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A NOVEL GALERKIN METHOD FOR SOLVING PDES ON THE SPHERE USING

HIGHLY LOCALIZED KERNEL BASES

FRANCIS J. NARCOWICH, STEPHEN T. ROWE, AND JOSEPH D. WARD

Abstract. The main goal of this paper is to introduce a novel meshless kernel Galerkin method for numer-

ically solving partial differential equations on the sphere. Specifically, we will use this method to treat the
partial differential equation for stationary heat conduction on S2, in an inhomogeneous, anisotropic medium.

The Galerkin method used to do this employs spatially well-localized, “small footprint”, robust bases for the

associated kernel space. The stiffness matrices arising in the problem have entries decaying exponentially
fast away from the diagonal. Discretization is achieved by first zeroing out small entries, resulting in a sparse

matrix, and then replacing the remaining entries by ones computed via a very efficient kernel quadrature

formula for the sphere. Error estimates for the approximate Galerkin solution are also obtained.

1. Introduction

The main goal of this paper is to introduce and analyze a novel meshless kernel Galerkin method for
numerically solving partial differential equations on the sphere. Specifically, we will use this method to
treat the partial differential equation for stationary heat conduction on S2, the unit sphere in R3, in an
inhomogeneous, anisotropic medium. The equation for this heat-flow is

(1.1) Lu = −div(a·∇u) + b(x)u = f,

where div and ∇ are the divergence and gradient on S2, and a is a rank 2 positive definite tensor on S2, and
f is in the Sobolev space Hs, s ≥ 0. The analysis includes error estimates when the exact stiffness matrix is
used, and also when various quadrature-based discretizations of that matrix are employed.

The kernels that we employ here are surface splines, φm(x · y) = (−1)m(1−x · y)m−1 log(1−x · y), m ≥ 2.
These are conditionally positive definite spherical basis functions (SBF). Their reproducing kernel Hilbert
spaces (native spaces) are equivalent to the Sobolev spaces Hm ≈ Wm

2 (S2). The associated approximation
spaces involve spans of {φm((·) · ξ)}ξ∈X , with X being a discrete, finite set of quasi-uniformly distributed
centers or nodes, along with spherical harmonics of order m. We denote them by Vφm,X .

It is well known that, under mild conditions on an SBF φ, the spaces Vφ,X have excellent approximation
power [21]. This makes them an an obvious choice for use in meshless methods for solving PDEs. Kernel
Galerkin methods using radial basis functions (RBFs) were employed in [36] to theoretically treat elliptic
partial differential equations on Rn. On S2, SBF Galerkin methods for −∆u = f have been studied in [16,17],
More recently, Le Gia et al. [18, 19] used collocation and multi-level SBF methods for the purpose.

There are several drawbacks to these methods. Bases of the form {φ((·) · ξ) : ξ ∈ X} give rise to inter-
polation/stiffness matrices that are full and poorly-conditioned. The bases are not well localized spatially:
changing even small amounts of data requires re-computation of the matrices involved [37, pg. 208]. For
Galerkin methods on S2, there is an additional problem that arises in connection with discretization. Entries
in the stiffness matrices have to be numerically computed via quadrature. For instance, the method used
in [16] requires solving an optimization problem to find the weights involved. This is a computationally
expensive process. Applying it to large numbers of nodes is problematic.

The new meshless Galerkin method that we present here overcomes these difficulties. There are two novel
features of our Galerkin approach to numerically approximating solutions to (1.1). First, for the surface
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splines, Fuselier et al. [8] recently showed in the Lagrange basis for Vφm,X each Lagrange function χξ(x) is
highly localized spatially; indeed, χξ(x) decays exponentially fast as x moves away from ξ. Moreover, when
χξ is expressed in the kernel basis for Vφm,X , the coefficient αξ,η of φm(x · η) also decays exponentially fast
as η moves away from ξ. Thus χξ has a “small footprint” in the kernel basis. These features make the
Lagrange basis robust. It is for this basis that we will build our initial theory.
L2-error estimates for the Galekin solutions constructed using the thin-plate splines are derived in sec-

tion 6.1. Indeed, we derive the error estimates for Galerkin solutions constructed using an arbitrary SBF
φ, restricted only by the condition that coefficients in its expansion in spherical harmonics satisfy (6.1).
(These conditions hold for φm, with τ = m.) If f ∈ Hs(S2), the L2 error bounds derived in section 6.1 are
C‖f‖shs+2

X , for 0 ≤ s ≤ 2m− 2, and C‖f‖2m−2h
2m
X , for s > 2m− 2. These error estimates differ from those

found in works cited above in two ways: they hold for operators of the form L in (1.1), not just ∆, and they
apply even when s is fractional.

Constructing the χξ’s requires all of the points in X. In this sense, the χξ’s form a global Lagrange
basis; finding them is computationally expensive. In [8] a local Lagrange basis was also introduced. Each
basis element χlocξ is constructed using only O((logN))2) in the neighborhood of ξ, and it approximates χξ
well. These elements have very fast spatial decay, although not exponential. They have the advantage that
computing them is fast and parallelizable.

The computational advantages of these local bases make them a good choice for the implementation of
our meshless method. We use our initial theory for the global Lagrange basis to further develop this method
when a local Lagrange basis is used.

The stiffness matrix matrix A in the global Lagrange basis is the key to the whole method. Our technique
relies on having high quality approximations to this matrix. A itself has a number of very attractive properties
in the global basis: (1) The entries Aξ,η decay exponentialy fast in the distance between ξ and η. Thus A is
essentially sparse and, as we shall see, zeroing out small entries will provide a sparse approximation. (2) If
NX = card(X), then the number of non-negligible entries in each row is O

(
(log(NX)2

)
. (3) The condition

number of A is O(q−2
X ), where qX is half the separation distance for X.

Discretization of the stiffness matrix is essential to the Galerkin method. After zeroing out small entries,
the remaining matrix is sparse, having O

(
NX(log(NX)2

)
entries. These entries are integrals that have to be

computed via quadrature. To do this, we use kernel-based quadrature formulas for the sphere [9,14,30], with
our kernels being surface splines. The special bases available to us for the approximation spaces corresponding
to the φm’s enable us to efficiently construct the quadrature formulas [9]. Unlike the quadrature formula
used in [16], the weights are obtained by solving a linear system of equations. Finding the weights follows
readily by applying the techniques of [8]. These quadrature formulas are accurate, optimally so in many
cases, even in the presence of noise, and they are stable when the number of nodes, which we denote by Y ,
increases. Indeed, tests run with this method handled over two-thirds of a million nodes [9].

When the problem is discretized, we get the continuous error plus a quadrature error. The quadrature
error comes from replacing the stiffness matrix A by AY , whose entries are computed from those of A via
the Theorem 7.5 gives a theoretical bound on ‖A − AY ‖2. If we ignore logarithms and similar terms, this
is ‖A − AY ‖2 ∼ (NX/NY )M , where φM , 2 ≤ M ≤ m, is used to obtain weights in the quadrature formula.
The L2 error estimate for the discretized Galerkin solution is given in Theorem 7.9.

There is related work for Rn. As mentioned earlier, Wendland [36] explored RBF Galerkin for domains in
Rn. However, problems with discretizing the stiffness matrix entries were limiting factors in implementing
the method. For Sn, the quadrature methods discussed above avoid these problems. In [2], Bond et al.
successfully employed an RBF Galerkin method, using an approach based on the one used here, in numerical
experiments for a peridynamic model of a nonlocal heat equation (See [4] for a discussion of peridynamics.)

We now discuss an outline of the paper and its organization. In section 2, we discuss background infor-
mation on quasi-uniform sets of centers, geometry, and Sobolev spaces. In section 3, we discuss the relevant
approximation spaces for the Galerkin method that we introduce. Section 4 describes the major tools used
here: the highly localized Lagrange bases we employ throughout the work (section 4.1) and the quadrature
formulas essential for discretizing the stiffness matrix (section 4.2). Section 5 discusses general properties of
(1.1), including regularity of weak solutions and a useful application of the “Nitsche trick” [25]. Section 6.1
gives Galerkin error estimates in the case where the approximation spaces are generated by SBFs satisfying
only (6.1). The next section, section 6.2, is key. It sets forth the properties of the stiffness matrix in the
Lagrange basis: its quasi-bandedness, good conditioning, decay of matrix elements away from the diagonal,



A NOVEL MESHLESS GALERKIN METHOD 3

and general robustness. Section 7 discusses aspects of discretizing the problem. Theorem 7.9 is the main
result of the section; it contains the theoretical L2-bound on the difference between discretized Galerkin
solution and the exact solution. In section 8, we discusse reducing the computational expense of numer-
ically finding the Galerkin solution to the problem. There are two aspects of this. The first is obtaining

a truncated approximation ÃY to the discretized stiffness matrix AY . Each row in ÃY has O(log(NX))2)
nonzero entries, as opposed to NX in AY . The second is to replace the global Lagrange basis with a local
one, which is much easier to numerically find. The error estimates from making these approximations are
virtually unchanged. In section 9, the results of numerical experiments that we did are presented. In terms
of rates of convergence, the numerical results were actually better than the theory predicted. Finally, we
wish to mention a few new results discussed in the appendix. In section A, we establish a generalized version
of the so called “doubling trick,” which applies to SBF interpolation of functions twice as smooth as those in
the native space of the SBF [10,27]. The result, which is given in Theorem A.3, holds for functions smoother
that those in the native space for φ, but not having “double” the smoothness. In addition, it applies for
SBFs that are conditionally positive definite.

2. Preliminaries

2.1. Geometry of Sets of Centers. Although S2 is the underlying space for the Galerkin methods treated
in this paper, much of what we will discuss in the next few sections applies to Sn. In view of this, we will
work in Sn.

Let dist(x, y) be the geodesic (great circle) distance between two points on Sn. We will let X = {xj}Nj=1 ⊂
Sn be a set of N distinct points; we will call X a set of centers. We remark that, apart from, say the vertices
of the Platonic solids in S2 and similar quantities in Sn, n > 2, there are no uniformly distributed sets of
points in Sn. We can, however, obtain quasi-uniform sets of points. We will explain this below.

There are three geometrical quantities associated with X. The first is the separation radius, qX . For every
x ∈ X, the radius of the largest ball whose interior contains no other point of X is given by 1

2dist(x,X \{x});
qX is defined to be the smallest of these radii:

qX := min
x∈X

1

2
dist(x,X \ {x}).

Obviously 2qX is the minimum distance between any two points in X. The second and third are the mesh
norm, hX , and the mesh ratio, ρX . The mesh norm hX is the radius of the largest ball in Sn whose interior
contains no point of X. It also can be characterized as the largest distance of any point in Sn from X. The
mesh ratio is the ratio of hX to qX :

hX := max
x∈Sn

dist(x,X) and ρX := hX/qX .

The mesh norm, which is also called the fill distance, measures how tightly packed the centers are in Sn.
The mesh ratio measures how uniformly the centers are placed. When it is close to 1, the distribution of the
points in X is said to be quasi uniform.

For ρ ≥ 1, let Fρ = Fρ(Sn) be the family of all sets of centers X with ρX ≤ ρ ; we will say that the
family Fρ is ρ-uniform. Unless confusion would arise, we will not indicate either ρ or Sn, and just use F to
designate the family Fρ(Sn). The specific ρ or sphere Sn will be clear from the context.

On S2, there are three important quasi-uniform sets of nodes (centers): Fibonaccii nodes, icosahedral
nodes, quasi minimum energy nodes. All three of these families of nodes are quite popular in applications;
see, for example [11,20,26,32] for the icosahedral nodes, [15,29,33] for the Fibonacci nodes, and [5,6,28,39]
for the quasi-minimum energy nodes. Similar considerations apply to Sn, n > 2.

2.2. Spherical Harmonics and Sobolev Spaces. The sphere Sn is of course a Riemannian manifold with
metric tensor gij and invariant measure dµ =

√
det(gij)dx

1 · · · dxn, where x1, x2, . . . , xn is a smooth set of
local coordinates. For S2, the metric tensor in spherical coordinates (θ, ϕ), with θ being the colatitude and
ϕ being the longitude, has the form

gij =

(
1 0
0 sin2 θ

)
.

The metric tensor for Sn also can be expressed in a similar set of coordinates. On any Riemannian manifold
there are two important operators: the covariant derivative ∇, powers of covariant derivatives ∇k, which is
an operator on tensors, and the Laplace-Beltrami operator ∆ = −∇∗∇. The covariant derivative operating
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on a function is the usual gradient, expressed appropriately. Other powers are tensor operators. For example,
∇2 plays the role of a Hessian. In local coordinates, ∆ has the form

∆u =
1√

det(gij)

∑
i,j

∂

∂xi

√
det(gij)g

ij ∂u

∂xi
,(2.1)

where gij = (gij)
−1. For S2, in spherical coordinates, the Laplace-Beltrami operator is given by

∆u =
1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

sin2 θ

∂2u

∂ϕ2
.

