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STABILITY ANALYSIS OF HETEROGENEOUS HELMHOLTZ
PROBLEMS AND FINITE ELEMENT SOLUTION BASED
ON PROPAGATION MEDIA APPROXIMATION

HELENE BARUCQ, THEOPHILE CHAUMONT-FRELET, AND CHRISTIAN GOUT

ABSTRACT. The numerical simulation of time-harmonic waves in heteroge-
neous media is a tricky task which consists in reproducing oscillations. These
oscillations become stronger as the frequency increases, and high-order finite
element methods have demonstrated their capability to reproduce the oscilla-
tory behavior. However, they keep coping with limitations in capturing fine
scale heterogeneities. We propose a new approach which can be applied in
highly heterogeneous propagation media. It consists in constructing an ap-
proximate medium in which we can perform computations for a large variety
of frequencies. The construction of the approximate medium can be under-
stood as applying a quadrature formula locally. We establish estimates which
generalize existing estimates formerly obtained for homogeneous Helmholtz
problems. We then provide numerical results which illustrate the good level
of accuracy of our solution methodology.

INTRODUCTION

Wave propagation is a complex physical phenomenon which is involved in a large
number of applications such as, for instance, radar or sonar detection, medical or
seismic imaging. Numerical simulations for waves deserve attention because they
require applying advanced numerical methods, in particular, when the propagation
domain is heterogeneous. First, there is a need in tracing the wave frequencies
accurately and that may be a tricky task because frequencies can be wide-ranging
for many applications. For example, depth imaging is searching for deeper layers
which may contain hydrocarbons and it uses frequencies which must be of a few
tens of Hertz with a very low resolution. If it is to detect hidden objects, the
depth of the explored region does not exceed a few tens of meters and the involved
frequencies are close to the kilohertz. High performing numerical methods should
thus be stable for the widest possible frequency range. In particular, these methods
should minimize phenomena of numerical pollution that generate errors increasing
faster with frequency than with the inverse of space discretization step. Next,
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heterogeneities heavily impact the behavior of waves. Numerical methods must
then be able to take them into account. A medium can be heterogeneous in different
ways. For instance, it can be stratified and highly contrasted. It can also include
very small heterogeneities as compared with the size of the domain. In each case,
the characteristics of the propagation medium can be described by the variations of
the velocity parameter and in most of the realistic cases, it is not even continuous.

High-order methods have become very popular to discretize wave problems be-
cause they allow reducing the pollution effect and thus we can consider high fre-
quencies [12/22,23]. They involve high degree polynomial basis functions which
are built on coarse meshes. High frequencies can thus be considered but strong
heterogeneities are not taken into account correctly. For that reason, high-order
methods do not perform as well as possible in highly heterogeneous media. Indeed,
if simulations are to have any chance of reproducing waves inside heterogeneous
media, the size of mesh cells must be small enough to capture the heterogeneities
.

When the constitutive parameters are highly oscillating, as in composite ma-
terials, homogenization techniques are attractive and we note a very recent work
not yet published but available on line [14]. It provides a mathematical analysis of
the Helmholtz equation with highly oscillating velocity parameter when it is solved
with the Finite Element Heterogeneous Multiscale Method. In the same spirit,
Capdeville et al. [5] have proposed an upscaling tool which is based on a two-
scale homogenization expansion and provides a modelling valid in heterogeneous
elastic media. It is a non-periodic procedure which has been tested with spectral
elements and it gives accurate results. Nevertheless, convergence analysis has never
been delivered. Furthermore, the homogenized medium is obtained as the solution
of an auxiliary problem which might be challenging to solve, even with advanced
dedicated techniques [6].

In this paper, we adopt another point of view avoiding homogenization tech-
niques. We propose a subcell approximation strategy which makes it possible to
handle very small heterogeneities on a coarse mesh, even if high degree polynomial
basis functions are used. We call this approach the Multiscale Medium Approxi-
mation Method (MMAM).

We restrict our analysis to continuous FEM schemes because it is simpler to
present, but it is based on general arguments which can be applied to other mesh-
based discretization strategies such as the discontinuous Galerkin methods pre-
sented in [2[Bl0]. Though the analysis of the present paper is limited to the linear
case, numerical examples show that higher order polynomial approximations are
working well with subcell variation of the velocity. The analysis of higher order
polynomial FEM is currently under investigation.

To the best of our knowledge, this paper is the first attempt to discretize the
heterogeneous Helmholtz equation with jump in the wavespeed inside the mesh
cells. Indeed, even if recent advances have been made in the context of plane wave
methods, they are either limited by velocity-fitting meshes [I5[I8,[19], i.e., the
wavespeed is constant inside each cell, or to smooth wavespeeds [13124].

Since we consider a general velocity parameter, the entries of the correspond-
ing finite element linear system cannot be computed exactly. The key idea of the
MMAM is to consider an approximation ¢, of the actual velocity parameter ¢ for
which analytical expressions of the entries are available. It turns out that approxi-
mating the propagation medium amounts to use a quadrature formula particularly
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designed for the actual velocity. Then, we prove that the MMAM is stable and con-
vergent if the approximation ¢, converges to ¢, where h stands for the local space
step approximation. We develop a two-scale (h, H) convergence analysis where H
is the finite element mesh step. This is done by extending the recent convergence
and stability results based on elliptic projection of Wu and Zhu [2526].

To carry out the convergence analysis of the MMAM, frequency-explicit stability
estimates of the continuous problem are required. It seems that such stability esti-
mates are not available in the literature. Indeed, To the best of our knowledge, even
though recent advances have been made, existence, uniqueness and stability results
for Helmholtz equations with mixed boundary condition and an arbitrary param-
eter ¢ € L>®(f) are not available in the literature. For instance, Lechleiter and
collaborators successfully show the well-posedness of a heterogeneous Helmholtz
and Maxwell problems in [16,[17], but the velocity parameter has to be C° or W1
regular and the stability constants are not optimal in frequency. Sharper estimates
have been obtain in [L1], but they require H? regularity of the right-hand side.

We propose to fill this lack by extending the works presented in [8[I0] provid-
ing a technical assumption on the velocity parameter ¢ (see condition ([2)). This
hypothesis is only made for technical reasons but it is representative of lots of geo-
logical media corresponding to a local approximation of the Earth as a stratified-like
medium. Our analysis is also limited to the case where the domain is surrounded
by an absorbing boundary condition, however, numerical experiments show that
the numerical method performs as well in more complex media.

The guideline of this paper is the following. Section 1 presents a stability analysis
for the Helmholtz problem set in an heterogeneous media. Section 2 then aims at
showing that it is possible to take the discontinuities of ¢ into account on a coarse
mesh by considering an approximation ¢;. We then show in Section 3 that ¢
can be chosen to obtain a quadrature-like formula that can be mastered to ensure
the construction of the discrete system is cheap. The paper ends with Section 4
which is devoted to numerical experiments in two-dimensional domains illustrating
the results obtained in Sections 1 and 2. In particular, we show that the MMAM
outperforms standard finite element approximations in highly heterogeneous media,
even when technical assumption () is not satisfied.

1. ANALYTICAL STUDY

This section deals with a stability analysis of the Helmholtz equation set in a
heterogeneous medium that we have chosen to represent by the variations of the ve-
locity for which a technical assumption is required. We deem it technical because we
have no evidence that it is mandatory. In particular, numerical experiments present
the same behaviour if the hypothesis is not satisfied. Our analysis covers existence,
uniqueness, stability and regularity results, in particular, at high frequency, and it
is carried out as an adaptation of [I0] and [2I] to heterogeneous media.

