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ON THE SPECTRAL EQUIVALENCE OF HIERARCHICAL

MATRIX PRECONDITIONERS FOR ELLIPTIC PROBLEMS

M. BEBENDORF, M. BOLLHÖFER, AND M. BRATSCH

Abstract. We will discuss the spectral equivalence of hierarchical matrix ap-
proximations for second order elliptic problems. Our theory will show that a
modified variant of the hierarchical matrix Cholesky decomposition which pre-
serves test vectors while truncating blocks to lower rank will lead to a spectrally
equivalent approximation when using an adapted truncation threshold. Our
theory also covers the usual hierarchical Cholesky decomposition which does
not preserve test vectors but expects a significantly more restrictive threshold
adaption to obtain a spectrally equivalent approximation. Numerical exper-
iments indicate that the adaption of the truncation parameter seems to be
necessary for the traditional hierarchical Cholesky preconditioner to obtain
mesh-independent convergence while the variant which preserves test vectors
works in practice quite well even with a fixed parameter.

1. Introduction

Elliptic partial differential equations have often been in the focus of efficient
numerical solution methods. Among many methods, multigrid methods [12, 17]
have become a successful approach to treat these kinds of equations, though they
suffer from some disadvantages, e.g., problems with anisotropies, non-smooth co-
efficients or irregular geometry. Algebraic multigrid methods (AMG) [16, 17] are
often able to bypass these problems. More recently, a novel class of hierarchical ma-
trix (H-matrix) approximations [13, 15] has gained attention. These are based on
a completely different approach, namely the admissibility of a hierarchy of subdo-
main pairs, which allow for a low-rank approximation. Among several hierarchical
matrix approximations [5, 14], the H-LU decomposition has turned out to be the
most promising approach for preconditioning elliptic problems using H-matrices.
It is shown in [3,4] that the hierarchical matrix approximation leads to an approx-
imation of almost optimal complexity. However, for an optimal preconditioner, the
accuracy of the H-matrix has to be adapted to the mesh size h. This can be seen in
numerical experiments (cf. e.g. [6] as well as Section 5), where one observes a depen-
dence of the number of iteration steps on h whenever blocks are truncated to a fixed
rank or even when using some constant relative tolerance ε for the truncation. The
aim of this paper is to analyze and improve the technique such that in addition to
an almost optimal complexity an optimal preconditioning effect is also achieved. In
particular, our theory will show that the usual H-matrix Cholesky preconditioning
approach will lead to a bounded number of conjugate gradient steps, if the relative
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tolerance ε is reduced proportional to h2. This increases the blockwise rank k,
although k is known (see [4]) to grow only logarithmically as h → 0. Numerical
experiments indicate that the h-dependence of ε for the usual H-matrix Cholesky
decomposition is also necessary; that is why we believe that our result is sharp.
Besides decreasing ε ∼ h2 globally, we will also show that for larger admissible
blocks, ε ∼ h is already sufficient to obtain a spectrally equivalent preconditioner.

We have recently presented a modifiedH-matrix Cholesky decomposition (see [6])
which locally preserves constant test vectors while truncating blocks to lower rank.
Our theory in the current paper will also cover this modified approach. The results
in Section 2.1 will show that when preserving constant test vectors, the smaller
admissible blocks can be safely truncated with a relative tolerance ε that is inde-
pendent of h, while only for some larger blocks the relative tolerance is required
to shrink linearly with h. Since in practice there are not that many blocks of
larger size, we regard this restriction as relatively mild. The main advantage of
this modified approach, however, is that numerical experiments state that it stabi-
lizes the matrix approximation. For instance, any perturbation applied to problems
with small coercivity such as boundary value problems with dominating Neumann
boundary conditions is likely to ruin important properties of the original discreti-
sation (e.g., positivity) unless some kind of stabilization is applied; see [6] for a
numerical comparison with AMG on such kind of problems.

The computation of H-matrix approximations involves many truncation opera-
tions due to the fact that the sum of two rank-k matrices usually exceeds rank k.
Truncations appear not only when two H-matrices are added. Also, the product of
two H-matrices of the same block format usually results in a significantly different
structure. Hence, the analysis of the actual H-matrix LU factorization algorithm is
cumbersome. Additionally, there are numerous ways to do the truncation in prac-
tice. We will therefore analyze the new techniques of this article for an algorithm
that was used in [4] to show the existence of approximate H-matrix LU decompo-
sitions. While this does not fully analyze the actual H-matrix algorithm, it gives
some mathematical underpinning to the success of the H-matrix calculus when it
is employed to compute approximate preconditioners.

The paper is organized as follows. Section 2 will establish a general relation be-
tween H-matrix approximation and spectral equivalence. This will cover the usual
truncation and also the truncation which preserves given vectors. These results
will then be applied to approximations obtained from H-matrix LU factorization in
Section 3. From these results, preconditioners will be derived and their complexity
will be analyzed in Section 4 and numerically illustrated in Section 5.

2. Hierarchical matrices and spectral equivalence

In the following, let Ω ⊂ R
3 be a bounded polyhedral domain. We confine

ourselves to problems of the type

(1) Lu = f in Ω, u = 0 on ∂Ω

with Lu := −divC∇u, where cij ∈ L∞(Ω), 1 ≤ i, j ≤ 3. The ellipticity of L is
expressed by the assumption that for almost all ξ ∈ Ω,

0 < λL ≤ λ(ξ) ≤ ΛL,

for all eigenvalues λ(ξ) of the symmetric matrix C(ξ) ∈ R
3×3.
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Throughout this paper we will consider quasi-uniform triangulations Th of the
computational domain Ω ⊂ R

3. Furthermore, Vh ⊂ H1
0 (Ω) will refer to a conform-

ing finite element space associated with our quasi-uniform triangulation, where

h := max
i∈I

diamXi,

I := {1, . . . , n}, and Xi := suppϕi denotes the supports of the piecewise linear
finite element basis {ϕi}i∈I of Vh. For t ⊂ I we define the support of t as Xt :=⋃

i∈t intXi. We will make use of the natural injection Jt : R
t → Vh defined as

Jtx =
∑
i∈t

xiϕi,

which satisfies

(2) cJ ‖x‖2 ≤
√

|t|
|Xt|

‖Jtx‖L2(Xt) ≤ c′J ‖x‖2, x ∈ R
t.

The mass matrix M = (mij)i,j∈I is defined via

mij = (ϕi, ϕj)L2(Ω), i, j ∈ I,

and satisfies

(3) ‖M1/2x‖2 = ‖JIx‖L2(Ω) for all x ∈ R
I .

It is well known that the mass matrix has a bounded condition number, i.e., there
is cM > 0 independent of h such that

(4) κ(M) := ‖M‖2‖M−1‖2 ≤ cM .

Furthermore, let A ∈ R
I×I be the finite element stiffness matrix, i.e.,

aij = a(ϕj , ϕi), i, j ∈ I,

where the bilinear form a(u, v) :=
∫
Ω
∇vTC∇u dξ refers to the weak form of the

elliptic operator L and is therefore coercive, i.e.,

(5) a(u, u) ≥ γ‖∇u‖2L2(Ω) for all u ∈ H1
0 (Ω)

with some constant γ > 0. In particular, this shows that A is symmetric positive
definite.