We now turn to a discussion of spherical harmonics; the details may be found in [23]. Spherical harmonics
are eigenfunctions of ∆. On Sn, the eigenvalues of −∆ are λ` = `(`+ n− 1). The eigenspace corresponding
to λ` is degenerate, and has dimension

(2.2) d` =


1, ` = 0,

(2`+ n− 1)Γ(`+ n− 1)

Γ(`+ 1)Γ(n)
∼ `n−1 , ` ≥ 1 .

.

We note that d` = O(`n−1). The eigenfunctions corresponding to λ` are denoted by Y`,k, where k = 1, . . . , d`.
We will use the real-valued versions of the spherical harmonics. The eigenspace of λ` will be denoted by

H`. The space of all spherical harmonics of order L or less will be denoted by ΠL =
⊕L

`=0H`. In addition,
we mention the well-known addition formula. Let x, y ∈ Sn and let x · y denote the usual dot product from
Rn+1. Then,

(2.3)

d∑̀
k=1

Y`,k(x)Y`,k(y) =
2`+ n− 1

(n− 1)ωn
P
n−1
2

` (x · y),

where ωn is the volume of Sn, and P
n−1
2

` is the degree ` ultraspherical polynomial of order n−1
2 .

The spherical harmonics form a complete orthonormal set in L2(Sn). Given f in L2(Sn), we can expand

f in the series f =
∑∞
`=0

∑d`
k=1 f̂`,kY`,k. As usual, given f, g ∈ L2, we have 〈f, g〉L2 =

∑∞
`=0

∑d`
k=1 f̂`,kĝ`,k.

In this paper we will work with fractional order Sobolev spaces defined in terms of Bessel potentials. [31,35].
The Sobolev space of order τ ≥ 0 is

Hτ := {f ∈ L2 : ‖f‖Hτ := ‖(I −∆)τ/2f‖L2 <∞}.

This is a Hilbert space in the inner product

(2.4) 〈f, g〉Hτ = 〈(I −∆)τ/2f, (I −∆)τ/2g〉L2 =

∞∑
`=0

d∑̀
k=1

(1 + λ`)
τ f̂`,kĝ`,k.

When τ = m is an integer, these spaces agree, up to norm equivalence, with Wm
2 (Sn), which are defined in

terms of covariant derivatives [1, 35].

3. Spherical Basis Functions and Approximation Spaces

In the following, we will be working on Sn. We start with zonal functions. A continuous function
φ : [−1, 1]→ R is said to be zonal if it has the expansion,

(3.1) φ(t) :=

∞∑
`=0

φ̂`
2`+ n− 1

(n− 1)ωn
P
n−1
2

` (t),

where P
n−1
2

` is a degree ` ultra spherical polynomial [34, §4.7]. Zonal functions give rise to kernels on the
sphere in the following way. Let t = x · y, x, y ∈ Sn. Using the addition formula (2.3) in (3.1), we see that

(3.2) φ(x · y) =

∞∑
`=0

φ̂`

d∑̀
k=1

Y`,k(x)Y`,k(y),

which is a kernel mapping Sn × Sn to R.
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SBFs are zonal functions having φ̂` > 0 for all ` ≥ 0. They are strictly positive definite functions on Sn.
This means that the matrix A = (φ(ξ · η))ξ,η∈X is positive definite for every choice of X. Equivalently,∑

ξ,η∈X

cξcηφ(ξ · η) > 0,

except when the c’s are all 0. A being positive definite allows us to interpolate arbitrary continuous functions
(or data, for that matter) on Sn, using functions from the approximation space

Vφ,X := span{φ((·) · ξ) : ξ ∈ X}.
This follows because the existence of c = A−1f |X implies that

IXf(x) =
∑
ξ∈X

cξφ(x · ξ)

interpolates f on X, and does so uniquely. The SBF φ is also a reproducing kernel for the Hilbert space

N := {f ∈ L2 :
∑
`,k

φ̂−1
` |f̂`,k|

2 <∞}.

This space is often called the native space of φ; it has the inner product

(3.3) 〈f, g〉N =

∞∑
`=0

d∑̀
k=1

φ̂−1
` f̂`,kĝ`,k.

The SBF φτ for which φ̂τ,` = (1 + λ`)
−τ , with τ > n/2, is especially important. The native space for φτ

is the Sobolev space Hτ , since ‖f‖N = ‖(I − ∆)τ/2f‖L2 = ‖f‖Hτ . Making use of this observation yields
a fractional order “zeros lemma,” similar to integer order ones proved in [13, Appendix A]. This will be
important in the sequel.

Lemma 3.1 (Zeros Lemma). Let σ, τ ∈ R satisfy τ > n/2, 0 ≤ σ ≤ τ . In addition, let X ⊂ Sn be quasi
uniform. If u ∈ Hτ satisfies u|X = 0, then, for hX sufficiently small, we have

‖u‖Hσ ≤ Chτ−σX ‖u‖Hτ .

Proof. Let IX,φτ be the interpolation operator corresponding to φτ . By [24, Theorem 5.5], we have that

‖u− IX,φτu‖Hσ ≤ Chτ−σX ‖u‖Hτ .
Note that u|X = 0 implies that IX,φτu ≡ 0. Using this in the previous equation then yields the result. �

The SBFs discussed above are all strictly positive definite. We will also need to make use of conditionally

positive definite SBFs. These SBFs have the form given in (3.1), but the φ̂`’s need only be positive for ` > L.

For 0 ≤ ` ≤ L, φ̂` is arbitrary. Conditionally positive definite SBFs are employed to interpolate scattered
data, with the requirement that the interpolants reproduce ΠL, the space of spherical harmonics of degree
L or less. (Other spaces are also possible.) For a conditionally positive definite SBF φ, the corresponding
approximation space is defined to be

Vφ,L,X :=

{∑
ξ∈X

aξφ((·) · ξ) :
∑
ξ∈X

aξ p(ξ) = 0 ∀ p ∈ ΠL

}
+ ΠL

The interpolation operator that both interpolates continuous functions and reproduces ΠL is

(3.4) IX,Lf =
∑
ξ∈X

aξ,Lφ(x · ξ) + pX,L, pX,L ∈ ΠL, and
∑
ξ∈X

aξ,Lp(ξ) = 0, p ∈ ΠL.

The coefficients aξ,L and the polynomial pX,L are determined by the requirements that the interpolation
condition IX,Lf |X = f |X hold and also that the coefficients satisfy the condition on the right above. Again,
the interpolant is unique. There is also a semi-Hilbert space N associated with φ. This is defined to be

N := {f ∈ L2 :

∞∑
`=L+1

d∑̀
k=1

φ̂−1
` |f̂`,k|

2 <∞}, 〈f, g〉N =

∞∑
`=L+1

d∑̀
k=1

φ̂−1
` f̂`,kĝ`,k.

In addition, we will need the following well-known fact, which we state without proof.
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Proposition 3.2. Suppose that τ > n/2 and that φ is an SBF such that there are constants c, C and L ∈ N
for which c(1 + λ`)

−τ ≤ φ̂` ≤ C(1 + λ`)
−τ holds either for all ` ≥ 0 or for all ` ≥ L + 1. If ε > 0, then

φ ∈ H2τ−n2−ε .

4. Highly Localized “Small Footprint” Bases

Surface splines, or polyharmonic kernels, are special conditionally positive definite SBFs, and are a key
ingredient in the kernel methods presented here. While they can be defined for any Sn [13], we will restrict
our attention to the case of S2 [8]. Their explicit forms are given below:

(4.1)

φm(t) = (−1)m(1− t)m−1 log(1− t), 1 < m ∈ N,

φ̂m,` = Cm
Γ(`−m+1)
Γ(`+m+1) ∼ `

−2m ∼ λ−m` , ` > m− 1.


Here Cm = 2m+1πΓ(m)2. These kernels are conditionally positive definite, and interpolation with them will
reproduce Πm−1. The space N associated with φm is, up to norm equivalence, the Sobolev space Hm(S2)

modulo Πm−1. Also, since φ̂m,` ∼ `−2m, it is easy to show that φm ∈ H2m−1−ε(S2), ε > 0. Furthermore,
this implies that the approximation space for φm satisfies

Vφm,X := Vφm,m−1,X ⊂ H2m−1−ε(S2), ∀ ε > 0.

4.1. Lagrange functions. We can form a basis for Vφm,X using Lagrange functions or cardinal functions.
A Lagrange function χξ is defined as the unique interpolant from Vφm,X that satisfies χξ(η) = δξ,η. Since
χξ ∈ Vφm,X , it has the form

(4.2) χξ =
∑
ζ∈X

αξ,ζφm((·) · ζ) + pξ, pξ ∈ Πm−1,
∑
ζ∈X

αξ,ζ p(ζ) = 0 ∀ p ∈ Πm−1.

Interpolation using the χξ’s is simple: If f is a continuous function on S2, with f |X given, then Iφm,Xf =∑
ξ∈X f(ξ)χξ.
There are two important properties of the Lagrange functions constructed from the φm’s. First, they

are well localized in space. Indeed, χξ(x) decays exponentially in dist(x, ξ). Second, they have a small
“footprint” in the set of basis elements. Again, the coefficients αξ,ζ decay exponentially in dist(ξ, ζ). Each
χξ is effectively using only a small number of kernels from the set {φm((·) · ξ) : ξ ∈ X}; i.e, χξ has a small
“footprint” in the set of kernels. The precise result is stated below:

Theorem 4.1 ( [8, Theorem 5.3]). Let ρ > 0 be a fixed mesh ratio and let N 3 m ≥ 2. There exist constants
h∗, ν, c1, c2 and C, depending only on m and ρ, so that if hX ≤ h∗, then χξ given in (4.2) has these
properties:

|χξ(x)| ≤ C exp

(
−ν dist(x, ξ)

hX

)
,(4.3)

|αζ,ξ| ≤ Cq2−2m
X exp

(
−ν dist(ξ, ζ)

hX

)
,(4.4)

c1q
2/p
X ‖β‖`p(X) ≤

∥∥∑
ξ∈Ξ

βξχξ
∥∥
Lp(S2)

≤ c2q2/p
X ‖β‖`p(X).(4.5)

In addition to the various bounds above, we will also need a bound on ∇χξ, the covariant derivative of
χξ. The lemma below will be needed to obtain this bound, as well as several others in the sequel.

Lemma 4.2. Let x ∈ S2 be fixed. Then, there is a constant C that is independent of ν and the properties of
X for which we have

(4.6)
∑
ξ∈X

e
− ν
hX

dist(x,ξ)
<

Cρ2
X

(1− e−ν)2
.

In addition, if B(x, r0) is the ball of radius r0 and center x, then

(4.7)
∑

ξ∈X∩B(x,r0){

e
− ν
hX

dist(x,ξ)
< Cρ2

X

n0e
−(n0−1)ν

(1− e−ν)2
, n0 = dr0/hXe.
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Proof. Divide the sphere into bands of width ∼ hX , center x, and outer radius ∼ nhX , n ≥ 1. The sum
then satisfies the inequality ∑

ξ∈X

e
− ν
hX

dist(x,ξ)
=

nmax∑
n=1

∑
x∈bandn∩X

e
− ν
hX

d(x,ξ)

<

nmax∑
n=1

#(bandn ∩X)e−(n−1)ν ,

where nmax ∼ π/hX . The area of bandn is ∼ nh2
X . Consequently, we have that cardinality #(bandn ∩X)

is ∼ nh2
X/q

2
X = nρ2

X . Using this in the equation above yields∑
ξ∈X

e
− ν
hX

d(x,ξ)
< Cρ2

X

∞∑
n=1

ne−(n−1)ν .

Summing the series on the right above yields (4.6). To obtain (4.7), we sum the series
∑∞
n=n0

ne−(n−1)ν and

use the fact that n0 − (n0 − 1)e−ν < n0. �

Theorem 4.3. Adopt the notation of the Theorem 4.1. There exists a constant C = C(ρ,m) such that

(4.8) |∇χξ(x)| ≤ Cq−1
X e
− ν
hX

d(x,ξ)
.

In addition, ‖∇χξ‖L∞ ≤ Cq−1
X . Finally,

(4.9) Λ1 := max
x∈S2

∑
ξ∈X

|∇χξ(x)| < Cρ2
Xq
−1
X

1

(1− e−ν)2
.

Proof. The Hölder estimate given in [13, Theorem 5.3], with ε = 1, is

|χξ(x)− χξ(y)| ≤ C d(x, y)

qX
e
− ν
hX

d(x,ξ)
.

