w)(xi, tj)| ≤ CN−1(lnN)2, if xi > 1− σ,

where W is the solution of (11) and w is the solution of (6a).

Proof. Note that outside the layer region, Theorem 2 implies that

|W −
i,j | ≤ CN−1, if xi ∈ [0, 1− σ], tj ≥ 0.

Also, for xi = 1− σ + h, 1− σ + 2h,

|w(xi, tj)| ≤ Ceα2h/εe−ασ/ε ≤ CN−2,

|W (xi, tj)| ≤ C(1 + αh/ε)2(1 + αh/ε)−N/2 ≤ CN−2.
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Hence,

ε|W −
i,j | ≤ CN−1, xi = 1− σ + h, 1− σ + 2h.

In the layer region (1− σ+2h, 1)× (0, T ) we will obtain the bounds by using (13).
Initially, W −

i,0 = 0, xi ∈ (1−σ, 1), and we established the required bound on the right

boundary in (15). For xi ∈ (1− σ + 2h, 1), tj > 0 and Gj
i := (xi−1, xi)× (tj−1, tj),

using (14) we get that

|L̂N,MW −
i,j | ≤ Cτ‖wttx‖Gj

i
+ Ch(εh‖wxxxxx‖Gj

i−1∪Gj
i∪Gj

i+1

+‖ax‖G‖wxx‖Gj
i
+ ‖a‖G‖wxxx‖Gj

i−1∪Gj
i
) + CN−1 lnN

≤ C

ε

N−1 lnN

ε
e−α(1−xi)/ε + CN−1 lnN.

Use the discrete barrier function (and the strict inequality a(x, t) > α)

N−1 ln2 N
(
1 + (1 + αhε−1)i+1−N

)
,

with the stability properties of L̂N,M to complete the proof. �

Consider now the contribution of the regular component to the discrete error
flux.

Lemma 2. Assume (10). For v, V , the respective solutions of (5a), (11), we have
that

(17) ε|D−
x (V − v)(1, tj)| ≤ CN−1, tj ≥ 0.

Proof. It follows using a similar argument to the proof of Lemma 1 but involving
all the grid points of ḠN,M . Use the barrier function

B2(xi, tj) := C‖LN,M (V − v)‖GN,M (xi − 1 + ψ̃(xi, tj)),

where

−εδ2xψ̃ + (a(xi, tj) + βtj)D
−
x ψ̃ = 0, xi ∈ (0, 1), ψ̃(0, tj) = 1, ψ̃(1, tj) = 0.

Then ε|V −
N,j | ≤ Cε‖LN,M (V − v)‖GN,M (1 + |D−

x ψ̃(1, tj)|) ≤ CN−1. �

Theorem 4. Assume (10). Then, for all tj ≥ 0,

(18)
|D−

x (V − v)(xi, tj)| ≤ CN−1, if xi ≤ 1− σ,
ε|D−

x (V − v)(xi, tj)| ≤ CN−1(lnN)2, if xi > 1− σ,

where V is the solution of (11) and v is the solution of (5a).

Proof. We again apply a stability and consistency argument, but now across the

domain GN,M
H to deduce suitable bounds on V −. At the interior points, using the

bounds (14), we get that

|L̂N,MV −
i,j | ≤ CN−1, xi �= 1− σ, 1− σ + h,

|L̂N,MV −
i,j | ≤ C(ε+N−1), xi = 1− σ,

and if xi = 1− σ + h, using (14a), we have that

|L̂N,MV −
i,j | ≤

C

h

(
εH‖vxxx‖G +H‖vxx‖G

)
+ CN−1 ≤ C

ε lnN
.
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Using a suitable barrier function we can establish that |(V − v)(xi, tj)| ≤ CxiN
−1

and, hence,

|D−
x (V − v)(x1, tj)| ≤ C

x1

H
N−1 ≤ CN−1.

We can deduce appropriate bounds for V −
i,j by again constructing a suitable barrier

function. Define the following two mesh functions:

R(xi) :=

{
xi

1−σ , if xi ≤ 1− σ,

1, if 1− σ < xi ≤ 1,
S(xi) :=

{
0, if xi ≤ 1− σ,
1, if 1− σ < xi ≤ 1.

