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A POSTERIORI ERROR CONTROL
FOR THE BINARY MUMFORD-SHAH MODEL

BENJAMIN BERKELS, ALEXANDER EFFLAND, AND MARTIN RUMPF

ABSTRACT. The binary Mumford-Shah model is a widespread tool for image
segmentation and can be considered as a basic model in shape optimization
with a broad range of applications in computer vision, ranging from basic seg-
mentation and labeling to object reconstruction. This paper presents robust a
posteriori error estimates for a natural error quantity, namely the area of the
non-properly segmented region. To this end, a suitable uniformly convex and
non-constrained relaxation of the originally non-convex functional is investi-
gated and Repin’s functional approach for a posteriori error estimation is used
to control the numerical error for the relaxed problem in the L2-norm. In com-
bination with a suitable cut out argument, fully practical estimates for the area
mismatch are derived. This estimate is incorporated in an adaptive mesh re-
finement strategy. Two different adaptive primal-dual finite element schemes,
a dual gradient descent scheme, and the most frequently used finite difference
discretization are investigated and compared. Numerical experiments show
qualitative and quantitative properties of the estimates and demonstrate their
usefulness in practical applications.

1. INTRODUCTION

Since the introduction of the image denoising and edge segmentation model by
Mumford and Shah in the late 1980’s [36], there has been much effort to find effective
and efficient numerical algorithms to compute minimizers of different variants of
this variational problem. The original model is based on the functional Eygs|u, K| =
fQ\K |Vul? + a(u — ug)? dz + BH" 1 (K) with a, 8 > 0, where ug € L>=(Q, [0,1]) is
a scalar image intensity on the bounded image domain 2 C R™, u the reconstructed
image intensity and K the associated set of edges, on which the image intensity u
jumps. Here, H"~! denotes the (n — 1)-dimensional Hausdorff measure. The space
of functions of bounded variation BV(2) turned out to be the proper space to
formulate the problem in a mathematically rigorous way. Indeed, existence in the
context of the space of special functions of bounded variation SBV(Q2) was proved
by Ambrosio (see [2, Theorem 4.2]). For details on these spaces we refer to [4].
Restricting u to be piecewise constant instead of piecewise smooth, one is led to a
basic and widespread image segmentation model. This model is discussed from a
geometric perspective in the book by Morel and Solimini [35]. In the case of just
two intensity values ¢, co € [0, 1], the associated energy can be rewritten in terms
of a characteristic function x € BV(Q,{0,1}) as

(L1) Bl = / 01x + 0>(1 — ) d + [D|(Q)
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Here, 0; = %(cl —ug)? for i = 1,2, the new weight v = 3/a and the resulting binary
model is given by u = ¢1x + c2(1 — x). For fixed x, one immediately obtains the
optimal constants

(1.2)
calx] = (/Qxdx)_l/gxuodx and cox] = (V/Ql—xdx)_l/ﬂ(l—x)uodx.

For fixed ¢; and c¢o one aims to minimize the energy over the non-convex set of
characteristic functions y € BV(€,{0,1}). In the general case, one is interested in
a triple (x, c1,c¢2) as a minimizer of E w.r.t. the set BV(Q2) x [0, 1]?. Henceforth, if
not otherwise stated we assume the intensity values to be fixed.

Nikolova, Esedoglu and Chan [21I] showed that the non-convex minimization
problem for x can be solved via relaxation and thresholding—a breakthrough for
both reliable and fast algorithms in computer vision [I7,41]. Here, at first one asks
for a minimizer of E over all u € BV(€2, [0, 1]) and then thresholds u for any thresh-
old value s € [0,1) to obtain the solution x = X[y~ of the original minimization
problem. The relaxed problem coincides with a constrained version of the classi-
cal image denoising model by Rudin, Osher and Fatemi (ROF) [45]. Numerical
schemes for an effective and efficient minimization of this model have been exten-
sively studied. Making use of a dual formulation, Chambolle [I4] introduced an
iterative finite difference scheme and proved its convergence. Hintermiiller and Ku-
nisch [31] proposed a predual formulation for a generalized ROF model and applied
a semismooth Newton method for a regularized variant. Chambolle and Pock [20]
deduced a primal-dual algorithm with guaranteed first order convergence and ap-
plied their approach to different variational models in BV such as image denoising,
deblurring and interpolation. The scheme is based on an alternating discrete gradi-
ent scheme for the discrete primal and the discrete dual problems. Bartels [6] used
the embedding BV (€2) N L> () < H=(Q) for finite element functions to improve
the step-size restriction for BV functionals. Wang and Lucier [47] employed a finite
difference approximation of the ROF model and derived an a priori error estimate
for the discrete solution based on suitable projection operators. Following Dobson
and Vogel [24], the total variation regularization can be approximated smoothly
via /|Vul?2 + €. In [27], the convergence of the L?-gradient flow of this smooth
approximation to the TV flow in L? is shown under strong regularity assumptions
on the solution.

Furthermore, approximations of the original Mumford-Shah model have been
studied extensively. An early overview of different approximation and discretiza-
tion strategies was given by Chambolle in [I3]. Ambrosio and Tortorelli [3] pro-
posed a phase field approximation of this functional and proved its I'-convergence.
Chambolle and Dal Maso [18] proposed a discrete finite element approximation and
established its I'-convergence. Bourdin and Chambolle [9] picked up this approach
and studied the generation of adaptive meshes iteratively adapted in accordance to
an anisotropic metric depending on the current approximate solution. In [46], Shen
introduced a I'-converging approximation of the piecewise constant Mumford-Shah
segmentation, where the length term in the Mumford-Shah model is approximated
via an approach originating from the phase field model by Modica and Mortola
[34]. A simple and widespread level set approach was proposed by Chan and Vese
[22].
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The goal of this paper is to derive a posteriori error estimates for the character-
istic function x. To this end, we proceed as follows: We take into account a suitable
uniformly convex relaxation of the binary Mumford-Shah functional already stud-
ied in [8], which is related to more general relaxation approaches suggested by
Chambolle [I5] and does not require any constraint in the minimization. For this
relaxation, we consider its predual and set up a corresponding primal-dual algo-
rithm [5L20,[30]. Then, following Bartels [5], we use Repin’s primal-dual approach
[42,[43] to derive functional a posteriori error estimates for the relaxed solution
based on upper bounds of the duality gap (cf. also the book by Han [29] with
respect to mechanical applications) (see Section [). These estimates can be used
together with a suitable cut out argument to derive an a posteriori estimate for the
characteristic function x minimizing the original functional (IIJ). In addition, a
sensitivity analysis of xy depending on ¢1, ¢; and of ¢;, ¢; depending on Y is studied
(see Section ). Moreover, two adaptive finite element discretization schemes and
one conventional, non-adaptive finite difference scheme are investigated (see Sec-
tion []). Based on these discretization schemes, a primal-dual algorithm and a dual
gradient descent are introduced in Section Finally, we apply the resulting es-
timate to these schemes incorporating an appropriate post-smoothing and present
the numerical results (see Section [G).