Fixing x and dividing by d(x, y) yields∣∣∣∣χξ(x)− χξ(y)

d(x, y)

∣∣∣∣ ≤ Cq−1
X e
− ν
hX

d(x,ξ)
.

Let t̂ be a unit tangent vector based at x. Choose y to be a point along the geodesic starting at x with
tangent t̂. Then,

lim
d(x,y)→0

∣∣∣∣χξ(x)− χξ(y)

d(x, y)

∣∣∣∣ = |Dt̂(χξ)(x)| ≤ Cq−1
X e
− ν
hX

d(x,ξ)
.

This holds for every direction t. Since maxt |Dt(χξ)(x)| = |∇χξ(x)|, the bound (4.8) follows immediately.

Obviously, we also have ‖∇χξ‖L∞ ≤ Cq−1
X . �

Proposition 4.4. Adopt the notation and assumptions of Theorem 4.1 and suppose that a, b ∈ C∞, m ≥ 2
and 0 < ε < 2m − 3. Then, bχξχη ∈ H2m−1−ε ∩ L∞. Moreover, for hX sufficiently small, there exists
C = C(ρ,m) such that

(4.10) ‖bχξχη‖H2m−1−ε ≤ Ch2+ε−2m
X ‖b‖H2m ,

(4.11) ‖a∇χξ · ∇χη‖H2m−ε−2 ≤ Ch1+ε−2m
X ‖a‖H2m .

Proof. In the proof below we will need the inequalities 2m − ε − 1 > 2 and 2m − ε − 2 > 1, which follows
easily from 0 < ε < 2m− 3.

Theorem B.1 applies to bχξ, because b ∈ C∞ ⊂ H2m−1−ε∩L∞ and, by Theorem 4.1, χξ ∈ H2m−1−ε∩L∞.
Consequently, the three products bχξ χη, bχξ and χξχη are in H2m−1−ε∩L∞. A straightforward application
of Theorem B.1, equation (B.1), to the various products then results in this bound:

‖bχξχη‖H2m−1−ε ≤ C ′‖b‖L∞
(
‖χξ‖L∞‖χη‖H2m−1−ε + ‖χξ‖H2m−1−ε‖χη‖L∞

)
+ C‖b‖H2m−1−ε‖χξ‖L∞‖χη‖L∞ .

By (4.5), with p =∞, we have that both ‖χξ‖L∞ and ‖χη‖L∞ are bounded by the constant c2, because the
corresponding β’s have a single entry, 1. Moreover, since 2m − 1 − ε > 1, the Sobolev embedding theorem
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and a standard inclusion inequality imply that ‖b‖L∞ ≤ C‖b‖H2m−1−ε ≤ C‖b‖H2m
. Inserting these in the

previous inequality then yields

(4.12) ‖bχξχη‖H2m−1−ε ≤ Cc2‖b‖H2m

(
‖χξ‖H2m−1−ε + ‖χη‖H2m−1−ε + c2

)
We will now employ a Bernstein inequality1 [21, Theorem 6.1] that holds for functions in Vφm,X . The
parameters in the theorem are β = 2m, from (4.1), p = 2, n = 2, γ = 2m − 1 − ε > 2 and g = χξ. The

theorem then implies that ‖χξ‖H2m−1−ε ≤ Cq1+ε−2m
X ‖χξ‖L2 . Moreover, if we set p = 2 in (4.5), we also have

both ‖χξ‖L2 and ‖χη‖L2 bounded by c2qX . Thus, ‖χξ‖H2m−1−ε ≤ Cq2+ε−2m
X . Combining the various bounds

above we arrive at ‖bχξχη‖H2m−1−ε ≤ Cc2‖b‖H2mq
2+ε−2m
X (2+c2q

2m−2−ε
X ). Since qX � 1 and 2m−2− ε > 1,

we have ‖bχξχη‖H2m−1−ε ≤ Cc2‖b‖H2mq
2+ε−2m
X . From this, (4.10) follows on observing that qX ∼ hX .

To obtain the second bound, note that, by Corollary B.3, the conditions on χξ, χη imply that ∇χξ ·∇χη ∈
H2m−ε−2 ∩ L∞, since 2m− ε− 2 > 1, and that those on a are the ones used for b. Consequently,

‖a∇χξ · ∇χη‖H2m−ε−2 ≤ C‖a‖H2m

(
‖∇χξ · ∇χη‖H2m−ε−2 + ‖∇χξ · ∇χη‖L∞

)
.

Since 2m − 2 − ε > 1, we may again apply the Sobolev embedding theorem to obtain ‖∇χξ · ∇χη‖L∞ ≤
C‖∇χξ · ∇χη‖H2m−ε−2

. Combining this with the previous inequality results in

(4.13) ‖a∇χξ · ∇χη‖H2m−ε−2 ≤ C‖a‖H2m‖∇χξ · ∇χη‖H2m−ε−2 .

To estimate the norm on the right we will use Corollary B.3. This implies that

‖∇χξ · ∇χη‖H2m−ε−2 ≤ C
(
‖χξ‖H2m−1−ε + ‖χη‖H2m−1−ε

)(
‖∇χξ‖L∞ + ‖∇χη‖L∞

)
.

We may use Proposition 4.3 and the bounds on ‖χξ‖H2m−1−ε , ‖χη‖H2m−1−ε found above to obtain this:

(4.14) ‖∇χξ · ∇χη‖H2m−ε−2 ≤ Ch2+ε−2m
X q−1

X ≤ Ch1+ε−2m
X

Finally, using the bound from (4.14) in (4.13) yields (4.11). �

4.2. Quadrature formulas. Numerically computing the integrals that arise in any Galerkin method ulti-
mately requires a quadrature formula. In the setting of a sphere and other homogeneous manifolds, kernel
quadrature formulas [9, 14, 30] have been developed and analyzed. Let f be continuous and consider the
surface spline φm given in (4.1). In addition, let Y be a quasi-uniform set of points on S2, which may be
different from X. The quantities qY , hY , and ρY , and cardinality NY have their usual meanings. Using φm,
form the Lagrange functions χ̃ζ , ζ ∈ Y corresponding to Y and the interpolant IYf =

∑
ζ∈Y f(ζ)χ̃ζ . The

quadrature formula is obtained integrating IYf :

QY (f) =

∫
S2
IYf(x)dµ(x) =

∑
ζ∈Y

f(ζ)wζ , wζ :=

∫
S2
χ̃ζ(x)dµ(x).

We point out that a few of the weights wζ can be near zero or become slightly negative in the case of
arbitrary Y . This is usually not the case for most quasi-uniform sets Y . (See the discussion in [9,30, Section
2.2.1]). In fact, not only are the weights positive for most sets, but they also satisfy the lower bound

(4.15) wζ ≥ Ch2
Y .

In the rest of our discussion, we will assume that (4.15) holds. The only situation where this assumption
comes into play will be in stability considerations of the discretized version of the stiffness matrix.

Positive or not, the weights all satisfy an upper bound; namely,

(4.16) |wζ | ≤ Ch2
Y .

Since wζ =
∫
S2 χ̃ζ(x)dµ(x), we have that |wζ | ≤ ‖χ̃ζ‖L1(S2). To estimate the right side, use (4.5), with p = 1,

βζ = 1 and all of the other β’s equal to 0. This gives us ‖β‖`1 = 1, and so ‖χ̃ζ‖L1(S2) ≤ c2q2
Y ≤ c2ρ

−2
Y h2

Y .
The salient feature of this quadrature formula is that the weights can be obtained by solving a linear

system of equations that is stable and, while not sparse, has entries that decay rapidly as they move away
from the diagonal. For m = 2, weights for a set Y having 600,000 points were easily computed [9, section 5].

Error estimates for the quadrature formula QY have been derived for functions in various integer valued
Sobolev spaces. However, we will need stronger results. We begin with the proposition below, which holds on

Sn, n ≥ 2. Consider a (conditionally) positive definite SBF φ that satisfies c(1 + λ`)
−τ ≤ φ̂` ≤ C(1 + λ`)

−τ

1The precise version of the theorem holds for a positive definite SBF. However, it is easy to modify it so that it will hold for

a conditionally positive definite SBF.
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for all ` ≥ L+ 1. The novel feature of this result is that it uses a new version of the “doubling trick,” which
is established in Theorem A.3, to obtain higher convergence rates for functions smoother than ones in the
native space of φ. The result is this:

Proposition 4.5. Let τ > n/2, 2τ ≥ µ > n/2, and f ∈ Hµ. If hY is sufficiently small, then

(4.17)

∣∣∣∣ ∫
Sn
f(x)dµ−QY (f)

∣∣∣∣ ≤ ChµY ‖f‖Hµ .
Proof. Note that

∣∣ ∫
Sn fdµ−QY (f)

∣∣ ≤ ∫Sn |f − IYf |dµ ≤ ω1/2
n ‖f − IYf‖L2 , where ωn is the volume of Sn. In

addition, by Theorem A.3, with β = 0, we have ‖f − IYf‖L2 ≤ ChµY ‖f‖Hµ . Combining the two inequalities
yields (4.17). �

5. Weak and Strong Solutions to Lu = f

In the section we will lay out the properties, assumptions and various aspects of weak and strong solutions
to (1.1). In local coordinates on S2, this equation has the form,

Lu = − 1√
det(gij)

∑
i,j

∂

∂xi

√
det(gij)a

ij(x)
∂u

∂xj
+ b(x)u = f.(5.1)

Here, gij is the covariant form of the standard metric tensor g on S2; as usual, gij = [gij ]
−1 are the

contravariant components of g. The aij ’s are contravariant components of a C∞, symmetric rank 2 tensor
a that is positive definite in the sense that there exist positive constants c1, c2 such that

c1
∑
i,j

gij(x)vivj ≤
∑
i,j

aij(x)vivj ≤ c2
∑
i,j

gij(x)vivj(5.2)

holds for all vectors v in the tangent space at x ∈ S2. The function b(x) is C∞. In addition, we assume that
there are constants b1, b2 such that, for all x ∈ S2, 0 < b1 ≤ b(x) ≤ b2. We note that in the case that a = g,
this reduces to the case Lu = −∆u+ bu.

With L as given in (5.1) and f ∈ L2(S2), we can place Lu = f into weak form by multiplying by v ∈ H1

and integrating by parts to arrive at

〈u, v〉a :=

∫
S2

( 2∑
i,j=1

aij
∂u

∂xi
∂v

∂xj
+ buv

)
dµ =

∫
S2
fvdµ := `(v).(5.3)

By (5.2) and the assumptions on b(x), the bilinear form 〈·, ·〉a satisfies

M1‖u‖2H1
= (c1 + b1)〈u, u〉H1

≤ 〈u, u〉a︸ ︷︷ ︸
‖u‖2a

≤ (c2 + b2)〈u, u〉H1
= M2‖u‖2H1

(5.4)

A straightforward application of the Lax-Milgram theorem, together with `(v) being a bounded linear func-
tional on H1, then yields the following result:

Proposition 5.1. The bilinear form 〈·, ·〉a is coercive and bounded on H1 and defines an inner product on
H1, with the norms ‖ · ‖a and ‖ · ‖H1

being equivalent. In addition, for f ∈ L2, there is a unique u ∈ H1

such that (5.3) is satisfied; that is, u ∈ H1 weakly solves Lu = f . Finally, ‖u‖L2 ≤ ‖f‖L2 .

We now turn to the regularity of the weak solution to Lu = f . A priori estimates of the general type
needed here may be found in the survey article by Mikhailets and Murach [22, Theorem 6.6], along with
references. They are, however, given for pseudo-differential operators. A simpler approach is to use the local
regularity theorems in [7, pgs. 261-269], which apply to open sets in Rn, and so to coordinate patches on Sn.
Since the sphere is compact, they apply globally to Lu = f , and so we have the (standard) regularity result
that we will use in the sequel.

Proposition 5.2. Let L be as described above. If u is a distributional solution to Lu = f , where f ∈ Hs,
0 ≤ s, s ∈ R, then for any t < s − 1 there is a constant Ct > 0 such that u ∈ Hs+2 and ‖u‖Hs+2 ≤
Ct(‖Lu‖Hs + ‖u‖Ht). In addition, we have that ‖u‖Hs+2

≤ C‖Lu‖Hs .
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Proof. The assertions in [7, Corollary 6.27 and Theorem 6.30] regarding regularity and the inequality
‖u‖Hs+2 ≤ Ct(‖Lu‖Hs + ‖u‖Ht) are true for elliptic operators in general, and specifically for our L, which is
strongly elliptic and has C∞ coefficients. To obtain the second inequality, start by setting t = 0 in the first
inequality. Also note that, from (5.3), we have min(b)‖u‖2L2 ≤ ‖u‖2a = 〈Lu, u〉L2 ≤ ‖Lu‖L2‖u‖L2 . Dividing

by ‖u‖L2 , we obtain ‖u‖L2 ≤ C‖Lu‖L2 , since min(b) > 0. Thus ‖u‖s+2 ≤ C
(
‖Lu‖Hs + ‖Lu‖L2

)
. The

inequality we want then follows from the observation that ‖Lu‖L2 ≤ ‖Lu‖Hs . �

We close this section with a corollary to the regularity result above. The corollary forms the basis of the
“Nitsche trick” [25] that we will use later.