Observe that

L̂N,MR(xi) ≥

⎧⎨
⎩

α, if xi < 1− σ,
εH−1 + α, if xi = 1− σ,
b+D−

x a, if xi > 1− σ

and

L̂N,MS(xi) ≥

⎧⎪⎪⎨
⎪⎪⎩

0, if xi < 1− σ,
−εNH−1, if xi = 1− σ,
εNh−1 + αh−1, if xi = 1− σ + h,
b+D−

x a, if xi > 1− σ + h.

Define the piecewise linear barrier function

B3(xi) = CN−1ε−1(R(xi) +N−1S(xi)) + CN−1R(xi).

Then, the discrete maximum principle establishes the bound

|V −
i,j | ≤ CB3(xi) ≤ CN−1ε−1.

By using a sharper barrier function, we will next remove the scaling factor ε outside
the layer. Define the local mesh Peclet numbers as follows:

ξ :=
αH

ε
, ρ :=

αh

ε
,

and the following two mesh functions:

P (xi) :=

⎧⎨
⎩

(1 + ξ)i−N/2, if xi ≤ 1− σ,
1, if xi = 1− σ + h,
(1 + 0.5ρ)i−N/2−1, if 1− σ + h < xi ≤ 1;

Q(xi) :=

{
0, if xi ≤ 1− σ,
(1 + 0.5ρ)i−N/2−1, if xi > 1− σ.

Hence, using 2ε lnN ≤ 1 and N sufficiently large,

L̂N,M (P (xi) + αN−1ε−1Q(xi)) ≥

⎧⎨
⎩

0, if xi ≤ 1− σ,
CNσ−1, if xi = 1− σ + h,
Cε−1, if xi > 1− σ + h.

Form the barrier function

B4(xi) := CN−1R(xi) + C(P (1))−1(P (xi) + αN−1ε−1Q(xi)).

Then we have established that |V −
i,j(xi, tj)| ≤ CB4(xi). This bound is of little value

in the area [1 − σ, 1] (as B4(xi) ≤ C(1 + N−1ε−1) in this area). However, in the
coarse mesh region xi ∈ [0, 1− σ], we deduce that |V −

i,j | ≤ CB4(xi) ≤ CN−1, xi ≤
1− σ. �
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Using the bounds obtained for the regular and singular components, the trian-
gular inequality and the truncation error bound

‖D−
x u− ux‖Ii ≤ Cmin{‖ux‖Ii , hi‖uxx‖Ii},

we obtain the following result.

Theorem 5. Assume (10). Then, for all tj ≥ 0,

(19)
|(D−

x U − ux)(xi, tj)| ≤ CN−1, if 0 < xi ≤ 1− σ,
ε|(D−

x U − ux)(xi, tj)| ≤ CN−1(lnN)2, if 1− σ < xi ≤ 1,

where U is the solution generated by the numerical method (9) and u is the solution
of the continuous problem (4).

5. Nodal approximation of time derivatives

We follow the approach outlined in [8, Appendix A.2] and [10, §8.2] to deduce
nodal approximations of the time derivatives. We note that the proof in [10] was
given only for the case of constant a.

Lemma 3. Assume (10). The following bounds hold, for all tj > 0:

|(D−
t V − vt)(xi, tj)| ≤ CN−1 lnN, if xi ∈ [0, 1],

|(D−
t W − wt)(xi, tj)| ≤ CN−1, if xi ∈ [0, 1− σ],

|(D−
t W − wt)(xi, tj)| ≤ CN−1(lnN)3, if xi ∈ [1− σ, 1],

where v, w are the solutions of problems (5a), (6a), and V,W are defined in (11).

Proof. Using the bounds on the components v, w of the solution u of problem (4),
we deduce that for all (xi, tj) ∈ [0, 1]× [τ, T ],

|(D−
t u− ut)(xi, tj)| ≤ Cτ‖utt‖ ≤ CN−1.

Hence,

|(D−
t V − vt)(xi, tj)| ≤ |D−

t (V − v)(xi, tj)|+ CN−1,

|(D−
t W − wt)(xi, tj)| ≤ |D−

t (W − w)(xi, tj)|+ CN−1.

Note that along the side boundaries

D−
t (V − v)(xi, tj) = 0, (xi, tj) ∈ (ΓL ∪ ΓR) ∩ ḠN,M , tj ≥ τ,

and from the error bound in Theorem 2 we deduce that |D−
t (V −v)(xi, τ )| ≤ CN−1.

