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THE BMR FREENESS CONJECTURE

FOR THE 2-REFLECTION GROUPS

IVAN MARIN AND GÖTZ PFEIFFER

Abstract. We prove the freeness conjecture of Broué, Malle and Rouquier
for the Hecke algebras associated to the primitive complex 2-reflection groups
with a single conjugacy class of reflections.

1. Introduction

We prove several new cases of the freeness conjecture for the generic Hecke alge-
bras associated to complex reflection groups (sometimes called: cyclotomic Hecke
algebras), including all 2-reflection groups (of exceptional types). Recall that, when
W is a finite reflection group over the real numbers, that is to say a finite Coxeter
group, the Iwahori-Hecke algebra H associated to it can be defined as a quotient
of the group algebra Z[q, q−1]B of the braid group B associated to W — which is
also known in this setup as an Artin group, or Artin-Tits group, or Artin-Brieskorn
group. This is the quotient by the relations (s+1)(s− q) = 0, where s runs among
the natural generators of B — or equivalently all their conjugates in B. These
conjugates are called braided reflections.

In the more general setting of complex reflection groups, there is a natural geo-
metric description of these braided reflections, as well as a topological description
of the braid group B, described in [BMR]. In case W is generated by (pseudo-)
reflections of order more than 2, or if W admits several reflection classes (aka con-
jugacy classes of reflections) the ring Z[q, q−1] needs to be replaced by a larger ring.
However, since the groups we are interested in are generated by reflections of order
2 — although they can not be realized inside a real form of the vector space — and
have a single reflection class we can and will restrict to this case. A conjecture of
Broué, Malle and Rouquier in [BMR] then states the following.

Conjecture. The Hecke algebra H defined as the quotient of Z[q, q−1]B by the
relations (s + 1)(s − q) = 0 where s runs among the braided reflections of B is a
free Z[q, q−1]-module of rank the order |W | of W .

We refer the reader to [Ma2] for the state-of-the-art of this conjecture, as well as
the proof that this formulation of the conjecture is equivalent to a few others (see
proposition 2.9 there). We only mention the following important fact, originally
proved in [BMR].

Proposition 1.1. In order to prove the conjecture for W it is sufficient to show
that H is spanned by |W | elements.
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We state our main result.

Theorem 1.2. All primitive irreducible complex 2-reflection groups with a single
reflection class satisfy the freeness conjecture, namely H is a free Z[q, q−1]-module
of rank |W | for these groups.

1 2

3

4

5

6

7

8

9 26

27

28

29

30

31

32

33 42

10

11

12

13

14

15

16

17

18

19

20

21

34

35

36

37

38

39

40

41

23

25

22

24

Figure 1. The coset graph for G24/B2

In Shephard and Todd notation, this statement covers the groups G12, G22, G24,
G27, G29, G31, G33 and G34.

Together with previous results, this theorem admits several corollaries. We refer
to [Ma2] or [BMR] for the general statement of the BMR freeness conjecture we
are referring to in these corollaries. We also recall that this conjecture was already
known to hold for the general series of imprimitive complex reflection groups when
it was stated (see [BMR], theorem 4.24). Therefore, one only needs to focus on
primitive, exceptional reflection groups.

First of all, it has been recently proved by E. Chavli in her thesis [C] that the
group G13, which is generated by 2-reflections but has two reflection classes, satisfies
the conjecture. This group is the only primitive 2-reflection group having more than
one reflection class. Therefore, we get the following corollary.

Corollary 1.3. Every irreducible complex 2-reflection group satisfies the freeness
conjecture.

It has been proved in [Ma1] and [Ma2] that the groups G25, G26 and G32 satisfy
the freeness conjecture. In addition, Etingof and Rains have proved in [ER] that
the groups of rank 2 satisfy the weak freeness conjecture, namely that their Hecke
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algebra is finitely generated (and therefore has the right dimension as vector space
over the field of fractions of the generic coefficients) — see again [Ma2] for further
details, and see also the recent paper [L] for more implications. As a consequence,
we get the following corollary.

Corollary 1.4. Every irreducible complex reflection group satisfies the weak free-
ness conjecture.

In order to prove the theorem, we need a presentation of the braid groups. For
groups of rank 2, presentations were first obtained by Bannai, in [Ba]. For groups
of higher rank, using the Zariski-Van Kampen method for computing presentations
of fundamental groups, a conjectural presentation of B was found by empirical
means by Bessis and Michel in [BM]. The proof that these presentations were cor-
rect did depend on the verification of a geometric criterion. This justification was
subsequently provided in [Be]. Moreover, one finds in [Be] another way to justify
these presentations in the case of well-generated groups, that is, when the minimal
number of reflections needed to generate W is equal to the rank of W — this is the
case for all the 2-reflection groups of higher rank except G31. Note however that,
because of Proposition 1.1, we do not really need a presentation of B, but only to
know that the chosen generators are braided reflections, and that the relations we
use are valid — but we do not really need to check that they are sufficient to define
the group.

From such a presentation, we can describe H as the Z[q, q−1]-algebra defined by
the same generators si submitted to the defining relations of the group together
with the additional relations s2i = (q−1)si+q. Indeed, it can be shown (see [BMR])
that all the braided reflections are conjugated to one another as soon as W admits
a single reflection class; therefore, every relation s2 = (q − 1)s + q for s a braided
reflection is implied by the single relation s21 = (q − 1)s1 + q.

In order to prove the theorem, we use the following lemma, for which we do not
know any proof that does not rely on the classification.

Lemma 1.5. Every irreducible complex 2-reflection group W has a maximal para-
bolic subgroup which is a Coxeter group.

