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STATISTICAL PROPERTIES OF b-ADIC DIAPHONIES

RAFFAELLO SERI

Abstract. The aim of this paper is to derive the asymptotic statistical prop-
erties of a class of discrepancies on the unit hypercube called b-adic diaphonies.
They have been introduced to evaluate the equidistribution of quasi-Monte
Carlo sequences on the unit hypercube. We consider their properties when ap-
plied to a sample of independent and uniformly distributed random points. We
show that the limiting distribution of the statistic is an infinite weighted sum
of chi-squared random variables, whose weights can be explicitly characterized
and computed. We also describe the rate of convergence of the finite-sample
distribution to the asymptotic one and show that this is much faster than in the
classical Berry-Esséen bound. Then, we consider in detail the approximation
of the asymptotic distribution through two truncations of the original infinite
weighted sum, and we provide explicit and tight bounds for the truncation
error. Numerical results illustrate the findings of the paper, and an empirical
example shows the relevance of the results in applications.

1. Introduction

The b-adic diaphony is a quantitative measure of the irregularity of the dis-

tribution of sequences in the d-dimensional unit cube [0, 1)d. It is similar to the
classical diaphony (introduced in [55]; see also [37, Exercise 5.27, p. 162] or [14, Def-
inition 1.29]), but replaces the trigonometric functions used in it with the b-adic
or generalized Walsh (or Chrestenson-Levy) function system. The first instance
of the b-adic diaphony was introduced in [33], using the Walsh function system
in base 2. It was hence called dyadic diaphony. The general form of the b-adic
diaphony was discussed in [28, 29], replacing the original Walsh function system
with the generalized Walsh (or Chrestenson-Levy) function system. Generalized
versions of the b-adic diaphony were introduced in [24, 25, 27, 32]. The dyadic and
b-adic diaphony of special deterministic sequences has been studied in several papers
[12, 21–23,26, 28–31,36, 42, 45, 52, 53].

The aim of this paper is to investigate instead the statistical properties of the
b-adic diaphony of a sequence of N independent uniformly distributed random vari-

ables on the d-dimensional unit cube [0, 1)
d. As the finite-sample statistical proper-

ties, i.e. the ones for finite N , are too difficult to derive, we consider the asymptotic
properties for N → ∞. The main asymptotic result concerns the derivation of an
explicit representation for the asymptotic distribution of the scaled b-adic diaphony,
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which lends itself to be used for computational purposes. As for other quantita-
tive measures of irregularity of distribution (see, e.g., [4, 5,38]), this representation
involves an infinite weighted sum of chi-square random variables, whose weights
can be characterized and computed. We complement this result with a bound on
the distance between the finite-sample distribution and the asymptotic one. This
result is analogous to the celebrated Berry-Esséen bound describing the conver-
gence rate in the Central Limit Theorem for sums of independent and identically
distributed (iid) random variables, but it shows that convergence is much faster for
the b-adic diaphony, so that the asymptotic distribution is generally a very good ap-
proximation to the finite-sample one. These results allow us to provide a condition
characterizing any sequence of point sets whose b-adic diaphony is smaller than the
one of a sample of independent and uniformly distributed points with probability
converging to 1 when N → ∞.

Then we turn to the computation of the asymptotic distribution. The most
natural method to compute this class of distributions is to truncate the infinite
sum, thus getting a finite weighted sum of chi-squares. This distribution can be
computed with one of the methods available in the literature (see [8,9,34,44,50], just
to name a few). However, the error caused by the truncation of the infinite sequence
of weights is not sufficiently investigated in the literature. In the present case, we
compare theoretically and empirically two alternative methods of truncation and
we provide some easily computable and effective bounds for the truncation error.

The paper is organized as follows. In Section 2, we provide a mathematical
introduction to the generalized Walsh or Chrestenson-Levy function system, whose
only purpose is to introduce the reader to the concepts that will be used to define
the b-adic diaphony (for a more complete introduction, see [13, Appendix A]). The
statistical asymptotic properties of this uniformity measure are then derived in
Section 3, while the approximation of the asymptotic distribution is dealt with in
Section 4. Section 5 contains an application to the equidistribution of glowworms
in Waitomo caves, New Zealand, whose main aim is to provide an illustration of
the statistical use of b-adic diaphonies and to warn the reader against some pitfalls
in their application. Section 6 contains the conclusions, and Section 7 the proofs
as well as some auxiliary results.

2. Mathematical preliminaries and definitions

First of all, we set some notation for the following. We will write N for the
positive integers, N0 for the non-negative integers, R for the real numbers and C

for the complex numbers. The symbol i denotes the imaginary unit. Vectors are
indicated in bold type. Their components are in regular type with an index. As an
example, x = (x1, . . . , xd).

Consider an integer b ≥ 2. Any non-negative integer k can be represented in
base b as:

k = κ(a−1)ba−1 + · · ·+ κ(1)b+ κ(0),

where κ(i) ∈ {0, . . . , b− 1} and κ(a−1) �= 0. Every real number x ∈ [0, 1) has a
b-adic representation x = x(1)b−1 + x(2)b−2 + . . . where x(i) ∈ {0, . . . , b− 1}. If
x = ab−g, with a and g integers and 0 ≤ a < bg, then x is said to be a b-adic
rational. For any b-adic rational x �= 0, there are two b-adic representations, one
with the property that x(i) = 0 for all i sufficiently large and the other one with the
property that x(i) = b− 1 for all i sufficiently large. The former is called a regular



STATISTICAL PROPERTIES OF b-ADIC DIAPHONIES 801

b-adic representation, and, in the following, we will identify any b-adic rational x
with its regular b-adic representation.

We define the (generalized) Walsh function bwalk : [0, 1) → C as

bwalk (x) := exp

{
2πi

x(1)κ(0) + · · ·+ x(a)κ(a−1)

b

}

for x = x(1)b−1 + x(2)b−2 + . . . with x(i) ∈ {0, . . . , b− 1}. When the dimension

d ≥ 2, consider x = (x1, . . . , xd) ∈ [0, 1)
d
and k = (k1, . . . , kd) ∈ N

d
0. Then, we

define bwalk = bwalk1,...,kd
: [0, 1)

d → C as

bwalk (x) = bwalk1,...,kd
(x1, . . . , xd) :=

d∏
j=1

bwalkj
(xj) .

For any integer d ≥ 1, the system
{
bwalk,k ∈ N

d
0

}
is a complete orthonormal system

in L2

(
[0, 1)d

)
(see Proposition A.10 in [13]).

The b-adic diaphony is defined as follows.

Definition 2.1. Let b ≥ 2 be an integer. The b-adic diaphony of the point set

PN = {x1, . . . ,xN} ⊂ [0, 1)d is defined as

Fb,N (PN ) :=

⎛
⎜⎝
∑

k∈Nd
0\{0}

rb (k)
∣∣∣ 1
N

∑N
h=1 bwalk (xh)

∣∣∣2
(1 + b)d − 1

⎞
⎟⎠

1
2

where for k = (k1, . . . , kd) ∈ Nd
0, rb (k) :=

∏d
j=1 rb (kj) and for k ∈ N0:

rb (k) :=

{
1 if k = 0,
b−2a if ba ≤ k < ba+1 where a ∈ N0.

Remark 2.2. (i) If b = 2, we speak of dyadic diaphony.
(ii) Note that 0 ≤ Fb,N (PN ) ≤ 1 for all N .