Corollary 5.3. Let V be a closed subspace of H1 and let PV be the orthogonal projection of V onto H1,
relative to the inner product 〈·, ·〉a. If u ∈ H1 and Lw = u− PV u, then

(5.5) ‖u− PV u‖2L2 ≤ ‖w − PV w‖a‖u− PV u‖a
Proof. Since we have Lw = u − PV u, the regularity result above implies that w ∈ H3. Integrating by
parts in 〈w, u − PV u〉a yields 〈w, u − PV u〉a = 〈Lw, u − PV u〉L2 = 〈u − PV u, u − PV u〉L2 = ‖u − PV u‖2L2 .
Next, note that PV w is in V, and so PV w is orthogonal to u − PV u, relative to 〈·, ·〉a. Consequently,
〈w, u − PV u〉a = 〈w − PV w, u − PV u〉a. It follows that ‖u − PV u‖2L2 = 〈w − PV w, u − PV u〉a. Applying
Schwarz’s inequality then yields (5.5). �

6. Galerkin Approximation for Lu = f

6.1. Error estimates. We will use spaces of spherical basis functions to obtain approximate solutions to
Lu = f ; specifically, the Vφ,X ’s and the Vφ,L,X ’s defined earlier. Let φ be an SBF on S2 that is positive
definite or conditionally positive definite. For τ > 1, we will make the assumption that the Fourier-Legendre
coefficients of φ satisfy

(6.1) c(1 + λ`)
−τ ≤ φ̂` ≤ C(1 + λ`)

−τ , ∀ ` ≥ L+ 1,

where c and C are positive constants and L is the highest order special harmonic reproduced by interpolation
from Vφ,L,X . In later sections, when we will be concerned with the stability of discretizing the problem, we
will restrict the SBFs to the thin-plate splines. For obtaining error estimates, this is unnecessary.

Let PX := PVX be the orthogonal projection of H1 onto the finite dimensional space VX , in the 〈·, ·〉a inner
product, and let IX be the interpolation operator associated with VX . Since ‖u−PXu‖a = minv∈VX ‖u−v‖a,
we have that

(6.2) ‖u− PXu‖a ≤ ‖u− IXu‖a ≤ C‖u− IXu‖H1 ,

where the last inequality follows from the equivalence of the norms ‖ · ‖a and ‖ · ‖H1
. The same reasoning

applies to the solution w to Lw = u− PXu, so ‖w − PXw‖a ≤ C‖w − IXw‖H1 . Combining these estimates
with the one from Corollary 5.3 then yields this:

(6.3) ‖u− PXu‖2L2 ≤ C‖w − IXw‖H1‖u− IXu‖H1 .

The regularity results in Proposition 5.2 imply that if f ∈ Hs then the solution u to Lu = f is in Hs+2.
Moreover, if τ > 1, then the projection PXu exists and is in Hτ+α, for any α < τ − 1. Thus, u − PXu
belongs to Hσ, σ := min(s + 2, τ + α). Applying the elliptic regularity result to Lw = u − PXu then gives
us w ∈ Hσ+2.

We are mainly interested in the case of S2 – i.e., n = 2. For that case, we have the following lemma,
which will be needed to obtain error estimates.

Lemma 6.1. Let n = 2. In the notation used above,

(6.4) ‖w − IXw‖H1
≤ Ch2‖u− IXu‖H1

.

Proof. The solution to Lw = u− PXu is in w ∈ Hσ+2, where σ := min(s+ 2, τ + α), α < τ − n/2 = τ − 1,
and τ > n/2 = 1. It follows that σ > 1 and so w is in Hσ+2 ⊂ H3. Applying Theorem A.3 then yields

(6.5) ‖w − IXw‖H1
≤ Ch2‖w‖H3

.

Furthermore, by Proposition 5.2, ‖w‖H3
≤ C‖Lw‖H1

= ‖u − PXu‖H1
. Since the usual norm for H1 is

equivalent to the ‖ · ‖a norm, we have ‖w‖H3
≤ C‖u − PXu‖a. Then, by this inequality and (6.2), we see

that ‖w‖H3
≤ C‖u− IXu‖H1

. Combining this with (6.5) gives us (6.4). �
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Theorem 6.2. Let n = 2 and Lu = f , f ∈ Hs, s ≥ 0. In the notation used above,

(6.6) ‖u− PXu‖L2 ≤
{
Chs+2‖u‖Hs+2 ≤ Chs+2‖f‖Hs , if s ≤ 2τ − 2,
Ch2τ‖u‖H2τ ≤ Ch2τ‖f‖H2τ−2 , if 2τ − 2 < s.

Proof. By Theorem A.3, we have that

(6.7) ‖u− IXu‖H1
≤
{
Chs+1‖u‖Hs+2

if s ≤ 2τ − 2,
Ch2τ−1‖u‖H2τ

if 2τ − 2 < s.

The estimate in terms of the Sobolev norms of u then follows from (6.3) and (6.4). Proposition 5.2 implies
that ‖u‖s+2 ≤ C‖Lu‖s. Since f = Lu, ‖u‖s+2 ≤ C‖f‖s. When s > 2τ − 2, then the previous argument
applies, with s+ 2 being replaced by 2τ . �

6.2. The stiffness matrix in the Lagrange basis. The error estimates obtained above are, as we noted,
independent of the SBF used. However, to actually solve for the Galerkin approximation, we must pick a
suitable φ for which there is a good basis for Vφ,L,X , one that results in a numerically robust method for
finding the the Galerkin solution. We will show that a surface spline φm and the corresponding Lagrange
basis {χξ : ξ ∈ X} will provide the required robustness.

Let m ≥ 2 and set Vm,X = Vφm,m−1,X . Take the basis for Vm,X to be {χξ : ξ ∈ X}. The Galerkin
approximation to the solution Lu = f is the orthogonal projection uX := Pm,Xu of u onto Vm,X , in the
〈·, ·〉a inner product. If uX =

∑
ξ∈X αξχξ, then, from the weak form of Lu = f and the usual normal

equations, we obtain the stiffness matrix :

(6.8) Aα = f̃ , where Aξ,η = 〈χξ, χη〉a, α = (αξ), f̃ = (〈f, χξ〉L2).

Eventually, we will discretize the problem by using quadrature methods to approximate A. For now, we will
restrict our attention to A.

6.2.1. Stability of A. We want to estimate κ2(A), the condition number for A. We begin with the observation
that A is a real, self-adjoint matrix. It is also a Gram matrix for the linearly independent set, {χξ : ξ ∈ X},
and is therefore positive definite as well. Consequently, κ2(A) = λmax(A)

λmin(A) .

We will begin by estimating λmin(A). First of all, the operator L is self adjoint and positive definite.
Standard variational methods then imply that

(6.9) min
v∈H1

〈v, v〉a = λmin(L), ‖v‖L2 = 1.

Let v =
∑
ξ∈X αξχξ. Consider the quadratic form αTAα = 〈v, v〉a. By (6.9), we have that

αTAα ≥ λmin(L)‖v‖2L2 .

Next, from (4.5), with p = 2, we have ‖v‖L2 = ‖
∑
ξ∈X αξχξ‖L2 ≥ c1qX‖α‖`2(X). From the inequality above,

we then have

αTAα ≥ λmin(L)‖v‖2L2 ≥ c21q2
Xλmin(L)‖α‖2`2(X),

which holds for all α ∈ R|X|. Hence, we have that

(6.10) λmin(A) ≥ c21q2
Xλmin(L).

Estimating λmax(A) requires the Bernstein inequality from [21, Theorem 6.1]. In the case at hand, the
theorem cited2 holds with n = 2, p = 2, 0 < γ < 2m − 1, and g = v. For every v ∈ Vm,X and every
0 < γ < 2m− 1, we have that the is a constant C > 0, where C = C(m, ρ), such that

(6.11) ‖g‖Hγ ≤ Cq
−γ
X ‖g‖L2 .

Since αTAα = 〈v, v〉a and, by (5.4), 〈v, v〉a ≤ M2‖v‖2H1
, then, from (6.11) (γ = 1) and (4.5) (p = 2, n = 2),

we have that αTAα ≤ Cq−2
X ‖v‖2L2 ≤ Cc2‖α‖2`2(X). Consequently,

(6.12) λmax(A) ≤ C, C = C(m, ρ, ‖ · ‖a).

Combining (6.12) and (6.10) results in the following:

2The precise version of the theorem holds for a positive definite SBF. However, it is easy to modify it so that it will hold for
a conditionally positive definite SBF.
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Theorem 6.3. Let A be the stiffness matrix in the basis {χξ : ξ ∈ X} for Vm,X . If qX is sufficiently small
and ρ is fixed, then there is a constant C = C(m, ρ, ‖ · ‖a) for which the condition number κ2(A) satisfies
κ2(A) ≤ Cq−2

X .

6.2.2. Exponential decay of the entries of A. At this point, we turn to the behavior of the entries Aξ,η in
A. What we will see is that the entries in A decay exponentially in dist(ξ, η), making A nearly sparse. In
section 8, we will use this decay to construct a sparse discretization for A. Establishing decay requires the
following lemma.

Lemma 6.4. Let f, g be in C1(S2), and let ∇f,∇g be their covariant derivatives. Then, there is a constant
C such that for all x ∈ S2 we have

(6.13)
∣∣∑
i,j

aij(x)∇if(x)∇jg(x)
∣∣ ≤ C|∇f(x)| |∇g(x)|.

Proof. The matrix aij is positive definite, so may use it as an inner product. Schwarz’s inequality applied
to this inner product implies that∣∣∑

i,j

aij∇if∇jh
∣∣ ≤ (∑

i,j

aij∇if∇jf
)1/2

(
∑
i,j

aij∇ig∇jg
)1/2

By (5.2), we have that
∑
i,j a

ij∇if∇jf ≤
∑
i,j g

ij∇if∇jf = |∇f |2. This also holds for g as well. Applying

these inequalities to the previous one yields (6.13). �

Proposition 6.5. For hX sufficiently small,

(6.14) |Aξ,η| ≤ Ch−2
X e
− ν
hX

dist(ξ,η)
.

Proof. Since we have Aξ,η = 〈χξ, χη〉a, we have that

|Aξ,η| ≤
∫
S2

∣∣∑
i,j

aij∇iχξ∇jχη + b(x)χξχη
∣∣dµ(x).

By Lemma 6.4 and the boundedness of b, we have that∣∣∑
i,j

aij∇iχξ∇jχη + b(x)χξχη
∣∣ ≤ C|∇χξ||∇χη|+ ‖b‖L∞ |χξ| |χη|.

Moreover, using (4.8) and (4.3), we see that

C|∇χξ| |∇χη|+ ‖b‖L∞ |χξ| |χη| ≤ (C1q
−2
X + C2) exp

(
−ν dist(x, ξ) + dist(x, η)

hX

)
.

Because dist(·, ·) is a metric on S2, we may use the triangle inequality: dist(x, ξ) + dist(x, η) ≥ dist(ξ, η). In
addition, hX small implies that qX = hX/ρX is also small. Combining these facts yields, uniformly in x,
this inequality: ∣∣∑

i,j

aij∇i(χξ)∇j(χη) + b(x)χξχη
∣∣ ≤ Ch−2

X e
− ν
hX

dist(ξ,η)
.

Integrating both sides above then establishes (6.14). �

7. The Discretized Galerkin Solution

The discretized solution to the Galerkin problem is obtained simply by replacing the stiffness matrix A
from the original problem with a discretized version, which is obtained via quadrature, and then solving as
usual. In order to carry out a complete analysis of this method, in the sequel we will restrict the tensor aij

to have the form aij = a gij , where a ∈ C∞(S2).