Proof. If W belongs to the infinite series of complex reflection groups, of type
G(de, e, n) in Shephard and Todd notation, the subgroup G(1, 1, n) of permutation
matrices, which is a Coxeter group of type An−1, is a maximal parabolic subgroup,
except when G(de, e, n) = G(1, 1, n) is itself a Coxeter group. If W is an exceptional
group of 2-reflections of rank 2, the subgroup generated by either of its reflections is
a maximal parabolic subgroup of Coxeter type A1. In higher rank the groups G24

and G27 admit a maximal parabolic subgroup of Coxeter type B2, and the groups
G29, G31, G33 and G34 admit maximal parabolic subgroups of Coxeter types B3,
A3, A4, D5 respectively. �

We then prove the theorem as follows. We know by [BMR] that to any such
maximal parabolic subgroup W0 is attached a (non-canonical) embedding B0 → B
of the braid groups ofW0 inside B. Among the presentations of [BM], we choose one
for which such an embedding corresponds to the choice of a proper subset I of the
set of indices involved in the presentation of B. That is, we can identify B0 with the
subgroup of B generated by the corresponding generators, and defining relations of
B0 are given by the set of all the relations of the given presentation of B which do
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Figure 2. Diagrammatic presentations for the Coxeter relations
of the groups G24/G27, G29, G31, G33

not involve any generator of B0. In rank at least 3, the relations of Coxeter type in
these presentations can be depicted inside a Coxeter-like diagram; see Figure 2. Of
course, there are additional relations involving 3 generators, that we will describe
in due time (for G31, these are represented by a circle in the diagram).

This group homomorphism B0 → B induces an algebra morphism H0 → H,
where H0 denotes the (usual) Hecke algebra of W0. Although we do not know a
priori that it is injective, it nevertheless endows H with the structure of an H0-
module.

We prove the following, for W an irreducible complex 2-reflection group with
a single reflection class but the largest one G34, and W0 the parabolic subgroup
provided by Lemma 1.5.

Proposition 1.6. As an H0-module, H is generated by |W/W0| elements.

By the classical theory of Iwahori-Hecke algebras we know that H0 is generated
as a Z[q, q−1]-module by |W0| elements; therefore Proposition 1.6 implies that H
is generated as a Z[q, q−1]-module by |W | = |W0|.|W/W0| elements and Proposi-
tion 1.1 finally implies the theorem for all groups but G34.

Once it is proved, the theorem implies that the map H0 → H is indeed injective.
Actually, Propositions 1.6 and 1.1 together imply a statement a bit stronger than
the theorem (for all groups but G34), namely:

Proposition 1.7. As an H0-module, H is a free H0-module of rank |W/W0|.

We now explain how we prove Proposition 1.6. We denote by S the set of
generators si of W . In each case, we choose a system of representatives of W/W0,
and more specifically a set xl, l ∈ {1, . . . , |W/W0|}, of words in the si of minimal
length whose images in W represent all the classes of W/W0. We show that the
H0-submodule

∑
l H0xl is a right ideal in H. Since it contains the identity of H this

will prove our Proposition 1.6. For this we need to establish |W/W0| |S| relations
of the form xl.s =

∑
1≤k≤|W :W0| αl,k(s)xk with αl,k(s) ∈ H0. This is basically what

we do.
In Section 3 we will prove the conjecture for the group G24 following this proce-

dure ‘by hand’ by establishing a number of equations of the form m.s = . . . for m
some word in the generators. This involves a well-defined ordering in the building
of coset representatives, plus a well-defined ordering of the entries that we fill in, so
that the computation of each entry does not involve entries that are not yet filled
in. A visual support is given by the ‘coset graph’ for W/W0, namely the graph
whose vertices are the (images in W0 of the) xl, and an edge xl →s xn means that
xn is defined as xl.s. The graph for G24 is given by Figure 1, the three different
colors for the edges corresponding to the 3 generators of the group. The graphs for
G12 and G29 are similarly depicted in Figures 3 and 4.
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Figure 3. The coset graph for G12/A1

Figure 4. The coset graph for G29/B3
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Then, in Section 4, we will show that the procedure can be automatized: we
define algorithms which happen to converge in each case. These algorithms need
to know in advance some additional relations inside B, that we found heuristically.
The search for such relations and their justification rely on the solution of the word
problem inside B. Fortunately, thanks to previous works, all these groups have
decidable word problems, and there is effective software to deal with them; we
explain all this, along with some basic algorithmic procedures, in Section 2.

Finally, we prove in Section 5 the conjecture for all groups, using the algorithms
described above. At the end of this section, we explain the trouble we got into
when dealing with the largest group G34, and the solutions we found to tackle this
case, too.

2. General automatic procedures

We now explain a few tools that we use in a systematic way and for which we
will not detail the calculations.

2.1. Determining the coset graph. The coset graph of W0 in W with respect
to S is the graph which has the (right) cosets W0w, w ∈ W , as its vertices, and

edges x
s

—– y if x.s = y for cosets x, y and s ∈ S.
The coset graph, together with a distinguished spanning tree, is determined

by a standard orbit algorithm which works on an ordered copy Ŝ of the set S of
generators of W , which induces a fixed order on all subsets J of S.

Input: W , Ŝ and a subset J of S generating W0.
Output: The coset graph Γ = (V,E) of W0 in W with respect to S and a

spanning tree T ⊆ E.
1. Initialize an empty queue Q, a vertex list V and two edge lists E and T as

empty lists. Then push the trivial coset W0 = 〈J〉 onto Q and add it to V .
2. while Q is not empty:
3. pop the next coset x off Q
4. for s ∈ Ŝ: process (x, s).
5. return the graph Γ = (V,E) and spanning edges T .
Processing (x, s) is done as follows:

1. Compute the coset z := x.s and add the edge x
s

—– z to E if not already
present.