Many existing fast methods for the numerical solution of (1) are based on multi-
level structures. The efficiency of H-matrices is due to two principles, hierarchical
matrix partitioning and low-rank representation. For an appropriate partition P
of the set of matrix indices I × I, a cluster tree TI is constructed by recursively
subdividing I. The subdivision of a cluster t is done using bisection such that
indices which are in some sense close to each other are grouped together into the
same cluster t1 and t2. The subdivision is continued as long as a cluster contains
a minimum number nmin of indices. This yields the binary tree TI . We denote by
L(TI)−1 the height of the cluster tree TI . Nodes with distance 	 = 0, . . . , L(TI)−1

from the root define the set T
(�)
I and are referred to as nodes of level 	. The set of

leaves of TI will be denoted by L(TI).
In the following, we will expect the cluster trees to be balanced. This means

that in three spatial dimensions there is a positive constant cD such that for all

t ∈ T
(�)
I , 	 = 0, . . . , L(TI)− 1,

(6) 2−�/3/cD ≤ diamXt ≤ cD2−�/3,
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i.e., after three successive levels, the diameter is essentially half as long. In partic-
ular, we have for the leaf clusters diamXt ∼ h and therefore

(7) 2−(L(TI)−1)/3/cD ≤ h ≤ cD2−(L(TI)−1)/3.

There are three strategies which are commonly used to create the subdivision of the
indices. Two of them (bounding boxes [10] and principal component analysis [5])
use grid information, whereas the method presented in [7] is based on the matrix
graph of a sparse matrix.

The block cluster tree TI×I is built by recursively subdividing I × I. Each
block t × s is subdivided into the sons t′ × s′, where t′ and s′ are taken from the

lists of sons of t and s in TI , respectively. In the following, T
(�)
I×I denotes the 	-th

level of the block cluster tree TI×I . The recursion is done for a block b := t × s
until it is small enough or satisfies the so-called admissibility condition:

min{diamXt, diamXs} ≤ η dist(Xt, Xs).(8)

The previous condition (8) guarantees that the restriction Ab of A ∈ R
I×I can be

approximated by a matrix of low rank; see [5]. All other blocks are small enough
and stored as a dense matrix.

Remark. Since the first two subdivision techniques are based on convex enveloping
sets (boxes and balls, respectively) for which the admissibility condition is checked,
we may assume that each Xt is convex.

The set of leaves of the block cluster tree TI×I constitutes the partition P. The
constructed partition has the property that for a given cluster t ∈ TI a constantly
bounded number of blocks t× s appear in P. Hence, the sparsity constant

csp := max
t∈TI

|{s ⊂ I : t× s ∈ P}|

is bounded independently of the size of I; see [11]. Notice that this implies that the
number of blocks increases linearly with n. Due to the representation by low-rank
matrices, each matrix block causes a computational cost that scales linearly with
its dimensions. The set of hierarchical matrices on the partition P and blockwise
rank k is then defined as

H(P, k) := {A ∈ R
I×I : rankAb ≤ k for all b ∈ P}.

Elements ofH(P, k) provide data-sparse representations of fully populated matrices
because the elements of this set can be stored with logarithmic-linear complexity.
In addition to storing and multiplying H-matrices efficiently by a vector, also higher
(approximate) operations such as addition, multiplication, inversion, and LU fac-
torization can be performed with logarithmic-linear complexity.

2.1. Spectral equivalence and filtering. In this section, we provide the main
ingredients for the spectral equivalence of hierarchical matrix preconditioners. We
state the results of this section in a quite general fashion since we believe that this
framework holds for a wider class of applications than the hierarchical Cholesky
decomposition treated in this article.

The H-matrix Cholesky decomposition1 leads to an approximation Ã ∈ R
I×I of

the original system matrix A ∈ R
I×I . Estimates on the resulting error E := A− Ã

1When we refer to the H-Cholesky decomposition, we mean the Cholesky decomposition with
blockwise truncation to lower rank in the sense of the hierarchical matrix algebra [14].
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will be discussed in Section 3.1. Due to the hierarchical structure, the error E can
be represented as

(9) E =

L(TI)−1∑
�=0

E�,

where each part E� is the restriction of the blocks from P to those blocks from the

	-th level P ∩ T
(�)
I×I . Thus E� can be written as

(10) E� =
∑

b∈P∩T
(�)
I×I

Eb ∈ R
I×I

and here Eb refers to the error in a single block b = t × s extended by zeros. If A
is symmetric and positive definite, then (provided it can be factorized in H-matrix

arithmetic) Ã = L̃L̃T is symmetric and positive definite, too. Due to the tensorial
structure of E�, it holds that

(11) ‖E�‖2 ≤ csp max
b∈P∩T

(�)
I×I

‖Eb‖2;

see [11] or Lemma 2.16 in [5].
The following lemma establishes the relation between preservation and condition-

ing, i.e., we prove spectral equivalence of A and Ã provided the approximation Ã
is exact on a subspace in the sense that

(12) PT
� E�P� = E�, 	 = 0, . . . , L(TI)− 1,

with a corresponding projection P� ∈ R
I×I . Strictly speaking, we are going to

bound the condition number

κ(Ã−1A) :=
λmax(Ã

−1A)

λmin(Ã−1A)
= ‖A−1/2ÃA−1/2‖2 ‖(A−1/2ÃA−1/2)−1‖2,(13)

which can be used to determine the convergence ratio of the preconditioned con-
jugate gradient method; cf. [1]. As an example, P� could simply be the identity,
which corresponds to the standard H-matrix Cholesky factorization. Another ex-
ample are projectors which locally preserve row/column sums. We leave the precise
choice of P� open at this point and will specify it later.

Lemma 2.1. Let A, Ã ∈ R
I×I be symmetric and positive definite such that E =

A − Ã is split as in (9) and satisfies (12). If there is a constant 0 ≤ δ < 1
(independent of h) such that

L(TI)−1∑
�=0

‖P�A
−1PT

� ‖2‖E�‖2 ≤ δ,

then

κ(Ã−1A) ≤ 1 + δ

1− δ
.
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Proof. Due to the levelwise decomposition E =
∑L(TI)−1

�=0 E� of E, we obtain

‖I −A−1/2ÃA−1/2‖2 = ‖A−1/2EA−1/2‖2 ≤
L(TI)−1∑

�=0

‖A−1/2E�A
−1/2‖2

=

L(TI)−1∑
�=0

‖A−1/2PT
� E�P�A

−1/2‖2 ≤
L(TI )−1∑

�=0

‖E�‖2‖P�A
−1PT

� ‖2 ≤ δ.

