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ANALYSIS OF A HYBRIDIZABLE DISCONTINUOUS

GALERKIN METHOD FOR THE STEADY-STATE

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

AYCIL CESMELIOGLU, BERNARDO COCKBURN, AND WEIFENG QIU

Abstract. We present the first a priori error analysis of the hybridizable
discontinuous Galerkin method for the approximation of the Navier-Stokes
equations proposed in J. Comput. Phys. vol. 230 (2011), pp. 1147-1170. The
method is defined on conforming meshes made of simplexes and provides piece-

wise polynomial approximations of fixed degree k to each of the components
of the velocity gradient, velocity and pressure. For the stationary case, and
under the usual smallness condition for the source term, we prove that the
method is well defined and that the global L2-norm of the error in each of the
above-mentioned variables converges with the optimal order of k+1 for k ≥ 0.
We also prove a superconvergence property of the velocity which allows us to
obtain an elementwise postprocessed approximate velocity, H(div)-conforming
and divergence-free, which converges with order k + 2 for k ≥ 1. In addition,
we show that these results only depend on the inverse of the stabilization pa-
rameter of the jump of the normal component of the velocity. Thus, if we
superpenalize those jumps, these converegence results do hold by assuming
that the pressure lies in H1(Ω) only. Moreover, by letting such stabilization
parameters go to infinity, we obtain new H(div)-conforming methods with the
above-mentioned convergence properties.

1. Introduction

In this paper, we provide the first a priori error analysis of the hybridizable
discontinuous Galerkin (HDG) method proposed in [28] for the stationary incom-
pressible Navier-Stokes equations, namely,

L = ∇u in Ω,(1.1a)

−ν∇ · L +∇ · (u⊗ u) +∇p = f in Ω,(1.1b)

∇ · u = 0 in Ω,(1.1c)

u = 0 on ∂Ω,(1.1d) ∫
Ω

p = 0,(1.1e)
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where u is the velocity, p is the pressure, ν is the kinematic viscosity and f ∈ L2(Ω)
is the external body force. The domain Ω ⊂ R

d is polygonal (d = 2) or polyhedral
(d = 3).

To discuss our results, let us introduce the HDG method under consideration
[28]. We consider conforming meshes Th of Ω made of shape-regular simplexes K.
We denote the set of faces F of the element K by F(K), by Eh the set of all faces F
of all elements K ∈ Th and set ∂Th := {∂K : K ∈ Th}. For scalar-valued functions
φ and ψ, we write

(φ, ψ)Th
:=

∑
K∈Th

(φ, ψ)K , 〈φ, ψ〉∂Th
:=

∑
K∈Th

〈φ, ψ〉∂K .

Here (·, ·)D denotes the integral over the domain D ⊂ R
d, and 〈·, ·〉D denotes the

integral over D ⊂ R
d−1. For vector-valued and matrix-valued functions, a similar

notation is taken. For example, we write (φ,ψ)Th
:=

∑n
i=1(φi, ψi)Th

for vector-
valued functions and (φ, ψ)Th

:=
∑

1≤i,j≤n(φij , ψij)Th
for matrix-valued functions.

The HDG method provides an approximation (Lh,uh, ph, ûh) ∈ Gh×Vh×Qh×
M 0

h to the exact solution (L|Th
,u|Th

, p|Th
,u|Eh

) in the finite dimensional space

Gh := {G ∈ L2(Ω) : G|K ∈ Pk(K), ∀K ∈ Th},
Vh := {v ∈ L2(Ω) : v|K ∈ Pk(K), ∀K ∈ Th},
Qh := {p ∈ L2

0(Ω) : p|K ∈ Pk(K), ∀K ∈ Th},
Mh := {μ ∈ L2(Eh) : μ|F ∈ Pk(F ), ∀F ∈ Eh},
M 0

h := {μ ∈ Mh : μ|∂Ω = 0}.

Here Pk(D) denotes the set of polynomials of total degree at most k ≥ 0 defined
on D, Pk(D) denotes the set of vector-valued functions whose d components lie in
Pk(D), Pk(K) denotes the set of square matrix-valued functions whose d×d entries
also lie in Pk(D), and L2

0(Ω) = {p ∈ L2(Ω) :
∫
Ω
p = 0}.