We define for α, β ∈ {0, 1, . . . , b− 1}, α⊕ β = α+ β (mod b) and

α
 β =

{
α− β if α ≥ β,
b+ α− β if α < β.

Suppose that x, y ∈ [0, 1) have the representations x =
∑∞

j=1 x
(j)b−j and y =∑∞

j=1 y
(j)b−j in base b. We define the b-adic sum and difference:

x � y =

∞∑
j=1

(
x(j) ⊕ y(j)

)
b−j ,

x−̇y =
∞∑
j=1

(
x(j) 
 y(j)

)
b−j .

For x,y ∈ [0, 1)
d
, x � y = (x1 � y1, . . . , xd � yd) and x−̇y =

(
x1−̇y1, . . . , xd−̇yd

)
.

For an arbitrary real x∈ [0, 1) with b-adic expansion x=x(g+1)b−g−1 +x(g+2)b−g−2

+ . . . with x(g+1) �= 0 and g ≥ 0 an integer, we have

�logb x� = −g − 1.
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It is clear that the b-adic diaphony of Definition 2.1 has the form of a V -statistic
(see, e.g., [48, p. 174]):1

(2.1) F 2
b,N (PN ) :=

1

N2

N∑
h=1

N∑
�=1

∑
k∈Nd

0\{0}
rb (k) bwalk (xh) bwalk (x�)

(1 + b)d − 1
.

However, this formula is not particularly manageable. A more usable formula has
been obtained in [28, 29], and we will state it in the following.

Consider the following two conditions:

(C1) x � y is not a b-adic rational;
(C2) x and y are b-adic rationals.

Then, let

ϕ (x) =

{
(b+ 1)− (b+ 1) b1+�logb x� if x ∈ (0, 1) ,
b+ 1 if x = 0,

and φ : [0, 1)
d → R:

φ (x) = −1 +
d∏

j=1

ϕ (xj)

for x = (x1, . . . , xd). Then, for every point set PN with generic element xk =
(xk,1, . . . , xk,d), such that (C1) or (C2) is satisfied with x and y replaced by xh,i

and x�,j for 1 ≤ h, � ≤ N and 1 ≤ i, j ≤ d, from [28, 29] we have

(2.2) F 2
b,N (PN ) :=

1

(1 + b)d − 1

1

N2

N∑
h=1

N∑
�=1

φ
(
xh−̇x�

)
.

Remark 2.3. Note that φ(0)

(1+b)d−1
= 1, so that the elements with h = � contribute

to F 2
b,N (PN ) with the constant value 1

N , independently of the sequence.

3. Asymptotic properties

We anticipate some of the results of the paper. As stated above, the b-adic di-
aphony is a V -statistic. We will show in Theorem 3.1 that it is degenerate and
its asymptotic distribution is given by an infinite weighted sum of chi-squared
random variables. The reader well acquainted with the literature on degener-
ate V -statistics will recognize that, since the function system W (b) is orthonor-
mal, the weights appearing in the infinite sum of chi-squares are the coefficients{

rb(k)

(1+b)d−1
,k ∈ N

d
0\ {0}

}
. It may seem that a reasonable way to approximate the

asymptotic distribution of the b-adic diaphony is to replace the infinite sum with

a finite sum whose weights are
{

rb(k)

(1+b)d−1
,k ∈ {0, 1, . . . ,K}d \ {0}

}
. However, as

we will see below (see the computational results after Theorem 4.1), this approx-
imation has very poor properties. A much better approximation, whose error is
discussed in detail in Theorem 4.1, can be obtained grouping the chi-squared ran-
dom variables according to the associated weight and truncating the infinite sum.

1Here and in the following, we will refer to F 2
b,N , and not to Fb,N , as the b-adic diaphony.
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This requires formulas for the number of times each weight appears in the infi-
nite sum. We provide this result in Theorem 3.1, along with some other relevant
but more straightforward facts concerning the asymptotic distribution of the b-adic
diaphony.

Theorem 3.1. Let PN be a sample of iid uniform random variables on [0, 1)
d
.

(i) When N → ∞, F 2
b,N (PN )

as−→ 0.

(ii) When N → ∞,

lim sup
N→∞

NF 2
b,N (PN )

ln lnN
=

2

(1 + b)
d − 1

, as.

If b is a prime number, when N → ∞,

lim inf
N→∞

N2F 2
b,N (PN )

(lnN)d−1
≥ Cd,b > 0, as

where Cd,b is a constant depending on d and b but not on the particular sequence
PN .

(iii) When N → ∞, the following weak convergence result holds:

NF 2
b,N (PN )

D−→
∞∑
a=0

λaχ
2
a (Na) ,

where λa = 1
(1+b)d−1

b−2a for any a ≥ 0,

Na =

{
bd − 1 for a = 0,∑min{d,a}

�=1

(
a−1
�−1

)(
d
�

)
ba+d−� (b− 1)

�
for a > 0,

χ2 (k) denotes a χ2 random variable with k degrees of freedom, and
{
χ2
a (Na); a∈N0

}
is a sequence of independent χ2 random variables.

(iv) The following uniform bound holds:∥∥∥∥∥P{NF 2
b,N (PN )≤x

}
−P

{ ∞∑
a=0

λaχ
2
a (Na) ≤ x

}∥∥∥∥∥
∞

≤ ec0+c1(b+1)
d
2 (1.256 (b+ 1))d

N

where c0 > 0 and c1 > 0 are absolute constants.

Remark 3.2. (a) The values of Na for 0 ≤ a ≤ 10, 1 ≤ d ≤ 3 and 2 ≤ b ≤ 4 are
reported in Table 1. This shows that the increase in Na with a is much steeper for
large d and b.

(b) From [1] (see also [11]), it is easily seen that the result in (ii) provides a
worst-case error bound on the integration through the Monte Carlo method.

(c) According to the bound in (iv), the distance between the finite-sample and
the asymptotic distributions decreases as N−1 and increases as a (more complex)
function of b. As we will see below, the decrease in N is of the right order, while
the order of the increase with b is probably overly pessimistic.

(d) Suppose that PN is a sample of iid not necessarily uniform random variables

on [0, 1)d. Then, adapting Theorem 4.4 in [17], it is possible to show that, for any

fixed x > 0, limN→∞ P

{
NF 2

b,N (PN ) > x
}
= 1 if and only if the distribution is not

uniform.
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Table 1. Values of Na for some choices of d and b.

a\ (d, b) (1, 2) (1, 3) (1, 4) (2, 2) (2, 3) (2, 4) (3, 2) (3, 3) (3, 4)

0 1 2 3 3 8 15 7 26 63

1 2 6 12 8 36 96 24 162 576

2 4 18 48 20 144 528 72 810 4032

3 8 54 192 48 540 2688 200 3618 24768

4 16 162 768 112 1944 13056 528 15066 140544

5 32 486 3072 256 6804 61440 1344 59778 755712

6 64 1458 12288 576 23328 282624 3328 228906 3907584

7 128 4374 49152 1280 78732 1277952 8064 852930 19611648

8 256 13122 196608 2816 262440 5701632 19200 3109914 96141312

9 512 39366 7864320 6144 866052 25165824 45056 11140578 462422016

10 1024 118098 3145728 13312 2834352 110100480 104448 39326634 2189426688

In Figures 1, 2, 3, 4, 5, 6, 7 and 8, we show the difference between the

finite-sample and the asymptotic distributions, i.e. P

{
NF 2

b,N (PN ) ≤ x
}

−
P
{∑∞

a=0 λaχ
2
a (Na) ≤ x

}
as a function of x. The finite-sample distribution has

been obtained as the empirical cumulative distribution function based on 18 · 107
(for N = 25), 12 · 107 (for N = 50) and 6 · 107 (for N = 100) replications. The Law
of the Iterated Logarithm in [54, p. 268] provides an (asymptotic) upper bound on
the error of the empirical cumulative distribution function, given by 1.550632 ·10−4

(for N = 25), 1.1036536 · 10−4 (for N = 50) and 0.9044465 · 10−4 (for N = 100).
When d = 1, the difference exhibits ample waves that are probably due to the
fact that the function ϕ attains only discrete values. When d = 2, the oscillatory
behavior is less pronounced and it disappears for d = 3. Another interesting fea-
ture is the decrease of the maximal value of the difference with N . According to
Theorem 3.1 (iv), the decrease should be as N−1: this is indeed the case, even if
the phenomenon appears to be more evident in the case d = 2 since, when d = 1,
the oscillations mask the decrease. On the other hand, the increase of the distance
with b predicted by Theorem 3.1 (iv) is real, but the bound seems too pessimistic.

