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ON THE POSITIVITY OF DISCRETE HARMONIC FUNCTIONS

AND THE DISCRETE HARNACK INEQUALITY

FOR PIECEWISE LINEAR FINITE ELEMENTS

D. LEYKEKHMAN AND M. PRUITT

Abstract. The main aim of this paper is twofold. First, we investigate fine
estimates of the discrete Green’s function and its positivity. We establish that
in two dimensions on a smooth domain the discrete Green’s function with sin-
gularity in the interior of the domain must be strictly positive throughout the
computational domain once the mesh is sufficiently refined. We also establish
novel pointwise error estimates for the discrete Green’s function that are valid
up to the boundary of the domain. Then, using these estimates we establish
a discrete Harnack inequality for piecewise linear discrete harmonic functions.
In contrast to the discrete maximum principle the result is valid for general
quasi-uniform shape regular meshes except for a condition on the layer near
the boundary. Such results may prove to be useful for the analysis of discrete
solutions of fully nonlinear problems.

1. Introduction

Let Ω ⊂ R
N for N = 2, 3 be a convex bounded domain with sufficiently smooth

boundary. Consider the Dirichlet problem for Laplace’s equation:

−Δu = 0, in Ω,

u = b, on ∂Ω.
(1)

Here we assume b ∈ C(∂Ω) and b ≥ 0. To approximate the problem we use stan-
dard piecewise linear conforming finite elements. In this paper we will investigate
positivity of the finite element solution, pointwise estimates and the positivity of
the discrete Green’s function, and the discrete Harnack inequality.

The classical Harnack inequality states that for every fixed subdomain Ω0 � Ω,
there exists a constant C ≥ 1 depending on Ω0 so that, for any nonnegative har-
monic function u on Ω and any two points x, y ∈ Ω0, u(x) ≤ Cu(y). That is, any
two values of u in the subdomain Ω0 are comparable, with the constant independent
of the particular nonnegative harmonic function. The classical Harnack inequality
was extended to elliptic equations in divergence form with bounded measurable co-
efficients by Moser [23] using the De Giorgi-Nash-Moser iteration technique. Later,
the Harnack inequality was extended to elliptic equations in nondivergence form
with bounded measurable coefficients by Krylov and Safonov [19]. There is a large
body of literature on the Harnack inequality in settings other than classical ellip-
tic or parabolic partial differential equations on R

N . For example, the Harnack
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inequality appears in probability in Markov chains [22], in graph theory [3, 7], on
Riemannian manifolds [25], and even for infinite dimensional operators [4].

However, there is little work when the discretization is less structured. There are
almost no results on the Harnack inequality in the finite element literature, with
the exception of the paper of Aguilera and Caffarelli [1]. In this work, Aguilera and
Caffarelli adapted the continuous De Giorgi-Nash-Moser iteration technique to the
discrete setting and established a form of the Harnack inequality valid for elliptic
equations and piecewise linear finite element methods. Their technique requires
the discrete maximum principle and some additional geometric constraints on the
mesh. In particular, their results require that all of the off-diagonal entries of
the stiffness matrix be nonpositive (essentially requiring the stiffness matrix on a
bounded domain to be an M-matrix). Using a different technique, we establish the
Harnack inequality for piecewise linear finite element methods on general quasi-
uniform meshes, under the assumption of a mesh condition that must hold near
the boundary of the domain. We believe that, as in the continuous case, the
discrete Harnack inequality can be used to prove the Hölder estimates. Such Hölder
estimates may be valuable in the analysis of fully nonlinear elliptic problems, for
example for showing the uniform convergence of the approximate solution to the
viscosity solution. A similar program was carried out for the finite differences
method (cf. [20, 21]).

The mesh condition can be thought of (loosely) as requiring that the mesh be able
to approximate the normal derivative of the Green’s function sufficiently well. Our
approach is more in the spirit of Lawler [22] and requires sharp pointwise lower and
upper bounds of the corresponding continuous and discrete Green’s functions and
their error. The Green’s function results are new and are of independent interest.
For example, one consequence of the discrete Green’s function estimates in this
paper is that, for smooth convex domains in two dimensions, the discrete Green’s
function is eventually positive when the singularity is located in the strict interior
of the domain. This is also valid for higher order elements and nonsmooth domains,
except on a thin layer near the boundary. In [13], a quasi-uniform and shape regular
mesh was constructed for which the corresponding discrete Green’s function for the
piecewise linear finite element method obtained persistent negative values, even as
the mesh size tends to zero. Positivity of the Green’s function is closely related
to the maximum principle. For the continuous problem, the maximum principle
can be regarded as a consequence of the nonnegativity of the Green’s function.
However, as the counterexample in [13] shows, the discrete Green’s function need
not be nonnegative, and nonnegativity of the discrete Green’s function is not in
general sufficient to guarantee the maximum principle (see Section 5).

In contrast to the Harnack inequality, the maximum principle is the subject of
a large body of research in the finite element literature [6, 10, 12, 17, 32]. However,
the maximum principle does not hold in general for discrete harmonic functions
without additional restrictive hypotheses on the particular finite element method
used. In fact, the classical discrete maximum principle holds essentially for piece-
wise linear elements only with certain mesh restrictions [16]. A sufficient (though
not necessary) condition that guarantees that the maximum principle holds is to
require that all of the dihedral angles in the triangulation be nonobtuse. A notable
result of Schatz [26] shows that a “weak” maximum principle (also known as the
Agmon-Miranda principle) holds asymptotically for general quasi-uniform meshes
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in two space dimensions. When considered in perspective with the result of Schatz,
our results are perhaps less unexpected.

The rest of the paper is organized as follows. In Section 2, we introduce the
problem and state preliminaries, including the definitions of the various Green’s
functions that appear throughout. In Section 3, we review some well-known point-
wise estimates of the continuous Green’s function in Lemma 3.1 and a lesser-known
pointwise lower bound on the Green’s function in Lemma 3.3. In Section 4, we
prove pointwise error estimates for the discrete Green’s function which are valid
up to the boundary of the domain in Theorem 4.5. At the end of Section 4, we
deduce Theorem 4.6, a positivity result for the discrete Green’s function in two
dimensions when the singularity is located in the interior of the domain. In Section
5, we use the error estimates on the discrete Green’s function to deduce a Harnack-
type inequality for the discrete Green’s function. Using a representation formula
for discrete harmonic functions in terms of the discrete Green’s function allows us
to extend the Harnack-type inequality for the discrete Green’s function to Theo-
rem 5.6, a Harnack inequality for discrete harmonic functions. Finally, in Section
6 we provide some numerical examples concerning the positivity of the discrete
Green’s function. We show that the discrete Green’s function may be negative in
the interior of the domain if the mesh is not sufficiently refined.