The method determines the approximate solution by requiring that it solves the
following weak formulation:

(Lh,G)Th
+ (uh,∇ ·G)Th

− 〈ûh,Gn〉∂Th
= 0,(1.2a)

(νLh,∇v)Th
− (uh ⊗ β,∇v)Th

− (ph,∇ · v)Th
(1.2b)

−〈ν L̂hn− p̂hn− (ûh ⊗ β)n, v〉∂Th
= (f, v)Th

,

−(uh,∇q)Th
+ 〈ûh · n, q〉∂Th

= 0,(1.2c)

〈ν L̂hn− p̂hn− (ûh ⊗ β)n,μ〉∂Th
= 0,(1.2d)

for all (G, v, q,μ) ∈ Gh ×Vh ×Qh ×M 0
h . Here,

(ν L̂h − p̂h)n := νLhn− phn− S(uh − ûh) on ∂Th,(1.2e)

S := Sβ + Sn,(1.2f)

Sβ := max(β · n, 0) Id,(1.2g)

Sn := ζn h
−1
K n⊗ n on ∂Th,(1.2h)

where the stabilization parameter ζn in (1.2h) is chosen to be a positive, and

(1.2i) β = P(uh, ûh).
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The operator P from H1(Th)×L2(Eh) into
{v ∈ H(div; Ω) : v|K ∈ RTk(K) := Pk(K) + xPk(K)}

is defined on the element K by the following equations:

(P(uh, ûh)− uh, v)K = 0 ∀v ∈ Pk−1(K),(1.3a)

〈(P(uh, ûh)− ûh) · n, λ〉∂K = 0 ∀λ ∈ Pk(F ), for each face F of K.(1.3b)

This operator is similar to that proposed back in 2003 by Bastian and Rivière [4]
in the framework of Darcy flow. Here we use the Raviart-Thomas spaces instead
of the Brezzi-Douglas-Marini spaces used in [4]. Also, here the definition of the
numerical trace ûh is not the same.

Note that the stabilization tensor S used in [28, (34)] was defined in a slightly
different manner, namely,

S := |β| Id + τ Id.(1.4)

For this choice, the stabilization associated to the convective part is stronger. On
the other hand, since τ was taken to be an order one quantity, the stabilization on
the normal part of the velocity jumps is not that strong, but that of the tangential
components is. Note that for the HDG method for the Stokes equations, [9], it was
shown that the diffusive part of the above stabilization tensor can be of the form

τn n⊗ n+ τt (Id− n⊗ n),

and that the convergence properties of the HDG method remain unchanged when
the stabilization of the tangential component τt is of order one, or even equal to
zero, and the inverse of the stabilization of the normal component τn is bounded.
Here we take τt := 0 and τn := ζn h

−1
K .

The numerical experiments carried out in [28] suggest that the L2-norm of the
error in the velocity, the pressure and even in the velocity gradient converge with the
optimal order k + 1 for any k ≥ 0, and that an elementwise postprocessed H(div)-
conforming and divergence-free approximate velocity can be obtained which, for k ≥
1, converges with order k+2. Let us note that the above-mentioned postprocessed
velocity is similar to that proposed by Bastian and Rivière in 2003 [4] in that it
uses the same Brezzi-Douglas-Marini spaces of index k+ 1. However, its definition
differs considerably from that of Bastian and Rivière as it uses the approximate
gradient of the velocity; see [28] and the references therein.

In this paper, we put in firm mathematical grounds of the above-mentioned
experimental results. We also show that, just as for the HDG method for the
Stokes problem [9], the bounds of the errors depend affinely on 1/ζn. In particular,
if we superpenalize the normal components of the jumps in the velocity by taking
ζn to be huge, the accuracy of the numerical approximation to the velocity and
its gradient not only remain unchanged but only require the pressure to lie in
H1(Ω). This also means that H(div)-conforming HDG methods can immediately
be obtained, as was shown in [14] for the Stokes equations.

To the knowledge of the authors, no other known finite element method for
the Stokes or the Navier-Stokes equations has these properties. See the classic
mixed methods [6, 17, 18], the stabilized methods proposed in [20, 21, 23] and the
DG methods [3,7,13,25,29,31]. Perhaps the only method with similar convergence
properties is the one proposed for the Stokes equations in [30] by using the RT and
BDM elements developed for diffusion problems. For the Navier-Stokes equations,
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the pioneering interior penalty (IP)-like methods proposed by [22] used piecewise-
solenoidal approximate velocities but were not locally conservative. So did the
method developed in [19]. Locally conservative LDG methods for the Navier-Stokes
were introduced and analyzed in [10–12]. More recently, an IP-like method and a
compact discontinuous Galerkin (CDG) method were introduced in [26]. These
methods use the approximation space for the velocity field as a direct sum of a
solenoidal space and an irrotational space, in such a way that their weak forms can
be split into two uncoupled problems: one associated with velocities and hybrid
pressures, and the other one only concerned with computation of pressure in the
interior of the elements. Numerical experiments indicating the optimal convergence
order of velocity and the pressure in L2-norm were reported. Finally, we refer the
reader to [24] for an HDG discretization for the time-dependent incompressible
Navier-Stokes equations.