Now we consider a sequence of quasi-random point sets P�
N , for N ∈ N, such that

limN→∞ NF 2
b,N (P�

N ) = 0 or Fb,N (P�
N ) = o

(
N− 1

2

)
. In particular, we show that

this condition is necessary and sufficient to have limN→∞ P {Fb,N (PN )≤Fb,N (P�
N )}

= 0. This means that the probability that the b-adic diaphony of independent and
identically distributed points is lower than the b-adic diaphony of such a sequence
becomes negligible as N increases.

The condition limN→∞ NF 2
b,N (P�

N ) = 0 is respected by several quasi-random

point sets and sequences, such as the Zaremba sequence (for the dyadic diaphony;
see [26]), generalized Van der Corput sequences (see [28, 29]), (t,m, s)-nets in base
2 (for the dyadic diaphony; see [12]) and in base b (see [52]), generalized Zaremba
nets (see [30, 31, 53]), digital (0, s)-sequences over Z2 (see [42]) and Zb (see [21]),
digital (t, s)-sequences over Z2 (see [36]), and digital (T, s)-sequences over Zb (see
[22]). Some numerical examples from which one can compute NF 2

b,N (P�
N ) can be

found in [40].
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Figure 1. Deviation of the finite-sample distribution from the
asymptotic one for b = 2, d = 1 and N = 25 (solid line), N = 50
(dashed line) and N = 100 (dotted line).

Figure 2. Deviation of the finite-sample distribution from the
asymptotic one for b = 3, d = 1 and N = 25 (solid line), N = 50
(dashed line) and N = 100 (dotted line).
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Figure 3. Deviation of the finite-sample distribution from the
asymptotic one for b = 5, d = 1 and N = 25 (solid line), N = 50
(dashed line) and N = 100 (dotted line).

Figure 4. Deviation of the finite-sample distribution from the
asymptotic one for b = 10, d = 1 and N = 25 (solid line), N = 50
(dashed line) and N = 100 (dotted line).
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Figure 5. Deviation of the finite-sample distribution from the
asymptotic one for b = 2, d = 2 and N = 25 (solid line), N = 50
(dashed line) and N = 100 (dotted line).

Figure 6. Deviation of the finite-sample distribution from the
asymptotic one for b = 3, d = 2 and N = 25 (solid line), N = 50
(dashed line) and N = 100 (dotted line).
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Figure 7. Deviation of the finite-sample distribution from the
asymptotic one for b = 10, d = 2 and N = 25 (solid line), N = 50
(dashed line) and N = 100 (dotted line).
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Figure 8. Deviation of the finite-sample distribution from the
asymptotic one for b = 2, d = 3 and N = 25 (solid line), N = 50
(dashed line) and N = 100 (dotted line).
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Theorem 3.3. Consider a sequence of point sets {P�
N}N∈N

. The limit

lim
N→∞

P {Fb,N (PN ) ≤ Fb,N (P�
N )} = 0

holds if and only if

lim
N→∞

NF 2
b,N (P�

N ) = 0.

Remark 3.4. (a) The result stated above uses convergence in probability. Theorem
1 in [7] (see also Theorem 3.1 (ii)) provides a lower bound holding almost surely,
i.e. for almost any sequence of independent and uniformly distributed realizations,
when b is prime.

(b) The theorem states what happens for finite fixed d. The behavior of the
b-adic diaphony may change when the limit for d → ∞ is taken before the one for
N → ∞ (see [12, Section 4]).

4. Approximation of the asymptotic distribution

Consider the following random variables:

X =

∞∑
a=0

λaχ
2
a (Na) ,

XA =
A∑

a=0

λaχ
2
a (Na) ,

X� = X − EX,

X�
A = XA − EXA.

The random variable XA represents a truncated version of X, suitable for computa-
tions, while X� and X�

A represent respectively two centered versions of the random
variables X and XA. Let FY (y) := P {Y ≤ y} denote the cumulative distribution
function of the random variable Y evaluated in y.

Some comments on these approximations are necessary. First of all, note thatX�

is the asymptotic distribution of the U -statistic obtained from the b-adic diaphony
removing the elements on the diagonal (i.e. with h = � in (2.2)), namely, taking

F̃ 2
b,N (PN ) :=

2

(1 + b)d − 1

1

N2

N∑
h=1

h−1∑
�=1

φ
(
xh−̇x�

)
.

Lemma 7.1 guarantees that restricting the summation to elements with � < h is

legitimate. Since φ(0)

(1+b)d−1
= 1, the equality F 2

b,N (PN ) = 1
N + F̃ 2

b,N (PN ) holds,

and removing the diagonal elements does not alter the asymptotic properties of
the statistic. A second fact is that approximating X� through X�

A is equivalent to

approximating X through XA − EXA + EX = XA +
(
1−

∑A
a=0 λaNa

)
. Now, the

computation of XA can be easily performed using the algorithm described in [8]
and ported in R from C in [3]; therefore also the computation of X�

A is affordable.
The following theorem shows that a considerable gain in accuracy can be ob-

tained using the truncated centered version of the statistic. Indeed, the Kol-
mogorov distance between the distribution of X and the one of its truncated
version XA decreases as ‖FX − FXA

‖∞ = O
(
b−AAd−1

)
when A → ∞, while

the same distance for the centered random variables X� and X�
A decreases as
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∥∥FX� − FX�
A

∥∥
∞ = O

(
b−3AAd−1

)
. The two bounds show that the rate of decrease

is faster when d is smaller and, especially, when b is larger. Moreover, centering
yields a much better approximation as the base of the exponent A is b−1 in the
uncentered case and b−3 in the centered case.

Theorem 4.1. Let α ∈ N0 and α� ∈ N0 be two values of the index a such that
Nα > 2 and Nα� > 4. We have

‖FX (x)− FXA
(x)‖∞ ≤

√
2

∑∞
a=A+1 λ2

aNa+[
∑∞

a=A+1 λaNa]
2

4π

B( 1
2 ,

Nα−2
4 )√ ∑A

a=α Naλ2
a

Nα

where B (·, ·) is the beta function, and

∥∥FX� (x)− FX�
A
(x)

∥∥
∞ ≤

∑∞
a=A+1 λ

2
aNa

2π
(∑A

a=α� Naλ2
a

Nα�

)
(Nα� − 4)

.