2. Preliminaries

Throughout this paper, we adopt standard Sobolev space and finite element no-
tation, and we use freely definitions, such as shape regularity and quasi-uniformity,
and results, such as super-approximation and inverse estimates, from the finite
element literature (see, for instance, [9] and [5]).

Let 0 < h < 1 and {Th} be a quasi-uniform and shape regular family of trian-
gulations of size h for a polygonal computational domain Ωh ⊂ Ω approximating Ω
with distx∈∂Ω(x, ∂Ωh) ≤ Ch2 and as a result |Ω\Ωh| ≤ Ch2. Denote by Vh(Ωh) the
set of all continuous functions on Ωh that are linear (affine) when restricted to each
triangle in Th, and define V 0

h (Ωh) = {v ∈ Vh(Ωh) : v|∂Ωh
= 0}. After extension by

zero such functions can be considered as being in W 1
∞(Ω).

Let {φi}n+m
i=1 be a standard nodal basis for Vh(Ωh), where the nodes xi for

i ∈ {1, . . . , n} are interior nodes, and xj for j ∈ {n+ 1, . . . , n+m} are boundary
nodes.

We define uh ∈ Vh(Ωh) to be the solution of the problem

(∇uh,∇χ)Ωh
= 0, ∀χ ∈ V 0

h (Ωh),

uh = Ihb, on ∂Ωh,
(2)

where the interpolant Ihb is given by

Ihb =
n+m∑
j=n+1

b(xj)φj .

A function satisfying (1) is said to be a harmonic function on Ω, and a function
satisfying (2) is said to be a discrete harmonic function on Ωh.

We also require functions that are discrete harmonic on subdomains. For D ⊂
Ωh, let Vh(D) be the set of functions on D that are the restrictions of functions
in Vh(Ωh), and define V 0

h (D) = {χ ∈ Vh : supp(χ) ⊂ D ∩ Ωh}. A function
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uh ∈ Vh(Ωh) is said to be discrete harmonic on D if

(∇uh,∇χ)D = 0, ∀χ ∈ V 0
h (D).(3)

One way to represent the solution of (1) is by use of the Green’s function. The
(continuous) Green’s function with singularity at z is the function Gz(x) given by

(4)
−ΔGz = δz, in Ω,

Gz = 0, on ∂Ω,

where δz is the Dirac delta function at z. We will also use the notation G(x, z) and
Gz(x) interchangeably (and similarly for the various other Green’s functions which
appear) depending on context.

The discrete Green’s function with singularity at z is the function Gz
h(x) ∈

V 0
h (Ωh) satisfying

(5) (∇Gz
h,∇χ)Ωh

= χ(z) ∀χ ∈ V 0
h (Ωh).

In the analysis we will also need a regularized Green’s function. Let δ̃z ≥ 0
denote a smooth delta function supported in an element τ0 containing z with the
property

(6) (δ̃z, χ)Ωh
= (δ̃z, χ)τ0 = χ(z), ∀χ ∈ Vh(Ωh).

An explicit construction of such a function is given for example in Appendix A of
[29]. In addition we also have, for C independent of z,

(7) ‖δ̃z‖W s
p (τ0)

≤ Ch−s−N(1− 1
p ), 1 ≤ p ≤ ∞, s = 0, 1.

Thus in particular ‖δ̃z‖L1(Ω) ≤ C, ‖δ̃z‖L2(Ω) ≤ Ch−N/2, and ‖δ̃z‖L∞(Ω) ≤ Ch−N .

Using δ̃z we define a regularized Green’s function G̃z(x) by

(8)
−ΔG̃z = δ̃z, in Ω,

G̃z = 0, on ∂Ω.

Notice that Gz
h = RhG̃

z = RhG
z, where Rhu is the Ritz projection of a function u

onto V 0
h (Ωh) defined by

(∇Rhu,∇χ)Ωh
= (∇u,∇χ)Ωh

, ∀χ ∈ V 0
h (Ωh).

3. The continuous Green’s function

We will require some results for the continuous Green’s function and its deriva-
tives that are essential in our analysis. The proof of the following result for general
second order elliptic equations can be found in [18].

Lemma 3.1. Let G(x, y) denote the Green’s function of the Laplace equation on
Ω ⊂ R

N . Then the following estimates hold:

|G(x, y)| ≤
{

C(1 + |ln |x− y||), N = 2,
C|x− y|2−N , N ≥ 3,

(9a)

|∇α
x∇β

yG(x, y)| ≤ C|x− y|2−N−|α|−|β|, |α|+ |β| ≥ 1.(9b)

Remark 3.2. The smoothness of Ω is only required for |α| > 2 and/or |β| > 2 in
(9b). The estimates (9a) and (9b) for |α| ≤ 1 and |β| ≤ 1 are known to hold for
general convex domains for any N ≥ 1 (cf. [14, 15]).
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We will also need a lower bound on the continuous Green’s function.

Lemma 3.3. Let Ω0 � Ω. Then there exists a constant C so that for all x ∈ Ω0

and z ∈ Ω, we have G(x, z) ≥ Cρ(z, ∂Ω), where ρ(A,B) = dist(A,B), the distance
between sets (or points) A and B.

Proof. For N = 2, by Theorem 6.23 of [8], there exists C > 0 such that

C ln

(
1 +

ρ(x, ∂Ω)ρ(z, ∂Ω)

|x− z|2

)
≤ G(x, z).

Because Ω is bounded, |x − z|−2 is bounded below by a positive constant inde-
pendent of x and z, and because Ω0 � Ω, we have that ρ(x, ∂Ω) is bounded be-
low by a positive constant independent of x ∈ Ω0. Therefore, we have the lower
bound C ln (1 + Cρ(z, ∂Ω)) ≤ G(x, z). Because Ω is a bounded domain, ρ(z, ∂Ω) is
bounded above by a constant independent of x ∈ Ω, so that we may find C ′ > 0
such that C ′ρ(z, ∂Ω) ≤ G(x, z) for all x ∈ Ω0 and z ∈ Ω.