Let © be the propagation domain. Having in mind regional seismic wave sim-
ulations, we assume 2 is a rectangle but our work is easily extendable to other
geometries. We thus define Q = (0,L;) x (0, L2) C R?, where the vertical axis is
oriented from the top to the bottom. The propagation of harmonic seismic waves
is governed by the Helmholtz equation:

(1) —Ku—Au = f inQ,
Vu-n—ikpet = 0 on 99.
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The wave number k is defined from the pulsation w and the velocity ¢ through
the relation k = w/c. The pulsation is a given positive constant and the velocity
varies in the whole domain and k. = supq k. Since we are especially concerned
with high frequency waves, we consider pulsations w higher than a given minimum
wo. The field f is a given distributed source. To get into the right condition of
numerical experiments, we assume that the domain of interest is limited by an
absorbing boundary. We thus set the simplest outgoing radiation condition on the
boundary of €.

In the case where k is constant, this problem has been analysed and it is
well known that for any f in L%(£2,C), the problem is well-posed in the sense
of Hadamard (see [I0] for instance). This paper pertains to the case where k is
variable following the variations of the velocity. We assume that ¢ € L>®(2) is
piecewise constant and the values of ¢ are distributed as follows. The velocity
model is composed of R subdomains €2, enclosed in 2 and in each €2,., the velocity
is ¢, = c|q, € R™ with ¢y, = min, ¢, e = max, ¢, and we assume that
Cmin > 0. We further assume that there exists a point xo €  such that

nr-(x—x0)+nl-(:t—x0)

2
cr &

(2)

<0 Vxe,.NQ,

forallr,l € {1,..., R} such that Q,.NQ; # (. Examples of velocity models satisfying
@) are given in Figures [l and

In the following, we employ the notation k., = w/c,. We also adopt standard
notation for the functional spaces, norms and inner products and their definitions
can be found, for instance, in Ciarlet [7].

It is well known that u € H' (€, C) is the solution to () in a weak sense if and
only if u satisfies the variational equation

(3) B(u,v):—/k2u@—ikmm/ uﬁ—i—/Vu-Vz?z/f@,
Q o9 Q Q

for all v € HY(Q, C), where B : H(Q,C) x H*(Q,C) — C is the sesquilinear form
associated with problem ().

(0,0) (L1,0)

2000
M
M
//W
M

+ z

FIGURE 1. A stratified velocity parameter
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FIGURE 2. A velocity parameter with a salt body

Proposition 1. Let u € H(Q,C) be any solution to @). Then u € H*(Q,C) and
there exists a constant C' := C(Q, ¢min) such that

lul3.0 < C(If13a+ W+ w4)|u|(2),9 +w?ulig).

Proof. Since u is a solution to (@), it satisfies
/VU~V® :/F’l_)+ Gv  Yve HY(Q,C),
Q Q a0

with F = f + k?u and G = ikpa,u. Since k € L*°(Q) and u € H*(Q,C), we have
F e L*(Q,C) and G € H'/2(99,C). Since Q is convex, the classical theory for the
homogeneous Laplace operator implies that there exists a constant C' depending on
Q only such that

|U|§,Q < C(|F|(2),Q + HGH%/ZBQ)'
Furthermore, regarding norms |F|(2)Q and \|G||f/2,89, we have
Flia = If+kuliq
|f|(2J,Q + kfnawlu%,ﬂ
C(|f|(2),sz + w4\u|(2))ﬂ),

IA A

with C' = max(1,1/c},..). Moreover,

G112 )2.00 = ikmazull? /s 00

= k'?nawHuH%/ZBQ

IN

CW2||UH%/2,697
with C' = max(1,1/c2,,,). We end the proof, thanks to the trace inequality
379 + |u|%,9)7

where C' is a constant depending on (2 only. O

lulli/2.0 < C(lu

Before turning to stability in the L?(Q2,C) norm, we state two identities which
are established in the Appendix. The first one is the classical Rellich identity: for
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all w € H?(Q,C),

(4) 2Re /Vw-(x-VlD):/ |Vw|?x - n.
Q a0
The second identity reads:

Lemma 1. For allw € H'(Q,C),
(5)

2Re/k2wx-vw= —2/k2\w|2
Q Q
R

e [ e kil + [ BPxon
rl=1 Q-0 o0

where x = x — xg.

Proposition 2. Let u € H'(Q,C) be any solution to @). Then there exists a
constant C' := C(, ¢maz, Cmin, To,Wo) such that

C
lulo.o < ;|f\0,9-

Proof. According to Proposition [l v € H?(Q,C) and v = x - Vu is regular enough
to be used as a test function in the variational equation (@]). Recalling @) and (&),
then taking the real part of (@), we have

/k2|u|2 Z/Q k2x'nr+k?x-nl)|U\2+/BQ\VU|2X'H

rl=1

= 2Re / fx-Vu+ 2Re ikmam/
Q

ux - Vu + / E?|u|?x - n.
19) o9

Since € is a rectangle, it is strictly star-shaped with respect to xg, and there
exists a constant v > 0 depending on 2 and zy only such that x-n > v on 9.
Since ¢ satisfies (@), we have (k?x - n, + k?x - n;) < 0. Then, observing that
x| < diam Q = (L3 + L3)'/? = L, it follows that

2 2 2
2kmzn|u| +7|VU|0,aQ
< 2L|f|079|u|179 + 2Lkmaw‘u|0739|vu|0739 + Lk?naac|u|(2),8ﬂ
L2 2 2 ngnax 2
< ?\f|0,9 + eluli g + — 5 ulg a0 +VIVUl§ o + Lk ulf o0

We then get that for any € > 0,
2 L% 2 L? 2 2
(6) 2kmin|ulpq < ?|f|0,9 + €lulf o + (7 + L) Ermaz U5 00-
We complete the proof by deriving estimates for |u|1 o and |u|o,sn. This is carried

out by picking v = u as a test function in (3] and considering the real and imaginary
parts separately. We start by pertaining |u|; o. We have

Re B(u,u) /k;2|u\2 /|Vu|2 Re /fu<|f|og|u|og
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It follows that

\u|1 o= | flo.lulo.a + kmax\ub Q< 4k:2 |f|o QT kaaz|u\g,sz~

Then selecting eg = k2,,,,/4k2, .., we obtain

L? k2 k2 k2
(7) —Ifloo+eolullq < (402252 + 77 ) |50+

60 ' kmzn kmam

We now move on to estimating |u|g aq. We have

Im B(u,u) = —kmax|u|(2),39 =Im / fa.
Q

It follows that

L? L?
(7 + L) kmazluld 00 < (7 + L) kmaz| floalulo,0
1 /L? k2 k2.,
© < L(En) By s B,
Combining (6) and (7) with (), we get
L? k2 k2
k’,%»”n U 2 S 4L2 < + L) mazx min
so that the proposition holds with
1 /L2 N2 1
C = Cmax 4L2+—<—+L) -+ O
2 Y Crmaz Cmin Y0

We end this section with a full statement of the results obtained in the section.

Theorem 1. Problem ) admits a unique solution u € H*(Q,C). Furthermore,
u € H2(Q,C), and there exists a constant C := C(, Cmin, Cmaz, To,wWo) such that

C
lulo,0 < ;Iflo,ﬂ, lul1.0 < Clfloq,  |ulz < Cwlfloa-

Proof. Regarding existence and uniqueness, observe that the sesquilinear form B
satisfies a Garding inequality. Indeed, for all v € H(Q, C), we have

Re B(v,0) = — /Q K2 Jof? + /Q Vo2 > k2 lol20 + oo

Therefore, it follows that we can apply the Fredholm alternative and thus focus on
uniqueness. But Proposition 2 applied to [B) with f = 0 implies that u = 0, which
proves uniqueness and thus existence.