Using (13) and the Neumann series, it follows that

κ(Ã−1A) = λmax(A
−1/2ÃA−1/2)λmax((A

−1/2ÃA−1/2)−1)

= ‖A−1/2ÃA−1/2‖2‖(A−1/2ÃA−1/2)−1‖2

≤
(
1 + ‖I −A−1/2ÃA−1/2‖2

) ∞∑
k=0

‖I −A−1/2ÃA−1/2‖k2

=
1 + ‖I −A−1/2ÃA−1/2‖2
1− ‖I −A−1/2ÃA−1/2‖2

,

which leads to the assertion. �

In the rest of this section, we are going to investigate the choices mentioned
for P� in (12). The first choice is the identity, which is trivial but corresponds to
the usual H-matrix approximation.

Lemma 2.2. Let P� = Id and let the error E = A − Ã be split as in (9), where
each E� is decomposed as in (10). Then there exists a constant cI > 0 such that
for any δ < cI and any error satisfying

L(TI)−1∑
�=0

max
b∈P∩T

(�)
I×I

‖Eb‖2 ≤ δ‖M‖2

it holds that

κ(Ã−1A) ≤ cI + δ

cI − δ
.

Proof. Using Friedrichs’ inequality

‖JIx‖L2(Ω) ≤ cF diamΩ ‖∇JIx‖L2(Ω), x ∈ R
I ,

it follows from (3), (5), and (4) that

‖A−1‖2 = sup
x�=0

‖x‖22
xTAx

≤ ‖M−1‖2 sup
x�=0

‖JIx‖2L2(Ω)

a(JIx,JIx)
≤ γ−1‖M−1‖2 sup

x�=0

‖JIx‖2L2(Ω)

‖∇JIx‖2L2(Ω)

≤ γ−1(cF diamΩ)2‖M−1‖2 ≤ cM (cF diamΩ)2

γ‖M‖2
.

With (11) we obtain

‖A−1‖2
L(TI)−1∑

�=0

‖E�‖2 ≤ csp‖A−1‖2
L(TI)−1∑

�=0

max
b∈P∩T

(�)
I×I

‖Eb‖2 ≤ cspcM (cF diamΩ)2

γ
δ.

Setting cI := γ/
(
cspcM (cF diamΩ)2

)
, the assertion follows from Lemma 2.1 using

δ/cI < 1 instead of δ. �
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The second choice for P� investigated in this article has already been proposed
and investigated from a practical point of view in [6]. Assume that the approxima-

tion Ã on each block b = t × s ∈ T
(�)
I×I ∩ P preserves the vector 1s ∈ R

I defined
as

1s :=

{
1, i ∈ s,

0, else,

i.e., Eb satisfies Eb1s = 0 and ET
b 1t = 0. Due to the locality of Eb, we even have

Eb1r = 0 = ET
b 1r for all r ∈ T

(�)
I . For P� we set

P� := Id−Q� ∈ R
I×I , where Q� :=

∑
r∈T

(�)
I

1r1
T
r

|r| .

Then P� satisfies E�P� = E� as

E�Q� =
∑

b∈T
(�)
I×I∩P

EbQ� = 0.

The symmetry of E� and P� implies that we also have P�E� = E�.
Our aim is to prove a result similar to Lemma 2.2 for this particular choice

of P�. To this end, we state the following two auxiliary lemmas which will prepare
Lemma 2.5. The latter is analogous to Lemma 2.2 but uses P� = Id−Q� instead.

In the following lemma, we will require the condition,

‖JIP�x‖L2(Ω) ≤ ε�‖∇JIx‖L2(Ω),

which acts as a strengthened Friedrichs’ inequality. The previous condition will be
discussed in Lemma 2.4 afterwards.

Lemma 2.3. If P� satisfies ‖JIP�x‖L2(Ω) ≤ ε�‖∇JIx‖L2(Ω) for all x ∈ R
I , then

‖P�A
−1PT

� ‖2 ≤ cMε2�
γ‖M‖2

.

Proof. From ‖P�A
−1PT

� ‖2 = ‖P�A
−1/2‖22, (5), and (4) we obtain

‖P�A
−1PT

� ‖2 = sup
x�=0

‖P�A
−1/2x‖22
‖x‖22

= sup
y �=0

‖P�y‖22
yTAy

= sup
y �=0

‖P�y‖22
a(JIy,JIy)

≤ γ−1 sup
y �=0

‖P�y‖22
‖∇JIy‖2L2

≤ ‖M−1‖2
γ

sup
y �=0

‖JIP�y‖2L2

‖∇JIy‖2L2

≤ cMε2�
γ‖M‖2

.

�

The next lemma yields an upper bound on ε� and is inspired by a similar argu-
ment used in aggregation-based multigrid methods [18]. For easier readability we
set

D� := max
t∈T

(�)
I

diamXt

for each 	 = 0, . . . , L(TI)− 1.

Lemma 2.4. Let P� = Id−Q�. Then there exists a constant cA > 0 such that

‖JIP�x‖L2(Ω) ≤ cAD� ‖∇JIx‖L2(Ω).
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Proof. For t ∈ T
(�)
I let

X̊t := {ξ ∈ Xt : (JI1t)(ξ) = 1}.

Notice that the assumption that Xt is convex together with a sufficiently large
minimum cluster size nmin implies that X̊t has a non-empty interior.

Let J̊ ∗
t : L2(Ω) → R

t be defined by

xT J̊ ∗
t v = (Jtx, v)L2(X̊t)

for all x ∈ R
t, v ∈ L2(Ω).

The matrix M̊t := J̊ ∗
t Jt ∈ R

t×t has the entries

m̊ij := (ϕi, ϕj)L2(X̊t)
, i, j ∈ t,

and hence is the mass matrix restricted to X̊t. The mass matrix for Xt will be
denoted by Mt. Since mass matrices have constant condition numbers (cf. (4)) and
norms of the order h3, we immediately obtain

‖JtP�x‖2L2(Xt)
= ‖M1/2

t P�x‖22 ≤ ‖Mt‖2‖P�x‖22 ≤ ‖Mt‖2‖M̊−1
t ‖2‖M̊1/2

t P�x‖22
= ‖Mt‖2‖M̊−1

t ‖2‖JtP�x‖2L2(X̊t)
≤ c′‖JtP�x‖2L2(X̊t)

with some constant c′ > 0 independent of h. Observe that

JtP�x = Jtxt −
∑

r∈T
(�)
I

1T
r xr

|r| Jt1r = Jtxt −
1T
t xt

|t| Jt1t.