7.1. Discretizing the stiffness matrix. We now turn to the task of discretizing the stiffness matrix. Our
approach is to approximate the (ξ, η) entry Aξ,η =

∫
S2
(
a∇χξ · ∇χη + bχξχη

)
dµ by means of the quadrature

formulas discussed in section 4.2. In doing so, we will allow for the surface spline used in the Galerkin
method, φm, to differ from the one used in the quadrature formula. We will denote the latter by φM , with
M ≥ 2.
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7.1.1. Discretization error for the stiffness matrix. To discretize the stiffness matrix, we will employ a set of
nodes Y that is chosen independently of X. In general, Y will be much larger than X and need not contain X
as a subset. That said, the discretization of Aξ,η =

∫
S2
(
a∇χξ ·∇χη + bχξχη

)
dµ is QY (a∇χξ ·∇χη + bχξχη).

In explicit form, this is given by

(7.1) AYξ,η :=
∑
ζ∈Y

(
a∇χξ · ∇χη + bχξχη

)∣∣
ζ
wζ .

We will need the following lemma to obtain bounds on the error |Aξ,η −AYξ,η|:

Lemma 7.1. Suppose that m > M are positive integers and that ε > 0. Let σ = m−M . If M ≥ σ + 1 and
ε < 2σ − 1, then ε < m− 2 and 2m− 1− ε > 2M .

Proof. We will begin by showing show the first inequality. By assumption, ε < 2σ−1, so ε < σ+σ+ 1−2 ≤
σ +M − 2 = m− 2. To get the second, note that 2m− ε− 1 = 2M + 2σ − 1− ε. Since 2σ − 1− ε > 0, we
have that 2m− ε− 1 > 2M . �

Corollary 7.2. Suppose that a(x), b(x) ∈ C∞(S2), and adopt the notation and assumptions from Lemma 7.1.
In addition, let {χξ : ξ ∈ X} and {χ̃ξ : ξ ∈ Y } be the Lagrange bases for Vm,X := Vφm,X and for VM,Y :=
VφM ,Y , respectively. Then, if δ := 2σ − 1− ε > 0, we have:

(7.2)
∣∣Aξ,η −AYξ,η∣∣ ≤ C(hY /hX)2Mh−δX , C = C(‖a‖H2m , ‖b‖H2m),

where AYξ,η = QY (a∇χξ · ∇χη + bχξχη). Moreover, δ ≤ m − 2 − ε, so it may be made as small as we wish
by taking ε close to m− 2.

Proof. By Proposition 4.4, bχξχη is in H2m−1−ε for all 0 < ε < m − 2. By Lemma 7.1, if M ≥ σ + 1
and ε < 2σ − 1, then we have both 2m − 1 − ε > 2M and ε < m − 2. It follows that we may use (4.17)
with τ = M and µ = 2M < 2m − 1 − ε = 2M + 2σ − 1 − ε. From the bound in (4.10), and from
‖bχξχη‖H2M

≤ ‖bχξχη‖H2m−1−ε , we see that∣∣∣∣ ∫
S2
bχξχηdµ−QY (bχξχη)

∣∣∣∣ ≤ Ch2M
Y ‖bχξχη‖H2m−1−ε

≤ Ch2M
Y h

1+ε−(2σ−1)−2M
X ‖b‖H2m

≤ C(hY /hX)2Mh1−δ
X ‖b‖H2m

.(7.3)

Using the same argument, but with the bounds from (4.11) instead of (4.10), we have

(7.4)

∣∣∣∣ ∫
S2
a∇χξ · ∇χηdµ−QY (a∇χξ · ∇χη)

∣∣∣∣ ≤ C(hY /hX)2Mh−δX ‖a‖H2m .

If we combine (7.3) and (7.4) and note that hX < π, we obtain (7.2). To prove the statement concerning δ,
observe that δ = σ − 2− ε+ (σ + 1) ≤ m−M − 2 + ε+M = m− 2− ε. �

Remark 7.3. If M ≥ m and 0 < ε < m − 2 , then, obviously, 1 < m + 1 < 2m − ε − 1 < 2M . Thus, we
may use (4.17) with τ = M and µ = 2m− 1− ε. The same arguments employed above then imply that the
error estimate in (7.2) becomes

(7.5)
∣∣Aξ,η −AYξ,η∣∣ ≤ C max(‖a‖H2m

, ‖b‖H2m
)(hY /hX)2m−1−ε.

The right side in this inequality depends on m and ε, but not on M . It follows that there is no advantage
in choosing M > m.

One important fact is that AYξ,η decays in dist(ξ, η) in the same way as Aξ,η. We will establish this below.

Before carrying out the proof, we mention that, although we use the assumption (4.15) in our proof, it is
not necessary to do so. We also wish to point out that the denominator of the fraction in the exponent is
hX , and not hY , as one would first suppose.

Proposition 7.4. The discretized entry AYξ,η satisfies the bound
∣∣AYξ,η∣∣ ≤ Ch−2

X exp(− ν
hX

dist(ξ, η)).

Proof. The same argument used to establish (6.14) yields |AYξ,η| ≤ Ch−2
X

(∑
ζ∈Y |wζ |

)
e
− ν
hX

dist(ξ,η)
. By our

assumption that the weights are positive, we have that
∑
ζ∈Y |wζ | =

∑
ζ∈Y wζ = 4π, from which the result

is immediate. �
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The theorem below gives us the desired bound on the error ‖A−AY ‖2 that is made in using quadrature
to compute the entries in the stiffness matrix.

Theorem 7.5. Let m > M ≥ 2 and let φM be the surface spline used for quadrature. If 0 < δ < 2(m−M)−1,
then, for hX and hY sufficiently small, we have

(7.6) ‖A−AY ‖2 ≤ C(log(hY ))2(hY /hX)2Mh−δX

Proof. Recall that, for a self-adjoint matrix C, ‖C‖2 ≤ ‖C‖1 = ‖C‖∞. Applying this to the self-adjoint
matrix A−AY yields

‖A−AY ‖2 ≤ max
η∈X

(∑
ξ∈X |Aξ,η −AYξ,η|

)
.

The task is now to bound the sums on the right above. Let r0 > hx and let B(η, r0) be the ball with center
η and radius r0. We may break up the sum over X into a sum over centers inside B(η, r0) and those in
B(η, r0): ∑

ξ∈X

|Aξ,η −AYξ,η| =
∑

ξ∈X∩B(η,r0)

|Aξ,η −AYξ,η|+
∑

ξ∈X∩B(η,r0){

|Aξ,η −AYξ,η|.

By Propositions 6.5 and 7.4, we have that
∣∣Aξ,η −AYξ,η∣∣ ≤ Ch−2

X e
− ν
hX

dist(ξ,η)
. Using this and (4.7) yields

(7.7)
∑

ξ∈X∩B(η,r0){

|Aξ,η −AYξ,η| ≤ Ch−2
X

∑
ξ∈X∩B(η,r0){

e
− ν
hX

dist(ξ,η)
< Cρ2

Xh
−2
X

e−(n0−1)νn0

(1− e−ν)2
, n0 = dr0/hXe.

The set of remaining centers isX∩B(η, r0), whose cardinality may be bounded by vol(B(η, r0))/vol(B(η, qX)) ∼
r2
0/q

2
x = ρ2

X(r0/hX)2 < ρ2
Xn

2
0. From this fact and the uniform estimate on |Aξ,η −AYξ,η| in (7.2), we see that

(7.8)
∑

ξ∈X∩B(η,r0)

∣∣Aξ,η −AYξ,η∣∣ ≤ Cρ2
Xn

2
0(hY /hX)2Mh−δX .

Choose a constant K so that Kν > 2M and pick r0 = KhX | log(hY )| so that n0 ∼ K| log(hY )|. (The hY is

not a mistake.) The bounds in (7.7) and (7.2) are then Ch−2
X hKνY | log(hY )| and C(log(hY ))2(hY /hX)2Mh−δX ,

respectively. Note that h−2
X hKνY ≤ h2M

Y h−2M
X ≤ (hY /hX)2M . Since hY and hX are small and δ > 0, we also

have that | log(hY )| ≤ (log(hY ))2h−δX . Combining the various bounds above results in
∑
ξ∈X

∣∣Aξ,η −AYξ,η∣∣ ≤
C(log(hY ))2(hY /hX)2Mh−δX . This holding uniformly in η immediately implies (7.6). �

7.1.2. Stability of the discretized stiffness matrix. We now turn to the question of how stable, numerically,
the discretized stiffness matrix AY is. Answering this question requires the following lemma, which relates
certain L2 norms. We will need the two lemmas below.

Lemma 7.6. Let X, Y be quasi-uniform, with ρX , ρY ≤ ρ and suppose that u ∈ VX and IY u is the
interpolant of u relative to the kernel φm, m ≥ 2 and its associated space VY . Then, there exists a constant
C(ρ) such that 1

2‖u‖L2 ≤ ‖IY u‖L2 ≤ 3
2‖u‖L2 , provided hY ≤ C(ρ)qX .

Proof. Let ũ = IY u. Since ‖u‖L2 − ‖u − ũ‖L2 ≤ ‖ũ‖L2 ≤ ‖u‖L2 + ‖u − ũ‖L2 , we need only find C(ρ) such
that ‖u− ũ‖L2 ≤ 1

2‖u‖L2 . From [9, Theorem 4.6], we have that

‖u− ũ‖L2 = ‖u− IY u‖L2 ≤ C1h
2
Y ‖u‖W 2

2
,

since u ∈ W 3
2 ⊂ W 2

2 and m ≥ µ = 2. The constant C1 only depends on Y through ρ. We now apply the
Bernstein inequality3 from [21, Theorem 6.1]. First, u ∈ VX , the space associated with φ3. This is essentially
the Green’s function associated with β = 6 in the Bernstein inequality. In addition, we may take γ = 2.
Thus, we have

‖u‖W 2
2
≈ ‖u‖H2 ≤ C2q

−2
X ‖u‖L2 ,where C2 = C2(ρ).

Combining this with the previous inequality yields ‖u−ũ‖L2 ≤ C1C2(hY /qX)2‖u‖L2 . The result immediately
follows on choosing C(ρ) ≤ (2C1C2)−1/2. �

Theorem 7.7. Let a, b ∈ C∞ satisfy a(x) ≥ a0 > 0 and b(x) ≥ b0 > 0. Then λmin(AY ) ≥ Cq2
X , provided

hY ≤ C(ρ)qX .

3The theorem actually requires the SBFs involved to be strictly positive definite. However, by a simple adaptation of the
argument used to prove [9, Theorem 4.6], one can establish the result needed here.
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Proof. Let u ∈ VX , and so, u =
∑
ξ∈X u(ξ)χξ and ∇u =

∑
ξ∈X u(ξ)∇χξ. Moreover, u|X is an arbitrary

vector in RNX . It follows that

(u|X)TAY u|X =
∑
ζ∈Y

(a(ζ)∇u(ζ) · ∇u(ζ) + b(ζ)u(ζ)2)wζ

≥ b0
∑
ζ∈Y

u(ζ)2wζ ≥ Cb0N−1
Y

∑
ζ∈Y

u(ζ)2 (by (4.15))

≥ Cb0h2
Y ‖u|Y ‖2`2 .

Let ũ = IY u =
∑
ζ∈Y u(ζ)χ̃ζ , which is the interpolant of u relative to VY , the space associated with φm and

Y . Of course, since ũ is the interpolant of u on Y , ũ|Y = u|Y . By Corollary 3.11, (3.1) and (3.3) in [12],
‖u|Y ‖`2 = ‖ũ|Y ‖`2 ≥ Cq−1

Y ‖ũ‖L2 . In addition, Lemma 7.6 implies that ‖ũ‖L2 = ‖IY u‖L2 ≥ 1
2‖u‖L2 . Again

applying the results from [12] then yields ‖u‖L2 ≥ CqX‖u|X‖`2 . Consequently, ‖u|Y ‖`2 ≥ Cq−1
Y qX‖u|X‖`2 .

Combining this with the lower bound on the quadratic form (u|X)TAY u|X then gives us (u|X)TAY u|X ≥
Cb0(hY /qY )2q2

X‖u|X‖2`2 = Cb0ρ
2q2
X‖u|X‖`2 , so λmin(AY ) ≥ Cq2

X . �

Corollary 7.8. If hY is chosen so that log(hY ))2(hY /hX)2Mh−δX ≤ C, then the condition number κ2(AY )

satisfies κ2(AY ) ≤ Cq−2
X .

Proof. Because λmax(AY ) = ‖AY ‖2 ≤ ‖A‖2 + ‖A − AY ‖2 = λmax(A) + ‖A − AY ‖2, we have, from (6.12),
(7.6) and the condition on hY , that λmax(AY ) ≤ C. Applying Theorem 7.7 then yields the result. �

7.2. Error estimates for the discretized Galerkin solution. Let f |X to be the restriction of f to the
set X and uh := uhX =

∑
ξ αξχξ be the Galerkinn approximation to the solution u of Lu = f . The coefficient

vector α is given by α = A−1f |X . The discretized solution uYh := uYhX is obtained by replacing the stiffness

matrix A by AY in the problem. The solution that results is uYh =
∑
ξ α

Y
ξ χξ, where αY = (AY )−1f |X .