For N ≥ 3, by Theorem 1 of [33], there exists a constant C > 0 such that

G(x, z) ≥
{
C|x− z|2−N if |x− z| ≤ max (ρ(x, ∂Ω), ρ(z, ∂Ω))/2,

C|x− z|−Nρ(x, ∂Ω)ρ(z, ∂Ω) if |x− z| > max (ρ(x, ∂Ω), ρ(z, ∂Ω))/2.

First, note again that because Ω is bounded, the factors |x− z|2−N and |x− z|−N

are bounded below by a positive constant independent of x, z ∈ Ω. Therefore, if
|x−z| ≤ max (ρ(x, ∂Ω), ρ(z, ∂Ω))/2, there exists a positive constant C independent
of x, z ∈ Ω for which G(x, z) ≥ C, and because Ω is bounded, G(x, z) ≥ C ′ρ(z, ∂Ω).
For the case where x ∈ Ω0 and z ∈ Ω with |x− z| > max (ρ(x, ∂Ω), ρ(z, ∂Ω))/2,
because ρ(x,Ω) is bounded below by a positive constant independent of x ∈ Ω0,
we again obtain the lower bound G(x, z) ≥ C ′ρ(z, ∂Ω) for some positive constant
C ′. �

Remark 3.4. Lemma 3.3 is the only place in the paper that requires smoothness of
the domain Ω. If Ω is less smooth but the estimate

G(x, z) ≥ Cρ2−ε(z, ∂Ω), for some ε > 0,

still holds, then the main results of the paper are still true and the proofs require
only minor modifications.

4. Pointwise error estimates for the Green’s functions

To derive the desired pointwise estimates for Gh − G we require several error
estimates in the L∞ norm for the error u−uh between the solution u of the elliptic
problem and the Ritz projection uh = Rhu of the solution. Although we will use
the results only for the piecewise linear case (i.e. r = 2), the results in this section
are valid for Vh(Ωh) replaced by piecewise polynomials of degree r − 1 for r ≥ 2.
In the results below

r̄ =

{
1, r = 2,
0, r > 2.

The first result is Theorem 5.1 from [28], which states that the error for Ω ⊂ R
N

smooth is almost optimal in the L∞(Ωh) norm.
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Theorem 4.1 (Schatz-Wahlbin 1982). For h sufficiently small there exists a con-
stant C independent of h such that

‖u− uh‖L∞(Ωh) ≤ C�r̄h inf
χ∈V 0

h (Ωh)
‖u− χ‖L∞(Ωh),

where �h := | lnh|.

The second result is Theorem 5.1 from [27], a localized version of the above
theorem on interior domains.

Theorem 4.2 (Schatz-Wahlbin 1977). Suppose D � Dd � Ω, where Dd = {x ∈
Ω : dist(x,D) ≤ d}, with d ≥ ch. Let t be a nonnegative integer and let 1 ≤ p ≤ ∞.
Then there exists a constant C independent of h and d such that

‖u− uh‖L∞(D) ≤ C�r̄h inf
χ∈Vh(Ωh)

‖u− χ‖L∞(Dd) + Cd−t−N/p‖u− uh‖W−t
p (Dd)

,

where �h := | lnh|.

We will also require a version of Theorem 4.2 valid up to the boundary. To
establish this, first we will need Proposition 3.1 from [11], which is also valid for
smooth domains.

Proposition 4.3. Let

D4 ⊂ D3 ⊂ D2 ⊂ D1 ⊂ D ⊂ Ωh

with dist(Di, ∂Di−1 \ ∂Ωh) ≥ d, and similarly for D1 and D. There is a constant
C such that for each χ ∈ Vh(D) there exists an η ∈ V 0

h (D1) with η ≡ χ on D2 and

‖∇(χ− η)‖L2(D) ≤ C(‖∇χ‖L2(D\D4) + d−1‖χ‖L2(D\D4)).

The preceding three results enable us to prove the following theorem.

Theorem 4.4. Let Ω ⊂ R
N , N = 2, 3, be a smooth domain and let D ⊂ Dd ⊂ Ωh,

where Dd = {x ∈ Ωh : dist(x,D) ≤ d}. Then there exists a constant C independent
of h such that

‖u− uh‖L∞(D) ≤ C�r̄h inf
χ∈Vh(Ωh)

‖u− χ‖L∞(Dd) + Cd−N/2‖u− uh‖L2(Dd).

Proof. The proof is an adaptation of the proof of Theorem 1 from [11]. It is sufficient
to consider the case of concentric balls Bmd(x0), m ∈ R

+, intersecting Ωh for x0 an
arbitrary point in D. By a covering argument (cf. [24], Thm. 5.1) the proof can
be extended to general subdomains D ⊂ Dd ⊂ Ωh. In what follows we will use the
abbreviation mD := Bmd(x0)∩Ωh and put e := u− uh. Let ω be a smooth cut-off
function with the properties ω ≡ 1 on D, supp(ω) ⊂ 2D, and |∇ω| ≤ Cd−1. Let
ũ := ωu. Define ũh := Rhũ to be the Ritz projection of ũ onto V 0

h (Ωh). Then

(10) |e(x0)| ≤ |(ũ− ũh)(x0)|+ |(ũh − uh)(x0)|.
By Theorem 4.1 the first term on the right hand side of (10) can be estimated as

|(ũ− ũh)(x0)| ≤ ‖ũ− ũh‖L∞(Ωh) ≤ C�r̄h‖ũ‖L∞(Ωh) ≤ C�r̄h‖u‖L∞(2D).

Let ψh := ũh − uh. Notice that ψh is discrete harmonic on D; we do not consider
the properties of this function outside D. The rest of the proof is devoted to
establishing that

|(ũh − uh)(x0)| ≤ C(�r̄h‖u‖L∞(2D) + d−N/2‖uh‖L2(2D)).
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By Proposition 4.3 there exists ηh ∈ V 0
h (

3
4D) such that ηh ≡ ψh on 1

2D and

(11) ‖∇ηh‖L2( 3
4D) ≤ C(‖∇ψh‖L2( 7

8D) + d−1‖ψh‖L2( 7
8D)).

Let G̃x0 be the regularized Green’s function defined as in (8) and recall that Gx0

h

is the Ritz projection of G̃x0 onto V 0
h (Ωh). Then,

ψh(x0) = ηh(x0) = (δ̃x0 , ηh)Ωh
= (∇G̃x0 ,∇ηh)Ωh

= (∇Gx0

h ,∇ηh)Ωh
.