Problem (@) thus admits a unique solution u € H*(2,C). Now, Proposition
implies that

Co
|ulo,0 < U|f|o,ﬂv

with a suitable constant Cy. Moreover, we have

Re B(u,u) /k;2\u|2 /|Vu|2 Re/ a,
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which implies that

|U|isz < |f\0 oluloe + k2alulf o

S 4]€2 |f|0 Q + 2kmax|u‘g,ﬂ

max

2 2

cs . C
(),

( 40‘)(% C?nin ’

< CilflGq

The demonstration of the theorem is then ended since by Proposition [Il we can
write the estimates:

IN

|f|09+ (W +w )|U|OQ+W |U\1Q)

|U|§,Q cQ) (
C()(1+ (1 +w?)CE +w?CP)|fI} .0
)(

IN

1+cO

IN

+(C3 + 01))W2|f|(2),9

IN

O

1+C
2 - (00+C1))W2|f|(2),9
0

C3w?|f13 0 0

IN

Corollary 1. Consider g € L*(2,C). Then, there exists a unique element z €
HY(Q,C) satisfying the adjoint equation

B*(z,w):B(w,z):/gID Yw € H'(Q,C).
Q

Furthermore, z € H?(Q,C) and there exists a constant C := (Q, Crnin, Cmazs T, Wo)
such that

C
= l9lo.0:  12l1,0 < Clglo,  |2]2,0 < Cw|glo,n-

|z

Proof. The sesquilinear form B is not self-adjoint but B and B* are closely related.
Indeed, observe that for all u,v € H*(£2,C), we have

B*(z,w):B(w,z):—/ k2w2+ikmax/ wé—i—/ Vuw - VZ.
Q o9 Q

The two sesquilinear forms thus differ by the sign before the boundary integral only,
and as a matter of fact, all the demonstrations given for problem (B]) apply with
minor modifications to the adjoint problem. |

2. NUMERICAL ANALYSIS

In this section, we obtain a finite element discretization of problem (@) and we
study its convergence with respect to the pulsation w and the maximum size H
of cells forming the mesh. In the case of homogeneous domains, the condition
w?2H < C is known to be suboptimal. Many authors have proposed different proofs
to obtain sharper stability conditions. For example, by using a numerical Green
function to the 1D Helmholtz problem set in a homogeneous domain, Ilhenburg and
Babiiska have shown in [I2] that the condition w?’*!H?P < ( is sufficient, where
p denotes the degree of polynomial functions that are used for approximation. In
higher dimensions, Melenk and Sauter have used a frequency splitting argument
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to demonstrate in [22/23] that the condition wP*!H? < C is sufficient even if the
datum f € L?() is rough.

We propose convergence estimates which are based on the analysis of Zhu and
Wu [25126]. Our proof is elaborated for a 2D heterogeneous domain and its main
ingredient is the construction of an approximate propagation medium by the mean
of an approximate velocity ¢;,. We are then able to extend the optimal convergence
result for linear elements in homogeneous media providing that w3H? and wM g,
are small enough. The quantity Mg, which involves two parameters H and h,
stands for the approximation error of ¢ by ¢p, (see Definition 2l). As mentioned
above, H denotes the discretization step related to the finite element mesh while h
represents the size of the local submesh that is used to represent the approximate
velocity cp,.

Then, let Ty be a regular mesh of 2 and its associated conforming discrete space
Vi C H'(Q,C). Since Theorem [ indicates that v € H?(£2,C), we may expect a
linear convergence in the H'({), C) norm when using linear or bilinear elements.

We now tackle the issue of computing the entries of the linear system associated
with V. Indeed, even when using piecewise polynomials, we must integrate quan-
tities involving c. In fact, if we assume that each interface 2, N is polygonal, we
could accurately mesh it with a finer mesh 7; where h has already been introduced
with the approximate velocity c,. We could then perform an exact integration on
Tr. But this is not fully satisfactory since it requires building an auxiliary mesh
and we prefer to avoid any superfluous mesh with a view to reduce the implemen-
tation time. Furthermore, if we accept the idea of constructing an auxiliary mesh,
the quadrature scheme induced by the fine mesh 7}, is different in each coarse cell,
making integration of linear system entries very costly. Finally, for realistic appli-
cations, the interfaces €2; N2, are not given explicitly and the parameter c is rather
given as a set of sampling values. It thus seems difficult to introduce 7. We have
to cope with a technical difficulty and for that purpose, we propose to construct
an approximation ¢, of ¢ such that the entries of the linear system are both cheap
and easy to compute. This is what we will do in Section 3, but first we focus on
proving that the finite element scheme we apply is stable when c is replaced by
its approximation. More precisely, we demonstrate that if ¢, converges to ¢ when
h goes to zero (in a sense to be defined), the numerical solution converges to the
analytical solution as both H and h go to zero.

We start by requiring approximation properties on the discretization space and
we introduce the quantity My j, in Definitions Il and ] Note that the conditions
given in Definition [l are fulfilled, for instance, by P; Lagrangian polynomials.

Definition 1. We consider a partition Tx of Q. We assume that each cell K € Ty is
the image of a reference cell K C R? through an invertible affine map Fx € L(R?).
We also consider a (finite dimensional) reference discretization space P ¢ C*®(K),
and define the discretization space Vg by

Vir = {vg € HY(Q,C) |vg|x o Fx € P VK € Ti}.

We further assume that there is a projection operator Il € L(H' (2, C), V) sat-
isfying

lw —gwlog < CH*lwlaq, |w—Hgw o< CHlwlaq, Ywe H*Q,C),
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where C'is a constant depending on €2, K and P. Note that the multiplicative trace
inequality ensures that

lw — w00 < CHY?|w|2.q,
where C is a constant depending on Q, K and P.

The construction of ¢, is depicted in Section 4. In this section, assume that
cp € L®() and cmin < ch < Cmag- We also define the quantity My p:

Definition 2. The velocity approximation error is defined by

1
My = —
h = B8 K] /K

where |K| is the Lebesgue measure of the cell K.

b

1 1
2 a

In the following, we assume that My ), converges to zero as H and h go to zero.
Vi and cj, being defined, we now introduce the discrete finite element problem. We
write kj, = w/cp,. The discrete equation consists in finding uy € Vg such that

(9) Bh(uH,UH) = _/k}%UH@H_ikmam/ UH@H‘F/ Vug - Vog
Q o0 Q

/ f@H, Yvg € V.
Q

Proposition 3. There exists a constant C := C(Cmin,wo, ) such that

|B(u, ’U)| < C(w|u|0,ﬂ + ‘u|179) (CU|’U|079 + "U LQ), VU,U S IT[1 (Q, (C),

and

|By(ug,vi)| < C(wlumloq + lurlie) (@lvrlog + lvelie), Yum,vm € Va.