The asymptotic behavior of the bounds for large A is

‖FX (x)− FXA
(x)‖∞ � (b−1)d−1

(d−1)!((1+b)d−1)
b−AAd−1B( 1

2 ,
Nα−2

4 )

4π

√ ∑A
a=α Naλ2

a
Nα

,

∥∥FX� (x)− FX�
A
(x)

∥∥
∞ � (b−1)d

(d−1)!((1+b)d−1)2(b3−1)

b−3AAd−1

2π

( ∑A
a=α� Naλ2

a
Nα�

)
(Nα�−4)

.

Remark 4.2. (a) The computations in the following suggest that the bounds are
tight.

(b) As concerns the choice of α and α�, in the following computations we have
found satisfying to take them as the smallest integers satisfying the inequalities
Nα > 2 and Nα� > 4.

The effectiveness of the bounds presented in Theorem 4.1 is shown in Figures
9, 10, 11, 12 and 13. The figures report, on the ordinate, the uniform distance
between the cdf of X and the cdf of the approximating random variable, be it XA,
X� or X�

A, as a function of the progressive number of degrees of freedom used, on

the abscissa (e.g.,
∑A

a=0 Na, that is the number of degrees of freedom used in XA).

Therefore, the black dots represent the couples
(∑A

a=0 Na, ‖FX − FXA
‖∞

)
, the

black squares the couples
(∑A

a=0 Na,
∥∥FX� − FX�

A

∥∥
∞

)
; the corresponding symbols

with grey background represent the upper bounds computed in Theorem 4.1. The
black curve represents the maximal distance between the distribution of X and
that of the approximation 1

(1+b)d−1

∑
k∈{0,1,...,K}d\{0} rb (k)χ

2 (1). The number of

degrees of freedom for this approximation is Kd − 1. The curve is represented
only for d > 1, since when d = 1 it would correspond to a curve joining the
black dots. It is evident that the approximation is not very good, being worse
than the centered and uncentered truncated sums. The centered truncated sum is
by far better than the uncentered one. The bounds are quite good and tight, as
each of them decreases as the true distance between the distribution of X and the
corresponding approximation.
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Figure 9. Distances between true and approximated asymptotic
distributions for b = 2 and d = 1.

Figure 10. Distances between true and approximated asymptotic
distributions for b = 3 and d = 1.
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Figure 11. Distances between true and approximated asymptotic
distributions for b = 5 and d = 1.
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Figure 12. Distances between true and approximated asymptotic
distributions for b = 2 and d = 2.
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Figure 13. Distances between true and approximated asymptotic
distributions for b = 2 and d = 3.

5. An application

In his essay “Glow, Big Glowworm” [18], Stephen Jay Gould described a visit to
the Waitomo glowworm (Arachnocampa luminosa) caves in New Zealand. This led
him to a consideration concerning the equidistribution of sequences of points:

Here, in utter silence, you glide by boat into a spectacular under-
ground planetarium, an amphitheater lit with thousands of green
dots—each the illuminated rear end of a fly larva (not a worm at
all). (I was dazzled by the effect because I found it so unlike the
heavens. Stars are arrayed in the sky at random with respect to
the earth’s position. Hence, we view them as clumped into constel-
lations. This may sound paradoxical, but my statement reflects a
proper and unappreciated aspect of random distributions. Evenly
spaced dots are well ordered for cause. Random arrays always in-
clude some clumping, just as we will flip several heads in a row
quite often so long as we can make enough tosses—and our sky
is not wanting for stars. The glowworms, on the other hand, are
spaced more evenly because larvae compete with, and even eat,
each other—and each constructs an exclusive territory. The glow-
worm grotto is an ordered heaven.) [18, pp. 13-14]

The American Nobel Laureate Ed Purcell, a colleague of Gould, performed a little
experiment whose result was presented in the postscript of the book version of the
essay [19, pp. 265-268].

Into an array of square cells (144 units on the X-axis and 96 on the
Y-axis for a total of 13,824 positions), Purcell placed either “stars”
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Figure 14. Square selections of a picture of the Waitomo caves
(see the text for details), corresponding to the ‘Real data’ point
set.

or “worms” by the following rules of randomness and order [. . . ]. In
the stars option, squares are simply occupied at random (a random
number generator spits out a figure between 1 and 13824 and the
appropriate square is inked in). In the worms option, the same
generator spits out a number, but the appropriate square is inked
in only if it and all the surrounding squares are unoccupied (just as
a worm sets up a zone of inhibition about itself). [19, pp. 267-268]

The two graphs are described in Gould’s essay as rectangular with an aspect ratio
of 1.5:1; however, in the printed version, the graphs appeared slightly distorted
and with a different aspect ratio. In order to evaluate the equidistribution of the
sequences, we have rescaled the two scatter plots to the original aspect ratio and
we have cropped a square selection as large as possible of both, which is available
from the author upon request.

Purcell commented on the appearance as follows:

What interests me more in the random field of “stars” is the over-
imposing impression of “features” of one sort or another. It is hard
to accept the fact that any perceived feature—be it string, clump,
constellation, corridor, curved chain, lacuna—is a totally meaning-
less accident, having as its only cause the avidity for pattern of my
eye and brain! Yet that is perfectly true in this case. [19, p. 268]

The example was also quoted in [43, Chapter 5].

The one on the left, with the clumps, strands, voids, and filaments
(and perhaps, depending on your obsessions, animals, nudes, or
Virgin Marys) is the array that was plotted at random, like stars.
The one on the right, which seems to be haphazard, is the array
whose positions were nudged apart, like glowworms. [43, Chapter
5]

In Figure 14, we reproduce a square selection of a picture, kindly provided to us
by Kiwi Cave Rafting, Waitomo Caves, New Zealand, and a scatter plot extracted
from it.
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In the following, we will use the three scatter plots, i.e. the two appearing in
[19, pp. 266-267] (with the ‘Stars’ point set on the left and the ‘Worms’ point set on
the right) and the one in Figure 14 (displaying the ‘Real data’ point set) to show
the behavior of the b-adic diaphony in some different situations.

When applied to a sequence of iid random variables, the b-adic diaphony is able
to discriminate between uniformly and non-uniformly distributed random variables.
Indeed, Theorem 3.1 shows that if PN is a sample of independent uniformly dis-
tributed random variables, F 2

b,N (PN ) converges (almost surely) to 0 (item (i)), and

NF 2
b,N (PN ) converges in distribution (item (iii)). On the other hand, if PN is

a sample of independent non-uniformly distributed random variables, Remark 3.2
(d) shows that NF 2

b,N (PN ) diverges. Therefore, under independent sampling, large

values of NF 2
b,N (PN ) and correspondingly small p-values witness a departure from

uniformity. Therefore, one can use the p-value to perform a statistical test in the
Fisher sense (see, e.g., [6, 39]).

The ability of the p-value to discriminate between uniformity and non-uniformity
does not necessarily hold without independent sampling. If the observations con-
stitute a quasi-Monte Carlo sequence for which NF 2

b,N (PN ) converges to 0 (see

the examples in Section 3), Theorem 3.3 shows that the p-value converges to 1.
When the observations are the realization of a repulsive (also called regular or in-
hibitive) point process, i.e. a point process in which nearby points tend to repel
each other, NF 2

b,N (PN ) assumes in general smaller values than in the case of uni-
form iid points. This also implies that the typical realization of a repulsive point
process is associated with a large p-value when the b-adic diaphony is used to test
for uniformity.