At the interior points (xi, tj) ∈ GN,M ∩ {tj ≥ 2τ}, we will first estimate

|LN,M (D−
t (V − v)(xi, tj))|.

We wish to reverse the order of the operators LN,M and D−
t . To this end, we use

again the identity (12) and we define a minor modification to the operator LN,M

denoted by

L̃N,MZi,j := (LN,M + (c(tj−1)− c(tj))D
−
t +D−

t c(tj)I)Zi,j
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to obtain

|L̃N,MD−
t (V − v)| = |D−

t (L
N,M (V − v))−D−

t (b(V − v)) + bD−
t (V − v)

−D−
t (aD

−
x (V − v)) + aD−

x D
−
t (V − v)|

≤ |D−
t (L

N,M (V − v))|+ CN−1 + C|D−
x (V − v)|

≤ ε|D−
t (δ

2
xv − vxx)|+ C|D−

t (D
−
x v − vx)|

+C|D−
t (D

−
t v − vt)|+ CN−1 + C|D−

x (V − v)|
≤ ε�i‖vxxxt‖G + Chi‖vxxt‖G + C(τ‖vtt‖G +N−1)

+C‖D−
x (V − v)‖GN,M ≤ CN−1 + C‖D−

x (V − v)‖GN,M .

We recall that for all tj ≥ 0,

|D−
x (V − v)(xi, tj)| ≤

{
CN−1, if xi ≤ 1− σ,
CN−1ε−1, if xi > 1− σ.

Consider the mesh function

Z(xi) :=

{
(1 + ξ)i−N/2, if xi ≤ 1− σ,
1 + (xi − (1− σ))/σ, if 1− σ ≤ xi ≤ 1,

with ξ = αε/H. Note that

L̃N,MZ(xi) ≥ 0, xi ≤ 1− σ, L̃N,MZ(xi) ≥ ασ−1, xi > 1− σ.

Use the barrier function CN−1(1 + Z(xi) lnN) to deduce that

|D−
t (V − v)(xi, tj)| ≤ CN−1 lnN, (xi, tj) ∈ [0, 1]× [τ, T ].

Now we consider the singular component. Outside the layer region, we use the
bound

max{|W (xi, tj)|, |w(xi, tj)|} ≤ CN−2, xi ≤ 1− σ,

to deduce that, for all tj ≥ τ ,

|D−
t (W − w)(xi, tj)| ≤ CN−1, xi ≤ 1− σ.

It now remains to bound D−
t (W − w) within the layer region. We repeat the

argument from above to deduce the truncation error estimate

|L̃N,M (D−
t (W − w)(xi, tj))| ≤ C

N−1(lnN)2

ε
, xi > 1− σ, tj > τ.

At the first time level tj = τ , using the bounds in Theorem 2 we deduce that

|(D−
t (W − w)(xi, τ ))| ≤ CN−1 lnN, xi > 1− σ,

and at the right boundary, D−
t (W −w)(1, tj) = 0. Use the discrete barrier function

C
(xi − (1− σ)

ε
N−1(lnN)2 +N−1 lnN

)

to complete the proof. �

Motivated by the bounds in [12, Corollary 3] we can sharpen the bound given in
Theorem 5 for points within the layer region in the special case where N−2 ≤ ε.

Theorem 6. Assume (10). If N−2 ≤ ε, then

(20) |D−
x (U − u)(xi, tj)| ≤ CN−1(lnN)3, xi < 1− ε

α
ln

1

ε
, tj ≥ 0,

where U, u are the respective solutions of (9) and (4).
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Proof. If N−2 ≤ ε, then ε ln 1
ε ≤ 2ε lnN . From the previous result, we only need

to consider the mesh points in the region (1− 2 ε
α lnN, 1− ε

α ln 1
ε ). Within the fine

mesh, the error satisfies

− ε

h
(U −

i+1,j − U −
i,j) + a(xi, tj)U

−
i,j = T̂i,j ,

where T̂i,j = LN,M (U −u)(xi, tj)− c(tj)D
−
t (U −u)(xi, tj)− b(xi, tj)(U −u)(xi, tj).