Proof. Since the proofs are similar for B and Bj,, we focus on the first case only.
Consider u,v € HY(Q,C). It is obvious that

1B(u,v)| < kpaeltloolvlo.e + Emazltlo.00lv]o.00 + [ul1elv

> 1,Q
S (kmaw‘ub,ﬂ + |U' 179) (kmaw|U|O,Q + |U|1,Q) + kmaw‘u|0,89|v|0,69-

Moreover, for all w € H'(Q,C), we have

kmas|wlg oo < C(Dkmas ([w]§ o + [wloelwlie)
< ODhan (00 + Rl + 1 [l? )
mazx
< O, wo, Cmin)(krznax|w|(2),ﬂ + \wﬁ,sz)
< O(Q,w0, min) (Fmaz wlog + [w10),
and the result follows since kpae = wW/Cmin- O

We now give a result concerning the error induced by the approximation of the
velocity parameter between the two sesquilinear forms B and By, in Proposition [l

Proposition 4. There exists a constant C := C(K, P) such that

|B(um,v) — B(um,vi)| < Cw* My plugloalveloa, Yum,ve € Vi.
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Proof. Consider ug,vyg € Vg. We have

/(k‘z — k‘i)quH‘
Q

|B(um,ve) — Br(um,vm)| =

1 1
< @ Y [ |5 5 |lunlloal
KeTu 'K ¢ “h
(10) < W Z |UH|0<><>K|UH|0<>0K/ Eam_—
> ,00, Sl P C%L

KeTy

Furthermore, for any cell K € Ty, wy o Fx belongs to the finite dimensional space
P if wy € Vi and there exists a constant C' depending on P only, such that

W |o,00.k = Wi © Ficlg oo g < Clwn o Ficly -

‘We can thus derive

_ K
|wHOfK|§k:/ |wHo.7:K|2:Det J]_-;/ ‘wH|2:|I(_‘|wH|(2),Kﬂ
’ I3 K |K|
so that
. |IK
(11) |wer]o,00,x < C ?:WH 0,K-

We can conclude by using (IIl) with wy = ug, vy in ([I0):

A ~ Ulo.K|V|0.K 1 1
Bl o)~ Bau )| < i Y Moo [0 L
|K| K|C Cy
KeTy
< CUKwMpn Y Juloxvlox
KeTy
< C*K|w? M plulo.alv]oo. U

Before we establish our convergence result, we need three additional lemmas. In
Lemma[2] we define the Ritz representation of the error z together with its elliptic
projection zz. We use the Ritz representation and its elliptic projection in Lemma
Bl to bound the finite element error in the L? norm. Lemma @l is a technical result
required to prove the convergence in the H' norm in Theorem

The proof of our error estimate is based on the theory of Zhu and Wu [25,[26]
who establish, in particular, Proposition bl

In the rest of this section C' := C(£2, ¢min, Cmaz, To,wo) denotes a constant inde-
pendent of w, H and h.

Proposition 5. Let a be the sesquilinear form
a(w,v) = / Vw - Vo — ikmaw/ wv, Yw,v € H'(Q,C).
Q Ele)

For all z € HY(Q,C), there exist a unique zy € Vi such that

a(wg, zp) = alwp, 2), Ywg € Vi,
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and we have

|z —zloe < CH?|z|aq,
|z — zuho < CHlzl2q,
|z — zHlo,00 < CH3/2|Z|2,Q-

Lemma 2. Let ug € Vg solve (@). Then there exists a unique element z €
H(Q,C) such that

B(w,z):/wu—uH vw e HY(Q,C),
Q

and we have
(12) lu —ug)® = B(u —uy, 2).
Furthermore, there exists an element zg € Vi such that

|B(u —um,z— zm)|

(13) < C (WH?|u—umnloo+wH?|flog) -

|U - uH|O,Q

Proof. According to Corollary [ it is clear that there exists a unique z € H'(Q2, C)
such that

B(w,z)z/wu—uH, Yw € HY(Q,C).
Q

In particular, picking w = u — upy yields ([I2)).
Using Proposition [ there exists an element zg € Vg such that
alu—ug,z—zg) =a(u—yu,z — zg).

It follows that

Blu—upg,z—zg) = —/QkQ(u—uH)(z—zH)+a(u—uH,z—zH)

= —/Qk2(u—uH)(z—zH)+a(u—HHu,z—zH).

Hence,

< K2 ulu—umloalz — 2xlo.q + kmaz|v — Oaulosalz — 2ul0.00

+|u —Tlgulialz — zml1,0
< C (koo H?lu — unloelzl2.0 + kmaa H? [u]2,00|2]2.00 + H?|ul2,0]2]2,0)
<C (w2H2|u —umloalzle.a + wH3u 2.0lz2.0 + H2|u|2,g|z|219) )
Now, using Corollary [I] again, we have
22,0 < Cwlu — uplo,0,
and therefore,
|Blu = w2 = 2| < C (WPH?|u—uploo + wH?|ulao + wH?|ulz0) .

|U —UHg |0,Q
We conclude thanks to Theorem [[I We have

lul2,0 < Cw|flo,;

and the proof follows since wH < 1. O
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Lemma 3. Let u € H'(Q,C) solve @) and let ug € Vi be any solution to problem
@). Then if w3H? and wMpy,, are small enough, there exist a constant C' such
that

lu —uploo < C (W?H?* + Mup) [ floo-
Proof. Recalling (I2)) from Lemma B there exists an element z € H!(,C) such
that
|lu — uH|(2),Q = B(u —ug, 2).

We then introduce zg € Vi defined as in Lemma 2l Since u and up solve (B)
and (@) respectively, we have

B(u—upg,z) = Blu—ug,z—zg)+ Blu—ug,zy)
= B(u—up,z—zy)+ Br(ug,zn) — Blug, zm),
and therefore,

|B(u —up,z—zu)| | |Bn(un,za) — B(um, 2m)|

(14)  |u—uglogo <
|lu —umlon lu —umlon

We bound the first term in the right-hand side of (I4]) using Lemma 2l To deal
with the second term, we recall Proposition [4 it holds that

|Bi(umr, zi) — Blug, zm)| < Cw* My pl|umloalzioo,

but we have

lzrlo,o < |zloe + 12 — zHl00

< C(w u—unlog+ H?|z20)

< C(w71|u—uH\0,Q +CL)H2|U—U,H|O7Q)

< Cw ' (1+w?H?)|u —umloo

< C’w_1|u—uH 0,0
and

lugloe < |uloo + |u—umloo
< Cw Y flo + lu—unloa,

so that

|Bn(um, zr) — B(um, 2m)|
lu — uglo,0

< C Munlflog+wMpp|lu—umloa) -

Recalling (I3) from Lemma 2] we obtain
lu—uploo<C (W H?|u—ugloo+w?H?| floo+Mun|floo+wMunlu—umloq) .
It follows that
(1- Cw*H? — CwMpup) |u—uplon <C (w2H2 + Mun) | flo

and we get Lemma 3] by assuming that w3 H? and wMy j, are small enough. ([l
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Lemma 4. The following estimate holds:
lug —Mgulf g < C(wW|lu—uglf g+ (M, +0*H?)|f15 ),
where u is the solution to @Bl) and uy is any solution to ().

Proof. First, the following relation holds:
(15) |UH - HHUE,Q = Re Bh(uH —Myu,uyg — HHU) -I—/ k‘%|uH — HH’IL|(2)79.
Q

Developing the first term of the right-hand side in the above equation leads to:
By(ug — Hgu,ug — Hgu)
= Bp(ug,ug — gu) — Bp(Mgu,ug — Mgu)
= B(u,uy — gu) — By(Ilgu,uy — M gu)
= B(u —gyu,ug — Ugu) + B{lgu,ug — Hgu) — By(lgu,uy — Mgu).
It follows that

(16) Re Bp(ug —Ugu,ug — yu)
< |B(u—Hpu,ug — Mgu)| + |BAgu,ug — Mgu) — By(Tgu, ug — Mgu)|.