Also by Proposition 4.3, there exists ζh ∈ V 0
h (

1
2D) such that ζh ≡ Gx0

h on 1
4D and

‖∇(Gx0

h − ζh)‖L2( 3
4D) ≤ C(‖∇Gx0

h ‖L2( 7
8D\ 1

4D) + d−1‖Gx0

h ‖L2( 7
8D\ 1

4D)).

Recalling that ηh is supported on 3
4D and is discrete harmonic in 1

2D and using
(11), we have

(12)

ψh(x0) = (∇(Gx0

h − ζh),∇ηh) 3
4D

+ (∇ζh,∇ηh) 3
4D

= (∇(Gx0

h − ζh),∇ηh) 3
4D

≤ ‖∇(Gx0

h − ζh)‖L2( 3
4D)‖∇ηh‖L2( 3

4D)

≤ C(‖∇Gx0

h ‖L2( 7
8D\ 1

4D) + d−1‖Gx0

h ‖L2( 7
8D\ 1

4D))

× (‖∇ψh‖L2( 7
8D) + d−1‖ψh‖L2( 7

8D)).

Next we need Lemma 9.2 from [30], which says that for any discrete harmonic
function, i.e. for any vh ∈ V 0

h (D) that satisfies (5), there holds

(13) ‖∇vh‖L2(D) ≤ Cd−1‖vh‖L2(Dd) ≤ Cd−2‖vh‖H−1
< (Dd)

,

where

‖vh‖H−1
< (Dd)

= sup
w∈H1(Ω),

w=0 on Ω\Dd

(vh, w)Dd

‖w‖H1(Dd)
.

Using that ψh is discrete harmonic on D, the triangle inequality, and the fact that
u = ũ on D, we have

(14)

‖∇ψh‖L2( 7
8D) + d−1‖ψh‖L2( 7

8D) ≤ Cd−1‖ψh‖L2(D)

≤ Cd−1
(
‖u− uh‖L2(D) + ‖ũ− ũh‖L2(D)

)
≤ Cd−1

(
‖e‖L2(D) + h�r̄hd

N/2‖u‖L∞(2D)

)
,

where in the last step we have used Hölder’s inequality and Theorem 4.1 for
‖ũ− ũh‖L2(D), i.e.

‖ũ− ũh‖L2(D) ≤ CdN/2‖ũ− ũh‖L∞(D) ≤ CdN/2�r̄h‖ũ‖L∞(D)

≤ CdN/2�r̄h‖u‖L∞(2D).

Now we turn to ‖∇Gx0

h ‖L2( 7
8D\ 1

4D)+d−1‖Gx0

h ‖L2( 7
8D\ 1

4D). Using thatGx0

h is discrete

harmonic away from x0, from (13) we have

(15)
‖∇Gx0

h ‖L2( 7
8D\ 1

4D) + d−1‖Gx0

h ‖L2( 7
8D\ 1

4D) ≤ Cd−1‖Gx0

h ‖L2(D\ 1
8D)

≤ Cd−2‖Gx0

h ‖H−1
< (D\ 1

8D).

For N = 2 we apply the first inequality in (15). By the Sobolev embedding theorem
(W 1

1 ↪→ L2),

‖Gx0

h ‖L2(D\ 1
8D) ≤ C‖Gx0

h ‖W 1
1 (D\ 1

8D).
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Note that the Sobolev embedding constant appearing in the inequality above is
domain independent. To verify this, we may scale the domain D to a unit-sized
domain D̃ by introducing a new variable y = x/d. Then it is easy to show that for
any general function V (y) = v(yd) we have

(16) ‖∇sV ‖Lq(D̃) = ds−N/q‖∇sv‖Lq(D), s = 0, 1.

Thus if D\ 1
8D is scaled to a subset of a fixed unit-sized annulus and Gx0

h is extended
by zero in this annulus if D abuts ∂Ω, by using (16) we can see that this constant
is indeed independent of d.

For N = 3 we use the second inequality in (15). Then,

‖Gx0

h ‖H−1
< (D\ 1

8D) = sup
v∈H1(Ω),

v=0 on Ω\(D\ 1
8
D)

(Gx0

h , v)D\ 1
8D

‖v‖H1(D\ 1
8D)

.

Since by the Hölder’s inequality and the Sobolev embedding W 1
1 ↪→ L3/2 and

H1 ↪→ L6, we have

(Gx0

h , v)D\ 1
8D

≤C‖Gx0

h ‖L3/2(D\ 1
8D)‖v‖L3(D\ 1

8D)

≤Cd1/2‖Gx0

h ‖L3/2(D\ 1
8D)‖v‖L6(D\ 1

8D)

≤Cd1/2‖Gx0

h ‖W 1
1 (D\ 1

8D)‖v‖H1(D\ 1
8D),

and as a result

(17) ‖Gx0

h ‖H−1
< (D\ 1

8D) ≤ Cd1/2‖Gx0

h ‖W 1
1 (D\ 1

8D).

Again the constant C in the above inequality is independent of d.
By the triangle inequality and Lemma 5.3 in [28],

‖Gx0

h ‖W 1
1 (D\ 1

8D) ≤ ‖Gx0

h − G̃x0‖W 1
1 (Ωh) + ‖G̃x0‖W 1

1 (D\ 1
8D)

≤ Ch�r̄h + ‖G̃x0‖W 1
1 (D\ 1

8D).

Since for some fixed c > 0, we have that dist(x, supp(δ̃x0)) ≥ cd for all x ∈ D\ 1
8D,

we have from Lemma 3.1 that for any such x,

|∇G̃x0(x)| =
∣∣∣∣∫

τ0

∇xG(x, y)δ̃x0(y)dy

∣∣∣∣ ≤ Cd1−N .

As a result,

‖G̃x0‖W 1
1 (D\ 1

8D) ≤ CdN‖G̃x0‖W 1
∞(D\ 1

8D) ≤ Cd.

Collecting the above estimates, we thus have that

(18) ‖∇Gx0

h ‖L2( 7
8D\ 1

4D) + d−1‖Gx0

h ‖L2( 7
8D\ 1

4D) ≤ Cd1−N/2.

Collecting (18) and (14) into (12) yields

|e(x0)| ≤ C
(
�r̄h‖u‖L∞(2D) + d−N/2‖e‖L2(2D)

)
.