We define the linear functional F : L2(Ω) → R as F (v) := 1
|t|1

T
t M̊

−1
t J̊ ∗

t v. Then

‖F (Jtxt)‖L2(X̊t)
=

√
|X̊t|
|t| |1T

t xt| ≤

√
|X̊t|
|t| ‖xt‖2 ≤ cJ ‖Jtxt‖L2(Xt),

where we have exploited (2). Since for all constant functions c it holds that

xT M̊−1
t J̊ ∗

t c = (JtM̊
−1
t x, c)L2(X̊t)

= c(JtM̊
−1
t x,Jt1t)L2(X̊t)

= c xT1t,

we have M̊−1
t J̊ ∗

t c = c1t and thus F (c) = c. Let ct := |Xt|−1
∫
Xt

Jtxt dξ ∈ R be the

average of Jtxt in Xt. Then Poincaré’s inequality (see [2] for a Poincaré inequality
with domain-independent constant in the case of convex domains) can be applied
to Xt:

‖Jtxt −
1T
t xt

|t| Jt1t‖L2(X̊t)
= ‖Jtxt − F (Jtxt)‖L2(X̊t)

= ‖Jtxt − ct − F (Jtxt − ct)‖L2(X̊t)

≤ (1 + cJ )‖Jtxt − ct‖L2(Xt)

≤ (1 + cJ ) cP diamXt ‖∇Jtxt‖L2(Xt)

= ĉP diamXt ‖∇JIx‖L2(Xt).
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This eventually leads to the desired bound

‖JIP�x‖2L2(Ω) ≤
∑

t∈T
(�)
I

‖JtP�x‖2L2(Xt)
≤ c′

∑
t∈T

(�)
I

‖JtP�x‖2L2(X̊t)

= c′
∑

t∈T
(�)
I

‖Jtxt −
1T
t xt

|t| Jt1t‖2L2(X̊t)

≤ c′ĉ2P
∑

t∈T
(�)
I

(diamXt)
2‖∇JIx‖2L2(Xt)

≤ c′′ĉ2P︸︷︷︸
=:c2A

D2
� ‖∇JIx‖2L2(Ω). �

Similar to Lemma 2.2, we are now going to analyze how the blockwise error
influences the spectral equivalence when preserving some side constraint on each
block.

Lemma 2.5. Let P� = Id − Q� and let the error E = A − Ã be split as in (9),
where each E� is decomposed as in (10). Then there exists a constant cQ > 0 such
that for any δ < cQ and any error E satisfying

L(TI)−1∑
�=0

D2
� max
b∈P∩T

(�)
I×I

‖Eb‖2 ≤ δ‖M‖2

it holds that

κ(Ã−1A) ≤ cQ + δ

cQ − δ
.

Proof. Using Lemma 2.3 and Lemma 2.4, it follows that

‖P�A
−1P�‖2 ≤ cMc2A

γ‖M‖2
D2

� .

Hence, applying (11), we obtain

L(TI)−1∑
�=0

‖P�A
−1P�‖2‖E�‖2 ≤ csp

L(TI)−1∑
�=0

‖P�A
−1P�‖2 max

b∈P∩T
(�)
I×I

‖Eb‖2

≤ cspcMc2A
γ‖M‖2

L(TI)−1∑
�=0

D2
� max
b∈P∩T

(�)
I×I

‖Eb‖2 ≤ cspcMc2A
γ

δ.

We set cQ := γ/(cspcMc2A). Then the assertion follows from Lemma 2.1 using δ/cQ
instead of δ. �

The two Lemmas 2.2 and 2.5 present criteria in which way the blockwise error
has to be bounded to obtain a spectrally equivalent preconditioner with and with-
out preservation of side constraints. Notice that the condition of Lemma 2.5 is
weaker than the corresponding condition in Lemma 2.2 due to the additional factor
(max

t∈T
(�)
I

diamXt)
2. The results of this section are applicable to any symmetric

positive definite approximation Ã of A subject to splitting the error E = A − Ã
according to (9) and (10). The next section shows how this can be used for the
hierarchical Cholesky decomposition.
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3. Spectrally equivalent preconditioners based on the H-matrix

Cholesky factorization

In this section we will show that the H-matrix Cholesky decomposition Ã = L̃L̃T

will lead to an error matrix E = A−Ã in which any block Eb refers to the error that
is obtained when block b is replaced by an approximate low-rank matrix during the
factorization; cf. Section 3.1. This will then be used in Section 3.2 to translate the
criteria from Lemma 2.2 and Lemma 2.5 to criteria for blockwise truncation errors
in order to be able to modify the algorithms accordingly.

3.1. Errors caused by H-matrix Cholesky factorization. Due to its efficiency
and robustness, the approximate H-matrix Cholesky decomposition Ã := L̃L̃T is
usually favored over the H-matrix inverse of the finite element stiffness matrix A.
In practice, the approximation error E = A− Ã emerges from blockwise truncation
of singular values of intermediate matrices. The set of matrix blocks on which
truncation is performed depends on the matrix structure and even on the particular
implementation of the approximate matrix operations. Hence, the analysis of the
actual algorithm is cumbersome. To avoid technical difficulties that are likely to
distract the reader from the real problem, in this section it will be analyzed how the
overall error E is related with truncations performed during an H-matrix Cholesky
factorization algorithm that was used in [4] to show the existence of approximate
H-matrix LU decompositions.

The recursive construction of the usual Cholesky decompositions relies on the
factorization

(14) LttL
T
tt = S(t, t)

of Schur complements

S(t, s) := Ats −AtρA
−1
ρρ Aρs,

where the index set ρ is defined as (see Figure 1)

ρ := {i ∈ I : i < min t ∪ s}.

In particular, S(I, I) = A gives the Cholesky decomposition A = LLT . The recur-
sive construction of the subblock

Ltt =

[
Lt1t1

Lt2t1 Lt2t2

]
of L follows from the identity (see [4])

S(t, t) =

[
S(t1, t1) S(t1, t2)
S(t1, t2)

T S(t2, t2)− Lt2t1L
T
t2t1

]
,

where t1 and t2 denote the sons of t, by the three factorizations

Lt1t1L
T
t1t1 = S(t1, t1),

Lt1t1L
T
t2t1 = S(t1, t2),

Lt2t2L
T
t2t2 = S(t2, t2)− Lt2t1L

T
t2t1 .

The first and the last factorization are of type (14), whereas the second is a forward
substitution, which can also be expressed by a recursion.
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ρ

ρ′

ρ ρ′

s

t

Figure 1. Index sets describing the Schur complement of a
block t× s ∈ P.

Remark. We admit that this is not the standard way of defining the Cholesky
decomposition, but it will turn out to be very useful in the following construction
of low-rank approximations; see also [4]. For instance, assuming for a moment that
S(t1, t2) is rank r, the rank of Lt2t1 is also r. Notice that this is fundamentally
different in incomplete LU factorizations, where the sparsity of S(t1, t2) is not
inherited by Lt2t1 .

For an approximate recursive Cholesky factorization we have to address the
problem of solving

(15) L̃ttL̃
T
tt + Ett = S̃(t, t), t ∈ TI ,

for a lower triangular matrix L̃tt and an error matrix Ett instead of (14). The

matrix S̃(t, s) ∈ R
t×s is an approximation to the usual Schur complement S(t, s)

and will be constructed during the following recursive definition of the approximate
Cholesky decomposition (15), which starts from the root I of TI by setting

S̃(I, I) := A.

Due to the previous choice of S̃(I, I), (15) will then yield the desired approximate
Cholesky factorization

L̃L̃T + E = A.

We just defined S̃(I, I). Assume that S̃(t, t) has already been defined for some t ∈
TI \ L(TI). Let S̃(t1, tj) := S̃(t, t)|t1tj , j = 1, 2, and define L̃t1t1 recursively by the
approximate Cholesky decomposition

L̃t1t1L̃
T
t1t1 + Et1t1 = S̃(t1, t1).