Now, from a probabilistic point of view, the ‘Stars’ plot in [19, p. 266] displays a

sequence of points independently and uniformly distributed in [0, 1)2, namely, the

realization of a Poisson process on [0, 1)
2
, while the ‘Worms’ plot in [19, p. 267]

displays the realization of a repulsive point process on [0, 1)2, in which repulsion
among points leads to a more equidistributed point set. The right plot in Figure 14
shows a real point set that should be distributed according to the repulsive point
process described above.

The results of the computations are displayed in Table 2. The first 6 rows contain
the scaled values of the b-adic diaphonies NF 2

b,N (PN ), for b ∈ {2, 3, 4, 5}, and of the
corresponding p-values for the three datasets described above. The p-values have
been computed according to the X�

A approximation. The last two rows contain the
value of A used in the computation of the p-values (the same A has been used for
each value in the column) and the error bound in Theorem 4.1. Note that this is
only the error associated with the replacement of the original random variable with
a truncated version. This differs from the error associated with the computation of
the probability of the truncated random variable (see Section VI in [49] for a case
in which the computation error is very large), which we have taken equal to 10−10

but may be substantially smaller.
Concerning the use of the b-adic diaphony as a figure of merit, it is clear that

the ‘Worms’ point set is more equidistributed than the ‘Stars’ one, as the b-adic
diaphony is consistently smaller for the former than for the latter. This comparison
is justified by the fact that the two datasets have almost the same size. If two
point sets have different sample sizes and they do not respect the hypothesis of
independent sampling from a uniform distribution, then one should not evaluate
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Table 2. Results of the uniformity test on the three examples.

N b = 2 b = 3 b = 4 b = 5

‘Stars’ 744 stat 0.663012 0.6276486 0.8203803 1.086391
p-value 0.8787808 0.9519859 0.7714008 0.3047332

‘Worms’ 708 stat 0.54345 0.3312276 0.4404123 0.416133
p-value 0.9740758 0.9999997 0.9999297 0.999998

Real data 168 stat 0.8500737 0.9666432 0.8986758 0.8689998
p-value 0.6196428 0.4879706 0.6349837 0.7283115

A 26 15 12 10

Error bound 7.663·10−24 3.531·10−23 6.266·10−24 1.361·10−23

the degree of uniformity of the two samples by comparing the values of the scaled
b-adic diaphonies. The reason is that when N → ∞, NF 2

b,N (P�
N ) converges to 0,

and therefore smaller values of the scaled b-adic diaphony could simply be due to
a larger sample size and not to a better equidistribution.

Now we turn to the interpretation of the p-values. Despite the procedure of
sampling the ‘Stars’ dataset as described in [19] is not exactly compatible with the
null hypothesis (because it is based on a discretization of the space), it constitutes a
reasonable approximation, by far better than the other two. For the ‘Stars’ dataset
the p-value can therefore be used to perform a test of uniformity that fails to reject
the null hypothesis. For the other two datasets, the hypothesis of independence is
clearly false, and the asymptotic distribution is different from the one of Theorem
3.1. In this case, the p-value should not be used to compare samples of different
size. The reason can be seen using Theorem 3.3: this result shows that for a quasi-
Monte Carlo sequence with good equidistribution properties, the p-value converges
to 1 when N → ∞. Therefore, higher p-values could be due to larger sample sizes.
Nevertheless, the p-value still represents the probability of obtaining by chance (i.e.
through a sample of independent and uniformly distributed random variables of
the same size as the sample) a value of the test statistic that is higher than the
one based on the data. Otherwise stated, it is the probability that a sample of the
same size, composed of independent and uniformly distributed random variables,
is less equidistributed than the sample on which the diaphony has been computed.
As an example, for the ‘Worms’ dataset, the probability of obtaining a sample of
708 observations that respects the null hypothesis and is less equidistributed than
the one under scrutiny according to the 3-adic diaphony is 0.9999997. Despite the
non-independence of the points in the dataset, this test provides evidence that the
‘Worms’ dataset is very well equidistributed.

6. Conclusions

In this paper, we have considered a class of discrepancies on the unit hypercube
called b-adic diaphonies, introduced to test equidistribution of quasi-Monte Carlo
sequences on the unit hypercube. In particular, we have derived their asymptotic
statistical properties when applied to a sample of uniformly distributed random
points. The asymptotic distribution of the statistic is an infinite weighted sum
of chi-squared random variables. As this distribution is non-standard, we have
illustrated two methods for its computation and provided explicit and tight bounds
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for the approximation error. We have illustrated the findings of the paper through
numerical results and an empirical example.

7. Proofs

In the following we will need the definition of the function h : [0, 1)d×[0, 1)d → R:

h (xh,x�) :=
1

(1 + b)
d − 1

φ
(
xh−̇x�

)
,

which in the theory of V−statistics is usually called kernel (see [48, p. 172]). More-
over, in the following, μj , for j ∈ N, is the j-th element of the sequence in which
the eigenvalues λa are arranged in decreasing order and repeated a number of times
equal to their multiplicity Na.

Lemma 7.1. For x,y ∈ [0, 1)d whose coordinates are expressed in regular b-adic
representation, the equality φ

(
x−̇y

)
= φ

(
y−̇x

)
holds true.

Proof of Lemma 7.1. The equality φ
(
x−̇y

)
=φ

(
y−̇x

)
is guaranteed if

⌊
logb

(
x−̇y

)⌋
=

⌊
logb

(
y−̇x

)⌋
for any x, y ∈ [0, 1). Now suppose that

⌊
logb

(
x−̇y

)⌋
= −g − 1.

This means that all coefficients of terms of the form b−j for 1 ≤ j ≤ g in the
b-adic expansion of x−̇y, i.e. x(j) 
 y(j), are 0, while the coefficient of b−g−1, i.e.
x(g+1) 
 y(g+1), is not. Therefore, we must just prove that α 
 β = 0 implies
β 
 α = 0, and α 
 β �= 0 implies β 
 α �= 0. Now, by the very definition of 
,
α 
 β = 0 can only occur when α = β, in which case β 
 α = β − α = 0. Now
consider what happens when α
 β �= 0. If we suppose that α
 β �= 0 and α ≥ β,
we have α
β = α−β > 0; then β
α = b+β−α > 0. At last, if we suppose that
α
 β �= 0 and β > α, we have α
 β = b+ α− β > 0; then β 
 α = α− β > 0. �

Lemma 7.2. For even p ∈ N, we have

E |h (xi,xj)|p =
1(

(1 + b)d − 1
)p

p∑
i=0

(
p

i

)
(−1)

p−i

· (1 + b)
di

[
(b− 1)

i∑
k=0

(
i

k

)
(−b)k

bk+1 − 1

]d

.

Remark 7.3. When p = 2, 4:

E |h (xi,xj)|2 = 1

((1+b)d−1)2

{[
(b+1)(b2+1)
(b2+b+1)

]d
− 1

}
,

E |h (xi,xj)|4 = 1

((1+b)d−1)4

{
6

[
(b+1)(b2+1)
(b2+b+1)

]d

−4

[
(b+1)2(b4−b3+3b2−b+1)

(b2+1)(b2+b+1)

]d

+

[
(b+1)3(b2−b+1)(b6+3b4+4b3+3b2+1)

(b2+1)(b2+b+1)(b4+b3+b2+b+1)

]d
− 3

}
.
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Proof of Lemma 7.2. Adapting the proofs of Lemma A.12 and Corollary A.13 in

[13], it is possible to show that if x and y are uniformly distributed on [0, 1)d, x−̇y

is uniformly distributed on [0, 1)
d
, too. This implies that

E

∣∣∣∣∣ φ
(
x−̇y

)
(1 + b)

d − 1

∣∣∣∣∣
p

= E

∣∣∣∣∣ φ (x)

(1 + b)
d − 1

∣∣∣∣∣
p

.