We complete the proof of Theorem 4.4 by inserting u− χ and uh − χ for u and uh

and writing D instead of 2D. �

As an application of Theorem 4.2 and Theorem 4.4 we have the following result
for the piecewise linear case, r = 2.
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Theorem 4.5. Let x, y ∈ Ω with |x− y| ≥ d with Bd(x) � Ω. Then there exists a
constant C independent of h, x, y and d such that

|Gx
h(y)−Gx(y)| ≤ C�hh

2d−N , N = 2, 3,

where �h = | lnh|.

Proof. The proof follows the lecture notes of L.B. Wahlbin [31]. Since the case
y ∈ Ω\Ωh is trivial, we may assume that y ∈ Ωh. Let Bd(x) � Ω and Gx be the
continuous Green’s function with singularity at x and Gx

h be the discrete Green’s
function. For any y ∈ Ωh, |x− y| ≥ d, by Theorem 4.4, we have

|Gx(y)−Gx
h(y)| ≤ C�h inf

χ∈V 0
h (Ωh)

‖Gx − χ‖L∞(Bd/4(y)∩Ωh)

+ Cd−N/2‖Gx −Gx
h‖L2(Bd/4(y)∩Ωh).

Since Gx is smooth away from the singularity we may take χ = IhG
x. Using the

approximation theory and Green’s function estimates we obtain

‖Gx − χ‖L∞(Bd/4(y)∩Ωh) ≤ Ch2‖Gx‖W 2
∞(Bd/4(y)∩Ωh) ≤ Ch2d−N .

In the last step we have used that (cf. [18])

|∇2Gx(z)| ≤ C|x− z|−N ≤ Cd−N , ∀z ∈ Bd/4(y) ∩ Ωh.

Thus we only need to estimate d−N/2‖Gx −Gx
h‖L2(Bd/4(y)∩Ωh). By duality

‖Gx −Gx
h‖L2(Bd/4(y)∩Ωh) = sup

ϕ∈C∞
0 (Bd/4(y)∩Ωh)

‖ϕ‖
L2≤1

(Gx −Gx
h, ϕ)Bd/4(y)∩Ωh

.

For each such ϕ, let ψ solve

−Δψ = ϕ, in Ω,

ψ = 0, on ∂Ω,

and ψh = Rhψ. Then

(Gx −Gx
h, ϕ)Bd/4(y)∩Ωh

= (Gx −Gx
h,−Δψ)Ω = (∇(Gx −Gx

h),∇ψ)Ω

= (∇(Gx −Gx
h),∇(ψ − ψh))Ω

= (∇Gx,∇(ψ − ψh))Ω

= −(ΔGx, ψ − ψh)Ω = ψ(x)− ψh(x).

Because Bd(x) � Ω, we can apply Theorem 4.2 to obtain

(19) |ψ(x)− ψh(x)| ≤ C�h‖ψ − χ‖L∞(Bd/4(x)) + Cd−N/2‖ψ − ψh‖L2(Bd/4(x)).

By the approximation theory

‖ψ − χ‖L∞(Bd/4(x)) ≤ Ch2‖ψ‖W 2
∞(Bd/4(x)).

Now using the Green’s function representation and properties of the Green’s func-
tion we have for z ∈ Bd/4(x) that

|∇2ψ(z)| =
∣∣∣∣∣
∫
Bd/4(y)∩Ωh

∇2
zG

z(s)ϕ(s)ds

∣∣∣∣∣
≤ C

∫
Bd/4(y)∩Ωh

|ϕ(s)|
|z − s|N ds ≤ Cd−N‖ϕ‖L1(Bd/4(y)∩Ω ≤ Cd−N/2,
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where we have used that dist(Bd/4(y), Bd/4(x)) ≥ d/2. Thus we conclude that

(20) ‖ψ − χ‖L∞(Bd/4(x)) ≤ Ch2d−N/2.

To estimate the term involving ‖ψ − ψh‖L2(Bd/4(x)), we use a global argument. By

H2 regularity,

(21) ‖ψ−ψh‖L2(Bd/4(x)) ≤ ‖ψ−ψh‖L2(Ω) ≤ Ch2‖ψ‖H2(Ω) ≤ Ch2‖ϕ‖L2(Ω) ≤ Ch2.

Combining estimates (20) and (21), we obtain

d−N/2‖Gx −Gx
h‖L2(Bd/4(y)∩Ωh) ≤ C�hh

2d−N .

This concludes the proof of the theorem. �
4.1. On the positivity of Gh in 2D for piecewise linear elements. An ex-
ample in [13] shows that on general meshes the discrete Green’s function may have
persistent negative values for all h. For these meshes, the singularity and the node
at which a negative value is obtained are both a distance O(h) from the boundary.
Our next result shows that in two dimensions the values of the discrete Green’s
function for piecewise linear elements must eventually be positive if the singularity
is a distance O(1) from the boundary.

Theorem 4.6. Suppose D � Ω � R
2 is smooth. Then there exists h0 > 0 such

that for all 0 < h ≤ h0, we have Gx0

h (x) > 0 for all x ∈ int Ωh and x0 ∈ D.

It is sufficient to consider the case when D = Bd(x0) with d ≥ ch and

dist(∂Bd, ∂Ω) ≥ d0,

for some fixed but arbitrary d0. The case of general D � Ω follows by using
a covering argument. Let τ0 be a triangle in Th containing x0. Let δ̃x0 be a
regularized delta function supported in τ0, with properties (7).

Let G̃x0 be the regularized Green’s function as in (8). The first lemma shows that
near the singularity the regularized Green’s function cannot be uniformly bounded
in h.

Lemma 4.7. There exists a constant C independent of h and x0 such that

(G̃x0 , δ̃x0) ≥ C(| lnh|+ 1).

Proof. Using that Gx0(x) ≥ C |ln |x− x0|| for x sufficiently close to x0, we have

G̃x0(x0) =

∫
τ0

G(x0, x)δ̃
x0(x)dx ≥ C(| lnh|+ 1).

Since ‖δ̃x0‖L1(τ0) = 1 there exists a ball Bc1h(x̄) of radius c1h centered at x̄ ∈ τ0
(not necessarily x̄ = x0), where δ̃x0 ≥ c2h

−2, for some c1, c2 > 0. Using the
monotonicity of the logarithm and that diam(τ0) ≤ h, we have

|ln |x− x0|| ≥ |ln (|x− x̄|+ |x̄− x0|)| ≥ |ln (|x− x̄|+ h)| .
Switching to polar coordinates |x− x̄| = ρ, we obtain

(G̃x0 , δ̃x0) ≥ c2h
−2

∫
Bc1h(x̄)

G̃(x, x0)dx

= Ch−2

∫ c1h

0

ρ |ln (ρ+ h)| dρ ≥ C(| lnh|+ 1).