L̃t2t1 is constructed via approximate forward substitution from

(16) L̃t1t1L̃
T
t2t1 + Et1t2 = S̃(t1, t2).

With S̃(t2, t2) := S̃(t, t)|t2t2 − L̃t2t1L̃
T
t2t1 the remaining subblock L̃t2t2 of

L̃tt =

[
L̃t1t1

L̃t2t1 L̃t2t2

]
is also constructed recursively by approximate Cholesky factorization

L̃t2t2L̃
T
t2t2 + Et2t2 = S̃(t2, t2).
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Notice that this construction guarantees (15), where Ett consists of the sub-

blocks Etitj , i, j = 1, 2. If t ∈ L(TI) is a leaf, then L̃tt is constructed via the

pointwise Cholesky decomposition S̃(t, t) = L̃ttL̃
T
tt with Ett = 0.

The forward substitution (16) has not yet been fully declared. For construct-

ing L̃st from

(17) L̃ttL̃
T
st + Ets = S̃(t, s), t× s ∈ TI×I \ P,

let S̃(t1, sj) := S̃(t, s)|t1sj , j = 1, 2, and recursively construct L̃sjt1 , j = 1, 2, from
the approximate forward substitution

L̃t1t1L̃
T
sjt1 + Et1sj = S̃(t1, sj), j = 1, 2.

Furthermore, defining S̃(t2, sj) := S̃(t, s)|t2sj − L̃t2t1L̃
T
sjt1 , we construct L̃sjt2 , j =

1, 2, from

L̃t2t2L̃
T
sjt2 + Et2sj = S̃(t2, sj), j = 1, 2.

Then

L̃st =

[
L̃s1t1 L̃s1t2

L̃s2t1 L̃s2t2

]
satisfies (17). For leaf blocks t × s ∈ P we approximate S̃(t, s) with or without
preservation of side constraints by a low-rank matrix Bts ∈ R

t×s such that

(18) ‖S̃(t, s)−Bts‖2 ≤ ε�‖S̃(t, s)‖2
with a level-dependent accuracy ε� > 0. The preservation of side constraints during
this approximation can be done in a stable way via the Householder decomposition;
see [6]. Then, we compute L̃st via the pointwise forward substitution, i.e., L̃ttL̃

T
st =

Bts. As a consequence, (17) holds with Ets := S̃(t, s)−Bts.
Hence, approximation errors are introduced only during the forward substitu-

tion (17). In [4], it is shown that L̃ ∈ H(P, k) is an H-matrix with blockwise
rank k depending polylogarithmically on the size of I, which proves the existence
of H-matrix approximations to the factors of the Cholesky decomposition.

Lemma 3.1. The matrices resulting from the previous construction satisfy

S̃(t, s) = Ats − L̃tρ(L̃sρ)
T .

Furthermore,

Ats − (L̃L̃T )ts = Ets = S̃(t, s)−Bts

for all t× s ∈ P.

Proof. Let t× s ∈ P. The assertion follows from

S̃(t, s) = L̃tt(L̃st)
T + Ets = L̃tt(L̃st)

T +Ats − Ãts = Ats − L̃tρ(L̃sρ)
T

due to Ãts = (L̃L̃T )ts = L̃tρL̃
T
sρ + L̃ttL̃

T
st. �

An important consequence of the previous lemma is that the error E = A − Ã
appearing in Lemma 2.2 and Lemma 2.5 for the choice Ã = L̃L̃T satisfies

(19) ‖Ets‖2 = ‖S̃(t, s)−Bts‖2 ≤ ε�‖S̃(t, s)‖2, t× s ∈ P;

see (18). Furthermore, the previous lemma shows that S̃(t, s) can be viewed as a
Schur complement containing the approximations made up to the block t×s in the
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Cholesky factorization. Due to this interpretation, we assume that there exists a
constant cS > 0 such that

(20) ‖S̃(t, s)‖2 ≤ cS‖S(t, s)‖2.

This stability assumption on the H-matrix arithmetic is difficult to prove. It will
not be investigated further in this paper but numerical experiments indicate that
the norm of the approximate and exact Schur complement are close even for large ε�.

3.2. Spectrally equivalent H-matrix Cholesky preconditioners. In the fol-
lowing, we are going to prove the main result (Theorems 3.5 and 3.6) of this article
which compares preconditioners that are based on the H-matrix Cholesky factor-
ization with and without preservation of side constraints.

First of all, we discuss upper bounds on ‖S(t, s)‖2 for t × s ∈ P. Since S(t, s)
appears as part of some Schur complement of A, we immediately obtain

‖S(t, s)‖2 ≤ ‖A‖2 ≤ ch−2‖M‖2.

To understand the interaction between the relative truncation strategy (18) that is
used for the H-matrix arithmetic and the error that is obtained for Ets, we need
a refined bound on the growth of ‖S(t, s)‖2 depending on the distance between Xt

and Xs. The following theorem will be proved in Section 3.3.

Theorem 3.2. The Schur complement of a block t × s ∈ P, dist(Xt, Xs) > 0, is
bounded by

‖S(t, s)‖2 ≤ ca‖M‖2
h dist(Xt, Xs)

with some constant ca > 0.

The previous theorem together with (19) and (20) leads to the following bound
on the blockwise error introduced during H-matrix arithmetic. Similar to the max-
imum diameter D� of clusters in level 	, we set

d� := min
t∈T

(�)
I

diamXt.

Lemma 3.3. Let assumption (20) be valid. Assume that the H-matrix arithmetic
is performed with a relative truncation as in (18) using a levelwise accuracy ε�.
Then there exists a constant cE such that

‖Eb‖2 ≤ cE
ε�
h d�

‖M‖2, b ∈ P ∩ T
(�)
I×I .

Proof. Using (19) and (20), it follows that

‖Ets‖2 ≤ cSε�‖S(t, s)‖2, t× s ∈ P ∩ T
(�)
I×I .

Applying Theorem 3.2 and the admissibility condition (8), the blockwise error can
be bounded in the following way,

‖Ets‖2 ≤ cacS
ε�‖M‖2

h dist(Xt, Xs)
≤ cacSη

ε�‖M‖2
h min{diamXt, diamXs}

,

and the assertion follows setting cE := cacSη. �
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Lemma 3.3 shows that for small t, s (i.e. for large 	) such that diamXt ∼ h,
diamXs ∼ h we obtain errors on the order of ‖Ets‖2 ∼ ε�h

−2‖M‖2 ∼ ε�‖A‖2,
while for the largest admissible clusters t, s, where diamXt and diamXs are ap-
proximately constant, we have ‖Ets‖2 ∼ ε�h

−1‖M‖2 ∼ ε�h‖A‖2.
In the next theorem, as a by-product of our theory, we estimate the global error

resulting from the hierarchical Cholesky decomposition without preservation of side
constraints. Note that this theorem improves a previous result

‖A− L̃Ũ‖2 ≤ c1εL(TI)h
−2‖L‖2‖U‖2 ≤ c2εL(TI)h

−4‖M‖2

presented in [4] by more than two orders of magnitude with respect to h.