2. If z /∈ V : push z onto Q and V , and add the edge x
s

—– z to the spanning
tree T .

Note that the spanning tree T defines, for each coset x, a word w of minimal
length in the generators S, which represents the coset when evaluated in W . This
word depends on the ordering of Ŝ. The cosets are enumerated in the lexicographic
order induced by Ŝ on the set of words in S.

It is possible, to group the cosets into double cosets of W0 in W and to ensure
that the words representing cosets in the same double coset have a double coset
representative as a common prefix. For this, one uses an additional queue P , which
like Q initially contains only the trivial coset W0, and modifies the processing of
(x, s) so that a new coset z = x.s is also pushed to the queue P , in addition to Q.

The modified algorithm has the same input and output as the original. The
order Ŝ on S induces an order Ĵ on the subset J and an order K̂ on its complement
K = S \ J . The algorithm then proceeds as follows.
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1a. Initialize two empty queues P and Q, a vertex list V and two edge lists E
and T as empty lists. Then push the trivial coset W0 onto P and Q, and add it to
V .

1b. while P is not empty:
1c. pop a coset y off P
1d. for t in K̂:
2a. while Q is not empty:
3a. pop a coset x off Q
4a. for s ∈ Ĵ : process (x, s)
5a. process (y, t)
5b. return the graph Γ = (V,E) and spanning edges T .
Note that this modified algorithm enumerates the cosets of W0 in W in an order

that is potentially different from the original lexicographic order, with potentially
different words for the coset representatives.

In the tables of results below we will indicate which version of the algorithm was
used, to uniquely identify the words used for the coset representatives.

2.2. Inversion of the relations. The most elementary tool we will use in both
cases is the following one.

Lemma 2.1. Assume that α ∈ H0 is invertible with inverse α′, and that β ∈ H.
Then, for each generator s with inverse s′ = q−1s + q−1 − 1, and for any l, n ∈
{1, . . . , |W/W0|}, we have

xl.s = αxn − (q−1)β =⇒ xn.s = qα′xl + (q−1)xn + q(q−1)α′β.s′,(2.1)

xl.s = αxn + (q−1)(xl + β) =⇒ xn.s = qα′xl − (q−1)α′β.s.(2.2)

Hence, xn.s can be computed provided that β.s is computable.

Proof. For the first equality, we have xl.s = αxn − (q−1)β hence αxn.s
′ = xl +

(q−1)β.s′ and, expanding s′, we get xn.(s−(q−1)) = qα′(xl+(q−1)β.s′). Therefore,
xn.s = qα′(xl+(q−1)β.s′)+(q−1)xn. For the second equality we have xl.s = αxn+
(q−1)xl+(q−1)β hence qxl.s

′ = αxn+(q−1)β and therefore αxn = qxl.s
′−(q−1)β

whence xn.s = qα′xl − (q−1)α′β.s. �

2.3. Checking equalities inside the braid group. The groups B are known to
have decidable word problems, and there are actually efficient decision algorithms.
In the case of well-generated reflection groups, Bessis has shown in [Be] that the
groups B are the groups of fractions of monoids M which share with the monoid of
usual positive braids all the properties used by Garside to solve the word problem
for the usual braid group (such groups B are called Garside groups). Bessis actually
introduced one monoid for each choice of a so-called Coxeter element c in W , and
called it the dual braid monoid attached to c. In terms of the generators that we
introduce later on (see also the numbering of the diagrams inside Figure 2) one can
choose c = s1s2s3 for G24 and G27, c = s1s2s4s3 for G29 and c = s5s4s2s1s3 for
G33. There are tools in Michel’s development version of the CHEVIE package for
GAP3 (which is described in [Mi]) in order to encode that monoid and therefore to
efficiently decide the equalities of two words inside B. In case the groups are badly
generated, we use the following properties. In the case of G12 and G22, they are
groups of fractions of the monoids f(4, 3) and f(5, 3), where f(h,m) denotes the



2012 IVAN MARIN AND GÖTZ PFEIFFER

monoid presented by generators x1, . . . , xm and relations

x1x2 . . . xmx1 . . .︸ ︷︷ ︸
h terms

= x2x3 . . . xmx1 . . .︸ ︷︷ ︸
h terms

= . . . .

These monoids are also Garside monoids, investigated in M. Picantin’s thesis (see
[P]), and therefore we can use the same algorithm to get a normal form. In the
case of G31, it is possible to embed B inside the Artin group of type E8, using the
formulas of [DMM, §3].

Let us now consider some entry xl.s that we want to compute. Let x̃l be the
image of xl in W . There exist w ∈ W0 and n ∈ {1, . . . , |W/W0|} such that x̃l.s =
wx̃n. Since W0 is a Coxeter group, it is easy to find a shortest length word m =
si1 . . . sir representing w in W . Then, through the computations of normal forms
we can make 2r tests in order to check whether the equality xl.s = s±1

i1
. . . s±1

ir
.xn

holds inside B for some choice of the signs ±1. This is the way we used to find the
additional relations used in the sequel.

3. A sample case by hand: G24

The braid group of type G24 admits the presentation

B = 〈s1, s2, s3 | s1s2s1 = s2s1s2, s1s3s1 = s3s1s3, s2s3s3s2 = s3s2s3s2,
s2s3s1s2s3s1s2s3s1 = s3s2s3s1s2s3s1s2s3〉

and the first three relations can be symbolized by the diagram

2 3

1

For short, we replace each generator by its numerical label, and therefore the
defining relations for G24 become 121 = 212, 131 = 313, 2323 = 3232 and 231231231
= 323123123. In the sequel, we will denote i′ the inverse s−1

i of the corresponding
generator.