Then, using Proposition [}l and Theorem [I] we have
(17)

|B(u — Tgu,ug — Myu)|

< C(wlu —Mgulog + u— HHU\LQ)Q

< C(w2|u — HHu|(2J)Q + |u— HHuﬁ,Q)
< C(w?H?ulp,olug — Myuloo + Hlulzolug — Mpuli o)
< C(WH?|f
< C(w

o.0lug — Myulog + wH| floolug — Mguliq)
2H2|f\g,sz +w'H?|ug — HHU‘%,Q + #Ug,sz +nlug — HHU&Q)
< %|UH - HHUﬁ,Q + C(W4H2\UH - HHU|3,Q +W2H2|f\g,sz)-
Moreover, Proposition @ implies that
|BIlgu,up — gu) — Bp(Ilgu, ug — Hpu)
< Cw? My p|gulo olug — Mgulogo
< Cw? (M%I,h‘HHu‘(QJ,Q + Jug — HHU|(2),Q)
(18) < Cw? (M?H,h(|u|(2),9 + [u — HHU|(2),Q) + ug — HHU|(2),Q)
< Cw? (M%{hﬂu%ﬂ + H4|“|§Q) + lupg — HHU|(2),Q)

6.0)

< CMi a1+ HY| 5o + w?lun —Thulig).

1
< Cw(Mipp(—5 + @ HYI 5.0+ [um — Tyu

Now, since k7 < Cw?, we have

|ug — HHUEQ < Re Bp,(uyg — Hgu,uy — Hgu) + Cw?lugy — HHu|(2)’Q.
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Plugging () and ([I8) into (1) implies that
Sl —Tufl o < C{@? 4 B hugr—Thigul b (M (1 B 407 )| 1 )
Then, if wH is small enough, we end up with
lug — pulf o < C{w’lug — Myulf g + (M, +w?H?)| 5o}
We end the demonstration by observing that

Wug —pulfq < wlu—urlfo+w?lu—gulfq

A

w?lu — U/H|(2),Q + Cw2H4|u|§7Q

W2|U—UH|(2),Q +CW4H4|f|(2),Q- U

IN

We now establish a convergence result under the assumption that w?H? and
wMpy p, can be made arbitrarily small.

Theorem 2. Assume that w3H? and wMp p, are small enough. Then problem (@)
has a unique solution ug € Vi. Furthermore, uy satisfies

(19) wlu —uglon +|u—uglho<C (w./\/lH,h +wH + w3H2) |flo,0:
where C := C(Q, Cmin, Cmaz, To,wo) denotes a constant independent of w, H and h.

Proof. Let us first show existence end uniqueness of ug. Since Vy is a finite di-
mensional space, (@) is equivalent to a linear system with size (dim Vi x dim VH).
Therefore, we only need to prove uniqueness. Assume then that f = 0 in the
discrete and continuous problem (@) and ([@). According to Theorem [I the cor-
responding continuous solution u is © = 0. Then, from Theorem 2 we deduce
that

lurloo < Cw’H?|f

0,Q = 07

so that uy = 0 and uniqueness occurs.
We now turn to the proof of error estimate (I9). Recalling Lemma [3] it is clear
that

wlu —ugloo < C (WPH? + wMpyp) | floo
and it remains to show that
|u — UH|17Q <C (w./\/leh +wH +w3H2) |f|019.

To start with, it is clear that

lu —gu|i 0+ |ug — Hgulio
CHlul2,0 + [ug — ITguly 0
CwH|floo + |ug — Ilguliq,

lu — ugl,0

INIA TN

but recalling Lemma [l we have

lug — Ogul* < C (W2|U - UH|(2),Q + (M%Ih + W2H2)|f|0,sz)
C (WH* + MYy, + W H?) |f15 0

A
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hence
lugr — Hpu| < C (WPH? + My +wH) | floo,

and the result follows since Mg, < w, oM Hh- O

3. APPROXIMATION OF c¢

In this section we discuss how to pick an approximation c¢j of ¢ which is both
accurate and easy to compute. Regarding the accuracy, we propose to quantify it
by the measurement of My previously introduced at Definition 2l For the sake
of simplicity, we restrict our study to the case of flat interfaces. We also show that
the entries of the linear system related to (d)) are easy to compute.

The approximation of ¢ is based upon the following procedure. Let T, be a
given partition of the reference cell K. We can map this partition to each actual
cell K € Ty and thus obtain a partition Téfh of the cell K. Finally, gathering
all the partitions associated to each cell K € Ty together, we obtain a (possibly
non-conforming) partition Ty, of Q (see Figure [3 which illustrates this process).
The approximate velocity parameter is defined as follows.

Definition 3. Let ¢ € L () be the global velocity supposed to satisfy assumption
@). Let z4 € A be the barycenter of A € Ty . If x4 does not belong to an
interface, we set cp|a = c(x4), otherwise we define ¢4 = sup4 c.

Our definition of ¢}, corresponds to a Py-interpolation of ¢. Recalling Definition[2]
it is clear that other choices are possible and covered by our convergence analysis.
However, we consider Py-interpolation only. Indeed, since we consider piecewise
constant parameters, it is not clear that higher order approximations might bring
additional precision. Furthermore, difficulties can arise when defining high-order
approximation of ¢. For instance, it is shown in [20] that ¢, can take negative values
if it is defined as a Ps-interpolation of c.

Remark 1. As indicated in the end of this section, a high number of subcells can be
considered in the partition 7; without changing the structure of the finite element
linear system. Thus, it is possible to use a sufficiently fine h so that the medium
is “well represented”. We further point out that if needed, an upper bound of the
constant My ;, could be estimated numerically for a given finite element mesh T,
leading to a practical estimation of the required h.

We now show that in the simple case of flat interfaces, the quantity Mg goes
to zero as h goes to zero uniformly with respect to H. Figure Blis helpful to figure
out different quantities used in the demonstration.

Proposition 6. Assume that the interfaces of the partition (Q,.) are flat and that
the medium approximation submesh Ty, is reqular. Then there exists a constant C
depending on the reference cell |K| only such that

1 1

2 2
min Crmaz

My, < CRh

Proof. Consider a given cell K € Tgy. Then, K is crossed by at most R straight
interfaces and, since the submesh Tlf,fh is regular, there exists a constant C such
that the number of subcells A € Tff 5 crossed by each interface is less than C/h.
Then the total number of subcells of K crossed by an interface is less than CR/h.
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FIGURE 3. Mapping of the reference submesh

We can easily upper-bound the measure |A| of each subcell A € T, like |A] <
Ch?. Since the submesh Téf ,, is constructed from a linear mapping, it follows that
for all A € Tlf{fh

|A<C’:K:

Let A. C 'T a.n be the set of all subcells crossed by an interface. The total
measure of the crossed subcells then satisfies

> \A|<CR‘K|
K

AcA. ‘

Next, let A, = 7}5 1 \Ac be the set of subcells which are not crossed by any inter-
face. Then, the approximation of ¢ by ¢, is exact on each cell A € A.. Therefore,
we have

> 14

C

AeA min ma;ﬂ AeA
K 1 1
< CR| |h 5 5
|K| Cmin Cmaz
But by definition of Mg p,, we have
C 1 1
Mpun = Jnax / - 5| <—Rh|5——
' KeTh,n |K| 62 |K| sz'n 01277,(112 ’

which concludes the proof of Proposition O
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To end this section, we discuss the computational cost of the proposed method.
The corresponding linear system reads similarly to the one related to the classical
FEM, except that the coefficients of the discrete system are weighted differently
just because ¢y, is different. Therefore, only the construction of the linear system
is more expensive. To compute the entries of the linear system, we first compute
reference integrals on each subcell B € 7;. This is done once and for all at the
beginning of the simulation (or directly hard-coded, if the mesh 7}, is known before
execution) and it thus corresponds to a pre-processing step. Next, the mapping Fx
is used to compute the coefficients associated with each cell K.