Theorem 3.4. Let P� = Id and let (20) be valid. Assume that the H-matrix
Cholesky decomposition is computed using the relative truncation strategy (18) with
a fixed accuracy ε� = ε. Then there exists a constant ce > 0 such that

‖A− L̃L̃T ‖2 ≤ ceεh
−2‖M‖2.

Proof. It follows from Lemma 3.3 that

‖A− L̃L̃T ‖2 ≤ csp

L(TI)−1∑
�=0

max
b∈P∩T

(�)
I×I

‖Eb‖2 ≤ cspcEε‖M‖2h−1

L(TI)−1∑
�=0

d−1
� .

Furthermore, one obtains with (6) and (7) that

L(TI)−1∑
�=0

d−1
� ≤ cD

L(TI)−1∑
�=0

2�/3 = cD2(L(TI)−1)/3

L(TI)−1∑
�=0

2(�−L(TI)+1)/3

= cD2(L(TI)−1)/3

L(TI)−1∑
�=0

2−�/3 ≤ 5cD2(L(TI)−1)/3 ≤ 5c2Dh−1.

We therefore set ce := 5cspcEc
2
D. �

Remark. Theorem 3.4 remains valid for P� = Id −Q�, because the preservation of
side constraints does not change the quality of the approximation. Nevertheless,
it will be seen in Theorem 3.6 that the condition number of the preconditioned
system benefits from this advancement.

Now we will present the main theorem for the spectral equivalence of the usual
H-matrix Cholesky preconditioner. On one side it will give bounds on the condition
number of the preconditioned system when a fixed relative accuracy ε� = ε is used
for the relative truncation in (18). On the other side, it presents a strategy how to
adaptively choose ε� to obtain spectral equivalence.

Theorem 3.5. Let P� = Id and let (20) be valid. Assume that the H-matrix
Cholesky decomposition is computed using the relative truncation strategy (18).

HChol: Let ε� = ε be fixed. Then there exists a constant cα > 0 such that for
any ε < h2/cα we have

κ
(
(L̃L̃T )−1A

)
≤ 1 + cαεh

−2

1− cαεh−2
.
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HChols: Let ε� = εhd�. Then there exists a constant cβ > 0 such that for
any ε < 1/(cβL(TI)) we have

κ
(
(L̃L̃T )−1A

)
≤ 1 + cβεL(TI)

1− cβεL(TI)
.

Proof. It follows with Lemma 3.3 that

L(TI)−1∑
�=0

max
b∈P∩T

(�)
I×I

‖Eb‖2 ≤ cEh
−1‖M‖2

L(TI)−1∑
�=0

ε�
d�

.(21)

For the constant choice ε� = ε, the geometric series can be bounded as in the proof of
Theorem 3.4 by 5c2Dh−1 such that we can apply Lemma 2.2 using δ := 5c2DcEh

−2ε.

The first assertion thus follows from Lemma 2.2 setting cα := 5c2DcEc
−1
I .

The second assertion follows from (21) and Lemma 2.2 since now we are able to
directly use δ = cEεL(TI), and we set cβ := cEc

−1
I . �

Theorem 3.5 shows that for a constant approximation accuracy ε the condition
number of the preconditioned system may behave like O(h−2). For a spectrally
equivalent version we may practically ignore the contribution L(TI) in Theorem 3.5,
since it only grows logarithmically with the system size. In this case the accuracy
ε� of small blocks needs a rescaling of ε� ∼ h2, whereas for the larger ones ε� ∼ h
is sufficient. Although Theorem 3.5 only provides upper bounds on the condition
number of the preconditioned system, we believe that these bounds are relatively
sharp as we will illustrate in Section 5.

Compared with Theorem 3.5 we are now able to establish improved bounds for
the novel modified hierarchical Cholesky decomposition that additionally preserves
side constraints.

Theorem 3.6. Let P� = Id − Q� and let (20) be valid. Assume that the modified
H-matrix Cholesky decomposition that locally preserves side constraints is computed
using the relative truncation strategy (18).

MHChol: Let ε� = ε be fixed. Then there exists a constant cγ > 0 such that
for any ε < h/cγ we have

κ
(
(L̃L̃T )−1A

)
≤ 1 + cγεh

−1

1− cγεh−1
.

MHChols: Let ε� = εhD−1
� . Then there exists a constant cδ > 0 such that for

any ε < 1/(cδL(TI)) we have

κ
(
(L̃L̃T )−1A

)
≤ 1 + cδεL(TI)

1− cδεL(TI)
.

Proof. Using Lemma 3.3 and (6), it follows that

L(TI)−1∑
�=0

D2
� max
b∈P∩T

(�)
I×I

‖Eb‖2 ≤ cEh
−1‖M‖2

L(TI)−1∑
�=0

ε�
D2

�

d�

≤ cEc
2
Dh−1‖M‖2

L(TI)−1∑
�=0

ε� D�.

The second part of the assertion follows from Lemma 2.5 using δ := cEc
2
DL(TI)ε

and we may choose cδ := cEc
2
D/cQ.
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For the first choice ε� = ε, a geometric series needs to be estimated. Using (6),
one obtains the bound

L(TI )−1∑
�=0

D� ≤ cD

L(TI)−1∑
�=0

2−�/3 ≤ 5cD.

Thus for the first assertion we may apply Lemma 2.5 with δ = 5cEc
3
Dh−1ε. As

a result of Lemma 2.5 we obtain the first part of of the assertion setting cγ :=
5cEc

3
D/cQ. �

For a constant approximation accuracy ε, Theorem 3.6 yields a bound for the
preconditioner which is of one order of magnitude better (with respect to h) than the
bound without the preservation of side constraints. Furthermore, for a spectrally
equivalent version the accuracy of larger blocks has to be rescaled with ε� ∼ h.
In contrast to this, the smaller blocks are already of sufficient accuracy using a
constant ε. It is important to notice that the approximation accuracy needs to
be adapted only to the level 	. This is why we regard ε� ∼ h for upper levels as
a technically uncomplicated condition. Like in the case of Theorem 3.5 we have
proven upper bounds on the condition number in Theorem 3.6. However, these also
seem to be numerically close to the behavior of the preconditioner in our numerical
examples; cf. Section 5.

To simplify further discussions, we will define the following hierarchical ma-
trix preconditioners. First of all, HChol and HChols denote the usual H-matrix
Cholesky decomposition. Their approximation accuracies are chosen constant or
adaptively scaled with respect to level 	 as proposed in Theorem 3.5. Second,
MHChol and MHChols result from the modified H-matrix Cholesky decomposition
with the preservation of side constraints. The approximation accuracies are chosen
constant or adaptively scaled per level as defined in Theorem 3.6.

3.3. Proof of Theorem 3.2. So far, estimates on the Schur complement used
in the analysis of H-matrices rely on bounds on the inverse of the stiffness matrix;
see [5]. The approach used in this article is to directly bound the Schur complement
as done, for instance, in the analysis of domain decomposition methods; see [8]
and [9]. This leads to sharper estimates than the detour via the inverse.

Lemma 3.7. Let x ∈ R
t and y ∈ R

s. Then there is φh := JI(x− x̃) ∈ Vh, x̃ ∈ R
ρ,

such that
xTS(t, s)y = a(φh,JIy)

and a(φh,JIz) = 0 for all z ∈ R
ρ.