Now, E |φ (x)|p is given by

E

∣∣∣∣∣∣−1 + (1 + b)d
d∏

j=1

(
1− b1+�logb xj�

)∣∣∣∣∣∣
p

=

p∑
i=0

(
p
i

)
(−1)

p−i
(1 + b)

di
d∏

j=1

E

(
1− b1+�logb xj�

)i

=

p∑
i=0

(
p
i

)
(−1)p−i (1 + b)di

d∏
j=1

[
i∑

k=0

(
i
k

)
(−b)k Ebk�logb xj�

]

where

Ebk�logb x� =

∞∑
h=0

∫ b−h

b−(h+1)

bk�logb x�dx

=

∞∑
h=0

(
b−h − b−(h+1)

)
bk�logb b

−(h+1)�

=

∞∑
h=0

(
b−h − b−(h+1)

)
b−(h+1)k

=
(
1− b−1

)
b−k

∞∑
h=0

b−(k+1)h =
b− 1

bk+1 − 1
.

�

Proof of Theorem 3.1. The statistic in Definition 2.1 can be written as a V -statistic.
The symmetry of the kernel is established in Lemma 7.1. The fact that this V -
statistic is degenerate (see, e.g., [20]) can be seen, e.g., from the intermediate ex-
pression (2.1), integrating the kernel with respect to xh. In general, it is well known
(see [48, pp. 193, 196])) that the kernel of a second order V -statistic (and also of a
U -statistic) induces an integral operator A through the formula

Am (x) :=

∫
[0,1)d

h (y,x)m (y) dy, x ∈ [0, 1)d .

The eigenvalues of A are defined as the values λj , for j = 1, 2, . . . , for which there

exists a function hj such that Ahj (x) = λjhj (x) for any x ∈ [0, 1)d holds. In
this case, it is not difficult to identify the eigenvalues as the weights 1

(1+b)d−1
rb (k),

for k ∈ Nd
0\ {0}. In the following, we will also repeatedly need the facts that

E |h (xh,x�)| < ∞ and E |h (xh,x�)|2 < ∞: these moment conditions are automat-
ically verified since the kernel is bounded on a bounded domain.
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(i) When E |h (xh,x�)| < ∞, the strong law of large numbers holds for F 2
b,N (PN )

(see [48, Theorem A, p. 190]) and F 2
b,N (PN ) → 0, almost surely, if the points are

independently uniformly distributed.
(ii) First consider the upper bound. Using the fact that h (0) = 1, we write the

b-adic diaphony as

F 2
b,N (PN ) =

2

N2

N∑
h=1

h−1∑
�=1

h (xh,x�) +
1

N
.

From Theorem 2 of [10], if the kernel is square-integrable, then

lim sup
N→∞

N

ln lnN
F 2
b,N (PN )

= lim sup
N→∞

N

ln lnN

2

N2

N∑
h=1

h−1∑
�=1

h (xh,x�)

+ lim sup
N→∞

N

ln lnN

1

N

= 2max
a

{λa} =
2

(1 + b)
d − 1

.

The same reasoning could be repeated for the lim inf part, but it would yield a 0
limit. A better result can be obtained using Theorem 1 in [7]. From this result, we
get

F 2
b,N (PN ) ≥ Cd,b

(lnN)
d−1

N2

where Cd,b > 0 does not depend on the sequence PN . From this, the result follows.
(iii) The asymptotic distribution is given by

NF 2
b,N (PN ) →D

∑
k∈Nd

0\{0}

rb (k)

(1 + b)
d − 1

χ2 (1) ,

provided E |h (xh,x�)|2 < ∞ (see [48, Theorem, p. 194]). The main problem is that
this distribution is not suitable for computations. Therefore, we now aggregate the
chi-squared random variables according to the weight with which they appear in
the infinite weighted sum.

When d = 1, the equality rb (k) = b−2a for a ∈ N0 holds for ba (b− 1) values of
k.

When d > 1, the value rb (k) :=
∏d

j=1 rb (kj) = b−2a can be obtained in several

ways. Consider a vector k = (k1, k2, . . . , kd).

• Consider first the case in which a = 0. Any component j of the vector
must have 0 ≤ kj < b. Therefore, there are bd − 1 possible vectors (the
subtraction of 1 is due to the removal of the vector with all components
equal to 0).

• Any component j of the vector with 0 ≤ kj < b does not contribute to rb (k).
Therefore, we suppose for the moment that � (with 1 ≤ � ≤ min {d, a})
components (k1, k2, . . . , k�) are larger than or equal to b. For any �, we

can write a =
∑�

j=1 aj , where 1 ≤ aj , j = 1, . . . , �. Each way of writing a

as a sum of � integers (such that order matters) is called an �-composition
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of a. For a fixed value of �, there are

(
a− 1
�− 1

)
�-compositions. Let

(a1, a2, . . . , a�) be an (ordered) �-composition: this can be obtained for∏�
j=1 b

aj (b− 1) = ba (b− 1)� values of (k1, k2, . . . , k�). Therefore, for any

�, we have

(
a− 1
�− 1

)
ba (b− 1)

�
possible values of (k1, k2, . . . , k�). Note,

however, that d − � values of k = (k1, k2, . . . , kd) have still to be chosen.
The number of ways in which the subvector (k1, k2, . . . , k�) can be arranged

in k = (k1, k2, . . . , kd) is equal to

(
d
�

)
; the remaining d − � places can

be filled with any of the b numbers {0, 1, . . . , b− 1}, yielding bd−� combi-
nations. At last, we have

min{d,a}∑
�=1

(
a− 1
�− 1

)
ba (b− 1)�

(
d
�

)
bd−�

vectors k = (k1, k2, . . . , kd) yielding rb (k) =
∏d

j=1 rb (kj) = b−2a.

Summing up, the values (λa)a∈N0
and their multiplicities (Na)a∈N0

are defined by

λa = b−2a

(1+b)d−1
and

Na =

{
bd − 1 for a = 0,∑min{d,a}

�=1

(
a−1
�−1

)(
d
�

)
ba+d−� (b− 1)

�
for a > 0.

(iv) Define the following moments of the kernel h:

(7.1) γs = E |h (xi,xj)|s , γs,r = E |E [|h (xi,xj)|s |xi ]|r .