�
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The next lemma is a similar estimate for the discrete Green’s function.

Lemma 4.8. There exist a constant C independent of h and x0 and h0 > 0 such
that for all h ≤ h0,

Gx0

h (x0) ≥ C(| lnh|+ 1).

Proof.

Gx0

h (x0) = (Gx0

h , δ̃x0)Ωh
= (∇Gx0

h ,∇Gx0

h )Ωh

= ‖∇G̃x0‖2L2(Ωh)
−

(
‖∇G̃x0‖2L2(Ωh)

− ‖∇Gx0

h ‖2L2(Ωh)

)
= (G̃x0 , δ̃x0)Ω − (∇(G̃x0 −Gx0

h ),∇(G̃x0 +Gx0

h ))Ωh

= (G̃x0 , δ̃x0)Ω − ‖∇(G̃x0 −Gx0

h )‖2L2(Ωh)
.

From Lemma 4.7

(G̃x0 , δ̃x0)Ω ≥ C(| lnh|+ 1).

On the other hand, using the best approximation properties and H2 regularity for
smooth (convex) domains we have

‖∇(G̃x0 −Gx0

h )‖L2(Ωh) ≤ ‖∇(G̃x0 − IhG̃
x0)‖L2(Ωh) ≤ Ch‖∇2G̃x0‖L2(Ωh)

≤ Ch‖δ̃‖L2(τ0) ≤ Chh−1 ≤ C.

Thus for h0 small enough we have the lemma. �

Lemma 4.9. There exists a constant C independent of h and x0 such that

‖∇Gx0

h ‖L∞(Ωh) ≤ Ch−1.

Proof. From estimate (2.5) in [2], we have

‖∇Gx0

h ‖L∞(Ωh) ≤ C‖∇G̃x0‖L∞(Ωh) + Ch‖∇G̃x0‖L∞(Ω\Ωh).

Using the Green’s function representation and properties of δ̃x0 , for any z ∈ Ω we
have

|∇G̃x0(z)| =
∣∣∣∣∫

τ0

∇zG(z, y)δ̃x0(y)dy

∣∣∣∣ ≤ Ch−2

∫
τ0

dy

|z − y|

≤ Ch−2

∫
τ0

dy

|x0 − y| ≤ Ch−1.

�

Now we are ready to prove Theorem 4.6.

Proof. Let K and CK be the constants C7 and C from estimate (6.3) in Theorem
6.1 in [27], respectively. In addition let h0 > 0 be small enough such that for all
h ≤ h0,

CK ln (K| lnh|1/2)
K2| lnh| ≤ 1

2
min
x∈Ω

dist(x,∂Ω)≥d0

Gx0(x)

and

h− C3h
2| lnh| ≥ 1

2
h,

where C3 is the constant from Theorem 4.5. We now consider several cases.
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Case 1. |x − x0| ≤ Kh| lnh|1/2. Then Gx0

h (x) > 0 in view of Lemmas 4.8 and 4.9
since a discrete function cannot go from negative values to positive values of order
| lnh| in K| lnh|1/2 many steps of size one.

Case 2. Kh| lnh|1/2 ≤ |x−x0| and dist(x, ∂Ω) ≥ d0. For this case we use Theorem
6.1 from [27] for r = 2, which states that for x, y ∈ Ω0, where Ω0 � Ω and
|x− y| ≥ Kh, there holds

(22) |Gx(y)−Gx
h(y)| ≤

CKh2

|x− y|2 ln

(
|x− y|

h

)
.

Adopting the notation w = |x−x0|/h, the upper bound from (22) becomes CK lnw
w2 .

Because Kh| lnh|1/2 ≤ |x − x0|, we must have w ≥ K| lnh|1/2. For h sufficiently
small, the maximum of CK lnw

w2 on the interval w ≥ K| lnh|1/2 occurs at the left
endpoint. Therefore, we have that

|Gx0(x)−Gx0

h (x)| ≤ CKh2

(Kh| lnh|1/2)2 ln (K| lnh|1/2) = CK ln (K| lnh|1/2)
K2| lnh| .

Thus in this case in view of the choice of h0,

Gx0

h (x) = Gx0(x)− (Gx0(x)−Gx0

h (x)) ≥ 1

2
Gx0(x) > 0.

Case 3. dist(x, ∂Ω) ≤ d0. Let xj be any interior node such that dist(xj , ∂Ω) ≤ d0.
Since in this case |xj − x0| = O(1), we have by Theorem 4.5

Gx0

h (xj) = Gx0(xj)− (Gx0(xj)−Gx0

h (xj)) ≥ Ch− C3h
2| lnh| ≥ C̃h.

The estimate Gx0(xj) ≥ Ch in the second to last step above follows from Lemma
3.3 (and the symmetry of the Green’s function), as all interior nodes are a distance
of at least O(h) from the boundary. Combining all three cases and interpolating
between nodes we have a proof of Theorem 4.6. �

Remark 4.10. The order of the polynomials plays no role in the proofs of Lemmas
4.7-4.9 and cases 1 and 2 in the proof of Theorem 4.6. Thus, Gx0

h (x) > 0 as h → 0
for polynomials of all orders at nodes away from the boundary. The proof only relies
on the fact that the discrete Green’s function is of order | lnh| at the singularity,
but its derivatives are of order h−1 at most. This discrepancy does not hold in
three or higher dimensions. It would be interesting to see if a similar result holds
in higher dimensions.

Remark 4.11. The above result can be thought of as some kind of an asymptotic
interior maximum principle in 2D, although positivity of the discrete Green’s func-
tion alone should not be enough to guarantee a maximum principle without an
assumption on the boundary stiffness matrix H, defined in the next section.

5. Discrete Harnack inequality

In this section, we prove a discrete form of the Harnack inequality for piecewise
linear finite elements in two and three dimensions under the hypothesis that the
mesh is well-behaved near the boundary. We must first adopt a representation for
discrete harmonic functions using the discrete Green’s function.
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Let uh be a discrete harmonic function (i.e. uh solves (2)). We may expand uh

in the nodal basis as

uh(x) =

n∑
i=1

αiφi(x) +

n+m∑
j=n+1

αjφj(x),

where the first sum is over the interior nodes and the second sum is over the
boundary nodes.