Proof. Observe that

xTS(t, s)y = xTAtsy − xTAtρA
−1
ρρ Aρsy = a(JIx,JIy)− a(JI x̃,JIy) = a(φh,JIy),

where we set x̃ := A−T
ρρ AT

tρx ∈ R
ρ. Furthermore, for z ∈ R

ρ,

a(φh,JIz) = xTAtρz − x̃TAρρz = xTAtρz − xTAtρA
−1
ρρ Aρρz = 0. �

Finally, we prove a discrete Caccioppoli inequality.

Lemma 3.8. Let dist(Xt, Xs) > 0. Then it holds that

‖∇φh‖L2(Xρ∩Xs) ≤
cL

dist(Xt, Xs)
‖φh‖L2(Ω)

with cL > 0 independent of h.
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Proof. Let ŝ :={i∈I : 2 dist(Xi, Xs)≤dist(Xt, Xs)}. Then s⊂ ŝ and dist(Xt, Xŝ)>
0. Define a discrete cut-off function ηh ∈ Vh such that

supp ηh ⊂ Xŝ, ηh|Xs
= 1, and ‖∇ηh‖∞ ≤ 2/dist(Xs, ∂Xŝ).

By Ih : C(Ω) → Vh we denote the nodal interpolation operator. Due to Σ :=
supp η2hφh ⊂ Xŝ ∩ Xρ, we have that Ih(η

2
hφh) ∈ {JIx, x ∈ R

ρ}. The discrete
harmonicity of φh in Xρ (see Lemma 3.7) implies

λL‖∇(ηhφh)‖2L2(Σ) ≤ a(ηhφh, ηhφh) = a(φh, η
2
hφh) +

∫
Σ

φ2
h(∇ηh)

TC∇ηh dξ

= a(φh, η
2
hφh − Ih(η

2
hφh)) +

∫
Σ

φ2
h(∇ηh)

TC∇ηh dξ

≤ ΛL‖∇φh‖L2(Σ)‖∇[η2hφh − Ih(η
2
hφh)]‖L2(Σ) +

4ΛL

dist2(Xs, ∂Xŝ)
‖φh‖2L2(Σ).

It is known that

‖∇[η2hφh − Ih(η
2
hφh)]‖2L2(Σ) ≤ (ch)2

∑
τ⊂Σ

‖D2(η2hφh)‖2L2(τ).

From

‖D2(η2hφh)‖L2(τ)=2‖|∇ηh|2φh+2ηh∇ηh·∇φh‖L2(τ)≤
c

dist(Xs, ∂Xŝ)
‖∇(ηhφh)‖L2(τ)

it follows that

‖∇[η2hφh − Ih(η
2
hφh)]‖2L2(Σ) ≤

c2h2

dist2(Xs, ∂Xŝ)

∑
τ⊂Σ

‖∇(ηhφh)‖2L2(τ)

≤ c2h2

dist2(Xs, ∂Xŝ)
‖∇(ηhφh)‖2L2(Σ).

Hence, using the inverse inequality ‖∇φh‖L2(Σ) ≤ cIh
−1‖φh‖L2(Σ) and the estimate

2ab ≤ δa2 + b2/δ we obtain

λL‖∇(ηhφh)‖2L2(Σ) ≤
cΛLh

dist(Xs, ∂Xŝ)
‖∇φh‖L2(Σ)‖∇(ηhφh)‖L2(Σ)

+
4ΛL

dist2(Xs, ∂Xŝ)
‖φh‖2L2(Σ)

≤ ccIΛL
dist(Xs, ∂Xŝ)

‖φh‖L2(Σ)‖∇(ηhφh)‖L2(Σ) +
4ΛL

dist2(Xs, ∂Xŝ)
‖φh‖2L2(Σ)

≤
(
δ +

4ΛL

dist2(Xs, ∂Xŝ)

)
‖φh‖2L2(Σ) +

(ccIΛL)
2

4δ dist2(Xs, ∂Xŝ)
‖∇(ηhφh)‖2L2(Σ)

for all δ > 0. The choice δ := (2λL)
−1(ccIΛL)

2/dist2(Xs, ∂Xŝ) leads to

‖∇φh‖2L2(Xρ∩Xs)
≤ ‖∇(ηhφh)‖2L2(Σ) ≤

(ccIΛL/λL)
2 + 8ΛL/λL

dist2(Xs, ∂Xŝ)
‖φh‖2L2(Σ).

The assertion follows from dist(Xs, ∂Xŝ) ≥ 1
2 dist(Xt, Xs). �

We are now ready to prove Theorem 3.2.
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Proof of Theorem 3.2. Let y ∈ R
s. Since suppφh ⊂ Xt ∪Xρ and suppJIy ⊂ Xs,

using the inverse inequality and (2) we obtain

a(φh,JIy) ≤ ‖C∇φh‖L2(Xρ∩Xs)‖∇JIy‖L2(Xρ∩Xs)

≤ cIΛh
−1‖∇φh‖L2(Xρ∩Xs)‖JIy‖L2(Xρ∩Xs)

≤ cIc
′
JΛh1/2‖∇φh‖L2(Xρ∩Xs)‖y‖2.

With the previous lemmas we find

‖S(t, s)‖2 = sup
x∈Rt, y∈Rs

xTS(t, s)y

‖x‖2‖y‖2
= sup

x∈Rt, y∈Rs

a(φh,JIy)

‖x‖2‖y‖2

≤ ch1/2 sup
x∈Rt

‖∇φh‖L2(Xρ∩Xs)

‖x‖2
≤ c′

dist(Xt, Xs)
h1/2 sup

x∈Rt

‖φh‖L2(Ω)

‖x‖2
.

The assertion follows from

‖φh‖L2(Ω) = ‖JI(x− x̃)‖L2(Ω) ≤ c′J h3/2‖x− x̃‖2 ≤ c′J h3/2(1 + ‖AtρA
−1
ρρ ‖2)‖x‖2

due to (2) and ‖M‖2 ∼ h3. �

4. Complexity of H-Cholesky preconditioners

Let b ∈ P and let the respective blockwise approximation accuracy εb be given.
Then the blockwise rank kb of an H-Cholesky decomposition can be bounded by

(22) kb ∈ O
(
L(TI)

α| log εb|β
)
,

with constants α, β > 0; see [5] for further details. Hence, the blockwise rank
depends only logarithmically on the approximation accuracy. This allows us to
adapt εb as proposed for the preconditioners HChols and MHChols without de-
stroying the logarithmic-linear complexity of the H-matrix arithmetic.

In the following theorem, we estimate the memory consumption and the compu-
tational complexity of the preconditioners HChol and MHChol.

Theorem 4.1. The memory consumption of the preconditioners HChol and
MHChol is of the order L(TI)

α+1|I|, the computational complexity is of the order
L(TI)

2(α+1)|I|.