Let us briefly comment on the main novelty of our error analysis. Note that
in [8] for the Oseen problem and [9, 15] for the Stokes equations, a simple energy
argument gives the inequality

ν‖Lh‖2Th
+ΣK∈Th

‖τ1/2 (uh − ûh)‖2∂K ≤ (f,uh)Th
,

where the stabilization tensor S is defined as (1.4). The above inequality cannot
lead to the much needed estimate

ν
(
‖∇uh‖2Th

+ΣK∈Th
h−1
K ‖uh − ûh‖2∂K

)
≤ C ‖f‖2Th

,

unless we take τ |∂K to be of order νh−1
K . However, in this case, it is impossi-

ble to achieve superconvergent approximations; see the numerical experiments for
HDG methods for the Stokes equations in [9, 27]. In our case, with our choice of
stabilization tensor, the energy argument gives

ν‖Lh‖2Th
+ΣK∈Th

ζn h
−1
K ‖(uh − ûh) · n‖2∂K ≤ (f,uh)Th

,

and it would seem that we would be in an even worse predicament. However, we
can prove that

‖∇uh‖Th
+

(
ΣK∈Th

h−1
K ‖uh − ûh‖2∂K

)1/2
≤ C

(
‖Lh‖2Th

+ΣK∈Th
h−1
K ‖(uh − ûh) · n‖2∂K

)1/2
.

In other words, we prove that the tangential jumps of the velocity are actually
controlled by the normal jumps and the approximate velocity gradient. This novel
contribution is what makes the analysis work.

The organization of the paper is as follows. In Section 2, we present our main
results. The rest of the paper is devoted to proving them. In Section 3, we establish
the main properties of the forms defining the HDG methods. In Section 4, we prove
the new stability estimate; other, more standard, estimates are gathered in the Ap-
pendix. In Section 5, we prove the existence and uniqueness of the approximation.
In Section 6, we provide a detailed proof of the error estimates. We end in Section
7, with a brief comment on an H(div)-conforming version of the HDG methods we
have considered here.
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2. Main results

In this section, we present and briefly discuss our main results, namely, the
existence and uniqueness of the HDG approximation, Theorem 2.3, and the corre-
sponding error estimates, Theorem 2.4.

2.1. Notation. We begin by introducing some notation. We use the standard
definitions [1] for the Sobolev spaces W �,p(D) for a given domain D with norm

‖φ‖�,p,D = (
∑
|α|≤�

‖Dαφ‖p0,p,D)1/p.

For vector- and matrix-valued functions φ and Φ, we use ‖φ‖�,p,D =
∑d

i=1 ‖φi‖�,p,D,

and ‖Φ‖�,p,D =
∑d

i,j=1 ‖Φij‖�,p,D. Moreover, when p = 2 and 	 < ∞, we denote

W �,2(D) by H�(D) and ‖ · ‖�,2,D, by ‖ · ‖�,D; when 	 = 0 and p = 2, we denote
W 0,2(D) by L2(D) and the norm by ‖ · ‖D.

We also introduce the following mesh-dependent norms and seminorms:

|||(v,μ)|||0,h :=
(
‖v‖2Th

+
∑

K∈Th

hK (‖μ‖2∂K + ‖v− μ‖2∂K)
) 1

2

,

|||(v,μ)|||1,h :=
(
‖∇v‖2Th

+
∑

K∈Th

h−1
K ‖v− μ‖2∂K

)1/2

∀ (v,μ)∈H1(Th)×L2(Eh),

|||(v,μ)|||∞,h := ‖v‖L∞(Ω) + ‖μ‖L∞(Eh) ∀ (v,μ)∈L∞(Ω)×L∞(Eh),

and set

‖v‖0,h := ‖v‖L2(Ω), ‖v‖1,h := |||(v, {{v}})|||1,h,
where the average of v, {{v}}, is defined as follows: On an interior face F = ∂K− ∩
∂K+, we have {{v}} := 1

2 (v
+ + v−), where v± denote the trace of v from the

interior of K± and n± is the outward unit normal to K±. On a boundary face
F ⊂ ∂K− ∩ ∂Ω, we take {{v}} = 0. Note that ‖v‖1,h is nothing but the standard
discrete H1-norm of v; see, for example, [5].

Finally, we denote the L2-orthogonal projections onto Gh, Qh andMh by ΠG,ΠQ

and ΠM , respectively.