2. UNIFORMLY CONVEX RELAXATION AND FUNCTIONAL ERROR ESTIMATES

Henceforth, we use the notation x 4 to denote the indicator function of a measur-
able set A C  and define [u > ] := {z € Q : u(x) > ¢}. We use generic constants
c and C throughout this paper. Furthermore, if not stated otherwise, we assume
the intensity values ¢; and ¢z to be fixed with ¢1, ¢ € [0,1] and ¢; # ¢2. Rewriting
the binary Mumford-Shah functional () as

(2.1) Phd = [ (0= 6o+ DA(@) + [ 2.

one observes that adding a constant to 81 and 65 leaves the minimizers y unchanged.
Thus, we may assume that 61,05 > ¢ > 0. Let us introduce the relaxed functional

(2.2) Erlu) = /Qu291 + (1 — u)?6ydz + |Dul(Q),

which is supposed to be minimized over all u € BV(,R). Indeed, E™![x] = E[x]
for characteristic functions x, and one retrieves the original binary Mumford-Shah
model. Proving existence of minimizers of (2.2 via the direct method in the calculus
of variations is straightforward; for details we refer to [4,26]. Furthermore, (2.2)
is uniformly convex by our above assumptions on #; and 0. Loosely speaking,
a preference for the values 0 and 1 for w is encoded in the quadratically growing
data term. The minimizers of both functionals (LI and ([Z2)) are related in the
following sense (cf. [8]).

Proposition 2.1 (Convex relaxation and thresholding). Under the above assump-
tions, a minimizer u € BV(Q) of the functional E™ exists, u(x) € [0,1] for a.e.
x € Q and
Xu>05 € argmin  Efy].
x€BV(Q,{0,1})
Proposition 1] is an instance of a more general result, which can be found in
[[519,32]. In fact, let ¥ : @ x R — R be measurable, ¥(-,t) € L1(Q) for a.e. t € R,
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U(z,-) € CY(R) be strictly convex for a.e. x € Q, ¥(x,t) > c|t| — C and Eyu] =
Jo ¥(x,u) dz + [Dul() . Then, there exists a minimizer u € argmingcpy(q) Fv[i]
and for s € R,

X* = Xju>s) €  argmin 0V (z, s)x dz + |Dx|(2) .
x€BV(2,{0,1}) Ja
For U(z,t) = t201(z) + (1 — t)%02(z) the property u(x) € [0,1] follows directly
when comparing with the energy of the function min(1, max(0,u)). Furthermore,
choosing s = % allows us to verify the main claim of Proposition Il Indeed, for
t € R and x € BV(2,{0,1}), let E{[x] := [, 0;¥(z,t)xdz + [Dx|(R2). For our
specific choice of W,

By = / (2601 () + 02(2)) — 205(2)) x e + [Dy](2)

implies that minimizing the functional E%®' is equivalent to minimizing the func-
2
tional E because E¥[x] = E[x] — [, 02 dz.
2

Remark. The particular advantage of our model compared to the relaxation ap-
proach by Nikolova, Esedoglu and Chan [21]] is that the relaxed problem does not
need to be constrained to functions u with values in [0, 1]. One could also consider
an ROF type functional choosing ¥(z,t) = %(t — (62(x) — 61(x)))? (cf. [7]) and
obtain the functional E§'[x] for the threshold value s = 0, but in this case the
L bound of the relaxed solution depends on the L> bounds of < (¢; — ug)? (cf.
Proposition 2]) and requires a more involved cutoff scheme (see Section B]).

In what follows, we make use of convex analysis to derive a duality formulation
for the minimization problem of the relaxed functional (22 and derive functional
a posteriori estimates for this problem. Primal and dual formulations will later be
used in the a posteriori estimates. The dual of BV () is very difficult to charac-
terize and not suitable for computational purposes. Thus, for a generalized ROF
model Hintermiiller and Kunisch [30] proposed considering the corresponding BV
functional as the dual of another functional, which we refer to as the predual func-
tional. Bartels [5] made use of this approach in the context of a posteriori estimates
for the ROF model. Here, we follow this procedure and investigate the predual of
2. ]

Recall that the Fenchel conjugate J* of a functional J : X — R on a Banach
space X with R = R U {oo} is a functional on the dual space X’ with values in R,
defined as J*[z'] = sup,c x{(2', x) — J[z]} , where (-, -) denotes the duality pairing.
Furthermore, we denote by A* € L(Y’, X’) the adjoint operator of A € L(X,Y)
and by 0J the subgradient of J (cf. [25]).

Now, we investigate an energy functional

(2.3) D*'[g] = Flg] + G[Aq],  q€Q,

with F: @ = R and G : V — R being proper, convex and lower semicontinuous
functionals, V and Q being reflexive Banach spaces and A € £(Q, V). In our case,
the predual of the convex relaxed binary Mumford-Shah model is given by

0 iflg <1 ae.,

1,2
T o N Z’U + ’U92 — 9192
Flg) = I, la] = { +o0 else, Glol = /Q 01 + 6o dz,
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with A = div, @ = Hy(div,Q) and V = L?*(Q). Recall the definition of the
spaces H(div,Q) = {¢ € L*(Q,R") : divg € L*(Q)}, endowed with the norm
||Q||?q(div,g) = ||Q||%2(Q) + Hddiniz(Q)a and Hy(div,Q) = H(div,Q) N{q v =
0 on 90}, where v is the outer normal on 92 and the operator div is understood
in the weak sense. Moreover, A* = —V holds in the sense

(A0, q)r20) = (v,divg)re) Yw eV, g€ Q.

Based on this duality and for the particular choice of D!, we easily verify that
(DrY* = E*!. Indeed, from the general theory in [25, pp. 58ff.], we can deduce
(D**N)*[v] = F*[—A*v]+G*[v]. As a result of the denseness of C1(2) in Hy (div, Q)

with respect to the norm || - || g (giv,0), We can infer for any v € BV(Q)
|Dv|(2) = sup / vdivgdz = sup <—/ vdivgdr — I, [q]> ,
€9 llglle <1 /2 q€eQ Q

which leads to

FU=A%] = sup (—/deiqux Iy, [q]) = [Du|(Q).