Proof. The storage requirements of HChol are of the order kL(TI)|I|, its computa-
tional complexity is of the order k2L2(TI)|I|, where k denotes the maximum rank
among the blocks; see [5]. Since the side constraints in MHChol increase the local
rank by a constant, the overall complexity does not change. Hence, the assertion
follows with (22). �

Theorem 4.1 shows that for sufficiently large matrices the preconditioner MHChol

should be favored over HChol due to its better preconditioning properties; compare
Theorem 3.5 and Theorem 3.6. In the following theorem, we estimate the mem-
ory consumption and the computational complexity of the spectrally equivalent
preconditioners HChols and MHChols.

Theorem 4.2. The memory consumption and the computational complexity of the
preconditioners HChols and MHChols is of the order L(TI)

α+β+1|I| and
L(TI)

2(α+β+1)|I|, respectively.
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Proof. Using the balancedness of the cluster tree (7) and the dependence of the
blockwise accuracy on h as in Theorem 3.5 and Theorem 3.6, we obtain for the
preconditioners HChols and MHChols that

(23) | log εb| � | log h| ∼ | log 2−L(TI)/3| ∼ L(TI), b ∈ P.

Hence, using (22) and (23) there exists a constant c > 0 such that

kb ≤ c L(TI)
α+β

and the assertion follows from the same arguments as in the proof of Theorem 4.1.
�

Theorem 3.5 and Theorem 3.6 show that the preconditioner MHChols requires
less adaption of the approximation accuracy on the respective block thanHChols to
obtain spectral equivalence. Still, we believe that the memory consumption of both
is asymptotically the same and that Theorem 4.2 cannot be improved. Another
important issue is the robustness of the preconditioner. Stability properties of
HChols and MHChols will be investigated in the numerical results.

5. Numerical results

In this section, the results of Theorem 3.5 and Theorem 3.6 will be verified for an
academic example. Afterwards, a more challenging example is considered to demon-
strate the different stability properties of the spectrally equivalent preconditioners
HChols and MHChols. Note that the focus of these tests is on the preconditioning
properties rather than on the complexity of the preconditioner. The latter was
analysed in Theorem 4.1 and Theorem 4.2 and its logarithmic-linear growth was
observed in [6]. There, also a comparison with AMG can be found.

In the following tests, all linear systems were solved using the preconditioned
conjugate gradient (PCG) method up to an accuracy of 10−10. The numerical
calculations were performed on a single core of an Intel Xeon X5482 processor at
3.2GHz with 64GB of core memory using the H-matrix library AHMED and the
Intel Math Kernel Library (MKL) version 10.3.

Example 5.1. We consider the following boundary value problem

−Δu = f in Ω := (0, 1)3,

u = 0 on ∂Ω.

For the discretization linear ansatz functions have been chosen and the cluster trees
of the different H-matrices were constructed using a bounding box method. The
minimal block size was set to nmin = 50, and the admissibility parameter η = 1.2
was used. The truncation accuracy for the preconditioners HChol and MHChol was
set to ε = 0.1. To obtain comparable results for the spectrally equivalent versions,
HChols and MHChols were adapted so that the number of PCG steps is around
10 for the smallest test case with 3000 unknowns.

As can be seen from Table 1 and Table 2, HChol and MHChol approximate the
stiffness matrix A in almost the same way but the preservation of side constraints
leads to a significant reduction of the condition number. For HChol it can be seen
that a factor eight in the number of unknowns n leads to a doubling in the number
of PCG steps, which is in agreement with Theorem 3.5. Although the results in
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Table 1. Preconditioners without preservation of side constraints
for Example 5.1; notations �1 := ‖A−Ã‖2/‖A‖2, �2 :=PCG steps.

HChol HChols

n �1 κ(Ã−1A) �2 �1 κ(Ã−1A) �2

3 k 0,026 2,14 12 0,019 1,64 10
7 k 0,046 2,82 14 0,048 1,77 11
11 k 0,030 3,36 16 0,032 1,67 11
30 k 0,025 6,96 22 0,014 1,64 11
63 k 0,049 8,25 24 0,020 1,58 10
94 k 0,043 13,52 30 0,014 1,39 10
250 k 0,030 236,27 51 0,005 1,19 8

Table 2. Preconditioners with preservation of side constraints in
Example 5.1; notations �1 := ‖A− Ã‖2/‖A‖2, �2 :=PCG steps.

MHChol MHChols

n �1 κ(Ã−1A) �2 �1 κ(Ã−1A) �2

3 k 0,025 1,26 9 0,021 1,26 9
7 k 0,043 1,31 9 0,043 1,30 9
11 k 0,027 1,31 10 0,025 1,28 9
30 k 0,025 1,32 10 0,025 1,31 10
63 k 0,048 1,38 10 0,047 1,36 10
95 k 0,044 1,65 12 0,040 1,58 11
250 k 0,027 1,41 11 0,027 1,35 10

Table 2 do not show significant changes in the condition number, we still believe
that the estimate in Theorem 3.6 is sharp.

The almost constant number of PCG steps for the preconditioners HChols and
MHChols is in accordance with the proposed levelwise adapted approximation ac-
curacy in Theorem 3.5 and Theorem 3.6. An overview of the number of PCG steps
used to solve the systems of linear equations with the different preconditioners is
depicted in Figure 2.

Example 5.2. In the second example, we consider the diffusion problem

−div(σ∇u) = 0 in Ω,

u = 0 on Γ1,

∂u

∂ν
= I on Γ2,

∂u

∂ν
= 0 on Γ3.

The computational domain Ω is a conductor with the shape of a pyramid; see
Figure 3. The boundary Γ1 is the upper end of the conductor and Γ2 is the lower
end. We denote the remaining boundary as Γ3 := ∂Ω\(Γ1∪Γ2). The conductivity σ
of the conductor is set to σ = 1 in the left and σ = 1000 in the right half, while it
is zero in the non-conductive part.
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Figure 2. Comparison of the number of PCG steps for the con-
sidered preconditioners.

Figure 3. A conductor with the shape of a pyramid is the com-
putational domain Ω of Example 2.

For the discretization, we used quadratic ansatz functions and the cluster trees
were created using nested dissection; see [7]. The minimal blocksize was set to
nmin = 150, the admissibility parameter η = 1.2 was used.

The numerical results in Table 3 were obtained by employing HChols with the
parameter ε = 1e − 3 in Theorem 3.5. After computing HChols the accuracy for
the preconditioner MHChols was adapted so that the resulting preconditioners have
almost equal consumption of memory (difference is less than one percent). As can
be seen from Table 3, it was not possible for the presented example to create a
preconditioner HChols of similar size as MHChols for a large number of unknowns
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Table 3. Spectrally equivalent preconditioners for Example 5.2.

n memory PCG steps HChols PCG steps MHChols

66 k 72MB 7 6
120 k 137MB 14 10
390 k 596MB 15 11
515 k 731MB n.a. 11
748 k 1 383MB n.a. 8

because the approximation without side constraints became indefinite. An expla-
nation for this is that the preserved vectors span a linear space that approximate
the small eigenvectors of the stiffness matrix. This leads to a stabilizing effect as
discussed in [6] and makes the preconditioner MHChols practically more robust
than HChols.
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