2.2. The convective velocity P(uh, ûh). Next, we must ensure that the convec-
tive velocity P(uh, ûh) given by (1.3) is actually well defined. In the following result,
we gather this and other of its main properties.

Proposition 2.1. For any (uh, ûh) ∈ Vh × Mh, we have that P(uh, ûh) is well
defined and that

(i) P(uh, ûh) ∈ H(div,Ω).
(ii) ∇ · P(uh, ûh) = 0 in Ω if (uh, ûh) satisfies the third equation defining the

HDG methods, (1.2c).
(iii) P(uh, ûh) ∈ V h.
(iv) ‖P(uh, ûh)‖i,h ≤ Cstab,i|||(uh, ûh)|||i,h, i = 0, 1.
(v) P(u,u|Eh

) = P(ΠRTu,ΠMu) = ΠRTu.

Here, ΠRT is the Raviart-Thomas (RT) projection from C0(Ω) into

{v ∈ H(div,Ω) : v|K ∈ RTk(K)}
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defined on each element K by

(ΠRTu− u, v)K = 0 ∀v ∈ Pk−1(K),(2.1a)

〈(ΠRTu− u) · n, λ〉F = 0 ∀λ ∈ Pk(F ), for each face F of K.(2.1b)

Note that the equations (1.3) defining the projection P operator are almost identical
to those defining the RT projection ΠRT. In fact, property (v) of Proposition 2.1
easily follows by simply comparing these equations.

2.3. A new stability estimate. As announced in the Introduction, the main
novelty of our error analysis is the use of a stability estimate which we present next.
It states, roughly speaking, that the weighted jumps of the tangential component
of the velocity can be controlled by the gradient L and the normal jumps.

Proposition 2.2. If (L, v,μ) ∈ Gh×Vh×Mh satisfies the first and third equations
defining the HDG method, (1.2a) and (1.2c), respectively, then

|||(v,μ)|||1,h ≤ CHDG

(
‖L‖2Th

+
∑

K∈Th

h−1
K ‖(v− μ) · n‖2∂K

)1/2

.

We strongly use this estimate to obtain our main results on the HDG method
under consideration, namely, Thereom 2.3 on the existence, uniqueness and bound-
edness of the approximation and Theorem 2.4 on a priori error estimates.

2.4. Existence and uniqueness. Here we establish that the HDG methods un-
der consideration define a unique approximate solution under a classic smallness
condition on f , as we see in the following result.

Theorem 2.3 (Existence, uniqueness and boundedness). If the quantity ν−2‖f ‖Ω
is small enough, the HDG method (1.2) has a unique solution (Lh,uh, ph, ûh) ∈
Gh ×Vh ×Qh ×M 0

h . Furthermore,

|||(uh, ûh)|||1,h ≤ Cν−1‖f ‖Ω,
for some constant C independent of ν, the discretization parameters and the exact
solution.

2.5. A priori error estimates. Finally, we give an estimate of the size of the
projection of the approximation errors,

eL := ΠGL−Lh, eu := ΠRTu−uh, eû := ΠM (u|Eh
)−ûh and ep := ΠQp−ph.

We provide two estimates for the error in the velocity, eu. The first is an optimal-
ity result and the second a superconvergence result. The latter strongly uses the
solution (φ, ψ) of the dual problem

Φ−∇φ = 0 in Ω,(2.2a)

−ν∇ · Φ−∇ · (φ⊗ u)−∇ψ − (∇φ)�u = θ in Ω,(2.2b)

∇ · φ = 0 in Ω,(2.2c)

φ = 0 on ∂Ω,(2.2d)

for which we assume that we have the following regularity estimate:

(2.3) ‖Φ‖1,Ω + ‖φ‖2,Ω + ‖ψ‖1,Ω ≤ Cr‖θ‖Ω.
This dual problem was used back in 1998 in the pioneering work on DG methods for
the incompressible Navier-Stokes equations presented in [22]; the only difference is
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that the pressures differ by the quantity 1
2φ·u. Therein, the above elliptic regularity

estimate was obtained for a domain Ω with a C2(Ω) boundary by assuming that
‖u‖H1(Ω) is small enough compared with the viscosity coefficient ν. Under a similar
condition, for Ω a convex polyhedron, and assuming that u ∈ L∞(Ω), we can obtain
the regularity inequality by using a standard regularity estimate for the Stokes
equations; see [18]. We can now state our main result.