On the other hand, the Fenchel conjugate of G' can be computed as follows:

G*lv]= sup ((v,w)r2@0) — Gw]) = / 0201 4+ (1 —v)?0y dx,
weL2() Q
where the supremum is attained for w = 2v(6;+63)—260. This verifies the assertion.
The central insight is that

(2.4) Dlp] = —(D*)"[u]

for a minimizer p of D*! and a minimizer u of (D**")*. A rigorous verification can
be found in [25] Chapter II1.4] (see also [5,[42[44]). Furthermore, one obtains that
g € Q and ¥ € V are optimal if and only if —A*s € 9F[q] and © € OG[Ag], which
can be deduced from the equivalence J[z] + J*[z'] = (2/,2) <= 2/ € dJ[x] (see
[25, Proposition 1.5.1]).

In what follows, we investigate a posteriori error estimates associated with the
energy D™[q] = Flq] + G[Aq] and its dual E™'[v] = F*[—A*v] + G*[v] (for fixed
intensity values ¢; and c¢g). A crucial prerequisite is the uniform convexity of G*,
which is linked to the specific choice of the relaxed model E*e!.

Recall that a functional J : X — R is uniformly convex if there exists a continu-
ous functional ®; : X — [0, 00) such that J[ZE22] 4+ & j(zo—21) < $(J[z1]+T[22])
for all 1,29 € X and ®;(x) = 0 if and only if x = 0. Furthermore, we denote by
U ; a non-negative functional such that (z/,zo —21) + U j(ze — 1) < J[xo] — J[21]
for all ' € 0J[z1]. Hence, ¥ allows a quantification of the strict monotonicity of
J. If J € C? and A, denotes the smallest eigenvalue of D?J, then ®; and ¥ ; ad-
mit the representation ®;(z) = £ Amin(D?J)||2||* and U (z) = L0 (D?J)|z|?,
which follows readily via a Taylor expansion.

Remark. The optimal ¥¥ coincides with the Bregman distance (cf. [11]), i.e.

V(e —x1) < UY(20 —21) 1= J[w2) — J[21] — s(;lp[ | (2,29 — 1)
x'€0J[x1

for any other ¥ ; and z1,z2 € X.
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Now, the a posteriori error estimate is based on the following direct application
of a general result by Repin [42]: Let u € argmingc,, E™![3] and ¢ € Q, v € V' =
V = L*(Q). Then,

v—1Uu

1
(25) Pg+(v—u)+ Pp(—A" (v —u)) + Vpra < > < §(Erel[v] + D™ q]).
The proof of (Z.3]) relies on the above strict convexity estimates and the fundamental
relation E™![u] > —D"[q] known as the weak complementarity principle [25], and
can be found in [5[42].
In the case of the binary Mumford-Shah model, we easily verify that

1
(I)F* EO, q)G*(’U) = Z/S\2U2(01+92)d1‘, \IlErel(’U) :/Q'U2(91+92)d$,

and the estimate (2.5) implies for any v € V and g € Q
[ (= 0200+ 02) do < B + D).
Q

Finally, 1(a —b)? < a? 4+ b? with a = ¢; — ug and b = ¢y — ug yields o (c1 — ¢2)? <
01 + 65. Thus, we obtain the following theorem.

Theorem 2.2. Let u € V be the minimizer of E*. Then, for anyv €V and ¢ € Q
it holds that

2v

G —ar (E*'[v] + D™'[q]) .

(2.6) [l — U||2L2(Q) <err?[v,q,c1,co] i=

In the application, one asks for the (post-processed) discrete primal v and dual
solution ¢ which ensure a small right hand side. Additionally, the estimator err,
is consistent, i.e. err?[v, q,c1, ca] — 0 provided v and ¢ converge to the extrema of
the corresponding energy functionals w.r.t. the topology of the associated Banach
spaces.

3. A POSTERIORI ERROR ESTIMATES
FOR THE BINARY MUMFORD-SHAH MODEL

In the sequel, we expand the a posteriori theory to the binary Mumford-Shah
model. The key observation is that for many images approximate solutions u €
L?(Q) of the relaxed model are characterized by steep profiles, where the actual
solution of the original binary Mumford-Shah model jumps. We proceed as follows.
We define

a[v,n] = HX[%—WSUS%‘FU]‘ L1(Q)

forn € (O7 %) , which measures the area of the preimage of the interval of size 27 cen-
tered at the threshold value s = % (¢f . Section ). Based on the above observation,
the set S, = [% —n<v< % + 77] can be regarded as the set of non-properly iden-
tified regions. Combining this definition with the thresholding argument presented
in Proposition 2.1l we obtain the subsequent theorem:

Theorem 3.1 (A posteriori error estimator for x). For fized ¢ and cq, let u €
BV(Q) and x = xpu>1) € BV(Q2,{0,1}) be a minimizer of the relazed functional
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E™ (see [Z2)) and the binary Mumford-Shah functional E (see (L)) ), respectively.
Then for allv € V = L*(Q) and q € Q = Hy(div,Q) we have that

1
<erry[v,¢] := inf (a[v,n] + —zerri[v,q,cl,@]) i
n

T
(1) |IX = Xps 1 Lo peihy

Recall that X[p>1] 18 the indicator function of the set [v > %] Let us remark
that x[,~ 1 is the result of the same thresholding, which relates x to the solution
u of the relaxed problem ([22)), i.e. x = X[u> 11, this time applied to v.

Proof. Any minimizer u of E™ fulfills 0 < u < 1 and X[u>1] minimizes E (see

Proposition 21)). For all n € (0, %)7 we obtain the following set relation for the
symmetric difference of the sets [u > 1] and [v > 1] (A denoting the symmetric
difference of two sets):

(3.2)

[u>%}A[v>%]g{er|%—n§v(m)§%+77}U{x€(2|\u(a:)—v(:v)|>n}.

Now, using Theorem [2.2]the Lebesgue measure of the rightmost set can be estimated
as
u—vf?

2
dzr < _2€rru[1}7%01;62]7

L(Ju—v| >n) S/

(u—vl>ny 1
1

where 1 € (0,3). Finally, taking the infimum for all n € (0,1) concludes the

proof. O

In the application, the computational cost to find the optimal 7 is of the order
of the degrees of freedom for the discrete solution and thus affordable. Let us
emphasize that the error estimator err, is not tailored to a specific finite element
approach. Indeed, we can project any primal and dual solution onto the spaces
V = L?(Q) and Q = Hy/(div, ), respectively.