From [2, Theorem 1.1] we have∥∥∥∥∥P{NF 2
b,N (PN ) ≤ x

}
− P

{ ∞∑
a=0

λaχ
2
a (Na) ≤ x

}∥∥∥∥∥
∞

≤
exp

{
c
√
γ2

|μ13|

}
N

(
γ3

γ
3
2
2

+
γ2,2
γ2
2

)

where μ13 is defined at the beginning of this section. A simpler formula can be
obtained remarking that

γ3

γ
3
2
2

+
γ2,2
γ2
2

≤ γ
3
4
4

γ
3
2
2

+
γ4
γ2
2

≤ 2max

((
γ4
γ2
2

) 3
4

,
γ4
γ2
2

)
≤ 2

γ4
γ2
2

where the first and the last steps are consequences of the inequalities γ
1/3
3 ≤ γ

1/4
4 ,

γ2,2 ≤ γ4 and γ
1/2
2 ≤ γ

1/4
4 (that are respectively consequences of Liapunov’s in-

equality; see [51, Inequality 4.4, p. 48]). Using Lemma 7.2, we note that

γ4 ≤ 1

((1+b)d−1)4

[
(b+1)3(b2−b+1)(b6+3b4+4b3+3b2+1)

(b2+1)(b2+b+1)(b4+b3+b2+b+1)

]d
,

γ2 ≤ 1

((1+b)d−1)2

[
(b+1)(b2+1)
(b2+b+1)

]d
,

γ2
2 ≥ c′

((1+b)d−1)4

[
(b+1)(b2+1)
(b2+b+1)

]2d
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for a certain constant c′ > 0 (that can be taken equal to 64
225 ). Therefore,

γ3

γ
3
2
2

+
γ2,2
γ2
2

≤ 2

c′

[
(b+ 1)

(
b2 + b+ 1

) (
b2 − b+ 1

) (
b6 + 3b4 + 4b3 + 3b2 + 1

)
(b2 + 1)

3
(b4 + b3 + b2 + b+ 1)

]d

.

The inequalities
(
b2 + b+ 1

) (
b2 − b+ 1

)
≤ b4+ b3 + b2 + b+1 and b6+3b4+4b3 +

3b2 +1 ≤ 1.256
(
b2 + 1

)3
are then used to simplify the result. Concerning μ13, it is

different from 1
(1+b)d−1

only when bd ≤ 14 and, when this inequality is not satisfied,

it is larger than this value. Therefore

√
γ2

|μ13|
≤
[
(b+1)(b2+1)
(b2+b+1)

] d
2

≤ (b+ 1)
d
2 .

�

Lemma 7.4. For fixed b, d and p and large A, the following asymptotic formulas
hold:

NA � (b−1)d

(d−1)!A
d−1bA,

∞∑
a=A+1

Naλ
p
a � (b−1)d

(d−1)!((1+b)d−1)p(b2p−1−1)
b−(2p−1)AAd−1.

Note that the first formula is exact for d = 1.

Remark 7.5. For p = 1, 2:

∞∑
a=A+1

Naλa � (b−1)d−1

(d−1)!((1+b)d−1)
b−AAd−1,

∞∑
a=A+1

Naλ
2
a � (b−1)d

(d−1)!((1+b)d−1)2(b3−1)
b−3AAd−1.

Proof of Lemma 7.4. The asymptotic behavior of Na for large a is given by

min{d,a}∑
�=1

(
a− 1
�− 1

)
ba (b− 1)

�

(
d
�

)
bd−�

=
d∑

�=1

(a− 1)!d!

(�− 1)! (a− �)!�! (�− d)!
ba+d−� (b− 1)�

�
d∑

�=1

d!

(�− 1)!�! (�− d)!
a�−1ba+d

(
1− 1

b

)�

� (b− 1)
d

(d− 1)!
ad−1ba

where the second step derives from 5.11.12 in [41] applied to (a− 1)!/ (a− �)!, and
the third from the fact that the leading term in the sum is the one with � = d.
Therefore, we have

∞∑
a=A+1

Naλ
p
a � (b−1)d

(d−1)!((1+b)d−1)p

∞∑
a=A+1

ad−1b−(2p−1)a.



822 RAFFAELLO SERI

Clearly, the sum is convergent. A precise estimate of its asymptotic behavior can be
obtained noting that the sum is a special instance of the Hurwitz-Lerch zeta func-

tion, i.e., the function Φ (z, s, a) :=
∑∞

k=0
zk

(a+k)s , for 1− a /∈ N, s ∈ C and |z| < 1.

This yields
∑∞

a=A+1 Naλ
p
a � (b−1)d

(d−1)!((1+b)d−1)p
b−(2p−1)(A+1)Φ

(
b−(2p−1), 1−d,A+1

)
.

The asymptotic behavior of Φ for large values of a can be recovered from Theorem
1 in [16] and gives

∞∑
a=A+1

Naλ
p
a � (b−1)d

(d−1)!((1+b)d−1)p
b−(2p−1)(A+1)

1−b−(2p−1)

1

(A+ 1)
1−d

� (b−1)d

(d−1)!((1+b)d−1)p(b2p−1−1)
b−(2p−1)AAd−1.

�

Proof of Theorem 3.3. We rewrite the probability appearing in the statement as

P {Fb,N (PN ) ≤ Fb,N (P�
N )} = P

{
NF 2

b,N (PN ) ≤ NF 2
b,N (P�

N )
}

= FNF 2
b,N

(
NF 2

b,N (P�
N )

)
where FNF 2

b,N
is a shortcut for the cumulative distribution function of NF 2

b,N (PN ).

Moreover, we take, as in Section 4, X =
∑∞

a=0 λaχ
2
a (Na) and we denote by FX the

cumulative distribution function ofX. From Proposition 9.1 in [35], the distribution
of X possesses a density that we denote fX . This also implies that FX is continuous
(see [46, Exercise 17 (a), p. 303]).

According to Theorem 3.1 (iv), we have

∣∣∣FNF 2
b,N

(
NF 2

b,N (P�
N )

)
− FX

(
NF 2

b,N (P�
N )

)∣∣∣ ≤ ec0+c1(b+1)
d
2
(1.256(b+1))d

N ,

which can be written as the following two inequalities:

0 ≤ FNF 2
b,N

(
NF 2

b,N (P�
N )

)
≤ FX

(
NF 2

b,N (P�
N )

)
+ ec0+c1(b+1)

d
2
(1.256(b+1))d

N ,(7.2)

0 ≤ FX

(
NF 2

b,N (P�
N )

)
≤ FNF 2

b,N

(
NF 2

b,N (P�
N )

)
+ ec0+c1(b+1)

d
2
(1.256(b+1))d

N .(7.3)

We start assuming that limN→∞ NF 2
b,N (P�

N ) = 0, and we show, through (7.2),

that limN→∞ P {Fb,N (PN ) ≤ Fb,N (P�
N )} = 0. However, we will not need a precise

estimate of FX

(
NF 2

b,N (P�
N )

)
(this could be obtained using the fact that this is a

small ball probability). Instead, we use the crude inequality

FX

(
NF 2

b,N (P�
N )

)
=

∫ NF 2
b,N (P�

N )

0

fX (x) dx ≤ NF 2
b,N (P�

N )max
x∈R

fX (x) .

From [47, equation (7), p. 72], we get

max
x∈R

fX (x) ≤ 1

2
√
μ1μ2

.
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When (d, b) �= (1, 2), μ1μ2 =
(
(1 + b)

d − 1
)−2

, while when (d, b) = (1, 2), μ1μ2 =(
(1 + b)d − 1

)−2

b−2. Therefore, 1
2
√
μ1μ2

≤ (1 + b)d − 1. From (7.2), if we let

N → ∞:

0 ≤ lim
N→∞

FNF 2
b,N

(
NF 2

b,N (P�
N )

)
≤ lim

N→∞

(
(1 + b)d − 1

)
NF 2

b,N (P�
N ) + lim

N→∞
ec0+c1(b+1)

d
2
(1.256(b+1))d

N = 0.

Now we show that limN→∞ P {Fb,N (PN )≤Fb,N (P�
N )} = 0 implies that

limN→∞ NF 2
b,N (P�

N ) = 0. Now, when N → ∞ in (7.3):

0 ≤ lim
N→∞

FX

(
NF 2

b,N (P�
N )

)
≤ lim

N→∞
FNF 2

b,N

(
NF 2

b,N (P�
N )

)
+ lim

N→∞
ec0+c1(b+1)

d
2
(1.256(b+1))d

N

≤ 0.