Theorem 2.4 (Error estimates). Assume that u ∈ C0(Ω). Then, if ν−2‖f‖Ω is
small enough, we have that, for any polynomial degree k ≥ 0,

ν1/2
(
‖eL‖Ω+|||(eu, eû)|||1,h

)
+

(
ΣK∈Th

ζnh
−1
K ‖eu − eû‖2∂K

)1/2
(2.4a)

≤
(
CL hk+1 + C

(
ΣK∈Th

ζ−1
n hK‖ΠQp− p‖2∂K

)1/2)
,

‖eu‖Ω ≤ ν−1/2
(
Cu h

k+1 + C
(
ΣK∈Th

ζ−1
n hK‖ΠQp− p‖2∂K

)1/2)
,(2.4b)

‖ep‖Ω ≤ Cp h
k+1.(2.4c)

Here, the constants CL, Cu depend on ‖u‖L∞(Ω), ‖u‖k+2,Ω, and k, while the con-
stant Cp, depends on ‖u‖L∞(Ω), ‖u‖k+2,Ω, ‖p‖k+1,Ω, ν and k.

Furthermore, if and ν−1‖∇u‖Ω is small enough, u ∈ W 1,∞(Ω) and the regularity
estimate (2.3) holds, then

‖eu‖Ω ≤ ν−1/2 h
(
CD hk+1 +

(
ΣK∈Th

ζ−1
n hK‖ΠQp− p‖2∂K

)1/2)
, ∀k ≥ 1.(2.5)

Let u∗
h ∈ H(div,Ω) be the postprocessed approximate velocity introduced in [9, (2.9)],

then we have ∇ · u∗
h = 0 in Ω, and

‖u∗
h − u‖Ω ≤ C (‖eu‖Ω + h‖eL‖Ω) + Chk+2|u|k+2,Ω, ∀k ≥ 1.(2.6)

Here, the constant CD depends on ‖u‖W 1,∞(Ω) and ‖u‖k+2,Ω.

When we take ζn ≥ 1, by the approximation properties of ΠQ, the error esti-
mate (2.4b) gives optimal convergence of the global L2-norm of the error in velocity,
and the estimate (2.6) gives superconvergence of the postprocessed numerical ap-
proximation to velocity. However, in order to achieve the high order accuracy of
numerical approximation to the velocity mentioned above, the pressure is required
to have Hk+1-regularity if we choose ζn to be of order one. If we superpenalize and
take ζn := ν−1h−2k in (1.2h), the error estimates (2.4a), (2.4b) are

ν1/2
(
‖eL‖Ω + |||(eu, eû)|||1,h

)
+

(
ΣK∈Th

ζnh
−1
K ‖eu − eû‖2∂K

)1/2
(2.7a)

≤
(
CL h

k+1 + C ν1/2hk+1|p|H1(Ω)

)
,

‖eu‖Ω ≤ ν−1/2
(
Cu h

k+1 + ν1/2hk+1|p|H1(Ω)

)
,(2.7b)

and the estimate (2.6) is

‖eu‖Ω ≤ ν−1/2 h
(
CD hk+1 + ν1/2hk+1|p|H1(Ω)

)
, ∀k ≥ 1.(2.8)

These estimates show that the numerical approximation to the velocity u has high
order accuracy even if the pressure p has H1-regularity only.

To end, let us briefly mention that we are not using an extension of the auxiliary
projection used in [8, (2.7)] to analyze the HDG method applied to an Oseen prob-
lem. The reason is that, according to [8, Theorem 2.3], the approximation property
of this auxiliary projection depends on the W 1,∞-norm of the approximate velocity
β, which is not necessarily bounded in our setting. Instead, we use the standard
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RT projection for the velocity on each element and L2-orthogonal projections for
all other unknowns.

3. The forms defining the method and their main properties

In order to simplify our analysis, and make it as close as possible to that proposed
in [10], we rewrite the equations defining the HDG method under consideration
in terms of several forms for which we then prove the continuity and coercivity
properties we are going to use in the analysis.

3.1. Rewriting the HDG method in compact form. If we set

Ah((v,μ),G) :=(v,∇ ·G)Th
− 〈μ,Gn〉∂Th

,

Bh((v,μ), q) :=− (v,∇q)Th
+ 〈q,μ · n〉∂Th

,

Jn((v1,μ1), (v2,μ2)) :=
∑

K∈Th

ζnh
−1
K 〈(v1 − μ1) · n, (v2 − μ2) · n〉∂K ,

Oh(β; (v1,μ1), (v2,μ2)) :=− (v1 ⊗ β,∇v2)Th

+ 〈(μ1 ⊗ β)n+ Sβ(v1 − μ1), v2 − μ2〉∂Th
,

where Sβ := max(β · n, 0) Id, where the arguments of the above forms are such
that all the integrals make sense, the equations defining the HDG method under
consideration, (1.2), can be rewritten in compact form as follows:

(Lh,G)Th
+Ah((uh, ûh),G)−Ah((v,μ), νLh)(3.1)

−Bh((v,μ), ph) +Bh((uh, ûh), q)

+ Jn((uh, ûh), (v,μ)) +Oh(β; (uh, ûh), (v,μ)) = (f, v)Th
,

where β = P(uh, ûh), for all (G, v, q,μ) ∈ Gh ×Vh ×Qh ×M 0
h .