Remark. (i) We can obtain an a posteriori error estimate for the segmentation
also for intensity values ¢&;, which are only known to be in intervals [¢; — €, ¢; + €]
around some value ¢; for i = 1,2 and € > 0. Indeed, applying straightforward

monotonicity arguments, we obtain the estimate supz, ¢ g_(c,), i=1,2 err?[v, q,é1,Co) <

2,€

err>[v, ¢, ¢1, co] for

1(d; 2
2,e R 2v 2 pmax 2 pmax 7 (divg)
err,; [v,q,cl,CQ] = / m(v 91 + (1 - U) 92 + |V’U| + W
Q

(le q)eén,u.:l; (le q)eén,in _ 0;7Li7L9;n,i'rL
+max { gl graerges | — gpeoper ) 42

provided that 2¢ < |c1 — co|. Here, 07" (z) = L max{(c; + € — uo)?, (¢; — € — ug)*}
and 0""(z) = L min{(¢; + € — ug)?, (¢; — € — ug)?} for i = 1,2. Thus, for the
minimizer x € BV(Q,{0,1}) of E[ - , ¢, é&] the a posteriori estimate

(3.3)

Hx ~ X[v>1]

. 1
. <err§[v,q,c1,¢] := inf (a[v,n] + ?erri’e[uq,chcz])

ne(0,3)
holds for all v € V = L?(Q) and q € Q = Hy/(div, Q).

(ii) The optimal intensity values for a given characteristic function y are given
in (T2). For the sensitivity of these values on x, we straightforwardly obtain the
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estimates
(3.4)
lelx] — el[X) < 21%=xll 10

i)~ IX=xllL1q)

21 (%0l 1 (e
||1*XHL1(Q)*H(>Z*X)”L1(sz)

v el = eo[Xll <

assuming [[(X = X)ll£1 (@) < min{|x|lz1 @), 11 = xllzr@)}-

(iii) Given the sensitivity results from (i) and (ii) one might ask for an a posteriori
error estimate both for x and the intensity values c1, c2. In fact, if (x,c1,c2) is a
minimizer of the in general non-convex energy

E = / l(q —up)?x + l(02 — u)*(1 — x) dz + [Dx[()
QV v

and one assumes a priori that each of the initially chosen intensity values is already
in some e neighborhood of the corresponding c¢;—value, then the estimates (3.3]) and
B4) can be combined to obtain an a posteriori error estimate for the numerical
approximation of (x,ci,c2). Unfortunately, the estimate ([B3]) is not sufficiently
sharp to ensure that the resulting estimated error in the intensities does actually
improve compared to the a priori assumption, and a bootstrapping argument could
not be applied to further improve the resulting estimates. We refer to Section [@] for
an explicit evaluation of the sensitivity of the relaxed solution.

4. FINITE ELEMENT AND FINITE DIFFERENCE DISCRETIZATION

In this section, we investigate different numerical approximation schemes for the
primal and the dual solution of the relaxed problem (2.2)) on adaptive meshes and
the refinement of the meshes based on the a posteriori error estimates derived in
SectionBl In the context of image processing applications with input images usually
given on a regular rectangular mesh, an adaptive quadtree for n = 2 (or octree for
n = 3) turned out to be an effective choice for an adaptive mesh data structure. In
what follows, we pick up the finite element approach for a variational problem on
BV proposed by Bartels [6] and a simplified version of the latter. Furthermore, we
consider the widespread finite difference scheme proposed by Chambolle [I4]. In all
numerical experiments in this paper, we choose Q = [0, 1)2.

(FE) Finite element scheme on an induced adaptive triangular grid. On
the domain 2, we consider an adaptive mesh M), described by a quadtree with cells
€ € M, being squares, which are recursively refined into four squares via an edge
bisection. We suppose that the level of refinement between cells at edges differs at
most by one. Thus, on a single edge at most one hanging node appears. Let h indi-
cate the spatially varying mesh size function on 2, where h on a grid cell ¥ ranges
from an initial mesh size 2~ Linit to a finest mesh size 270 (usually determined
by the image resolution). For all discretization approaches investigated here, the
degrees of freedom are associated with the non-hanging nodes. Let us denote by
N, the number of these nodes, which will coincide with the number of degrees of
freedom of discrete primal functions. The finite element discretization is based on
a triangular mesh Sy, spread over the adaptive quadtree mesh via a splitting of each
quadratic leaf cell into simplices .7 (“cross subdivision”). We ask for discrete pri-
mal functions uy, in the space of piecewise affine and globally continuous functions
on Sy, denoted by V. Thus, for functions v, € V), the values at hanging nodes are
interpolated based on the values at adjacent non-hanging nodes, which are associ-
ated with the actual degrees of freedom. By Qp = {qn, € V}' : ¢, - v =0 on 9Q} we
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denote the discrete counterpart of Q. To accommodate this boundary condition,
the boundary nodes are modified after each update of the dual solution in a post-
processing step. On V}, and Qp, we define discrete counterparts of the continuous
functionals F' and G as follows:

10?2 + o2, — 01,102,
Galon] = [ ARSI 4y ) = g o)
Q O1.n+62n

where 6, = Z,,(0;) = Ih(%(ci —up)?) for i = 1,2 with Z;, denoting the Lagrange
interpolation. In the application on images, we suppose that ug € Vg, where V) is
the simplicial finite element space corresponding to the full resolution image on the
finest grid level Ly representing the full image resolution. Furthermore, we consider
two different scalar products. On V},, we take into account the L?-product and on
Qp, the lumped mass product (gn,pn) — [, Zn(qn - pr) dz and identify V, and
Q}, with their dual spaces with respect to the L?- and the lumped mass product,
respectively. Then, the associated dual operators are

Gilon] = / R0up + (1 —w) 0o da,  Fila] = / Tn(lgn]) da.
Q Q

Finally, we define the discrete divergence Ay : On — Vh, qn — Pp div gy, where
Py, denotes the L2-projection Pj, : L2(2) — V. Following Bartels [5] and taking
into account the above scalar products on V;, and on Qy,, we obtain for the discrete
gradient —Aj : Vy, = Qp, vp, = —Aj vy, the defining duality

(4.1) / In(Ajop - qp) do = / vp Py, div g, dx
Q Q

for all ¢;, € Qp and vy, € Vp,.