Our goal is to analyze the L2 error between u and uYh , The triangle inequality implies that ‖u− uYh ‖L2 ≤
‖u− uh‖L2 + ‖uh − uYh ‖L2 . We can estimate ‖u− uh‖L2 using (6.7):

(7.9) ‖u− uh‖L2 ≤ Chs+2‖f‖Hs ,
We also have, by (4.5) and A−1 − (AY )−1 = (AY )−1(AY −A)A−1, that

‖uh − uYh ‖L2 = ‖
∑
ξ(αξ − αYξ )χξ‖L2

≤ c2qX‖α− αY ‖`2

≤ c2qX‖(AY )−1‖‖AY −A‖ ‖A−1f |X︸ ︷︷ ︸
α

‖`2 .

Using (4.5) again, we have ‖α‖`2 ≤ c−1
1 q−1

X ‖
∑
ξ aξχξ‖L2 = c−1

1 q−1
X ‖uh‖L2 . In addition, from Theorem 7.7,

‖(AY )−1‖ ≤ Cq−2
X . Combining these inequalities results in

‖uh − uYh ‖L2 ≤ Cq−2
X ‖A

Y −A‖‖uh‖L2

Because ‖u− uh‖L2 ≤ Chs+2‖f‖Hs , we have ‖uh‖L2 ≤ ‖u‖L2 +Chs+2
X ‖f‖Hs . Moreover, by Proposition 5.1,

‖u‖L2 ≤ C‖f‖L2 ≤ C‖f‖Hs . Thus, for hX ∼ qX small,

‖uh − uYh ‖L2 ≤ Cq−2
X ‖A

Y −A‖
(
‖f‖Hs + Chs+2

X ‖f‖Hs
)
≤ Cq−2

X ‖A
Y −A‖‖f‖Hs .

From this and (7.9), it follows that

(7.10) ‖u− uYh ‖L2 ≤ C
(
hs+2
X + q−2

X ‖A
Y −A‖2

)
‖f‖Hs

The above discussion together with Theorem 7.5 yields (7.11) below. Note that the second term in (7.11)
measures the quadrature error. Ideally, the “fine set” Y can be chosen so that the second term is comparable
to the optimal error O(hs+2

X ).

Theorem 7.9. Let f, s be as in Theorem 6.2 and let m,M, δ be as in Theorem 7.5. Then, for hX and hY
sufficiently small, we have

(7.11) ‖u− uYh ‖L2 ≤ C
(
hs+2
X +

(log(hY )hMY )2

h2M+2+δ
X

)
‖f‖Hs .
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8. Sparse Approximation and Local Lagrange Functions

This section discusses reducing the computational expense of numerically finding the Galerkin solution

to the problem. There are two aspects of this. The first is obtaining a truncated approximation ÃY to the

discretized stiffness matrix AY . Each row in ÃY has O(log(NX))2) nonzero entries, as opposed to NX in
AY . The second is to replace the global Lagrange basis with a local one. As mentioned in the introduction,
computing this basis requires inverting a number small matrices, a task that is parallizable. The error
estimates from making these approximations are virtually unchanged.

8.1. Sparse Approximation. So far, we have not addressed the question of how well a sparse approxi-
mation to the stiffness matrix would perform. Suppose that, in AY , we discard all entries AYξ,η that satisfy

dist(ξ, η) ≥ KhX | log hX |, where Kν > 2. Let the matrix we get in this way be ÃY , where

(8.1) ÃYξ,η :=

{
0, dist(ξ, η) > KhX | log hX | ,
AYξ,η, dist(ξ, η) ≤ KhX | log hX |.

The matrix ÃYξ,η is symmetric. The number of nonzero elements in each row is approximately the ratio

of the areas of caps having radii KhX | log hX | and hX , respectively. If we make use of this and of the fact

that, since X is quasi uniform, hX ∼ N−1/2
X , then we see that

(8.2) #{row η} ≈ (KhX | log hX |)2

h2
X

= K2(log(hX))2 ≈ 1

4
K2(log(NX))2,

as opposed to NX for AY itself.

Proposition 8.1. Let Kν > 2 and ÃY be defined by (8.1). Then,

(8.3) ‖AY − ÃY ‖2 ≤
2CKe−ν

(1− e−ν)2
hKν−2
X | log(hX)|.

Proof. We will follow the proof of Theorem 7.5. Because AY and ÃY are symmetric, the norm ‖AY − ÃY ‖2
satisfies the bound

‖AY − ÃY ‖2 ≤ ‖AY − ÃY ‖1 = ‖AY − ÃY ‖∞ = max
η∈X

(∑
ξ∈X |AYξ,η − ÃYξ,η|

)
.

We again want to estimate each term in the sums above. Let Bη be the ball centered at η and having radius

rh = KhX | log(hX)|. From Proposition 7.4 the definition of ÃY , we have that∑
ξ∈X

|AYξ,η − ÃYξ,η| =
∑

ξ∈X∩B{
η

|AYξ,η| ≤ Ch−2
X

∑
ξ∈X∩B{

η

e
− ν
hX

dist(ξ,η)
.

Next, divide B{
η into bands of width ∼ hx, the nth band being a distance approximately rh + nhX from η.

Repeating the derivation of (7.7), mutatis mutandis, we obtain∑
ξ∈X

|AYξ,η − ÃYξ,η| ≤ Ch−2
X e−νK| log(hX)|

∞∑
n=1

(K| log(hX)|+ n)e−νn ≤ 2CKe−ν

(1− e−ν)2
hKν−2
X | log(hX)|.

Combining the inequalities above yields (8.3). �

8.2. Local Lagrange Functions. The result above quantifies the error made in zeroing out the entries
AYξ,η corresponding to all ξ, η such that dist(ξ, η) > KhX | log hX |. To obtain the rest of the entries we still

need to use (7.1); this entails finding the χξ’s, which are global in the sense that they require all of the points
in X for their computation.

There is a way around this. In [8], Fuselier et al. introduced a basis for Vφm,X composed of local Lagrange
functions, {χlocξ : ξ ∈ X}. These basis functions are simply Lagrange functions for the points in X that lie

in a ball of radius KhX | log(h)| about ξ ∈ X. A detailed description of their construction and properties is
given in [8, §6.3]. We will simply list what we need here, in the theorem below.

Theorem 8.2 ( [8, Theorem 6.5]). Let the notation and assumptions of Theorem 4.1 hold; define Υξ :=
X∩B(ξ,KhX | log(hX)|). There exists 4 µ = µ(m) such that for K > 0 satisfying J := Kν−4m+2−2µ > 0

4One may take µ = ι, where ι is constructed in [8, Lemma 6.4].
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these these hold:

‖χlocξ − χξ‖L∞ ≤ C hJX ,(8.4)

|χlocξ (x)| ≤ C
(
1 + dist(x, ξ)/hX

)−J
.

Furthermore, when J > 2, the set {χlocξ } is Lp stable: there are C1, C2 > 0 for which

C1q
2/p
X ‖β‖`p(X) ≤

∥∥∑
ξ∈XβXχ

loc
ξ

∥∥
Lp(S2)

≤ C2q
2/p
X ‖β‖`p(X).

Local Lagrange functions may be expanded in global ones. Because χlocξ is a Lagrange function for Υξ, it

satisfies χlocξ (η) = δξ,η, for η ∈ Υξ. Of course, we also have χξ(η) = δξ,η, for all η ∈ X. Expanding χlocξ (x)

in terms of the basis {χη}η∈X results in

(8.5) χlocξ (x) = χξ(x) +
∑
η 6∈Υξ

χlocξ (η)χη(x) = χξ(x) +
∑
η 6∈Υξ

(
χlocξ (η)− χξ(η)

)
χη(x),

since, for ξ 6= η ∈ X, χξ(η) = δξ,η = 0. Taking the covariant derivative in the equation above yields

(8.6) ∇χlocξ (x) = ∇χξ(x) +
∑
η 6∈Υξ

χlocξ (η)∇χη(x). = ∇χξ(x) +
∑
η 6∈Υξ

(
χlocξ (η)− χξ(η)

)
∇χη(x).

From (8.6) and (8.4), it easily follows that

|∇χlocξ (x)−∇χξ(x)| ≤ ‖χlocξ − χξ‖L∞
∑
η 6∈Υξ

|∇χη(x)| ≤ ChJ
∑
η∈X
|∇χη(x)|.

Applying (4.9) to the rightmost inequality then yields the following result:

Lemma 8.3. If J > 1, then ‖∇χlocξ −∇χξ‖L∞ ≤ CρXh
J−1
X .

The result we are aiming at is estimating the error made in replacing the exact Lagrange functions by the
local Lagrange functions in computing AYξ,η. Specifically, define

(8.7) AYloc,ξ,η :=
∑
ζ∈Y

(
a∇χlocξ · ∇χlocη + bχlocξ χlocη

)∣∣
ζ
wζ .

We want to estimate |AYξ,η −AYloc,ξ,η|. This we do in the proposition below.

Proposition 8.4. Let AYξ,η be given by (7.1) and let AYloc,ξ,η be as above. Then, for hX sufficiently small
and J > 2,

(8.8) |AYξ,η −AYloc,ξ,η| ≤ ChJ−2
X

holds uniformly for ξ, η ∈ X and the set Y .

Proof. Note that, at x ∈ S2, we have

|∇χlocξ · ∇χlocη −∇χξ · ∇χη| ≤ |∇χlocξ −∇χξ| |∇χη|+ |∇χlocη −∇χη| |∇χξ|+ |∇χlocξ −∇χξ| |∇χlocη −∇χη|.

By this inequality and Theorem 4.3, we see that

|∇χlocξ · ∇χlocη −∇χξ · ∇χη| ≤ C1h
J−1
X q−1

X + C2h
2J−2
X = C1ρXh

J−2
X + C2h

2J−2
X ∼ CρXhJ−2

X .

A similar calculation yields |χlocξ χlocη −χξχη| ≤ ChJX . From this, the previous inequality, and hX being small,

we have that |AYξ,η −AYloc,ξ,η| ≤ Ch
J−2
X

∑
ζ∈Y wζ = 4πChJ−2

X ∼ ChJ−2
X . �

Distance estimates. We have already dealt with a bound on ‖AY − ÃY ‖2 in Proposition 8.1. We are really

only interested in the “chopped” version of AYloc – i.e., ÃYloc, which is defined analogously to ÃY in (8.1).

Proposition 8.5. For hX sufficiently small and J > 2, we have that

(8.9) ‖ÃYloc − ÃY ‖2 < CK2(log(hX))2hJ−2
X .
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Proof. As before, we have ‖ÃYloc − ÃY ‖2 ≤ maxη∈X
(∑

ξ∈X |ÃYξ,η − ÃYloc,ξ,η|
)
. For fixed η, all terms with

d(ξ, η) > Khx| log(hX)| are 0. It follows that∑
ξ∈X |ÃYξ,η − ÃYloc,ξ,η| =

∑
ξ∈B(η,rh)∩X |AYξ,η −AYloc,ξ,η|, rh = KhX | log(hX)|.

From (8.8), the difference in the right sum is uniformly bounded by ChJ−2. Consequently, applying (8.2)
then yields

‖ÃYloc − ÃY ‖2 ≤ max
η∈X

(∑
ξ∈X |ÃYξ,η − ÃYloc,ξ,η|

)
≤ ChJ−2 maxη∈X #{row η} < CK2(log(hX))2hJ−2

X ,

which is (8.9). �

Corollary 8.6. Assume that the hypotheses of Theorem 7.5, Proposition 8.1 and Proposition 8.5 hold. Then,{
‖A− ÃY ‖2 ≤ C

(
(log(hY ))2(hY /hX)2Mh−δX + | log(hX)|hKν−2

X

)
,

‖A− ÃYloc‖2 ≤ C
(
(log(hY ))2(hY /hX)2Mh−δX + (log(hX))2hJ−2

X

)
.

Proof. The first result follows from first applying the triangle inequality and the three distance estimates

from Theorem 7.5, Proposition 8.1 and Proposition 8.5 to ‖A− ÃY ‖2. Establishing the second is done is a

similar way, employing the additional fact that hKν−2
X | log(hX)| < (log(hX))2hJ−2

X , since Kν−2 > J−2. �

Stability. The matrices ÃY and ÃYloc both have roughly the same stability properties as A and AY . We will
establish them in Theorem 8.8 below. To do this, we will need the following elementary result from linear
algebra, which we state without proof.