Next, we obtain the main properties of these forms.

3.2. Properties of the bilinear forms associated to the Stokes operator.

3.2.1. Continuity properties of Ah and Bh. We begin with a result similar to Propo-
sition 4.1 in [10].

Proposition 3.1 (Continuity of Ah and Bh). There are positive constants CA and
CB, independent of the mesh-size h, such that

|Ah((v,μ),G)| ≤ CA|||(v,μ)|||1,h‖G‖Ω ∀ (v,μ) ∈ V(h)×Mh, ∀ G ∈ Gh,

|Bh((v,μ), q)| ≤ CB|||(v,μ)|||1,h‖q‖Ω ∀ (v,μ) ∈ V(h)×Mh, ∀ q ∈ Qh.

Proof. By using integration by parts, the Cauchy-Schwarz and inverse inequalities,
we get

Ah((v,μ),G) =
∑

K∈Th

(
− (∇v,G)K + 〈v− μ,Gn〉∂K

)
≤ C

∑
K∈Th

(‖∇v‖K + h
−1/2
K ‖v− μ‖∂K)‖G‖K ,

and the first inequality follows. The second inequality is proven in a similar manner.
This completes the proof. �
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3.2.2. Coercivity of Ah. The next result is similar to the first result of Proposition
4.3 in [10].

Proposition 3.2. Assume that (Lv,μ, v,μ) satisfies the first equation defining the
HDG method, (1.2a). Then

Ah((v,μ),Lv,μ) = ‖Lv,μ‖2Th
.

Proof. By the definition of Ah,

Ah((v,μ),Lv,μ) = (v,∇ · Lv,μ)Th
− 〈μ,Lv,μn〉∂Th

= (Lv,μ,Lv,μ)Th
,

by the first equation defining the HDG method, (1.2a). This completes the proof.
�

3.2.3. An inf-sup condition. Next, we have a result similar to Proposition 4.4 in
[10].

Proposition 3.3. For any q ∈ L2
0(Ω), we have that

‖q‖Ω ≤ CV,M

κ
sup

(v,μ)∈V h×M 0
h\{(0,0)}

Bh((v,μ), q)

|||(v,μ)|||1,h
,

where

CV,M := sup
w∈H1

0(Ω)\{0}

|||(Pw,ΠMw)|||1,h
‖w‖1,Ω

,

and the operator P is defined in Appendix A.5.

Proof. To prove the inequality, we use a standard inf-sup condition (see [18]),
namely, that for any q ∈ Qh ⊂ L2

0(Ω), we have that

‖q‖Ω ≤ 1

κ
sup

w∈H1
0(Ω)\{0}

(q,∇ ·w)Th

‖w‖1,Ω
.

Since V (K)×Q(K)×M(∂K) := Pk(K)×Pk(K)×ΠF∈F(K)Pk(F ), we have that
∇Q(K) ⊂ V (K) and nQ(K)|∂K ⊂ M (∂K), and so

(q,∇ ·w)Th
= −(∇q, Pw)Th

+ 〈q n,ΠMw〉∂Th
= Bh((Pw,ΠMw), q).

Then, we get

‖q‖Ω ≤ 1

κ
sup

w∈H1
0(Ω)\{0}

Bh((Pw,ΠMw), q)

‖w‖1,Ω
,

and the result follows. This completes the proof. �
3.3. Properties of the trilinear form associated to the convection, Oh.
We begin by gathering several continuity properties of the form Oh; their detailed
proofs are given in the Appendix. The first one is similar to Proposition 4.2 in [10].
We use the following notation:

V(h) := H1
0(Ω) +Vh.

Proposition 3.4. There is a positive constant CO such that

|Oh(β; (u, û), (v,μ))−Oh(γ; (u, û), (v,μ))| ≤ CO‖β − γ‖1,h|||(u, û)|||1,h|||(v,μ)|||1,h
for all β,γ ∈ V(h), all (u, û) ∈ H1(Th)×L2(Eh), and all (v,μ) ∈ Vh ×M 0

h .