(FE’) Finite element scheme based on a simple gradient operator. Instead
of the above defined discrete gradient operator —Aj, we alternatively consider the
piecewise constant gradient Vwvy on the simplices .7 of the simplicial mesh for
functions vy, € V}. To this end, we choose Q) as the space of piecewise constant
functions on the simplicial mesh and take into account the standard L?-product
on both spaces. The above definitions of the functionals Gj, and Fj, are still valid.
Moreover, G} remains the same, only Fj changes to Fyf[qs] = [, [qn|d2. The
discrete divergence Aj : Qp — Vy is defined via duality starting from the preset

discrete gradient as
/ Apqnop de = —/ qn - Vop do,
Q Q

which indeed ensures that —Ajv, = Vu,. This simplified ansatz leads to a non-
conforming iterative solution scheme (see Section [l), since the space of piecewise
constant finite elements is not contained in Hy (div,Q) (¢f. [6]). After each mod-
ification of the (piecewise constant) dual solution the values on the corresponding
boundary cells are set to 0 to satisfy the boundary condition. To apply the derived
a posteriori error estimates a projection onto the space Hy (div, ) is required. To
this end, we replace the solution p;, € Qp by its L?-projection onto the space 1 %4
after each execution of the algorithm.
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(FD) Finite difference scheme on a regular mesh. The finite difference
scheme for the numerical solution of functionals on BV proposed by Chambolle
[14] is extensively used in many computer vision applications and applies to image
data defined on a structured non-adaptive mesh. We compare the a posteriori error
estimator for this scheme on non-adaptive meshes with the above finite element
schemes on adaptive meshes. To this end, we denote by V; € RV and Q;, € R*Vv
nodal vectors on the regular lattice for primal and dual solutions, respectively.
Here, N, = (h=! + 1)", where h denotes the fixed grid size of the finite difference
lattice. Integration is replaced by summation, and we obtain the following discrete
analogues G, and F}, of the continuous functionals F' and G as functions on R™v
and R™Vv | respectively:
Ju ($(V)2+ V6, —ei,0),
1 , h2,

Vil = Z( oL+ 0%

i=1

, FlQu]:= max Ip Q)]

yeres Vo

with @il,h’ ©} ), denoting the pointwise evaluation of 6, and 65, respectively, and
I5,(Q;] = 0 for |Qj| <1 and +oo otherwise. The associated dual operators for
the standard Euclidean product as the duality pairing are

N, Ny
G Vi =) (Vi)*0L, + (1-V})*05,, FilQu =) |Qi|.
i=1 i=1

Finally, we take into account periodic boundary conditions (by identifying degrees
of freedom on opposite boundary segments) and use forward difference quotients to
define the discrete gradient operator —Aj : RN — R*™Ve e,

] VJV(ivj) Vi
((=AL)Vh)' = <hfh> ;
j=1,....,n

where A4(4,7) is the index of the neighboring node in the direction of the jth co-
ordinate vector. As a consequence, the matrix representing the discrete divergence
operator Ay, : R™V» — RNv is just the negative transpose of the matrix represent-
ing the discrete gradient and thus corresponds to a discrete divergence based on
backward difference quotients.

To use the a posteriori error estimate in the finite difference context, we consider
as a simplest choice the piecewise bilinear functions uy and pj uniquely defined by
the solution vectors U, and Py, respectively. The boundary condition for py is
taken care of in exactly the same way as in the case (FE).

5. DUALITY-BASED ALGORITHMS

For the numerical solution of the different discrete variational problems, we pri-
marily use the primal-dual algorithm proposed by Chambolle and Pock [20, Algo-
rithm 1], which computes both a discrete primal and a discrete dual solution to
be used in the a posteriori error estimates. Note that we use [20, Algorithm 1]
instead of [20, Algorithm 2] even though Gj is uniformly convex. As we will see
later, evaluating (Id + 70G;)~! requires the inversion of a matrix depending on 7.
In Algorithm 1, 7 is fixed and the inverse can be computed once using a Cholesky
decomposition for the sparse, symmetric and positive-definite matrix (for details
see [23]), whereas in Algorithm 2 the decomposition of the linear system has to
be performed in each iteration. Moreover, using diagonal preconditioning one can
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improve the convergence speed of Algorithm 1 without any further step size con-
trol (see [39]). There is a variety of alternative algorithms to solve this convex
minimization problem, e.g. the split Bregman method [28], the semi-implicit dual
gradient descent [I4], the alternating descent method for the Lagrangian [5, Algo-
rithm A’] or the alternating direction method of multipliers (ADMM) (see [10] and
the references therein). For distinct images we compare below the aforementioned
algorithm by Chambolle and Pock with a dual gradient descent in terms of the
quantity of the error estimator.

Before we discuss the algorithm due to Chambolle and Pock in the more con-
ventional matrix-vector notation, let us rewrite the finite element approaches corre-
spondingly. Let N,, = dim V), (the number of non-hanging nodes) and N, = dim 9,
(for (FE) Ny = nN, and for (FE’) N, is n times the number of simplices). In
what follows, we will use uppercase letters to denote a vector of nodal values, e.g.
V}l1 = v, (X?) if X? is the ith non-hanging node. The two scalar products are en-
coded via mass matrices. Here, M, € RV:Nv represents the standard L?-product
on Vy, and is given by M, Vy, - Uy, = [, vpup da for all vy, up € V. Furthermore,
Mh € R¥«Na is the mass matrix associated with the space Qj,.

For the approach (FE) this is given as the lumped mass matrix with M, P}, -
Qn = fQ Zn(ph - qn) dz for all py, qn, € Qp, whereas for the discretization (FE’)
M, P, - Qn = fQ Dr - qn dx for all pp, g € Q) defines a classical (diagonal) mass
matrix. For the matrix representations Ay and —Aj of the discrete divergence and
the discrete gradient, respectively, we obtain the relation (cf. [3])

(5.1) P =M, 'ATM,, .
Moreover, for the discretization (FD) we have A} = AL. Altogether, the discrete

predual energy D! : RVe — R and the discrete energy Ei¢! : RNVv — R are defined
as follows:

D' [Qn] = Fu[Qu] + Gr[AL Q] ,

Ei'[Vi] = Fj[-A; Vi) + G [V4].
In the case of all finite element discretizations, the functionals Gy, F, G, and Fj,
are defined using the corresponding functions on the finite element spaces, e.g.
G}, [Vi] = Gj[onl].