The solution to the problem may then be represented in matrix form by

U = −A−1HB.

Here U represents the solution uh at the interior nodes, with

U = (uh(x1), . . . , uh(xn))
� ∈ R

n.

The matrix A ∈ R
n×n is the (interior) stiffness matrix, with entries given by

Aij = (∇φi,∇φj)Ωh
for i, j ∈ {1, . . . , n}. The matrix H ∈ R

n×m is the bound-

ary stiffness matrix, with entries given by Hjk = (∇φj ,∇φk)Ωh
for j ∈ {1, . . . , n}

and k ∈ {n+ 1, . . . , n+m}. The vector B contains the boundary data, with

B = (b(xn+1), . . . , b(xn+m))� ∈ R
m.

By reinterpreting the matrix multiplication as a sum, we have the representation

uh(xi) = −
n∑

j=1

m∑
k=1

A−1
ij HjkBk.(23)

We also have that A−1
ij = Gh(xj , xi), because the value of the discrete Green’s

function at an interior node is given by the corresponding entry of the inverse
stiffness matrix. Note that, by the symmetry of the stiffness matrix, the discrete
Green’s function is symmetric at the nodes. For more detail on this representation,
see, for instance, [13].

Let Ñ(xk) denote the set of all neighboring nodes to xk, i.e. the set of all other
nodes that are vertices of a triangle of which xk is itself a vertex. Using the small
support of the nodal basis functions, we can rearrange and rewrite the sum in (23)
as

uh(xi) = −
n+m∑

k=n+1

∑
xj∈Ñ(xk)

Gh(xj , xi) (∇φj ,∇φk)Ωh
b(xk).(24)

To derive the discrete Harnack inequality, we make the following assumption on
the boundary stiffness matrix H:

Assumption 5.1. For every triangulation in {Th}, the associated boundary stiff-
ness matrix H must satisfy H ≤ 0, i.e. (∇φi,∇φj)Ωh

≤ 0 for all i ∈ {1, . . . , n}
and j ∈ {n+ 1, . . . , n+m}.

Remark 5.2. This assumption can be (loosely) interpreted as requiring that the
mesh be able to approximate the normal derivative of the continuous Green’s func-
tion properly. This assumption implies the maximum principle if the discrete
Green’s function is known to be nonnegative. In two dimensions, this is equiv-
alent to the following edge condition: for every edge in the triangulation with one
node on the boundary of Ω and one node in the interior of Ω, the sum of the angles
opposite the edge is at most π. For more detail and the relationship between this
condition and the discrete maximum principle, see [13], where an explicit example
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is constructed that produces negative values of the discrete Green’s function for all
h > 0 when this condition is violated.

As a consequence of Theorem 4.5, we obtain the following comparison between
the discrete Green’s function and the continuous Green’s function.

Lemma 5.3. Suppose Ω0 � Ω1 � Ω . Then there exist h0 > 0 and a constant C∗
such that for all 0 < h ≤ h0, if x ∈ Ω0 and z ∈ Ω\Ω1, the estimate

|G(x, z)−Gh(x, z)| ≤ C∗h
2| lnh|

holds.

From this result, we obtain a Harnack-type inequality for the discrete Green’s
function.

Lemma 5.4. Suppose Ω0 � Ω. Let 0 < c1 < c2 be positive constants. Then there
exist h0 > 0 and a constant C > 0 independent of h such that, for all 0 < h ≤ h0

and for all x, y ∈ Ω0 and all z ∈ Ω with c1h ≤ dist(z, ∂Ω) ≤ c2h, we have

Gz
h(x) ≥ CGz

h(y).

Proof. For h sufficiently small, by the smoothness of the boundary of Ω and the
shape regularity and quasi-uniformity of {Th}, we have that there exist constants
c′1 and c′2, independent of h, such that z ∈ Ωh and c1h ≤ dist(z, ∂Ωh) ≤ c2h implies
z ∈ Ω and c′1h ≤ dist(z, ∂Ω) ≤ c′2h.

Let c3 be the constant C in Lemma 3.3, and let h0 > 0 be so small that the
conclusion of Lemma 5.3 holds, and such that C∗h

2| lnh| ≤ c3h/2 for all 0 < h ≤
h0. Because Gz(x) is a harmonic function in x away from the singularity at z,
by the Harnack inequality for harmonic functions there exists C0 > 0 such that
Gz(x) ≥ C0G

z(y) for all x, y ∈ Ω0.
Then if 0 < h ≤ h0, for arbitrary x ∈ Ω0 and z satisfying c1h ≤ dist(z, ∂Ω) ≤

c2h, by Lemma 5.3 we have

−C∗h
2| lnh|+G(x, z) ≤ Gh(x, z) ≤ G(x, z) + C∗h

2| lnh|.
Because C∗h

2| lnh| ≤ c3h/2 ≤ G(x, z)/2, we obtain

1

2
G(x, z) ≤ Gh(x, z) ≤ 2G(x, z).(25)

Using the classical Harnack inequality for the continuous Green’s function away
from the singularity, we have

Gh(x, z) ≥
1

2
G(x, z) ≥ C0

2
G(y, z) ≥ C0

4
Gh(y, z),(26)

where C0 is independent of h sufficiently small. �

Combining the representation in (24), the assumption that the boundary stiffness
matrix satisfies H ≤ 0, and the Harnack-type inequality for the discrete Green’s
function in Lemma 5.4, we obtain the nodal Harnack inequality for discrete har-
monic functions.

Theorem 5.5. Suppose Ω0 � Ω. Then there exists h0 > 0 and a constant C > 0
such that for all 0 < h ≤ h0, and for all discrete harmonic functions uh satisfying
uh(x) ≥ 0 for x ∈ ∂Ω, and for all nodes x∗, y∗ ∈ Ω0, we have

uh(x∗) ≥ Cuh(y∗).(27)
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Proof. By the shape regularity and quasi-uniformity of {Th} and the smoothness
of ∂Ω, there exist positive constants c1 and c2, independent of xk, xj and h for h

sufficiently small, so that for all nodes xk ∈ ∂Ωh and for all nodes xj ∈ Ñ(xk), we
have c1h ≤ dist(xj , ∂Ω) ≤ c2h.