We are going to use the following continuity results which take advantage of the
extra regularity of some of the arguments.
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Proposition 3.5. There are positive constants C∞
O,1 and C∞

O,2 such that

Oh(β; (u, û), (v,μ)) ≤ C∞
O,1‖β‖L∞(Ω)‖(u, û)‖0,h |||(v,μ)|||1,h

for all β ∈ C0(Ω) and for all (u, û) ∈ H1(Th)×L2(Eh) and all (v,μ) ∈ Vh ×M 0
h ,

and

|Oh(β; (u, û), (v,μ))−Oh(γ; (u, û), (v,μ))|
≤ C∞

O,2‖(β − γ,0)‖0,h|||(u, û)|||∞,h |||(v,μ)|||1,h

for all β,γ ∈ V(h), all (u, û) ∈ L∞(Ω)×L∞(Eh), and all (v,μ) ∈ Vh ×M 0
h .

Finally, we present a simple coercivity estimate similar to the one in Proposition
4.3 in [10].

Proposition 3.6. Let β ∈ {v ∈ H(div; Ω) : ∇ · v = 0, v|K ∈ H1(K), ∀K ∈ Th}.
Then

Oh(β; (v,μ), (v,μ)) = 〈(Sβ−
1

2
β ·n Id) (v−μ), v−μ〉∂Th

≥ 0 ∀(v,μ) ∈ Vh×Mh.

Proof. Since (∇ · (v⊗β), v)Th
= 1

2 〈(v⊗β)n, v〉∂Th
for any divergence-free function

β, we have

Oh(β; (v,μ), (v,μ)) = −(v⊗ β,∇v)Th
+ 〈(μ⊗ β)n+ Sβ(v− μ), v− μ〉∂Th

=
1

2
〈(v⊗ β)n, v〉∂Th

−〈(v⊗ β)n,μ〉∂Th
−〈((v− μ)⊗ β)n− Sβ(v− μ), v− μ〉∂Th

.

Because μ is single-valued and β ∈ H(div; Ω), 1
2 〈(μ⊗β)n,μ〉∂Th

= 0. Adding this
term, we get, after a few rearrangements, that

Oh(β; (v,μ), (v,μ)) = −1

2
〈((v− μ)⊗ β)n, v− μ〉∂Th

+ Sβ(v− μ), v− μ〉∂Th
,

and the result follows. This completes the proof. �

4. Proof of the stability estimate of Proposition 2.2

In this section, we prove the new stability estimate of Proposition 2.2. More
standard estimates are gathered and proved in the Appendix. We proceed in several
steps.

Step 1: A representation of the matrix ∇v. Let us recall the following result
on the representation of square matrices [9, Lemma 4.8].

Lemma 4.1. The set

BK := {Id} ∪ {t⊗ nF : F is a face of K, t ∈ BF } ,
where Id is the n×n identity matrix, is a basis of the space of n×n matrices where
BF is an orthogonal basis of the vectors orthogonal to nF (tangent vectors) for each
face F of K. Furthermore, the dual basis of BK is of the form

B∗
K :=

{1

d
Id

}
∪

{
WF,t : F is a face of K, t ∈ BF

}
where WF,t is uniformly bounded with respect to F and t and the bound depends
only on the shape regularity parameter of the mesh.
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Since ∇v is a square matrix, we can write

∇v =
1

d
(∇ · v) Id +

∑
F∈∂K

∑
t∈BF

αF,t(t⊗ nF ),

where αF,t := ∇v : WF,t.

Step 2: Estimate of ∇ · v. Next, we estimate the L2(Ω)-norm of the divergence
of v.

Lemma 4.2. Let (v,μ) ∈ Vh × Mh satisfy the third equation defining the HDG
methods, (1.2c). Then, there is a constant C > 0 such that

‖∇ · v‖2Th
≤ C

∑
K∈Th

h−1
K ‖(v− μ) · n‖2∂K .

Proof. If we integrate by parts in the equation (1.2c), we get

(∇ · v, q)K =〈(v− μ) · n, q〉∂K
≤ ‖(v− μ) · n‖∂K‖q‖∂K
≤ Ch

−1/2
K ‖(v− μ) · n‖∂K‖q‖K ,

by a simple inverse inequality; the constant C depends on the shape regularity
constant of the mesh and the dimension of the space. Now, taking q := ∇ · v, we
get ‖∇ · v‖K ≤ C h

−1/2
K ‖(v− μ) · n‖∂K , and the result follows. This concludes the

proof. �

Step 3: Estimate of ∇v. Now, we estimate the L2(Ω)-norm of the gradient of v.