Now, we are in position to formulate the primal-dual algorithm. For a fixed mesh,
fixed intensity values c1, ¢z and initial data (U9, PY) € RVv x RN« the Algorithm[I]
proposed by Chambolle and Pock [20, Algorithm 1] computes a sequence (U§, P¥),
which converges to the tuple (Up,P},) of the discrete primal and dual solutions
provided 7o||A]|? < 1. Indeed, by using inverse estimates for finite elements (see

k=0;
while | U} — U} > THRESHOLD do
Pyt = (I1d + 00F;,) '[P} — o AL U
Uit = (Id + 70G;) " UF + A, Py ;
D-ZH _ QUZH ~ Uk,
k=k+1,;
end
Algorithm 1: The primal-dual algorithm used to minimize E}fl.
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[37] for a computation of the constants) the operator norm can be bounded in the
case (FE’) for n = 2 as follows: [|A]|? < 48(3 +2v/2)h, 2 ~ 279.8h,2  where

hmin denotes the minimal mesh size occurring in Mj,. Moreover, to estimate the
operator norm for the case (FE) we use (1)) and obtain

2
Ap? = max max /I —Avy, - da:)
H h” <'Uhevh,:|vh|[,21 an€Qn,llanlln=1 Jq h( hoh Qh)

2
= max max / v Pp div g dz
V€V llvnll2=1 an€Qn,llanlln=1Jq

< max [Py dlvqhHLg(Q < max ||d1vqh||L2 <96(3 4 2v2)h 2,
qn€Qn, qrn€Qn,
llgnlln=1 lgnlln=1
where |gnll7 = [, Zn(|gn]?) dz. Finally, following [14] we can estimate [|[A,[? <
8h, 2 for the discretization (FD).

Suitable stopping criteria are a threshold on the maximum norm of the differ-
ence of successive solutions U’ZH - UZ (which we apply here) or on the primal-
dual gap Ei*'[UF] + Di®'[PF]. To compute the resolvents (Id + 0F;)~1[Qy] and
(Id + 0G})"[V},] we use a variational ansatz (for details see [44]); i.e. for the
resolvent of a subdifferentiable functional J with an underlying scalar product (-, -)
we have that
(Id + 70.J) " ![x] = argmin(z — y, z — y) + 27.J(y) .

Y

The resolvent of Fy, for the approaches (FE) and (FD) is given by

’1}>i—1,...N,U

(5.2) (Id + 0dF,) ' Qn] = (max{Q—th

with Qi = ¢n(X"). In the case (FE’), the above evaluation is performed on each
cell. For the discretizations (FE) and (FE’), we denote by My[W,]Uj, - V), =
fQ wp, upvy dx the weighted mass matrix for functions up,v, € V), and a weight
wp, € Vy,. Then, the resolvent of Gy, reads as

1d + 70GE) Vi) = (Mu[1 4+ 27(O1.h 4 O2.4)]) " My, (Vi +27604,4) .
In the case (FD), the resolvent is given by
Vi + 27—937}1
1427 (0}, +6},)

(Id + 70G}) "' [Vi] = for 1 <i<N,.

In our numerical experiments, we have chosen THRESHOLD = 1078.

In the sequel, we consider a projected dual gradient descent for the minimiza-
tion of £ using the discretization (FE) and picking up Chambolle’s semi-implicit
gradient descent w.r.t. the dual variable for the ROF model using a finite dif-
ference scheme [I4]. We remark that the algorithm can analogously be derived
for the discretization scheme (FE’). Starting from the first order condition k :=
—(2ufy + 2(u — 1)82) € OTV[u] for E™ with TV[u] = |Du|(2), we can infer
u € OTV*[k] due to [25] Chapter I, Corollary 5.2], which is the first order con-
dition of the functional

1 *
/Qm (5—292)2 dl‘—f—TV [KZ]
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Thus, the unique minimizer is given by k = Pg[263], where Pg denotes the orthog-
onal projection onto the set S = {divp|p € Hy(div,Q),[|p|lL=() <1} w.r.t. the
weighted L2-space with weight w = (4(0; + 62))~ !, denoted by L?*(Q,w). Note

that w € L*(,R>?) due to the assumptions regarding ;. The primal solution
205 = Ps[205]
2(91+92)

argmin g ||t — 202\@2 (9,w)» Which is computed by alternatingly performing a gra-
dient descent for the unconstrained problem and a projection onto S. To be pre-
cise, for a fixed step size 7 > 0 the usual gradient descent update scheme reads
pFtl = pk — 7V (w(divp* —265)). After a multiplication by a test function ¥ € Q,,
applying fQ Zn( - ) dz on both sides, replacing V and div by the differential opera-
tors —A} and Aj as introduced in the discretization (FE), respectively, and using
(@I one obtains

is given by u = For the computation of Pg[26;] we have to solve

(5.3) / Tn(p" - 9) de = / Tn(p" - 9) da + T/(w(Ahpk —205))Ppdivide.

Q Q Q
Let M, be the lumped mass matrix, L; Uy, - Vi, = fQ up - O;updz, j = 1,2, for all
up, vy € Vi, and Wi = w(X?). Then (5.3) implies

(5.4)  [PFTY; = [PF]; + M, 'Ly (W, (AP} — 20, ,)) for j =1,2.

After each update of the dual variable (5.4 a projection onto S is performed (cf.
(E2)). The step size is taken as 7 =« - mingeam,, A(€). The stopping criterion for
the resulting algorithm relies on the L>°-distance of two successive dual solutions (in
our case, THRESHOLD = 10~8). For a convergence analysis of this approach we
refer to [12]. In the sequel, we will denote results obtained with the discretization
scheme (FE) and this algorithm by (FEp).

The adaptive mesh refinement is implemented as follows. Given a mesh, fixed
intensity values and initial data for the primal and dual solutions, we run one of
the above algorithms and compute the relaxed discrete primal-dual solution pair
(up,pr). In the case of the finite difference approach (FD), we define them as the
multilinear interpolation on the cells ¢ of the regular mesh. The corresponding
discrete solution of the original problem (21]) is then given as yp = Xup>1]- Based
on uy and pp, we evaluate the local error estimator for every cell 4y of the full
resolution image grid as follows:

2v
errifgo [un,pr] = 7(01 — o) ( [g ui@l +(1- uh)292 + |Vup|
0
1(divpp)? + (divpy)fs — 010,
+ dx | .
01 + 6>

To this end, a higher order Gaussian quadrature is used. In fact, for (FE), (FEp)
and (FE’) we use a Gaussian quadrature of order 4 on the simplices 9 composing
the cell € on the finest mesh with full image resolution, where the 6; (i = 1,2) are
originally defined, and for (FD) we use a Gaussian quadrature of order 5 directly
on the cells 5. The resulting local error estimator for a cell ¥ € Mj and the
global estimator are given as

2
erry, ¢ [un, pnl = g erru%[uh,ph] and err? [up, pp) E err? o [un, pnl
CCE € eMy,
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respectively. We mark those cells € for refinement for which

(55) erriﬁg[uhaph} > O[%I’Iéajl\}jlh errif@”’ [uhaph] )

where « is a fixed threshold in (0,1). Since this method is prone to outliers, we
additionally sort all local estimators errifg according to their size (starting with
the smallest) and mark the cells in the upper decile for refinement as well. For the
input data from Figure [l we refine up to the resolution of the initial image.