Let {¢;}2 | be a basis of P. Note that if P = P(K), D = p(p+1)/2. On each
cell K € Ty, one has to compute

/ BoioFleoFit = Y K / pioFilpsoFit = Det Jr, S K / bty
K AeTi, A BeT, /B

It should be noted that the last integral is independent of the given cell K. There-
fore, we may compute the reference integrals

Mﬁ:/@@j, VB € T,
B

once and for all independently of the number of coarse cells. The corresponding
computational cost is thus insignificant. Now, for a given cell K, we have to compute

Det Jr, > kpMJ.
B€7-h

If N, is the number of cells in T, we thus need to perform N, multiplications,
Ny — 1 additions, and one multiplication by the Jacobian, which comes to 2Ny,
operations for each coefficient. Now, arguing the symmetry of the system, we only
need to compute D(D + 1)/2 coefficients, which requires N, D(D + 1) operations
per cell. Then, if we assume that the mesh 7y, is regular, N, < C/h? and the
number of operations per cell is of O(D(D + 1)/h?) operations. Another way to
think about it, is that if we are using N}, subcells, the computational cost of the
matrix assembly is multiplied by Nj. Note that only the cost of the assembly is
increased, since the linear system keeps the same size and stencil.

4. NUMERICAL EXPERIMENTS

The objective of this section is to deliver performance assessments of the MMAM.
We base our analysis on artificial stratified media in which we have an analytical
solution. In particular, we illustrate how the MMAM performs well even when the
velocity is strongly varying and does not satisfy the technical assumption ([2)). The
performance of the method is measured from the values of the L?(Q) norm relative
error; that is,

" bl
Jo lul?dz

where u denotes the exact (analytical) solution and uy , is the numerical solution.
The numerical results are depicted by the mean of the solution profile; that is,
the graph of zo — up (500, z2).
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FIGURE 4. Velocity model (a), fitting (b) and non-fitting (c) meshes

Throughout this section, we use two kinds of meshes as depicted in Figure [l
Some are constructed so that the velocity is constant inside each cell. We then
speak about fitting meshes in contrast to non-fitting meshes which are composed of
cells inside of which the velocity may vary. Obviously, the MMAM must be used on
non-fitting meshes to take into account subcell velocity variations. Standard FEM,
or other usual methods, are rather used on fitting meshes.

Herein, we will also consider the standard FEM on non-fitting meshes. In this
case, we transform the velocity parameter so that it is constant in each cell of the
mesh. We use two different strategies. The first idea is to select the value of the
velocity parameter in the center of the cell. It corresponds to using the MMAM
with only one subcell. The other strategy is to average the velocity parameter on
the cell and choosing the value

1 1

-
CK K C

When analysing MMAM results, we will distinguish between the FEM approxi-
mation error and the medium approximation error. The FEM approximation error
is defined as the error of the best approximation, i.e.,

Erpm = inf  |u—valoq,
vHEVH

while the medium approximation error is defined as Fyep = My n. We observe
that for a given mesh (i.e., H is fixed), the FEM approximation error is fixed but
the medium approximation error can be reduced by refining the submesh (i.e., h
goes to zero).

In each of the following examples, we consider a fixed propagation medium to-
gether with a given mesh and an approximation order. We present the results
obtained for different values of w and h. In particular, we show that in the case
where the dominant part of the error is due to the medium approximation, the qual-
ity of the numerical solution can be slightly improved by increasing the number of
subcells.

For the computations, we use triangular Lagrangian finite elements. The medium
approximation submesh is obtained through a homothety of the reference triangle,
as shown in Figure Bl Note that those meshes are obviously regular and satisfy the
hypothesis of Proposition [l
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FIGURE 5. Velocity approximation schemes for h = 1,0.5,0.25,
0.125,0.0625 and 0.03125.

4.1. Analytical solution. To construct an analytical solution, we introduce an
auxiliary 1D problem, that is to find u € C'([0, L]) such that

—cz(x)v(x) —v"(x) = 0 forxe|0,L]
—(0) = 1,
V(1) —i—n(1) = 0
c(1) ’
where c is piecewise constant on a partition 0 = zg < 1 < -+ < x,, = L. Tts

unique solution is then given by

U|[wj,1,xj](w) _ a;’_eiw/ciz + a;efiw/cim, (U|[5F/L—175F/L](‘/L‘) _ aiLeiw/cLz’

where the coefficients a are computed by solving a linear system given by the
C' compatibility conditions at each point z; with 0 < j < m and the condition
—v'(0) = 1. We then get a two-dimensional problem by setting 2 = (0, 1000) x (0, L)
and k € L*>(Q) is defined as k € L>(Q), klo, = w/c; where ; = (0,1000) x

(xj—1,x;j). Then u(z1,z2) = v(z2) is the unique solution to

—ku—Au = 0 inQ,
Owu = 1 on (0,1000) x {0},
Opu —ikru = 0 on (0,1000) x {L},
Opu = 0 on {0} x(0,L),
Opu = 0 on {1000} x (0, L).

4.2. A two-layered medium. We begin with evaluating the medium approxima-
tion error as a function of A. For that purpose, we consider the case of a two-layered
medium composed of two homogeneous layers. In this case, the use of a fitting mesh
is obviously relevant and this case gives us a way to measure the effect of MMAM
on the accuracy of the solution.
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FIGURE 6. Evolution of the interface: fitting mesh (top left) and
non-fitting mesh with h = 1,0.5,0.25,0.125 and 0.0625

We set zg = 0,21 = 500,25 = L = 1000, ¢; = 1000 and ¢, = 2000. In order
to quantify the error coming from the medium approximation we use both fitting
and non-fitting meshes. When using the fitting mesh, the medium is perfectly
represented, since the coefficient c¢ is constant in each cell of the finite element mesh.
On the other hand, when using the non-fitting mesh, ¢ must be approximated by
cp, since it may vary inside an element. The experiment then shows that when the
velocity approximation is refined, the solution error obtained with the non-fitting
mesh is getting closer to the error obtained on the fitting mesh.

The non-fitting mesh contains 164 cells and the fitting mesh contains 166 cells.
We start with Py elements and the corresponding results are represented in Table[l

In the first column, the integer numbers indicate the number of subcells that are
used to approximate the velocity inside each cell of the non-fitting mesh. The last
line stands for the results obtained by using the standard P, FEM with the fitting
mesh.

We can observe that for each value of w, the error decreases when letting i go
to 0. Moreover, when comparing with the last line of the table, we can see that
the MMAM reaches the same level of accuracy as the standard Py FEM. When
the frequency is increasing, the two methods result in the same level of accuracy
and MMAM accuracy seems to reach a plateau. We believe that the medium
approximation error becomes so small that quickly the values of the error describe
the finite element approximation only.