We check equalities inside B using the dual braid monoid. On the example of
G24 this can also be done by hand. In order to illustrate this, we prove a few
remarkable identities. For this we first need to describe this monoid.

The dual braid monoid associated to c = 123 is generated by 14 atoms b1, . . . , b14
defined by

b1 = 1, b2 = 2, b3 = 3, b4 = 2′12,
b5 = 3′13, b6 = 232′, b7 = 3′23, b8 = 3′b43,
b9 = 1232b82

′3′2′1′, b10 = 1b61
′, b11 = 2′b102, b12 = 1b71

′,
b13 = 2b82

′, b14 = b−1
8 b2b8.

It is presented by the relations depicted by all the cycles of Figure 6 as follows:
a cycle y1 → y2 → · · · → yn+1 = y1 represents the relations y1y2 = y2y3 = y3y4 =
· · · = yny1. Conjugation by c permutes the atoms as in Figure 5.

From this we get the relation 231231232 = 123123123. Indeed, 231231232 =

23c22 = c2(23)(c
2)2 = c2(b2)

(c2)(b3)
(c2)b2 = c2b6b13b2 by the conjugating action

of c (see Figure 5). Now, by the defining relations of the dual braid monoid (see
Figure 6), we have b6b13b2 = b6b2b8 = b2b3b8 = b2b4b3 = b1b2b3 = c. Notice that
this relation is valid inside B, but not inside the monoid with generators s1, s2, s3
defined by the same presentation: this proves that this monoid does not embed
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Figure 5. Action of x �→ c−1xc on the set of atoms for type G24
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Figure 6. Defining relations of the dual braid monoid in type G24

in B, as opposed to the dual braid monoid. This relation also has a nice group-
theoretic interpretation: it says that there exists an involutive automorphism of B
defined by 1 �→ 1′, 2 �→ 3′, 3 �→ 2′.

Another useful relation is 123′2313′23.1 = 2.123′2313′23. To prove it, we notice
that 3′23 = b7 and therefore

123′2313′231 = b1b2b7b1b7b1 = b2b4b7b1b7b1 = b2b4b7b9b12b1
= b2b4b1b7b12b1 = b2b1b2b7b12b1 = b2b1b2b7b1b7
= 2123′2313′23.

The main computations are gathered in Table 1. One first gets a list of repre-
sentatives of the cosets in the form of words in the generators, as described in the
previous section. Here we choose to group the cosets W/W0 corresponding to the
same double coset inside W0\W/W0, by using the modified version of the algorithm

on the natural order Ŝ = (1, 2, 3).
The entries x1.2 = 2 ·x1 and x2.3 = 3 ·x2 arise from the fact that W0 is generated

by s2 and s3.
Entries corresponding to edges in the spanning tree are underlined, e.g., the edge

x1
1

—– x2 is represented by the entries x2 for x1.1 and qx1 + (q−1)x for x2.1. (The
name x in the entry for xn.s always denotes xn.)
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Table 1. Multiplication table for G24 and sorting

x x.1 x.2 x.3
x1 = ∅ x2 2 · x 3 · x
x2 = 1 qx1 + (q−1)x x3 x4

x3 = 12 2 · x qx2 + (q−1)x x5

x4 = 13 3 · x x6 qx2 + (q−1)x
x5 = 123 x10 x7 qx3 + (q−1)x
x6 = 132 x14 qx4 + (q−1)x x8

x7 = 1232 x18 qx5 + (q−1)x x9

x8 = 1323 x22 x9 qx6 + (q−1)x
x9 = 12323 x26 qx8 + (q−1)x qx7 + (q−1)x
x10 = 1231 qx5 + (q−1)x x11 2 · x
x11 = 12312 x19 qx10 + (q−1)x x12

x12 = 123123 232′ · x x13 qx11 + (q−1)x
x13 = 1231232 x34 qx12 + (q−1)x 2 · x
x14 = 1321 qx6 + (q−1)x 3 · x x15

x15 = 13213 x24 x16 qx14 + (q−1)x
x16 = 132132 (3.1) qx15 + (q−1)x x17

x17 = 1321323 x38 3 · x qx16 + (q−1)x
x18 = 12321 qx7 + (q−1)x x19 x20

x19 = 123212 qx11 + (q−1)x qx18 + (q−1)x (3.2)
x20 = 123213 x28 x21 qx18 + (q−1)x
x21 = 1232132 (3.11) qx20 + (q−1)x (3.3)
x22 = 13231 qx8 + (q−1)x x23 x24

x23 = 132312 x27 qx22 + (q−1)x x25

x24 = 132313 qx15 + (q−1)x (3.4) qx22 + (q−1)x
x25 = 1323123 (3.5) (3.9) qx23 + (q−1)x
x26 = 123231 qx9 + (q−1)x x27 x28

x27 = 1232312 qx23 + (q−1)x qx26 + (q−1)x x29

x28 = 1232313 qx20 + (q−1)x x30 qx26 + (q−1)x
x29 = 12323123 (3.8) x31 qx27 + (q−1)x
x30 = 12323132 (3.12) qx28 + (q−1)x x32

x31 = 123231232 (3.13) qx29 + (q−1)x x33

x32 = 123231323 (3.17) x33 qx30 + (q−1)x
x33 = 1232312323 x42 qx32 + (q−1)x qx31 + (q−1)x
x34 = 12312321 qx13 + (q−1)x 232′ · x x35