Note that

‖T̂ ‖GN,M
0

≤ C(N−1 lnNε−1e−α(1−xi)/ε +N−1(lnN)3,

with GN,M
0 = ḠN,M ∩ (1− 2 ε

α lnN, 1− ε
α ln 1

ε ). Thus, with ρ :=
αh

ε
, we have

|U −
i,j | =

(
1 +

h

ε
a(xi, tj)

)−1∣∣h
ε
T̂i,j + U −

i+1,j

∣∣ ≤ (1 + ρ)−1
(h
ε
‖T̂ ‖GN,M

0
+ |U −

i+1,j |
)
.

Thus, we have the following estimate at xi (within the fine mesh):

|U −
i,j | ≤ (1 + ρ)−1h

ε
‖T̂ ‖GN,M

0

1− (1 + ρ)−(N−i)

1− (1 + ρ)−1
+ C(1 + ρ)−(N−i)|U −

N,j |

≤ C‖T̂ ‖GN,M
0

+ C
N−1(lnN)2

ε
(1 + ρ)−(N−i).

Since xi < 1 − ε
α ln 1

ε , there exists some θ > 1 such that xi ≤ 1 − θ ε
α ln 1

ε . For

N sufficiently large, we note that, (1 + ρ)−1 ≤ e−ρ/θ, ρ ≤ θ ln θ, θ > 1. Hence, for
xi ≤ 1− θ ε

α ln 1
ε ,

|U −
i,j | ≤ C

(
N−1(lnN)2ε−1e−

α(1−xi)

θε +N−1(lnN)3
)
≤ CN−1(lnN)3.

�

6. Global accuracy in weighted C1
-norm

In this section, we examine the global accuracy (in the weighted C1-norm
‖ · ‖1,χ,G) of the bilinear interpolant

Ū(x, t) :=

N−1,M∑
i,j=1

U(xi, tj)φi(x)ψj(t), (x, t) ∈ Ḡ,

where φi(x), ψj(t) are piecewise linear basis functions in space and time, defined
by the nodal values of φi(xk) = δi,k = ψi(tk). Note the following bound on the
bilinear interpolant ḡ of a function g (see e.g. [16, Lemma 4.1]) in the rectangular
cell Rij := (xi−1, xi)× (tj−1, tj):

‖g − ḡ‖Rij
≤ Cmin{h2

i ‖gxx‖Rij
, max
t∈[tj−1,tj ]

∫ xi

xi−1

|gx(s, t)|ds}

+Cmin{τ2‖gtt‖Rij
, max
x∈[xi−1,xi]

∫ tj

tj−1

|gt(x, s)|ds}.

Theorem 7. Assume (10). Then,

(21) ‖Ū − u‖1,χ,G ≤ CN−1(lnN)3,

where U is the solution generated by the numerical method (9) and u is the solution
of the continuous problem (4).
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Proof. Using the decomposition u = v + w and splitting the argument to inside
and outside the computational layer region [1−σ, 1]× (0, T ), we have the following
interpolation error (see e.g. [16, Theorem 4.2]):

‖u− ū‖G ≤ C(N−1 lnN)2 + Cτ2.

Hence, the following global error estimate follows:

‖u− Ū‖G ≤ CN−1 lnN.

Note that

(Ū − ū)t(x, t) =
N−1∑
i=1

D−
t (U − u)(xi, tj)φi(x), t ∈ (tj−1, tj ],

(Ū − ū)x(x, t) =
M∑
j=1

D−
x (U − u)(xi, tj)ψj(t), x ∈ (xi−1, xi].

Using the bounds in Lemma 3 for the discrete time derivatives, the bounds in
Theorem 5 when ε ≤ N−2 and the bound in Theorem 6 when ε ≥ N−2 for the
discrete space derivatives, we have that

‖Ū − ū‖1,χ,G ≤ CN−1(lnN)3.

We are left to estimate the interpolation error ‖u− ū‖1,χ,G. For x ∈ (xi−1, xi], we
have

(ū− u)x(x, t) =
M∑
j=1

(
D−

x u(xi, tj)− ux(x, tj)
)
ψj(t) +

M∑
j=1

ux(x, tj)ψj(t)− ux(x, t).