Table [2] represents the results obtained when using P, elements. The same
conclusions hold except that due to a highest degree of approximation, the medium
approximation error stabilizes itself on a plateau for w = 107 only. It is worth noting
that when w is less than 107, the convergence is superlinear which illustrates well
Section 3 results.
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FIGURE 7. Solution profile for Py elements, w = 67

TABLE 1. P5 elements

Po w=2m w =4m w = 6m
1 976 x 1072 [2.38 x 1071 [ 9.11 x 10T
4 2.26 x 1072 | 7.92 x 1072 | 3.24 x 107!
16 1.18 x 1072 | 4.62 x 1072 | 2.02 x 10~*
64 5.20 x 1073 | 3.76 x 1072 | 2.05 x 10~!
256 || 3.05 x 1072 | 3.61 x 1072 | 2.09 x 10!
1024 || 2.59 x 1073 | 3.59 x 1072 | 2.11 x 107!
fitting || 1.81 x 1073 | 3.78 x 1072 | 2.65 x 107!

TABLE 2. P, elements

P4 w =2 w = 4w w = 6m w = 8w w =107

1 9.67x10721225x10°1[3.42x 10T [4.81 x10~ ! [ 5.01 x 10~ T

4 2.22x 1072|659 %x 1072 | 1.42x 1071 | 4.03 x 10~ | 1.90 x 10!
16 1.22x 1072 | 3.75 x 1072 | 6.65 x 1072 | 2.37 x 107" | 8.94 x 1072
64 470 x 1073 | 1.44 x 1072 | 2.74 x 1072 | 9.81 x 1072 | 4.50 x 102
256 || 1.47 x 1073 | 491 x 1073 | 1.13 x 1072 | 4.54 x 1072 | 2.94 x 1072
1024 || 5.25 x 1074 | 1.54 x 1073 | 4.58 x 1073 | 1.67 x 1072 | 2.52 x 102
fitting || 2.62 x 1076 | 8.80 x 107° | 8.10 x 10™* | 5.76 x 1073 | 2.44 x 1072
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FIGURE 8. Solution profile for P, elements, w = 107w

4.3. Multi-layered medium. We now set L = 3000. We decompose the propa-
gation domain into 1000 layers of 3 meters each. We set ¢, = 1500, ¢paz = 5500.
The velocity parameter varies linearly from ¢; = ¢pin t0 C1000 = Cmaz- We use Pg
elements on a 1033 cells mesh. We carry out simulations for different values of h.
To compare with parameter averaging methods, we perform simulations for k7|
given as the mean value of k2 on the cell K.

In Table 3] we present the results that we have obtained by discretizing with Pg
Lagrangian elements. We can draw the same conclusion as in the previous test case.
It is interesting to note that the MMAM results are always better than when the
standard FEM is used with the mean value of the wavenumber in each cell. This
example shows that the subscheme quadrature strategy of the MMAM is superior
to a simple averaging of the wavenumber, as depicted by the first line of Table [3

It is also clear that for a given pulsation, reducing the approximation step h
reduces the solution error. For the lowest pulsation w = 20w, the convergence is
superlinear, which is consistent with the results of Section 3. For higher pulsations,
the part of the error due to finite element approximation is much larger, so that

TABLE 3. Multi-layered medium

Ps w =207 w =307 w =407 w =507 w =607
mean || 4.38 x 1072 [ 1.70 x 1071 [ 6.44 x 1071 [ 1.90 x 1071 | 2.33 x 10°
1 419%x1072 | 1.61 x 107! | 5.04 x 107 | 1.87 x 10~ | 1.19 x 10°
4 727x1073 1239 %x 1072 | 4.83x 1071 | 1.02 x 107! | 4.47 x 10!
16 || 2.12x 1072 | 7.06 x 1073 | 5.97 x 1072 | 6.63 x 1072 | 3.52 x 10!
64 1.02 x 1073 | 3.76 x 1073 | 3.64 x 1072 | 6.33 x 1072 | 3.34 x 10!
256 || 4.93 x 1074 | 1.74 x 1073 | 3.52 x 1072 | 6.26 x 1072 | 3.40 x 1071
1024 || 2.00 x 107* | 9.40 x 10~* | 3.69 x 1072 | 6.19 x 1072 | 3.37 x 10~!
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FIGURE 9. Solution profile in the gradient domain for Pg elements,
w = 607

the linear convergence is not observed anymore. For low frequency regime, the
solution is accurate for h = 1. This illustrates Proposition [6] which states that
higher pulsations are more sensitive to the accuracy of the medium approximation.

4.4. Multi-layered medium: Highly heterogeneous. We consider here the
case where the velocity does not satisfy the technical condition ([2). The velocity
model is now constructed by modifying the previous one as follows. Between 0 and
1500 meters and between 2000 and 3000 meters, the velocity is decreased by 500
one layer from two, and increased by 500 in the remaining layers. Between 1500 and
2000 meters, the velocity is 500 in one layer from two. We use an adaptive mesh,
which is more refined between 1500 and 2000 meters in order to correctly fit the
small wavelength in this area. The mesh is made of 4838 cells and is represented
in Figure [0

In Figure[IIl we have plotted the solution profile and we observe that the MMAM
solution is accurate as soon as h is less than 0.0625, which means that we need to
use at least 256 subcells to compute the entries of the matrix. This is not surprising

TABLE 4. Highly heterogeneous multi-layered medium

Ps w =207 w =307 w =407 w =507
mean || 1.06 x 10° [ 6.73 x 10~1 | 1.17 x 10° | 2.76 x 109
1 9.99 x 1071 | 1.81 x 10° | 7.44 x 10° | 3.20 x 10°
4 741 x 1071 | 3.84 x10° | 1.71 x 10 | 1.88 x 10°
16 | 3.41x 1071 [ 6.79 x 10~ | 3.34 x 10° | 2.68 x 10°
64 3.12x 109 | 1.86 x 10~ | 4.45 x 10~ | 1.05 x 10°
256 || 8.40 x 1072 | 6.60 x 1072 | 1.03 x 10~ | 2.77 x 107!
1024 || 6.23 x 1072 | 3.63 x 1072 | 7.00 x 1072 | 2.12 x 107!




STABILITY ANALYSIS OF HETEROGENEOUS HELMHOLTZ PROBLEMS 2153

N

3

X
%
X

s AVAVAV
AT ;ﬁ?}é‘ﬂ s
Vay

X N TN
2K

<
S

SCSNCSNS TN
A VAVATAT AN A% N v
ORI
/ AW
v

O
X
vl

¥]
Va)
v,
2R
o
K
%
%
o
7

5
N
UK
K
&V

X

I
SERERK]

7

A

ravavarilA\
%

AVAV,
N
Q

3

x5
XY
AN
S

K
L
X
X
R

ay

Q

avavire
KX

O
5

S
NOR
2
N
g

"ANAVAY4
X
v.
K
X
0w
A

i

o
R

XX
RG]

X
TAY
XK VAV,
'A:s AN
S

AYAN)
KX
70T
R
S
RSO
DX
A
RS
RS
)
54

_<.
55
%
5

‘VAVAVA'

<\ AN

N
N
%

G
T
;‘Q :d"n,
KRk

")
\

A

TR
KNS
X7
\/
Q
oK
X2
R
o3
S

AVa
KO

X 7 N = ‘ ‘
s'{%ﬁ"""‘ﬂ V‘
AR »«mﬂmﬂ{}'\
A AN A SVAYA
\ %ﬂ‘ WAVAS

S A
K7
Y4

K7\

i AV g Ny,
VAV A

SRRRAAES

5

AN
X
s
o

O
X
o

\
X7
e
7ava

&

<
\/ K]
SO

)
N/
XNIK

SN

4

D
0

AV
&
Wy,
SN
Y av,
WA
A%
SN
DR
o,
o
&
K
K
A
2
%
A\

)
varsY;
AVAVA

REERK
PRER
ATAVAY, V)
RIS

VAV
AVA
N
<]

N
K

X/

AV

<
ot
\/\
N
>
NS
5
X
o
2
R
>>

N
ARK
va)

S
0

Z
AT

v
l
X
5
B
Xl
X
X
%
o
0
RO

>
1Y
\/ >}
R
7
5
val
o
%
YA
DN

i
AN
\/
KIROTS
VAN
N
KR
2
/)
%0
\/

AN
\VAV/

0
s
X

VAV
D
2!