x35 = 123123213 2 · x x36 qx34 + (q−1)x
x36 = 1231232132 (3.6) qx35 + (q−1)x x37

x37 = 12312321323 (3.7) 232′ · x qx36 + (q−1)x
x38 = 13213231 qx17 + (q−1)x x39 (3.14)
x39 = 132132312 3 · x qx38 + (q−1)x x40

x40 = 1321323123 (3.10) x41 qx39 + (q−1)x
x41 = 13213231232 (3.15) qx40 + (q−1)x (3.16)
x42 = 12323123231 qx33 + (q−1)x (3.18) (3.19)
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Some of the remaining entries are straightforward consequences of the braid
relations:

x8.2 = x9, x9.2 = qx8 + (q−1)x9,

x11.1 = x19, x19.1 = qx11 + (q−1)x19,

x15.1 = x24, x24.1 = qx15 + (q−1)x24,

x20.1 = x28, x28.1 = qx20 + (q−1)x28,

x23.1 = x27, x27.1 = qx23 + (q−1)x27,

x32.2 = x33, x33.2 = qx32 + (q−1)x33,

and

x3.1 = 2 · x3, x4.1 = 3 · x4, x12.1 = 232′ · x12,

x10.3 = 2 · x10, x14.2 = 3 · x14, x34.2 = 232′ · x34,

x13.3 = 2 · x13, x17.2 = 3 · x17, x37.2 = 232′ · x37,

x35.1 = 2 · x35, x39.1 = 3 · x39.

Note that x10.3 can also be computed as x10.3 = x10.1
′3′131; there are similar

relations for the other equations in this list.
The expression for x9.2 follows obviously by expanding 2′ in x9.2

′ = x8. Note
that this can also be computed by applying (2.1) from Lemma 2.1 with α = ∅ (the
empty word and identity of H0) and β = 0.

After that, 19 entries in the table remain to be filled, and this is achieved through
the following explicit computations:

(3.1) x16.1 = 3′23 · x16

− (q−1)(q3′232′ · x7 + 3′23 · x9 + 3′23 · x15 − q2′ · x18 − x24 − x26)

+ (q − 1)2(q3′232′ · x5 + 3′23 · x8 − q2′ · x10 − x22).

In order to get this formula, we start from the relation

13′21′32′.1 = 3′23 · 13′21′32′,

which holds true inside B. By expansion of the inverses we have q213′21′3 =
x15 − (q−1)(x8 + q2′ · x5) and therefore x15 − (q−1)(q2′ · x5 + x8)).2

′1 = 3′23 ·
(x15 − (q−1)(q2′ · x5 + x8)).2

′. Expanding 2′ then yields (3.1).

x19.3 = 232′ · x19 − (q−1)(232′ · x11 − x12).(3.2)

We start from the relation

123121′.3 = 232′ · 123121′,

which holds true in B. By expanding 1′ it can be rewritten (x19 − (q−1)x11).3 =
232′ · (x19 − (q−1)x11), from which we get (3.2).

(3.3) x21.3 = 232′ · x21 − (q−1)(232′ · x20 − 2332′ · x18 − 2 · x12 + 23 · x11)

+ (q − 1)2(23− 2332′) · x10.
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This can be computed as x21.3 = x21.2
′3′23232′, or from the relation

1232′13′2′.3 = 232′ · 1232′13′2′.

x24.2 = 3′23 · x24 − (q−1)(3′23 · x22 − x23 + q3′232′ · x10 − q2′ · x11).(3.4)

This can be computed as x24.2 = x24.1
′2′121, or from the relation

13′21′31.2 = 3′23 · 13′21′31.

x25.1 = q−223 · x36 − (q−1)(q−223 · x35 + q−13′23 · x34),(3.5)

x36.1 = q33′2′ · x25 + (q−1)(x36 + q2′ · x35 + q223′2′ · x13).(3.6)

For the first equation, we use 1323123.1 = 23 · 123123213′2′ and expand 3′2′. The
second one is a consequence, multiplying on the right the first one by 1, as an
application of Lemma 2.1.

x37.1 = q33′2′x29 + (q−1)(x37 + q232′2′ · x35 + q2x13),(3.7)

x29.1 = q−223 · x37 − (q−1)(q−123 · x34 + q−2323 · x35).(3.8)

The first equation can be computed as x37.1 = x37.3
′1′313. The second follows by

using the second form of Lemma 2.1.

x25.2 = 3′23 · x25 − (q−1)(3′23 · x12 − x13).(3.9)

By expanding 3′ we get 13′23123 = x25− (q−1)x12. Then, multiplying on the right
by 2 and using the relation

13′23123.2 = 3′23 · 13′23123

we get (3.9).

(3.10) x40.1 = q23 · x21

− (q−1)(q23 · x20 + q23 · x19 − q2′323 · x12 − q−2223 · x37 − q−13′223 · x36)

+(q−1)2(q23·x18−q323·x10−(q−13′223+q−22323)·x35−(3′3′223+q−1232)·x34),

(3.11) x21.1 = 3′2′ · x40

− (q−1)(3′ · x29 − x28 + q3′2′3′2 · x25 − x21 + q3′2′3 · x12 − qx11)

+ (q−1)2(q232′ · x5 − qx7 − x20).