6. NUMERICAL RESULTS

In what follows, we show numerical results for four different input images shown
in Figure [l Prior to executing the primal-dual scheme (Algorithm [I)) or the dual
gradient descent scheme, we choose suitable values for ¢; and ¢y by applying Lloyd’s
Algorithm (see [33]) for the computation of a 2-means clustering (with initial values
1 and 0). The resulting intensity values are given in Figure [I] together with the
values for v.

image (a)

resolution 2049 x 2049 2049 x 2049 2049 x 2049 513 x 513
c1 0.999772 0.893734 0.664404 0.602566
co 1.99-10~% 0.030416 0.167763 0.092273
v 5.1073 5.10°3 10-3 5.10°3

FiGURE 1. Input images together with the corresponding image resolution
and the model parameters c;, co, and v. (Flower image: “Leucan-
themum vulgare” by Derek Ramsey/Chanticleer Garden (desaturated
from original), used under CC BY-SA 3.0, https://commons.wikimedia.
org/wiki/File:Leucanthemum_vulgare_%27Filigran%27_Flower_2200px.jpg.
Cameraman image: copyright by Massachusetts Institute of Technology, used
with permission.)

The pixels of the input images are interpreted as nodal values of the function wg
on a uniform mesh with mesh size h = 27%° (Ly = 9 for (d), Lo = 11 else). The
algorithm is then started on a uniform mesh of mesh size h = 2~ Linit (Linic = 3
for (d), Ly = 5 else). In all computations we use 7 = 107® and ¢ = 51075
(Algorithm [), v = 0.05 for the dual gradient descent and o = 0.2. We perform
10 cycles of the adaptive algorithm and refine cells until the depth Ly of the input
image is reached.

We observe slight local oscillations for the finite element approaches (FE), (FEp)
and (FE’), which deteriorate the result of the a posteriori estimator (¢f. the numeri-
cal results in [5]). Thus, in a post-processing step, we compensate these oscillations
prior to the evaluation of the estimator by an application of a smoothing filter.
The filter is defined via an implicit time step of the discrete heat equation using
affine finite elements on the underlying adaptive mesh; i.e. we apply the operator
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(M, + LSh)*th to the solutions, where S;, denotes the stiffness matrix. For the
discretizations (FE) and (FEp), we choose ¢ = ¢+ h2,,,,, where hp;, denotes the
minimal mesh size of the current adaptive grid, with ¢ = 3 and ¢ = 6 for the primal
and the dual solution, respectively. Moreover, in the case (FE’) the smoothing is
only applied to the dual solution with parameter ¢ = 0.75 - h0-, where h, denotes
the average cell size on the adaptive mesh. In our experiments, we observed that
these smoothing methods and parameters outperformed other tested choices for

the corresponding discretizations. We call the resulting post-processed functions

up, and Py, respectively, and replace the local error estimator by erri(g[ah, Dh)-

TABLE 1. Rescaled dual and primal energy evaluated on the dis-
crete solution (up,pp), error estimator for the relaxed solution,
optimal threshold 1,ptimaq: computed for u;, and the resulting a pos-
teriori estimator err, for the L'-error of the characteristic function
x (after 10 cycles of the adaptive algorithm).

(a) (b) (c) (d)
(FE) | 0.022422 | 0.078461 | 0.124137 | 0.203797
2 Bl (FEp) | 0.022421 | 0.078632 | 0.124659 | 0.204353
(ci=e) 7 (FEY) | 0.022249 | 0.077981 | 0.122572 | 0.202494
“““““ (FD) | 0.022493 [ 0.078814 | 0.122777 | 0.205645
(FE) |[-0.021736 | -0.075971 | -0.117785 | -0.183819
Dip] (FEp) | -0.021757 | -0.075870 | -0.117973 | -0.181720
(er—ea)? I (FEY) | -0.020973 | -0.071333 | -0.111234 | -0.166114
“““““ (FD) | -0.021520 | -0.075455 | -0.119865 | -0.188600
(FE) | 6.86e-04 | 0.002490 | 0.006352 | 0.019978
ep2 (FED) | 6.63e-04 | 0.002761 | 0.006686 | 0.022633
(FE’) | 0.001276 | 0.006647 | 0.011338 | 0.036380
“““““ (FD) | 9.73¢-04 | 0.003359 | 0.002912 | 0.017045
(FE) 0.39 0.3225 0.2825 0.3075
(FEp) | 0.385 0.325 0.2725 0.315
floptimal Ry 0.45 0.3675 0.31 0.3275
I (FD) | 04375 | 0.345 | 024 | 03025
(FE) | 0.008847 | 0.038502 | 0.160912 | 0.373173
orp. (FEp) | 0.008704 | 0.041019 | 0.167802 | 0.394317
X (FE’) | 0.009816 | 0.068514 | 0.227060 | 0.545201
“““““ (FD) | 0.008223 | 0.0425225 | 0.109039 | 0.339256

Table [ lists (scaled) primal and dual energies, err2, noptimar (the n value cor-
responding to the optimal a posteriori error bound for given err?), as well as err,
for all input images after the 10th refinement step of the adaptive algorithm. The
value of err, peaks for the application (d) due to the relatively low image resolu-
tion. Figure 2 plots the error estimator err? after each refinement step for all input
images and all finite element discretizations. In most of our numerical experiments,
the scheme (FE) performs comparably to the discretization (FEp), but slightly bet-
ter than the scheme (FE’). For the flower image, the sequence of adaptive meshes
and solutions resulting from the adaptive algorithm for the discretization (FE’) is
depicted in Figure Bl
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10° 10* 10° 10° 10* 10° 10°
degrees of freedom degrees of freedom

108 i i 102 i i i
10° 10t 10° 108 10’ 10? 10° 10* 10°
degrees of freedom degrees of freedom
| (FE) (FEp) (FE’)
err> | black (M) purple (+) red (A)

erry | brown (e) gray (X) blue (V)

FIGURE 2. The values of err? and err, are displayed in relation to the number
of degrees of freedom in a log-log plot for the applications (a) (upper left), (b)
(upper right), (lower left) and (d) (lower right).