Lemma 8.7. Let S and T be Hermitian n×n matrices and let S be positive definite. If there exists 0 ≤ ε < 1
such that ‖S − T‖2 ≤ ελmin(S), then T is positive definite, and, in addition, these hold:

(1− ε)λmin(S) ≤ λmin(T ) ≤ (1 + ε)λmin(S),

1− ε
1 + ε

κ2(S) ≤ κ2(T ) ≤ 1 + ε

1− ε
κ2(S).

Theorem 8.8. Suppose that the conditions of Theorem 7.7 and Corollary 7.8 are satisfied. If J = Kν −
4m+ 2− 2µ > 4, then both ÃY and ÃYloc are positive definite, have λmin(ÃY ) ∼ λmin(ÃYloc) ∼ q2

X , and also

have κ2(ÃY ) ∼ κ2(ÃYloc) ∼ q
−2
X .

Proof. Note that J > 4 implies that Kν > 4, so that, as long as qX is small, (8.3) holds, and so, using
hX = ρXqX and applying Theorem 7.7, we have

‖AY − ÃY ‖2 ≤ CqKν−4
X | log(qX)|q2

X ≤ CqKν−4
X | log(qX)|︸ ︷︷ ︸

ε1

λmin(AY ) = ε1λmin(AY ).

Since Kν − 4 > 0, we may choose qX so small that ε1 < 1. Lemma 8.7 then implies the results stated for

ÃY . Using the this result and (8.9), we get

‖ÃY − ÃYloc‖2 ≤ CqJ−4
X (log(qX))2︸ ︷︷ ︸

ε2

λmin(ÃY ) = ε2λmin(ÂY ),

Because J > 4, we may choose qX sufficiently small so that ε2 < 1. Applying Lemma 8.7 then yields the

result for ÃYloc. �

Sparse and sparse local Lagrange Galerkin error estimates. We conclude by giving errors for the L2-Galerkin

approximations to u, ũYh and ũYloc,h, which are obtained by discretizing with the chopped matrices ÃY and

ÃYloc. The estimates below are gotten in very nearly the same way as the one in Theorem 7.9. The only change

is that ‖(AY )−1‖‖AY −A‖ = λmin(AY )−1‖AY −A‖ gets replaced by λmin(ÂY )−1‖A−ÃY ‖2 ∼ q−2
X ‖A−ÃY ‖2

in the first instance, and by λmin(ÂYloc)
−1‖A− ÃYloc‖2 ∼ q

−2
X ‖A− ÃYloc‖2 in the second.
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Theorem 8.9. If the conditions of Theorem 7.7 and Corollary 7.8 are satisfied, then

‖u− ũYh ‖L2 ≤C
(
hs+2
X +

(log(hY )hMY )2

h2M+2+δ
X

+ | log(hX)|hKν−4
X

)
‖f‖Hs , Kν > 4,(8.10)

‖u− ũYloc,h‖L2 ≤C
(
hs+2
X +

(log(hY )hMY )2

h2M+2+δ
X

+ (log(hX))2hJ−4
X

)
‖f‖Hs , J > 4.(8.11)

9. Implementation and Numerical Experiments

This section discusses the practical aspects of implementation and present numerical experiments. We dis-
cuss the construction of point sets for the discrete approximation space and quadrature points, the assembly
of the stiffness matrix, and the assembly of the right hand side vector.

The numerical scheme requires two sets of points on the sphere. The coarse set X is used to build a basis
for the approximation space Vφm,X discussed in section 4. This space is spanned by the Lagrange functions
{χξ}ξ∈X defined in (4.2), which have this form:

χξ(x) =
∑
η∈X

αη,ξφm(x · η) +
m−1∑
`=0

2`+1∑
k=1

βl,k,ξY`,k(x),

∑
η

αη,ξY`,k(η) = 0, 0 ≤ ` ≤ m− 1, 1 ≤ k ≤ 2`+ 1.

The αξ,η and β`,k,ξ coefficients must be computed for each ξ ∈ X. They are determined by χξ(ζ) = δξ,ζ
and the second set of equations above. Solving for them is not very difficult, even though each Lagrange
function requires all of the points in X for its computation. However, for large data sets, there is a very
efficient, parallelizable way to numerically compute local Lagrange functions. These functions, which were
introduced in [8], require relatively few nodes from X and give very good approximations for the χξ’s.

The second, finer set Y is used, in the quadrature formulas, to discretize entries in the stiffness matrix
(7.1). By Theorem 7.5, the mesh norm of the set Y determines the error in the discrete stiffness matrix and
should be chosen appropriately to obtain a desired accuracy in numerically approximating it. The quadrature
weights {wζ}ζ∈Y satisfy ∫

S2
χ̃ζ(x) dµ(x) = wζ ,

where χ̃ζ is the Lagrange function centered at ζ ∈ Y for the kernel φm. The kernel φm need not be the same
kernel as the one used in the construction of the approximation space VX . The weights can be computed
efficiently by solving a single linear system that can be preconditioned by the local Lagrange functions;
see [9] for details. Solving the system with Generalized Minimum Residual method (GMRES) and the local
Lagrange preconditioner requires few iterations. Experiments performed in [9] demonstrate that the number
of iterations required seems to be independent of the number of points in Y .

The stiffness matrix assembly requires computing the quadrature nodes Y and quadrature weights {wζ}ζ∈Y
and the coefficients {αη,ξ}ξ,η∈X and {β`,ξ}ξ∈X . We recall the discrete stiffness matrix entries found via quad-
rature:

AYξ,η =
∑
ζ∈Y

(
a∇χξ · ∇χη + bχξχη

)∣∣
ζ
wζ .

We provide some details of the computation of ∇χξ · ∇χη(ζ). We expand the Lagrange functions in terms
of the surface splines φm (denoted φ) as χξ(ζ) =

∑
τ∈X ατ,ξφ(ζ, τ) + pξ(ζ) and χη(ζ) =

∑
γ∈X αγ,ηφ(ζ, γ) +

pη(ζ). Let x = sin(θ) cos(ϕ), y = sin(θ) sin(ϕ), z = cos(θ) where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. On S2,

∇f = ∂f
∂θ θ̂ + 1

sin(θ)
∂f
∂ϕ ϕ̂. Let φ′(ζ, τ) = (m− 1)(1− ζ · τ)m−2 log(1− ζ · τ) + ζ · τ − 1. Let τ = (τx, τy, τz) in

Cartesian coordinates. We note that ∂φ(·,τ)
∂x |ζ = φ′(ζ, τ)τx, and similarly for the y and z partial derivatives.
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Evaluating the covariant derivative of the restricted surface spline in Cartesian coordinates then yields

∇φ(·, τ)|ζ = φ′(ζ, τ)

(
(1− ζ2

x)τx − ζxζyτy − ζxζzτz )̂ı

+ (−ζxζyτx + (1− ζ2
y )τy − ζxζyτz)̂

+ (−ζxζzτx − ζyζzτz + (1− ζ2
z )τz)k̂

)
.

The evaluation of ∇χξ · ∇χη(ζ) then reduces to

∇χξ(ζ) · ∇χη(ζ) =
(∑

τατ,ξ∇φ(ζ, τ) +∇pξ(ζ)
)
·
(∑

γαγ,η∇φ(ζ, γ) +∇pη(ζ)
)
.(9.1)

9.1. Numerical Experiments. In this section, we discuss numerical results of various experiments that
explore the computational properties of the Galerkin method. We consider different differential operators,
explore the effects of the quadrature node density on the L2 error of the discrete solution, and compute
condition numbers for the discrete stiffness matrix. We also demonstrate that local Lagrange functions, as
discussed in [8], provide a computationally less expensive approximation space and yield comparable error and
condition numbers as the approximation space generated by the Lagrange functions. We choose the spherical
basis function φ3(t) = (1− t)2 log(1− t) to construct the approximation space and φ2(t) = (1− t) log(1− t)
for the quadrature weights. We use the minimum energy points for the centers X used in the approximation
space Vφ3,X . For the quadrature nodes, we use the icosahedral nodes and quasi-minimum energy points.
These points are available for download; see [38]. For each experiment, the L2 error is computed by evaluating
the discrete solution on a set of evaluation points E and applying the Lagrange function quadrature rule.
The set E is 62500 quasi-minimum energy points, which is used for each experiment independent of X and
Y . Let NX and NY denote the number of points in X and Y respectively. We approximate hY by 1√

NY
.

We first consider the problem −∆u+u = f with u = exp(cos(θ)) and f = exp(cos(θ))(cos2(θ)+2z cos(θ)).
In the second and third columns of Table 1 we display the relative L2 errors of the discrete solution for two
separate experiments. To obtain the discrete stiffness matrix, we first fixed 961 centers for X and varied the
number of quadrature points used in Y The quadrature points are icosahedral nodes with between 2, 562
points to 92, 162 points. We theoretically expect the L2 error to be O(| log(hY )|2h4

Y ). In fact, the numerically
observed error is O(| log(hY )|2h5.2

Y ). The experiment was repeated with NX = 3721 minimum energy nodes
and using the same Y . This time, ignoring the NY = 2562 outlier, | log(hY )|h5.5

Y is observed, indicating that
improvement in the theoretical errors rates is possible. The Lagrange basis was used for these two sets.

Next, we treated the problem −div(a ·∇u) + u = f for the case in which a = a(θ, φ)g, where g is the
metric tensor for S2 and a(θ, φ) = 1 − 1

2 cos(θ). We again chose u = exp(cos(θ)), which results in the right

hand side being f =
(
− 1

2 (cos3(θ) + cos2(θ)− 5 cos(θ) + 1) + 1
)

exp(cos(θ)).
We also consider the possibility of using a local Lagrange basis to discretize the PDE. In this case,

the approximation space is VX = span{χlocξ : ξ ∈ X}, where the χlocξ functions are constructed using only

kernels φ(·, η) such that dist(ξ, η) ≤ 7hX | log(hX)|. See [8] for a detailed description of the theoretical

−∆u+ u = f −div(a ·∇u) + u = f
Lagrange Basis Local Lagrange Basis

NY NX = 961 NX = 3721 NY NX = 961 NX = 3721
2562 7.86e-5 2.19e-2 2500 8.00e-5 2.10e-2
10242 2.22e-6 3.76e-5 10000 2.46e-6 3.23e-5
23042 3.34e-7 3.83e-6 22500 3.02e-7 4.78e-6
40962 8.96e-8 9.32e-7 40000 7.80e-8 1.04e-6
92162 1.50e-8 1.27e-7 90000 1.10e-8 1.49e-7

Table 1. Both −∆u + u = f and −div(a · ∇u) + u = f were numerically solved using
minimum energy point sets for X and icosahedral point sets for Y . The L2 error for all

cases was O(| log(hY )|2h5+
Y ). Here, hY = N

−1/2
Y . For the first equation, a Lagrange basis

was used, and, for the second, a local Lagrange basis.
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Figure 1. In (a) and (b), semi-log plots of the errors (adjusted by removing log factors) for
−∆u+ u = f and −div(a · ∇u) + u = f are shown. The minimum energy points were used
for X and icosahedral points were used for Y . In (c), a loglog plot of the L2 error vs. hX
is plotted. For this experiment, the number of quadrature points is fixed and the number
of centers used for the approximation space varies. In (d), the log of the condition number
for the stiffness matrix for −∆u+ u = f is plotted.

properties of this basis. The χlocξ ’s may be constructed in parallel by solving a small linear system. This
reduces computational complexity associated with assembling the αξ,η coefficients. By appropriately tuning
the number of kernels used per Lagrange function, the local Lagrange function can be made to satisfy
‖χξ −χlocξ ‖L∞ ∼ h2m

X , where m is the smoothness of the kernel φ. For the anisotropic problem, the fifth and
sixth columns in Table 1 display the results of the experiment using the local Lagrange bias. For NX = 961,
each local Lagrange function is constructed using about 423 centers and for NX = 3721, each local Lagrange
function is constructed using around 776 centers, where the number of centers used per kernel is chosen to
be all centers with distance at most 7hX | log(hX)| from the center. The computed L2 errors from using the
local basis versus the full basis are negligible, confirming the results in section 8.2. Since the local bases
offer comparable L2 error while being computationally simpler, they offer no drawbacks when compared to



22 FRANCIS J. NARCOWICH, STEPHEN T. ROWE, AND JOSEPH D. WARD

the full basis and certainly are a good choice for the doing the discretization step. The results of the two
experiments are plotted in Figure 1(a) and Figure 1(b).

A third experiment was conducted keeping Y with fixed and varying X. The result is displayed in
Figure 1(c). In this experiment, the error increases with decreasing hX . This is counterintuitive, but in
complete agreement with the theory. What this illustrates is that the dominant term in the L2 error comes
from quadrature. This is no surprise and is a well-known phenomenon in Galerkin methods.