Therefore, in the rectangular cell Rij , we obtain

‖(g − ḡ)x‖Rij
≤ min{hi‖gxx‖Rij

, ‖gx‖Rij
}+min{τ‖gxt‖Rij

, ‖gx‖Rij
}.

We employ the decomposition u = v + w. For the regular component it trivially
follows that

‖(v − v̄)x‖Rij
≤ C(N−1 + τ ).

For the layer component, we split the argument to inside and outside the layer
region [1−2 ε

α ln 1
ε , 1]× (0, T ] and deal with the two cases of ε ≤ N−2 and ε ≥ N−2.

We observe the following: If ε ≤ N−2, then 2ε lnN ≤ ε ln 1
ε and in this case

‖wx‖Rij
≤ Cε ≤ CN−2, if xi ≤ 1− 2(ε/α) ln(1/ε),

‖wx‖Rij
≤ Cε−1N−2, if 1− 2(ε/α) ln(1/ε) < xi ≤ 1− σ,

hi‖wxx‖Rij
+ τ‖wxt‖Rij

≤ Cε−1N−1 lnN, if xi > 1− σ.

In the second case, where ε ≥ N−2, we then distinguish two subcases: If ε ≥ N−1,
then

hi‖wxx‖Rij
+ τ‖wxt‖Rij

≤ C(hi + τ ), if xi ≤ 1− 2(ε/α) ln(1/ε),

hi‖wxx‖Rij
+ τ‖wxt‖Rij

≤ Cε−1N−1 lnN, if xi > 1− 2(ε/α) ln(1/ε).

On the other hand, if N−1 ≥ ε ≥ N−2, then

hi‖wxx‖Rij
+ τ‖wxt‖Rij

≤ C(hi + τ ), if xi ≤ 1− 2(ε/α) ln(1/ε),

‖wx‖Rij
≤ Cε−1N−2, if 1− 2(ε/α) ln(1/ε) < xi ≤ 1− σ,

hi‖wxx‖Rij
+ τ‖wxt‖Rij

≤ Cε−1N−1 lnN, if xi > 1− σ.
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Combining all these bounds, we deduce that

‖χ(x) (u− ū)x‖G ≤ CN−1 lnN,

where χ(x) is defined in (3). Similarly, for t ∈ (tj − 1, tj ],

(ū− u)t(x, t) =

N−1∑
i=1

(
D−

t u(xi, tj)− ut(xi, t)
)
φi(x) +

N−1∑
i=1

ut(xi, t)φi(x)− ut(x, t).

In the rectangular cell Rij ,

‖(g − ḡ)t‖Rij
≤ Cτ‖gtt‖Rij

+min{hi‖gxt‖Rij
, ‖gt‖Rij

}.
By again using the decomposition u = v + w and splitting the argument to inside
and outside the layer region [1− 2 ε

α ln 1
ε , 1]× (0, T ], we deduce that ‖(u− ū)t‖G ≤

CN−1. �

Remark 3. The bound (21) in Theorem 7 can be easily extended to the classical
case of σ = 0.5 by using the inequality ε−1 ≤ C lnN when σ = 0.5.

7. Numerical experiments

In this section we consider the variable coefficient problem

−εuxx + (1 + x+ 4t2)ux + xu+ ut = 50x4t2(1− x)2,(22a)

u(0, t) = u(1, t) = 0, u(x, 0) = (4x(1− x))3,(22b)

whose solution is not explicitly known.
To estimate the errors in the norm ‖ · ‖1,χ,G of the numerical scheme (9) for

any fixed value of the singular perturbation parameter ε, we use a variant of the
double mesh principle (see [5]): Given a numerical approximation UN,M generated
over a mesh ḠN,M , we also generate the numerical solution on a fine Shishkin mesh
U2048,2048 with N,M < 2048, and compute the global fine mesh differences:

EN,M
ε := max{‖UN,M − Ū2048,2048‖1,χ,ḠN,M , ‖ŪN,M − U2048,2048‖1,χ,Ḡ2048,2048},

where ŪN,M denotes the bilinear interpolant of the numerical solution over the
mesh ḠN,M . From these values, we compute the approximate order of convergence
using

QN,M
ε := log2(E

N,M
ε /E2N,2M

ε ).