We start from 1′3′2′1323123.1 = 23 · 123213′2′ and expand the 1′3′2′ on the LHS.
This provides (3.10). Then (3.11) is obtained by multiplying (3.10) by 1 on the
right and q−13′2′ on the left, as an application of Lemma 2.1.
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Computing x30.1 = x30.2
′1′212 yields:

(3.12) x30.1 = 3′2′ · x41 − (q−1)(3′ · x31 − x30 − qx20 − q2x10)

+ (q−1)2(qx11 + q223′2′ · x7 − q2x5) +
(
(q−1)3q−1(232′)− (q−1)q3′3′2

)
· x25

+
(
(q−1)3(3′ + q−12)− (q−1)2q−12323′ − (q−1)q3′2′3

)
· x13

+
(
(q−1)4q−1(3− 232′) + (q−1)2q3′3′2

)
· x12.

Computing x31.1 = x31.2
′1212′ yields:

(3.13) x31.1 = 3 · x31 − (q−1)(q2′3 · x25 + 3 · x29 − q−1232′ · x36 − q−223 · x37)

− (q−1)2((q−2323 + q−1232′) · x35 + q−123 · x34 + 3 · x13).

Computing x38.3 = 1′3′131 yields:

(3.14) x38.3 = 3′23 · x38

− (q−1)(q23′23 · x6 − q2x8 + q3′23 · x18 − qx20 + 3′232 · x26 − 2 · x28)

+(q−1)2(q23′23 ·x3− q2x5+3′223 ·x22−3′23 ·x24)− (q−1)3(3′223−3′232) ·x10.

Computing x41.1 = x41.2
′1212′ yields:

(3.15) x41.1 = q23 · x30 − (q−1)(q323 · x5 + q23 · x28 − 23 · x31)

+ (q−1)2(q−2223 · x37 − 23 · x29 − q3 · x25 − q23 · x19 − q23′23 · x18 − 3′223 · x12)

− (q−1)323 · x13 + ((q−1)q−1332 + (q−1)2q−123′23) · x36

− ((q−1)2q−1332 + (q−1)3q−123′23 + (q−1)3q−22323) · x35

+ ((q−1)q3− (q−1)3q3′ − (q−1)43′3′23− (q−1)3q−1232) · x34.

Computing x41.3 = x41.2
′3′2′3232 yields:

(3.16) x41.3 = 3′23 · x41

+ (q−1)(2 · x33 − 2323′ · x31 + q2232′ · x20 − q223 · x18 + q4x5 − q43′23 · x3)

+ (q−1)2q(3′23 · x25 − 3′223 · x23 + (2332′ − 23) · x19 + (2− 3′23) · x13)

+(q−1)2q2(−3′23·x9+3′223·x7)−(q−1)3q3′23·x12+((q−1)33323−(q−1)4232)·x11.

Expanding 3′ inside the braid relation 123′2313′23.1 = 2 · 123′2313′23 yields:

(3.17) x32.1 = 2 · x32 − (q−1)(q223 · x5 − q23 · x10 + 2 · x29 − q−223 · x37)

+ (q−1)2((q∅− q3′2) · x12 − q−123 · x34 − q−2323 · x35).

Computing x42.2 = x42.1
′2′121 yields:

(3.18) x42.2 = 2 · x42 − (q−1)(23 · x31 − 223 · x29)

+ (q−1)2(q−1(3′23− 3) · x37 + (32− 3′223) · x34 + q23 · x19 − q223 · x18)

− ((q−1)3q−2323 + (q−1)2q−12232′) · x36

+ ((q−1)3q−22323 + (q−1)2q−122232′) · x35.
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Computing x42.3 = x42.1
′3′131 yields:

(3.19) x42.3 = 3 · x42 − (q−1)(q23 · x27 − q3′23 · x29 + q23 · x23 − q2x25)

+ (q−1)2(q−2(232− 323) · x37 + q−1(23− 2′323) · x36 + 3′2232′ · x35 − 2232′x34).

In summary, three different types of operations are used to fill in an entry. It
is either derived from a suitable relation in the braid group, or it is derived by
replacing the acting generator s by a word w in the generators (so that s−1w = 1
is equivalent to a defining relation of W ; this is called a cyclic expansion of s in the
next section), or it is obtained by an application of Lemma 2.1, that is, by reverting
an edge in the coset graph.

A systematic search for suitable relations is computationally expensive and not
guaranteed to succeed. Cyclic expansions and edge reversals can simply be applied
on a trial and error basis. It turns out that the operations of cyclic expansion and
edge reversal are sufficient to complete the coset tables for the algebras in Theo-
rem 1.2, provided we add only a few defining relations to the usual presentations
of the braid groups. In the next section we will formulate this as a strategy.

4. Algorithm

The observations from the example in the previous section can be used to au-
tomate the entire procedure. This leads to the following algorithm. The strategy
used is similar to a Todd-Coxeter procedure. Here, however, first all the cosets are
defined all at once (using the information on cosets in the finite group), and only
then cyclic conjugates of the relations are used to fill missing entries in the table.

By this we mean, that every relation is used to express a generator as a word in
all possible ways. The words obtained in this way, for a generator s ∈ S form the
set Rs of cyclic expansions of s.

For example, the relation 121 = 212, gives cyclic expansions

1 → 2121′2′, 2 → 1212′1′,

1 → 2′1′212, 2 → 1′2′121,

1 → 2′1212′, 2 → 1′2121′,

i.e., R1 = [2121′2′, 2′1′212, 2′1212′] and R2 = [1212′1′, 1′2′121, 1′2121′].
The algorithm then proceeds as follows:
0. Compute the lists Rs, s ∈ S, of cyclic expansions.
1. Compute coset representatives and a spanning tree as in Section 2.1, and fill

the corresponding entries of the table.
2. For each s ∈ J , set the entry x1.s = s · x1, where x1 is the trivial coset,

represented by the empty word.
3. Loop over missing entries x.s, try to compute x.s as x.w for w ∈ Rs, or by

an application of Lemma 2.1 if possible, until no more entries can be filled.
Note that step 2 corresponds to filling the subgroup tables in a Todd-Coxeter

procedure. The order in which the different computations in step 3 are tried is not
relevant.