Therefore, by Lemma 5.4 and the symmetry of Gh, for all nodes x∗, y∗ ∈ Ω0, we
have

uh(x∗) =
n+m∑

k=n+1

∑
xj∈Ñ(xk)

Gh(xj , x∗)
(
− (∇φj ,∇φk)Ωh

)
b(xk)

=

n+m∑
k=n+1

∑
xj∈Ñ(xk)

Gh(x∗, xj)
(
− (∇φj ,∇φk)Ωh

)
b(xk)

≥ C

n+m∑
k=n+1

∑
xj∈Ñ(xk)

Gh(y∗, xj)
(
− (∇φj ,∇φk)Ωh

)
b(xk)

≥ C
n+m∑

k=n+1

∑
xj∈Ñ(xk)

Gh(xj , y∗)
(
− (∇φj ,∇φk)Ωh

)
b(xk)

≥ Cuh(y∗).

�

As a corollary, by interpolating at nodal points we obtain a Harnack inequality
for piecewise linear finite elements valid for all points in Ω.

Theorem 5.6. Suppose Ω0 � Ω1 � Ω. Then there exists h0 > 0 and a constant
C > 0, depending on Ω0, Ω1, such that for all 0 < h ≤ h0 and for all discrete
harmonic functions uh satisfying uh(x) ≥ 0 for x ∈ ∂Ω, and for all x, y ∈ Ω0, we
have

uh(x) ≥ Cuh(y).(28)

6. Numerical results

In this section we provide some numerical examples concerning the positivity
of the discrete Green’s function. Since we only look at the values of the Green’s
functions in the interior of the domain, which corresponds to the cases 1 and 2 in
the proof of Theorem 4.6, the smoothness of Ω is not required and we restrict our
numerical examples to polygonal domains. These examples show that one cannot
remove the asymptotic nature of Theorem 4.6, due to the fact that the discrete
Green’s function obtains negative values in the interior of the domain if the mesh
is not sufficiently refined.

We let the domain Ω under consideration be a thin rhombus in the plane with
vertices at (−1, 0), (1, 0), (0, tan π

40 ) and (0,− tan π
40 ), and let Ω0 � Ω be a smaller

rhombus with vertices at (− 1
2 , 0), (

1
2 , 0), (0,

1
2 tan

π
40 ), (0,−

1
2 tan

π
40 ). The smaller

angle of each rhombus is then π
20 . We triangulate Ω by dividing each side into 2p

segments of equal length, and use these to subdivide Ω into 22p smaller congruent
rhombuses. We then split each of these smaller rhombuses along either the main or
smaller diagonal. We will consider four different triangulations constructed in this
fashion. In the figures, we depict these meshes for the subdivision of each side of
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the original rhombus into eight segments. The first (Mesh 1), depicted in Figure
1 (left), is obtained by dividing all of the rhombuses along their smaller diagonal.
Note that this triangulation is a Delaunay triangulation, unlike the other three
types of meshes under consideration. The second (Mesh 2), depicted in Figure 1
(right), is obtained by dividing half the layers of rhombuses along each diagonal,
with the inner layers along the main diagonal, and the outer layers along the smaller
diagonal. The third (Mesh 3), depicted in Figure 2 (left), is obtained by dividing
only the outermost layer along the smaller diagonal, but all of the inner layers along
the main diagonal. The fourth (Mesh 4), depicted in Figure 2 (right), is obtained
by dividing all of the layers along the main diagonal. Note that the small angle of
the rhombus is exaggerated for visual clarity.

Mesh 1 Mesh 2

Figure 1. Mesh 1 with all layers divided along the smaller diag-
onal and Mesh 2 with outer layers divided along the smaller diag-
onal.

Mesh 3 Mesh 4

Figure 2. Mesh 3 with one outer layer divided along the smaller
diagonal and Mesh 4 with all layers divided along the main diago-
nal.

For computational convenience, we place the singularity of the discrete Green’s
function at the origin; similar results hold for other placements of the singularity
within Ω0. Table 1 depicts min

x∈Ω0

Gh(x,0) for the number of nodes placed along each

side of Ω. (We have taken the number of nodes along each side to be one more than
a power of two, so that the number of segments on each side is a power of two.)
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Table 1. min
x∈Ω0

Gh(x,0) for each mesh.

Degrees of freedom Mesh 1 Mesh 2 Mesh 3 Mesh 4
52 3.173e-05 -1.808e-03 -1.808e-03 4.559e-03
92 4.084e-06 4.445e-04 -7.326e-03 1.678e-03
172 8.626e-07 -2.020e-03 -5.455e-03 -1.642e-03
332 4.126e-07 -2.542e-03 -3.940e-03 -2.451e-03
652 3.247e-07 -2.407e-03 -2.945e-03 -2.386e-03
1292 3.043e-07 -1.071e-03 -9.773e-04 -1.067e-03
2572 2.993e-07 -9.374e-06 1.584e-08 -9.347e-06
5132 2.980e-07 1.200e-07 1.989e-07 1.201e-07
10252 2.977e-07 2.483e-07 2.709e-07 2.483e-07
20492 2.976e-07 2.850e-07 2.907e-07 2.850e-07
40972 2.976e-07 2.944e-07 2.959e-07 2.944e-07

Because Mesh 1 is Delaunay, the discrete Green’s function is nonnegative regard-
less of the size of h. For the three non-Delaunay meshes, for large h, the discrete
Green’s function with singularity at 0 may assume negative values for x ∈ Ω0,
but upon refining the mesh, the discrete Green’s function with singularity in Ω0

becomes nonnegative for all x ∈ Ω0.

7. Conclusion and open problems

In this paper we have established some sharp pointwise discrete Green’s function
estimates. In particular, we showed in two space dimensions on a smooth domain
that the discrete Green’s function on any quasi-uniform shape-regular mesh is non-
negative if the singularity is in the interior and the mesh is sufficiently refined.
As a consequence of the discrete Green’s function estimate, we establish a discrete
Harnack inequality for discrete harmonic functions under some rather mild mesh
restrictions. There are a number of related open questions that have not yet been
addressed. These include, for instance, the qualitative behavior of the discrete
Green’s function, particularly in dimensions higher than two. Does Theorem 4.6
hold for the discrete Green’s function in higher dimensions, or can the discrete
Green’s function obtain persistent negative values even if the singularity is far from
the boundary? Another direction for investigation may include the extension of the
Harnack inequality to the inhomogeneous case and to parabolic or more general el-
liptic equations on nonsmooth domains.
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