The uniform global errors in the norm ‖ · ‖1,χ,G and their orders of convergence are
estimated as follows:

EN,M := max
ε∈S

EN,M
ε , QN,M := log2(E

N,M/E2N,2M ),

with S = {20, 2−1, 2−2, . . . , 2−30}.
In Table 1 we present the global EN,M

ε and uniform global EN,M computed
errors for N = M = 2j , j = 4, 5, 6, 7, 8, 9, with their corresponding orders of con-
vergence associated with the finite difference scheme (9) on the Shishkin mesh for
test problem (22). The numerical results in Table 1 indicate that the method is
uniformly convergent in the weighted C1-norm ‖ · ‖1,χ,G. The computed orders of
convergence in this example are slightly higher than the theoretical order of con-
vergence established in Theorem 7, but this is a well-known effect when the errors
are estimated by considering the computed solution on a fine mesh as the exact
solution.
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Table 1. Finite difference scheme (9) on the Shishkin mesh:
Global computed errors in ‖·‖1,χ,G estimated by EN,M

ε and uniform
global computed errors EN,M with their corresponding computed
orders of convergence QN,M

ε , QN,M for the test problem (22).

N=M=16 N=M=32 N=M=64 N=M=128 N=M=256 N=M=512

ε = 20 2.040E+001 1.757E+001 1.369E+001 9.412E+000 5.781E+000 3.170E+000
0.216 0.360 0.540 0.703 0.867

ε = 2−1 1.090E+001 8.177E+000 5.417E+000 3.329E+000 2.038E+000 1.067E+000
0.415 0.594 0.702 0.708 0.933

ε = 2−2 6.162E+000 3.928E+000 2.230E+000 1.239E+000 7.300E-001 3.720E-001
0.650 0.817 0.848 0.763 0.973

ε = 2−3 4.678E+000 2.796E+000 1.513E+000 7.684E-001 3.665E-001 1.588E-001
0.742 0.886 0.978 1.068 1.207

ε = 2−4 4.681E+000 2.580E+000 1.355E+000 7.390E-001 3.712E-001 1.656E-001
0.859 0.929 0.875 0.993 1.165

ε = 2−5 5.164E+000 2.946E+000 1.683E+000 9.742E-001 5.231E-001 2.480E-001
0.810 0.808 0.789 0.897 1.077

ε = 2−6 5.393E+000 3.492E+000 2.110E+000 1.249E+000 6.649E-001 3.113E-001
0.627 0.727 0.756 0.910 1.095

ε = 2−7 5.685E+000 3.881E+000 2.427E+000 1.425E+000 7.643E-001 3.587E-001
0.551 0.677 0.769 0.899 1.091

ε = 2−8 5.850E+000 4.087E+000 2.685E+000 1.578E+000 8.256E-001 3.834E-001
0.517 0.606 0.767 0.935 1.107

ε = 2−9 5.978E+000 4.190E+000 2.816E+000 1.670E+000 8.783E-001 4.020E-001
0.513 0.573 0.754 0.927 1.128

ε = 2−10 6.047E+000 4.273E+000 2.881E+000 1.715E+000 9.042E-001 4.152E-001
0.501 0.569 0.748 0.924 1.123

ε = 2−11 6.075E+000 4.315E+000 2.911E+000 1.740E+000 9.176E-001 4.224E-001
0.494 0.567 0.743 0.923 1.119

ε = 2−12 6.089E+000 4.336E+000 2.928E+000 1.752E+000 9.245E-001 4.261E-001
0.490 0.566 0.741 0.922 1.118

ε = 2−13 6.099E+000 4.346E+000 2.936E+000 1.758E+000 9.286E-001 4.278E-001
0.489 0.566 0.740 0.921 1.118

ε = 2−14 6.101E+000 4.351E+000 2.939E+000 1.761E+000 9.300E-001 4.287E-001
0.488 0.566 0.739 0.921 1.117

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ε = 2−29 6.103E+000 4.355E+000 2.943E+000 1.764E+000 9.314E-001 4.296E-001
0.487 0.565 0.739 0.921 1.116

ε = 2−30 6.103E+000 4.355E+000 2.943E+000 1.763E+000 9.314E-001 4.296E-001
0.487 0.565 0.739 0.921 1.116

EN,M 2.040E+001 1.757E+001 1.369E+001 9.412E+000 5.781E+000 3.170E+000

QN,M 0.216 0.360 0.540 0.703 0.867
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