In our implementation of the algorithm, Lemma 2.1 is only applied, if the coeffi-
cient α is obviously invertible, i.e., if it is a product of a power of q and an element
of the natural basis of H0. This is sufficient for the purpose of proving Theorem 1.2.
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In general, it is indeed a non-trivial task to identify and invert invertible elements
of the Hecke algebra H0.

In the example of G24 the algorithm completes after the following sequence
of steps. Here, an expression like revert(x8.2) stands for the result of applying
Lemma 2.1 to the known entry x8.2.

x3.1 = x3.2
′1′212, . . .

x4.1 = x4.3
′1′313, x34.2 = x34.1

′2′121,

x8.2 = x8.3
′2′3′2323, x35.1 = x35.3

′1′313,

x9.2 = revert(x8.2), x37.1 = x37.3
′2′1′3′2′1′232′123123,

x10.3 = x10.1
′3′131, x29.1 = revert(x37.1),

x11.1 = x11.2
′1′212, x37.2 = x37.3

′2′3′2323,

x19.1 = revert(x11.1), x39.1 = x39.2
′1′212,

x12.1 = x12.3
′2′1′3′2′1′232′123123, x25.1 = x25.3

′1313′,

x13.3 = x13.2
′3′2′3232, x36.1 = revert(x25.1),

x14.2 = x14.1
′2′121, x25.2 = x25.1212

′1′,

x15.1 = x15.3
′1′313, x31.1 = x31.2

′1212′,

x24.1 = revert(x15.1), x32.1 = x32.3
′2′1′3′2′1′232′123123,

x17.2 = x17.3
′2′3′2323, x42.2 = x42.1

′2′121,

x19.3 = x19.1
′3131′, x42.3 = x42.1

′3′131,

x20.1 = x20.3
′1′313, x24.2 = x24.3

′23232′3′,

x28.1 = revert(x20.1), x40.1 = x40.3
′2′1′23′2′12312313′2′,

x21.3 = x21.2
′3′23232′, x21.1 = revert(x40.1),

x23.1 = x23.2
′1′212, x41.1 = x41.2

′1212′,

x27.1 = revert(x23.1), x30.1 = revert(x41.1),

x32.2 = x32.3
′2′3′2323, x41.3 = x41.1313

′1′,

x33.2 = revert(x32.2), x16.1 = x16.2
′1212′,

. . . x38.3 = x38.1
′3′131.

A similar sequence of steps proves the theorem in the remaining number of cases.

5. Proof of the main theorem

The proof of the theorem is then obtained by applying the above algorithm to
each 2-reflection group having a single conjugacy class of reflections, together with
a presentation of the group. We start with the groups of rank 2, where we use
the standard presentations of [BMR]. In the ‘ordering’ column we put the ordered

set Ŝ used to build the spanning tree, as in Section 2.1. We use parenthesis as in
(1, 2, 3) in order to indicate that we use lexicographic ordering, while we use square
brackets as in [1, 2, 3] to indicate that we use the modified version of the algorithm
that groups cosets into double cosets. In each case, the digit in bold font indicates
(the generator of) the parabolic subgroup which is used — in general, the digits
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in bold font will be the generators forming the subset J of Section 2.1. The other
columns indicate the Coxeter type of the parabolic subgroup W0, the order of the
group W and the number of cosets inside W/W0. Finally, the last column contains
a checkmark if the algorithm succeeded, and if not it contains a cross together with
the number of entries that remained empty at the end of the process.

W relations W0 |W | |W/W0| ordering result

G12 1231 = 2312 A1 48 24 (1, 2, 3) �
1231 = 3123 (1,2, 3) �

(1, 2,3) �
[1, 2, 3] �
[1,2, 3] ×(9)
[1, 2,3] �

G22 12312 = 23123 A1 240 120 (1, 2, 3) �
23123 = 31231 (1,2, 3) �
12312 = 31231 (1, 2,3) �

[1, 2, 3] ×(25)
[1,2, 3] ×(26)
[1, 2,3] ×(25)

Of course the choice of a parabolic subgroup matters, in that the completion of
the algorithm proves that H is a free H0-module, for the given choice of W0 ⊂ W .
The choice of ordering also matters, in that it proves that the specific list of words
in the generators induced by this ordering provides a basis of the free module H0-
module H. For instance, let us consider the case where W has type G12. In case
of (1, 2, 3), that is, the standard lexicographic process attached to the ordering
(1, 2, 3), the basis of H as an H0-module that we obtain is

∅, 2, 3, 21, 23, 31, 32, 212, 213, 231, 232, 312, 313, 321, 323,
2121, 2123, 2131, 2323, 3131, 3232, 21212, 21232, 21313,

while for [1, 2, 3] it is

∅, 2, 21, 3, 31, 23, 231, 212, 2121, 213, 2131, 32, 321, 312, 3121,
313, 3131, 232, 2321, 21212, 21213, 212131, 31212, 312121.

Therefore, every checkmark in the table, for a given group, corresponds to a new
result, distinct from the other ones — but of course only one checkmark is needed
in order to prove Theorem 1.2 for this group.