F1GURE 3. The sequence of solutions uj and a color coding of the correspond-
ing fineness of the adaptive meshes at the 1st, 2nd, 3rd, 4th and 5th iterations
of the adaptive algorithm applied to the input image (c¢) and computed using
the (FE’) discretization.
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0O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

n
H H H H H H

O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
n

FIGURE 4. For images (b) (first and second row) and (c) (last two rows) and
the discretization (FE’), the components of the relaxed solution up, (pp)1,
(pn)2 and the resulting solution yp are shown after the 10th iteration of the
adaptive scheme. In the second and fourth rows, the adaptive grid (after the
6th refinement step), deciles of the discrete solution u;, encoded with different
colors, and the functions n — a[Up,n| (red solid line) and n — err, (blue
dashed line) are rendered.

Figure [ displays solutions for the discretization (FE’) and the corresponding
adaptive meshes together with color coded deciles of uy, and the graphs of n —
a[Up,n] and n + err,. Note that the displayed deciles explicitly indicate the sets
Sy for n=0.1, 0.2, 0.3, 0.4.

Figures [Al and [6] show the relaxed solution u; and the thresholded solution xp
for the input images (b) to (d) using the discretization schemes (FE) and (FD).
The corresponding results for (FEp) are not depicted since they are almost indis-
tinguishable from the results for (FE).

It is known that solutions of the Mumford-Shah problem are in general not
unique. We pick up a classical example for this non-uniqueness in Figure [7] with
alternating intensity values 0 and 1 on quadrants. We demonstrate the sensitivity
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FIGURE 5. Relaxed solution up, (pr)1, (pr)e for the input image (b) (top row)
and (c) (bottom row) using the discretization (FE) (left, after 10 iterations of
the adaptive algorithm) and (FD) (right).

FIGURE 6. The mesh in the 5th and 10th iterations, the relaxed solution wy,
(pn)1, (pr)2 and xp for the input image (d) using the discretization (FE’)
after 10 iterations of the algorithm.

of our adaptive scheme with respect to the topology of the segmentation. In fact,
we compute a segmentation using the discretization (FE) (with initial intensity
values ¢; = 1, ¢co = 0 and v = 0.01) for slightly perturbed versions of the original
image. That is, solely the four pixels in the center of the image of resolution
2049 x 2049 are either set black or white, respectively. The resulting segmentations
are shown in Figure [ along with the adaptive mesh and the decile plots. The
adaptive algorithm is capable of detecting properly the decision for one of the two
segmentation solutions. The issue of non-uniqueness is closely related to the flatness
of the relaxed solution in the center, in particular leading to an increase of the a
posteriori error contribution afv, n].

Moreover, we applied the above methods to an analytic function consisting of a
weighted sum of two Gaussian kernels. To this end, in each step the functionals
and the error estimator are evaluated on the current adaptive grid and not on a
prefixed full resolution grid. The results are shown in Figure [§ (with parameters
c1 = 0.495349, c3 = 0.0568447 and v =5 - 1073).

In addition, we evaluated the sensitivity of the error estimates with respect
to variations in the intensity values. Figure [0 shows the function plot of € —
err2<[uy,, pp, 1, co] with fixed primal u; and dual solution pj obtained with the
discretization (FE) after the 10th iteration for the images (b) and (c). The error
estimator for image (b) is less sensitive to small fluctuations in the intensity values
compared to image (c) due to the stronger variation of intensity values along the
boundary of the segmentation in image (b).
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FiGUurRE 7. The original input image with resolution 2049 x 2049 and the
adaptive mesh after the 6th iteration with white pixels in the center of the
input image (first column). Second to fourth column: the relaxed solution
up, the thresholded solution x; and the decile plots after the 10th iteration
for black pixels in the center (first row) and white pixels in the center (second
row) along with the corresponding zoom of the center (with zoom factor 8)
using the discretization (FE).

10" H H H H
IO 102 103 104 105 108 107
degrees of freedom

FiGure 8. First row: Input image wuo composed by the superpo-
sition of two Gaussian kernels, numerical solutions wup, (pp)1 and
(pn)2 computed via the adaptive algorithm using discretization
(FE’). Second row: xp, deciles and the error estimators in a log-
log plot (err? in red A, err, in blue ¥ for the discretization (FE’),
and err? in black M, err, in brown e for the discretization (FE)).
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FIGURE 9. The function plot € — err®< for the images (b) (red solid line) and
(¢) (blue dashed line) using the discretization (FE) after the 10th iteration.

Finally, the proposed discretization schemes were compared in terms of the rel-
ative CPU time for the images (b) and (d) in the last iteration. To enforce com-
parable conditions the stopping criterion was set to [P} — P¥|., < 1079, and
the primal and dual solutions were initialized with constant values. In comparison
with the discretization scheme (FE), the scheme (FE’) required comparable CPU
time (image (b): —6.7%, image (d): +6.5%), whereas (FEp) performed slower for
larger images (image (b): +30.4%, image (d): —0.1%).

7. CONCLUSIONS

We have investigated the a posteriori error estimation for the binary Mumford-
Shah model and applied this estimate to three different adaptive finite element
discretizations in comparison to a non-adaptive finite difference scheme on a regular
grid. The proposed finite element discretizations in combination with the adaptive
mesh refinement strategy lead to a substantial reduction of the required degrees
of freedom with error values err? and err, of about the same magnitude as for a
standard finite difference scheme on a non-adaptive mesh with mesh size equal to
the finest mesh size of the adaptive meshes. To improve the resulting estimate of
the duality gap E™![v] 4+ D ![¢], the finite element schemes require some oscillation
damping smoothing in a post-processing step.

The proposed approach to a posteriori estimates for the binary Mumford-Shah
model derived in this paper can be applied to more general problems in computer
vision. In fact, the calibration method developed by Alberti, Bouchitté and Dal
Maso [I] provides a convex relaxation of non-convex functionals of Mumford-Shah
type via the lifting of a variational problem on a n-dimensional domain to a mini-
mization problem over characteristic functions of subgraphs in n+1 dimensions. In
the context of non-convex functionals in vision, this approach was studied by Pock
et al. [40L4T]. Applications of such functionals include the computation of minimal
partitions [16,[38], the depth map identification from stereo images or the robust
extraction of optimal flow fields [41]. Here, an adaptive mesh strategy is expected
to have an even larger pay-off due to the increased dimension.
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