1>
&
Yy
Q2
Vi
2
R
SESK
‘\
X5
5
Vv,
Q%
0K,
VYRR
ALY
VAL
20
R

X ¥
S
VA
TAVATATAAVA
/Y
9
K

X

%
I

AN
‘g
)
1

<
W
RS
N/
S5

22
25

3
Wy

‘4>
2

&
»
1X

%
v,

\/

PR

Q)
Y

,
X
T\
ORI

v
i
el
X
5
KX
S
x|

VgA}V N

NSNS
S %
<
K
\/
SOREE! O
KRk
é\
5
K
N
X
A
R
R
S,
N

K2

A
N
25
L’
&
s
57
XXX

SER
ok KSR
Vava VAVAVAVAN 4 5 CORNXOS
AR SSIASEATSH AVAV OB
XN NIV SRR 7l I

vaS
VAV

/
NS

N AVAUVAVA VLA

\
X7

N4
<]

X

TS
X7
g
\\
VS sv}‘? A
K
74

<)
A
V)

P

2
J

K7

AV
SV
RS

v,

e
R

ey
N

7’

AV
Rava)
el
%

VAN A

%
R

AN ZN

Re (u)

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
z z
%0 % sol —
h=0.03125 -..r.
20 20
10 10
s e
& 0 g 0
-10 -10
-20 -20
b .., ] 30
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
z z

FIGURE 11. Solution profile in highly heterogeneous domain for
Ps elements, w = 40w

because we consider a velocity model including very strong contrasts. It is indeed
composed of very thin layers and the variations of the velocity are so important
that the averaging technique completely fails.

4.5. High order MMAM vs fitting mesh based method. In the previous
numerical tests, we have validated the MMAM and we have concluded that when
using enough subcells we obtain accurate results even in highly heterogeneous me-
dia. In particular, the first experiment showed that when a fitting mesh is available,
the accuracy of the MMAM on a non-fitting mesh of the same size is comparable
to the standard FEM on the fitting mesh.

In this section, we investigate the reduction of the computational cost offered
by the MMAM to obtain a 5% relative error on the previous velocity model at the
frequency w = 407.
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We use regular meshes based on cartesian grids of different sizes and different
polynomial degrees. As a starting point, we discretize the problem with the coarsest
possible fitting mesh. The mesh steps are given by h, = 3.33m, h, = 3m. The z
step is chosen to be exactly the length of a layer, so that the mesh is fitting, and the
x step is chosen so that the grid cells are nearly squares. Hence, the mesh is formed
by a regular of 300 x 1000 squares, each square being divided into two triangles.

TABLE 5. Comparison of different p to obtain a 5% accuracy

err h, ndf nz
55x 1072 1.5 12.0x 10° 14.4 x 108
40x1072 6 3.0l x10° 3.15x 106
58 x 1072 12 1.70 x 10° 2.06 x 10°
59 x 1072 18.75 1.24 x 10° 1.84 x 10
59x 1072 20 1.70 x 10° 3.12 x 108
55x 1072 24 1.67 x 10° 3.76 x 108

S UL W N T

If we use Py, P and P elements on the fitting mesh, we obtain relative L2
errors of 1.79 x 107!, 3.19 x 10~% and 1.21 x 107%. We thus have that the P;
solution is not precise enough regarding the level of accuracy we target and the Ps
and P3 solutions are very precise but at the same time very expensive to compute.
For example, the computation of the Py solution requires inverting a system with
1.20 x 108 degrees of freedom and 1.26 x 107 non-zero elements in the matrix.

We now focus on the size of the cells which obviously impacts the size of the
corresponding linear system. It turns out that if p is greater than 2, the MMAM
delivers 5% relative error on a much coarser (and non-fitting) mesh than the fitting
mesh as shown in Table Bl We see that when p is greater than 2, we can use a
coarse non-fitting mesh and use less than 1.20 x 10° degrees of freedom to get 5%
of accuracy. We conclude that the MMAM enables us reduce the computational
cost compared to the standard FEM on fitting meshes.

To give a comparison with another fitting mesh method, consider the coarsest
fitting cartesian grid made of 300 x 1000 squares. It includes 6.01 x 10° edges,
which means that the lowest order DGM plane wave method would require at least
6.01 x 10° degrees of freedom to solve (see, for example, [4]). On the other hand,
the P4 solution is computed on a 64 x 160 non-fitting cartesian grid. This grid is
much coarser than the 300 x 1000 fitting grid and the number of degrees of freedom
required to obtain the P, solution is 1.24 x 10° (4.8 times less than for the planewave
method).

CONCLUSION

We have proposed a robust and efficient approach to take into account fine
scale variations of the velocity on a coarse mesh, the so-called Multiscale Medium
Approximation Method (MMAM). The numerical examples we have performed
show that the MAM provides improved numerical solutions as compared to solutions
based on classical FEM or parameter averaging. More precisely, the numerical
example of Subsection 4.4 shows that our approach gives reliable results when
classical FEM or parameter averaging do not, even for high frequency.
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We also have implemented a 3D MMAM solver with medium approximation
which has been successfully tested on geophysical benchmarks. Future works in-
clude these performance assessments, sharper stability conditions take into account
high order polynomials, and the analysis of the continuous problem for more general
velocity parameters.

APPENDIX A. PrROOF OoF LEMMA [I]

Proof. In the proof of @) and (H), we use the identity
(21) 2Re v0;0 = 9;|v|?, Vv e HY(Q,C), j=1,2.
To demonstrate (), we first develop the expression

2

Owd;(x - V) = > 0;wd;(xx0xw)
k=1

2
= Z 8jw(8jxk6kw + Xkajkﬁ))

k=1
2 2
= Z 6jk8jw8ku’) + Z Xkajwajk’lf}
k=1 k=1

2
= |9w* + Y xx0;w0h(0;).

k=1
Using [21) with v = d;w, we get
2
2Re Ojwd;(x- V) = 200w|*+ Y 2,0k[0;w|>

k=1
2|10,w|? + x - V|0;w]?.

We shall now integrate and then use the Green formula:

2Re /@-waj(x-Vu?) = 2/ |8jw\2+/x-V|8jw|2
Q Q Q

= 2/ |8jw\2—/divx\8jw|2+/ x - n|0;w|?
Q Q a0

= 2/ |8jw\2—/2|8jw|2+/ x - n|9;w|?
Q Q o9

= / x - n|0jw|?.
[5}9)
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We

(1]

(4]

(5]

[6]

[7]

(8]

(9]

[10]

(11]
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demonstrate (@) by summing over j. We now turn to ()):

2Re kwx - Vo
Q

= [ k*x-V|w|?
Q

R
:Zk‘f/ x - V|w|?
r=1 Qr

—Zkﬁ{—/ divx|w|2+/
—1 Q o0

R
:—2/ k2|w|2+2k3/ x -, |w|?.
Q - Joa.
R
= —2/ k2 |w|* + Z
Q ril=1

X - nrw|2}

r

(k*x-n, + kx-ny)|w]? + / k?x - njw|?.
QN8 o0
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