We turn to the cases of ranks 3 and 4. In the first two cases, we slightly changed
the standard presentation of [BM]. It is easily checked that the non-Coxeter relation
we use for G24 is equivalent to the standard one 231231231 = 323123123, while the
one we use for G27 is equivalent to the standard one 323123123123 = 231231231232.
In the case of G29, we do not need any additional relation to the standard presen-
tation. In the process, we however noticed that the companion relation 423423 =
234234, which holds inside the reflection group but not in the braid group, admits
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a pretty-looking counterpart 42′34′23′ = 2′34′23′4, which holds inside B and might
be useful in other contexts.

W relations W0 |W | |W/W0| ordering result

G24 121 = 212 B2 336 42 (1,2,3) �
131 = 313 [1,2,3] �
3232 = 2323
12312313′

= 232′12312
G27 121 = 212 B2 2160 270 (1,2,3) ×(136)

131 = 313 [1,2,3] �
3232 = 2323
232′1231231

= 12312313′23
G29 121 = 212 B3 7680 160 (1,2,3, 4) �

242 = 424 [1,2,3, 4] �
343 = 434
2323 = 3232

13 = 31, 14 = 41
432432 = 324324

The case of the remaining group of rank 4 is somewhat special, in that it involves
two new generators instead of one, and because we needed to introduce a number
of extra relations so that our algorithm managed to fill all the entries of the table.
Moreover, there is no really ‘natural’ ordering of the vertices in this case. We got
the following results:

W relations W0 |W | |W/W0| ordering result

G31 141 = 414, 15 = 51 A3 46080 1920 (1,2, 3,4,5) �
242 = 424, 252 = 525 (5, 1,2, 3,4) �
34 = 43, 535 = 353 (4,5, 1,2, 3) �
45 = 54, 123 = 231 (3,4,5, 1,2) �
231 = 312, 123 = 312 (2, 3,4,5, 1) �

R31 (2,4,5, 1, 3) �
(2,4,5, 3, 1) �
[1,2, 3,4,5] ×(2633)

In this table, the additional relations are:

R31 : 124124 = 412412, 235235 = 523523, 232′523 = 5232′52,
1242′12 = 242′124, 212′5235 = 52352′12, 232′4124 = 41242′32.

Finally, the group G33 has a standard presentation in which a parabolic Coxeter
subgroup of type A4 naturally shows up. The Coxeter relations are symbolized by
the diagram

1 2

3

4 5

and there is one additional relation 423423 = 342342. This group G33 also contains
a parabolic subgroup of type D4 which cannot be seen in this presentation. In
[BM], Bessis and Michel propose an alternative presentation of the braid group for
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G33, given (up to a harmless swapping of letters) by the Coxeter relations described
by the following diagram:

s t

u

w

v

together with the relation wvutwv = vutwvu. This presentation is deduced from
the previous one by the relations s = 1, t = 2, u = 4, v = 3, w = 3454′3′. From
these presentations and the corresponding parabolic subgroups we get the following
results, which in particular conclude the proof of Theorem 1.2:

W relations W0 |W | |W/W0| ordering result

G33 121 = 212, 323 = 232 A4 51840 432 (1,2, 3,4,5) �
424 = 242, 434 = 343
454 = 545, 13 = 31
14 = 41, 15 = 51
25 = 52, 35 = 53
423423 = 342342
342342 = 234234

G33 121 = 212, 454 = 545 D4 51840 270 (1,2,3, 4,5) �
13 = 31, 14 = 41 [1,2,3, 4,5] �
15 = 51, 232 = 323
242 = 424, 252 = 525
343 = 434, 35 = 53
543254 = 432543

RD
33

In this table, the additional relations are:

RD
33 : 324324 = 432432, 324324 = 243243, 432432 = 243243,

4215421 = 252′421542, 425432 = 32543245′.

Altogether this completes the proof of Theorem 1.2 for all the 2-reflection groups,
but the case of the largest one, G34. This case presents the following obstacles. First
of all, because it is so big, we need to use sparse vectors in order to keep the amount
of memory needed to store all entries reasonably. Then, we know that G34 admits
two maximal parabolic Coxeter subgroups, of type A5 and D5, but unfortunately
they both have a too-large index in G34, precisely 54432 and 20412, respectively.
As a consequence, our program spends too much time trying to fill in the table:
after a few months of computations it appears to be very far away from the goal.
Because of that, we were not able to prove Proposition 1.6 in the way we did before.

We used instead the following ‘two-layers’ strategy. The group G34, described
by the diagram below and the additional relation 423423 = 342342, has a maximal
parabolic subgroup W0 of type G33, that we use in the replacement of the Coxeter
subgroups:

1 2

3

4 5 6
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We let H0 denote the corresponding parabolic Hecke algebra, and try to prove
that H is an H0-module of rank |W/W0| = 756. By the same arguments as before,
this would imply the conjecture for G34, and subsequently that H is a free H0-
module of rank 756.

We define in the usual way a list of coset representatives as words in the gener-
ators x1, . . . , x756, and use the same algorithm as before. For this we need to use
multiplication inside H0. We know how to perform it by the previous computations,
as the table we filled in in the case of G33 described H0 as an (H00, H0)-bimodule,
where H00 is the parabolic subalgebra of type A4 that we used in this case. We
then launched our algorithm associated with the ordering (1, 2, 3, 4, 5, 6) and with
the Coxeter relations together with 423423 = 342342 and 342342 = 234234. This
algorithm almost completed in a few hours, in the sense that almost all entries of
the table were filled in by then. At the very end however, the multiplications inside
H0 took much more time, because of the size of the entries. Keeping it running,
our program finally completed in 3 weeks, thus proving the remaining G34 case.

The interested reader will find the code we used at the url http://www.lamfa.
u-picardie.fr/marin/GGGGcode-en.html.
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