As FX is continuous, non-decreasing and strictly positive when its argument is

strictly positive, limN→∞ FX

(
NF 2

b,N (P�
N )

)
=0 requires that limN→∞ NF 2

b,N (P�
N )

= 0. �

Proof of Theorem 4.1. The proof follows the scheme of [5, Theorem 5.1]. Here
and in the following, ψX (t) := EeitX is the characteristic function of the random
variable X.

We start with the uncentered case. Through the Fourier inversion formula for
characteristic functions of random variables (see, e.g., [15, p. 33]), it is possible to
obtain the following bound:

‖FX (x)− FXA
(x)‖∞

≤ 1

2π

∫ +∞

−∞

1

|t| |ψX (t)− ψXA
(t)|dt

=
1

2π

∫ +∞

−∞

1

|t| |ψXA
(t)|

∣∣∣∣ ψX (t)

ψXA
(t)

− 1

∣∣∣∣ dt
=

1

2π

∫ +∞

−∞

1

|t| |ψXA
(t)|

∣∣∣Eeit(X−XA) − 1
∣∣∣ dt

≤ 1

2π

∫ +∞

−∞

1

|t| |ψXA
(t)|E

∣∣∣eit(X−XA) − 1
∣∣∣ dt

≤

√
E (X −XA)

2

2π

∫ +∞

−∞
|ψXA

(t)| dt

where the third step comes from the fact that XA and X−XA are independent and

the fifth step from the inequalities
∣∣eix − 1

∣∣ ≤ |x| and E |X −XA| ≤
√
E (X −XA)

2

(see [51, Lemma 4.2] and [48, p. 197] for a similar majorization). In the centered



824 RAFFAELLO SERI

case, on the other hand, from∣∣∣Eeit(X�−X�
A) − 1

∣∣∣ =
∣∣∣Eeit(X�−X�

A) − 1− Eit (X� −X�
A)
∣∣∣

≤ E

∣∣∣eit(X�−X�
A) − 1− it (X� −X�

A)
∣∣∣

≤ t2E |X� −X�
A|

2

2

we have

∥∥FX� (x)− FX�
A
(x)

∥∥
∞ ≤ E |X� −X�

A|
2

4π

∫ +∞

−∞
|t| |ψXA

(t)|dt.

As concerns ψXA
, we have the general formula:

ψXA
(t) = EeitXA =

A∏
a=0

Eeitλaχ
2
a(Na)

=

A∏
a=0

(1− 2itλa)
−Na

2 = exp

{
−

A∑
a=0

Na

2 ln (1− 2itλa)

}

= exp

{
−

A∑
a=0

Na

4 ln
(
1 + 4t2λ2

a

)
− i

A∑
a=0

Na

2 arctan (−2tλa)

}

where the second equality derives from the multiplication property of characteristic
functions (see [51, Proposition 1.1 (g), p. 341]), the third from the characteristic
function of a chi-squared random variable (see [51, p. 343]) and the fifth from
the formula of the principal branch of the logarithm of a complex number (i.e.
log (z) = log ρ+ iθ for z = ρeiθ; see [51, p. 352]). As concerns the modulus of ψXA

,
we have

|ψXA
(t)| = exp

{
−

A∑
a=0

Na

4 ln
(
1 + 4t2λ2

a

)}
=

A∏
a=0

(
1 + 4t2λ2

a

)−Na
4 .

This formula is not directly usable; therefore we consider the following majoriza-
tions:

• Consider the uncentered case (namely XA) and let α be a value of the index
a such that Nα > 2. We have

|ψXA
(t)| =

1∏A
a=0 (1 + 4t2λ2

a)
Na
4

≤ 1∏A
a=α (1 + 4t2λ2

a)
Na
4

= exp

{
−

A∑
a=α

Na

4
ln
(
1 + 4t2λ2

a

)}

≤
(
1 + t2

4
∑A

a=α Naλ
2
a

Nα

)−Nα
4

;
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the result is derived from the following sequence of inequalities:

A∑
a=α

Na

4
ln
(
1 + 4t2λ2

a

)
=

Nα

4

A∑
a=α

Na

Nα
ln
(
1 + 4t2λ2

a

)

=
Nα

4

A∑
a=α

ln
(
1 + 4t2λ2

a

)Na
Nα

≥ Nα

4

A∑
a=α

ln

(
1 + 4

Na

Nα
t2λ2

a

)

=
Nα

4
ln

A∏
a=α

(
1 + 4

Na

Nα
t2λ2

a

)

≥ Nα

4
ln

(
1 + t2

4
∑A

a=α Naλ
2
a

Nα

)

where the third relation holds provided Na

Nα
≥ 1. Therefore:

∫ +∞

−∞
|ψXA

(t)| dt = 2

∫ +∞

0

|ψXA
(t)|dt

≤ 2

∫ +∞

0

(
1 + t2

4
∑A

a=α Naλ
2
a

Nα

)−Nα
4

dt

=
B
(
1
2 ,

Nα−2
4

)
2

√∑A
a=α Naλ2

a

Nα

,

where B (·, ·) is the beta function, provided Nα > 2 (this is the reason why
we replaced 0 with α in the sums). Note that α = 0 for every combination
(d, b) apart from b ∈ {2, 3} and d = 1. It is α = 1 for (d, b) = (1, 3), and
α = 2 for (d, b) = (1, 2).

• Consider the centered case and let α� be a value of the index a such that
Nα� > 4. We have

∫ +∞

−∞
|tψXA

(t)|dt = 2

∫ +∞

0

t |ψXA
(t)| dt

≤ 2

∫ +∞

0

t
(
1 + t2

4
∑A

a=α� Naλ
2
a

Nα�

)−Nα�
4

dt

=
1(∑

A
a=α� Naλ2

a

Nα�

)
(Nα� − 4)

.
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Now we turn to E (X� −X�
A)

2 and E (X −XA)
2. We have

E (X� −X�
A)

2
= E

( ∞∑
a=A+1

λa

(
χ2
a (Na)−Na

))2

=
∞∑

a=A+1

λ2
aV

(
χ2
a (Na)

)
= 2

∞∑
a=A+1

λ2
aNa,

E (X −XA)
2

= E ((X� −X�
A) + E (X −XA))

2

= V (X −XA) +

[
E

( ∞∑
a=A+1

λaχ
2
a (Na)

)]2

= 2

∞∑
a=A+1

λ2
aNa +

[ ∞∑
a=A+1

λaNa

]2

.

From Lemma 7.4, we get√√√√2

∞∑
a=A+1

λ2
aNa +

[ ∞∑
a=A+1

λaNa

]2

� (b− 1)d−1 b−AAd−1

(d− 1)!
(
(1 + b)d − 1

)
and

∞∑
a=A+1

λ2
aNa � (b− 1)

d
b−3AAd−1

(d− 1)!
(
(1 + b)d − 1

)2

(b3 − 1)
.

�
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[16] C. Ferreira and J. L. López, Asymptotic expansions of the Hurwitz-Lerch zeta function, J.
Math. Anal. Appl. 298 (2004), no. 1, 210–224, DOI 10.1016/j.jmaa.2004.05.040. MR2086542
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Dipartimento di Economia, Università degli Studi dell’Insubria, Via Monte Generoso

71, 21100 Varese, Italy – and – Center for Nonlinear and Complex Systems, Università
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