The condition number of the discrete stiffness matrix is dependent primarily on the separation radius
of the centers, qX . We theoretically predicted the condition number to be O(q−2

X ), which we validated
numerically. See Figure 1(d). In addition, the theory predicts that changing the quadrature nodes should
not significantly alter the condition number of the stiffness matrix. Again, this result was validated.

Appendix A. Interpolation Errors and the “Doubling Trick”

In this section we will discuss interpolation errors for spherical basis functions. Previous work on error
estimates concentrated on interpolating functions not smooth enough to be in the reproducing Hilbert space
N corresponding the to an SBF φ.

We will also need error estimates for interpolating functions smoother than those inN . Results of this kind
have been developed by Schaback [27] for positive definite functions on Rn and on manifolds. In addition,
Fuselier and Wright [10, Proposition 11] give a thorough treatment of the topic. For SBFs, the main result
is that if N is equivalent to Sobolev space Hτ , τ > n/2, then, for functions in H2τ , the error rate is double
the one obtained for functions in N . This result is known as the “doubling trick.”

Throughout this section we will assume that an SBF φ has coefficients φ̂` that satisfy the following
condition. There are constants c, C and L ∈ N such that

(A.1) c(1 + λ`)
−τ ≤ φ̂` ≤ C(1 + λ`)

−τ ,

holds either for all ` ≥ 0 or for all ` ≥ L+ 1. Here λ` = `(`+ n− 1) is an eigenvalue of −∆Sn .

A.1. Positive definite SBFs. In this section, we will deal with positive definite SBFs, so φ̂` > 0 for all `.
The proposition below is a statement of the “doubling trick” in the case where f ∈ Hτ+α, 0 ≤ α ≤ τ . We
follow this up with a general result combining the doubling trick with estimates from [24, Theorem 5.5]. We
separate the two so that the doubling trick itself is clearly stated.

Proposition A.1. Let α, β, τ ∈ R, with τ > n/2 and α, β ∈ [0, τ ]. Suppose that f ∈ Hτ+α(Sn) and that
(A.1) holds for all ` ≥ 0. If hX is sufficiently small, then

‖f − IXf‖Hβ ≤ Ch
τ+α−β
X ‖f‖Hτ+α .(A.2)

Proof. We will first deal with the β = τ case. The interpolant IXf being the projection of f onto VX in the
native space N implies that 〈f − IXf, v〉N = 0 for all v ∈ VX . Consequently, we have 〈f − IXf, IXf〉N = 0
and so ‖f − IXf‖2N = 〈f − IX , f〉N . Let g := f − IXf . The previous equation then takes the form

‖g‖2N = 〈g, f〉N . From (3.3) and the bounds on φ̂`, we see that

‖g‖2N = 〈g, f〉N =

∞∑
l=0

d∑̀
m=1

(φ̂`)
−1f̂lmĝlm

≤ C
∞∑
l=0

d∑̀
m=1

(1 + λ`)
(τ+α)/2|f̂lm|(1 + λ`)

(τ−α)/2|ĝlm|

≤ C
(∑
`,m

(1 + λ`)
τ+α|f̂lm|2

) 1
2
(∑
`,m

(1 + λ`)
τ−α|ĝlm|2

) 1
2

= C‖f‖Hτ+α ‖g‖Hτ−α .(A.3)

Applying Lemma 3.1 to g = f − IXf gives us ‖g‖Hτ−α ≤ ChαX‖g‖Hτ . Combining this and (A.3) then yields

‖g‖2N ≤ ChαX‖f‖Hτ+α ‖g‖Hτ .

In addition, the conditions on φ̂` imply that ‖g‖2N ≥ c‖g‖2Hτ , and so

c‖g‖2Hτ ≤ Ch
α
X‖f‖Hτ+α ‖g‖Hτ .
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Dividing both sides above by ‖g‖Hτ and replacing g by g = f − IXf then yields the β = τ case. If
0 < β ≤ τ , Lemma 3.1 implies that ‖f − IXf‖Hβ ≤ Chτ−β‖f − IXf‖Hτ . Since we have already shown that

‖f − IXf‖Hτ ≤ ChαX‖f‖Hτ+α , we have ‖f − IXf‖Hβ ≤ Chτ−β‖f − IXf‖Hτ ≤ Chτ+α−β‖f‖Hτ+α . �

We want to combine this with the result found in [24, Theorem 5.5], which deals with estimates for
f ∈ Hµ, τ ≥ µ > n/2, to get the following general result.

Theorem A.2. Let β, µ, τ ∈ R, with τ > n/2, n/2 < µ ≤ 2τ , and β ≤ min(µ, τ). Suppose that f ∈ Hµ(Sn)
and that (A.1) holds for all ` ≥ 0. If hX is sufficiently small, then

‖f − IXf‖Hβ ≤ Ch
µ−β
X ‖f‖Hµ .(A.4)

Proof. If µ ≥ τ , the result then follows from (A.2), with α = µ − τ . If µ ≤ τ , then (A.4) follows [24,
Theorem 5.5]. �

A.2. Conditionally positive definite SBFs. The SBFs dealt with above are all strictly positive definite.
We will also need to obtain interpolation estimates for the conditionally positive definite SBFs discussed in

section 3. Recall that for these SBFs, the φ̂`’s need only be positive for ` > L. For 0 ≤ ` ≤ L, the φ̂`’s
can be arbitrary. The interpolation operator for a conditionally positive definite SBF φ that reproduces ΠL

is given (3.4). Note that the coefficients aξ,L and the polynomial pX,L are determined by the requirements
that the interpolation condition IX,Lf |X = f |X hold and also that the coefficients satisfy the condition on

the right above. This condition also implies that changing the φ̂`’s, with 0 ≤ ` ≤ L, will not change IX,Lf ,
because ∑

ξ∈X

aξ,L

L∑
`=0

φ̂`Y`,m(x)Y`,m(ξ) =

L∑
`=0

φ̂`Y`,m(x)
∑
ξ∈X

aξ,LY`,m(ξ)︸ ︷︷ ︸
0

= 0.

The same reasoning further gives us that the terms
∑
ξ∈X aξ,Lφ(x ·ξ) and pX,L are orthogonal. Thus, letting

PΠL be the orthogonal projection onto ΠL, we have

(A.5) PΠLIX,Lf = pX,L.

These remarks above allow us to assume that φ̂` = 1 for 0 ≤ ` ≤ L, with no loss of generality. We
will thus make this assumption. Doing so turns φ into a strictly positive definite SBF and, consequently,
makes possible forming the standard SBF interpolant IXf(x) =

∑
ξ∈X aξφ(x · ξ), with the aξ’s determined

by IXf |X = f |X .
The two interpolants IXf and IX,Lf are related in several ways. First of all, the difference of the two is

given by

IXf − IX,Lf =
∑
ξ∈X

(
aξ − aξ,L

)
φ((·) · ξ)− pX,L.

Since (IXf − IX,Lf)|X = 0,
∑
ξ∈X

(
aξ,L − aξ

)
φ((·) · ξ) interpolates pX,L. Or, put another way,

∑
ξ∈X

(
aξ −

aξ,L
)
φ((·) · ξ) = IXpX,L. Rewriting equation above using this fact yields

(A.6) IXf − IX,Lf = IXpX,L − pX,L.

Theorem A.3. Let β, µ, τ ∈ R, with τ > n/2, n/2 < µ ≤ 2τ , and β ≤ min(µ, τ). Suppose that f ∈ Hµ(Sn)
and that (A.1) holds for all ` ≥ L+ 1. If hX is sufficiently small, then

‖f − IX,Lf‖Hβ ≤ Ch
µ−β
X ‖f‖Hµ .(A.7)

Proof. From (A.6) and Theorem A.2 we see that

(A.8) ‖IX,Lf − f‖Hβ ≤ ‖IXf − f‖Hβ + ‖IXpX,L − pX,L‖Hβ ≤ Chµ−β‖f‖Hµ + ‖IXpX,L − pX,L‖Hβ .

Because pX,L is a degree L polynomial, it is analytic, so of course it is in Hµ. It follows from Theorem A.2

that ‖IX pX,L − pX,L‖Hβ ≤ Ch
µ−β
X ‖pX,L‖Hµ . Furthermore, because pX,L ∈ ΠL,

λ
−(µ−β)/2
L ‖pX,L‖Hµ ≤ ‖pX,L‖Hβ ≤ λ

(µ−β)/2
L ‖pX,L‖Hµ .
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Consequently, ‖IXpX,L − pX,L‖Hβ ≤ Ch
µ−β
X ‖pX,L‖Hβ . Rewriting (A.5) as PΠL(IX,Lf − f) + PΠLf = pX,L,

taking the Hβ norm, and using ‖f‖Hβ ≤ ‖f‖Hµ , we obtain

‖pX,L‖Hβ = ‖PΠL(IX,Lf − f) + PΠLf‖Hβ ≤ ‖IX,Lf − f‖Hβ + ‖f‖Hµ ,

from which it follows that

(A.9) ‖IXpX,L − pX,L‖Hβ ≤ Ch
µ−β
X

(
‖IX,Lf − f‖Hβ + ‖f‖Hµ

)
.

From (A.8) and the previous inequality, we have

‖IX,Lf − f‖Hβ ≤ Ch
µ−β
X ‖f‖Hµ + Chµ−βX ‖IX,Lf − f‖Hβ .

Choosing hX so small that ChαX < 1
2 yields

‖IX,Lf − f‖Hτ ≤ ChαX‖f‖Hτ+α + 1
2‖IX,Lf − f‖Hβ .

Subtracting 1
2‖IX,Lf − f‖Hβ from both sides and manipulating the result gives us (A.7). �

Appendix B. Sobolev Space Algebras

In addition to the estimates on interpolation error estimates derived above, we will need to deal with
bounds on Sobolev norms of products of functions. Fortunately, Coulhon et al. [3] have established the
requisite results. We will state these results for Sn, in our notation, and only for the “p=2” cases. Before we
state these results, we point out that L2

τ = Hτ and that the norm ‖f‖τ,2 = ‖(−∆)τ/2f‖L2 + ‖f‖L2 , which
is defined on [3, p. 286], is equivalent to ‖f‖Hτ .

Theorem B.1 ( [3, Theorem 27]). Let f, g be in Hτ ∩ L∞, where τ ∈ [0,∞). Then, fg ∈ Hτ ∩ L∞ and
there exists C > 0 such that

(B.1) ‖fg‖Hτ ≤ C
(
‖f‖L∞‖g‖Hτ + ‖g‖L∞‖f‖Hτ

)
Proof. We just need to verify that the conditions in [3, Theorem 27] are satisfied. The parameters in [3,
Theorem 27] connect with ours this way: τ := α, p1 = q2 =∞, p2 = q1 = 2. If we take M = Sn, then all the
conditions imposed on the manifold, including that of bounded geometry and positive injectivity radius, are
satisfied. Thus, (B.1) holds for τ ∈ [0,∞). �

Using Banach space interpolation methods, Coulhon et al.5 showed that the following holds:

Proposition B.2 ( [3, p. 334]). Let τ > 0. Then f is in Hτ+1 if and only if f and |∇f | are in Hτ . In
addition, ‖f‖Hτ+1

∼ ‖f‖Hτ + ‖|∇f |‖Hτ .

Corollary B.3. Let f, g ∈ Hτ+1 and suppose that f, g, |∇f |, |∇g| ∈ L∞. Then ∇f · ∇g ∈ Hτ ∩ L∞ and

‖∇f · ∇g‖Hτ ≤ C
(
‖f‖Hτ+1 + ‖g‖Hτ+1

)(
‖|∇f |‖L∞ + ‖|∇g|‖L∞

)
.

Proof. We will first prove the result for f = g. By Proposition B.2, |∇f | ∈ Hτ and ‖|∇f |‖Hτ ≤ C
(
‖f‖Hτ+1

+

‖f‖Hτ
)
≤ C‖f‖Hτ+1

. Moreover, by Theorem B.1, |∇f |2 ∈ Hτ . Also, since |∇f | ∈ L∞, |∇f |2 ∈ L∞. The
remarks above and (B.1) then imply that

‖|∇f |2‖Hτ ≤ C‖|∇f |‖Hτ ‖|∇f |‖L∞ ≤ C‖f‖Hτ+1
‖|∇f |‖L∞ .

The result for f = g then follows immediately. For the general case, just use |∇(f + g)|2 − |∇(f − g)|2 =
4∇f · ∇g and apply the result for the f = g case. �

5As stated, the theorem [3, Theorem 30], which was employed in the interpolation process, requires that the manifold
be unbounded. However, examining the result as stated in [35, Theorem 7.4.5] does not make this assumption, and so the
interpolation result holds for compact manifolds as well.
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