Lemma 4.3. Let (L, v,μ) ∈ Gh × Vh × Mh satisfy the first and third equations
defining the HDG method, (1.2a) and (1.2c), respectively. Then, there is a constant
C > 0 such that

‖∇v‖2Th
≤ C

(
‖L‖2Th

+
∑

K∈Th

h−1
K ‖(v− μ) · n‖2∂K

)
.

Proof. Applying the triangle and the Cauchy-Schwarz inequalities to the last equal-
ity of Step 1, we get

‖∇v‖K ≤ 1

d
‖∇ · v‖K + C(ΣF∈∂KΣt∈BF

‖αF,t‖2K)
1
2 ,

where C depends on the shape regularity constant of the mesh and the dimension
of the space. The first term on the right-hand side can be bounded as wanted by
using Lemma 4.2.

It remains to bound the second term on the right-hand side. Define

G∗ :=
∑

F∈∂K

∑
t∈BF

λFαF,tWF,t

where λF stands for the barycentric coordinates associated with the face F so that
λF = 0 on F . Observe that, since αF,t = ∇v : WF,t ∈ Pk−1(K) for any face F of
K, we have that G∗ ∈ Pk(K). Because we assumed that (L, v,μ) satisfies the first



1654 AYCIL CESMELIOGLU, BERNARDO COCKBURN, AND WEIFENG QIU

equation defining the HDG method, (1.2a), we can take G := G∗ therein to get

(L,G∗)K + 〈v− μ,G∗n〉∂K = (∇v,G∗)K

=
(1

d
(∇ · v)Id +

∑
F∈∂K

∑
t∈BF

αF,t(t⊗ nF ),
∑

F ′∈∂K

∑
t′∈BF ′

λF ′αF ′,t′WF ′,t′

)
K

=
∑

F∈∂K

∑
t∈BF

(αF,t, λFαF,t)K ,

since, by construction, Id : WF ′,t′ = 0 and (t ⊗ nF ) : WF ′,t′ = 0 except when
F = F ′ and t = t′ case in which (t⊗ nF ) : WF ′,t′ = 1. Therefore, since 0 < λF on
K, there exists C > 0 such that

C
∑

F∈∂K

∑
t∈BF

‖αF,t‖2K ≤
∑

F∈∂K

∑
t∈BF

(αF,t, λFαF,t)K = (L,G∗)K + 〈v− μ,G∗n〉∂K

≤ ‖L‖K‖G∗‖K + 〈v− μ,G∗n〉∂K .

Now we bound 〈v− μ,G∗n〉∂K . By the definition of G∗, we get

〈v− μ,G∗n〉∂K =
∑

F ′∈∂K

∑
F∈∂K

∑
t∈BF

〈(v− μ)⊗ nF ′ , λFαF,tWF,t〉F ′

=
∑

F ′∈∂K

∑
F∈∂K

∑
t∈BF

〈((v− μ) · nF ′)nF ′ ⊗ nF ′ , λFαF,tWF,t〉F ′

since on F ′, λF = 0 whenever F = F ′ and tF ′ ⊗ nF ′ : WF,t = 0 whenever F �= F ′.
Since λF ≤ 1 on K and WF,t is uniformly bounded, we obtain

〈v− μ,G∗n〉∂K ≤ Ch
−1/2
K ‖(v− μ) · n‖∂K

( ∑
F∈∂K

∑
t∈BF

‖αF,t‖2K
) 1

2

.

Also, we have that

‖G∗‖K ≤ C
∑

F∈∂K

∑
t∈BF

‖αF,t‖K ≤ C
( ∑

F∈∂K

∑
t∈BF

‖αF,t‖2K
) 1

2

since, again, λF ≤ 1 on K and WF,t is uniformly bounded. The constant C
depends on the shape-regularity constant of the mesh and the dimension of the
space. Combining the above results, we get∑
F∈∂K

∑
t∈BF

‖αF,t‖2K ≤ C
(
‖L‖2K + Ch−1

K ‖(v− μ) · n‖2∂K
)1/2( ∑

F∈∂K

∑
t∈BF

‖αF,t‖2K
) 1

2

.

This completes the proof of Lemma 4.3. �

Step 4: Estimate of the tangential trace. To conclude the proof of the stability
estimate in Proposition 2.2, we bound the tangential component of the jump as
indicated in the following result.

Lemma 4.4. If (L, v,μ) ∈ Gh × Vh × Mh satisfies the first and third equations
defining the HDG method, that is, (1.2a) and (1.2c), respectively. Then, there is a
constant C > 0 such that∑

K∈Th

h−1
K ‖(v− μ)× n‖2∂K ≤ C

(
‖L‖2Th

+
∑

K∈Th

h−1
K ‖(v− μ) · n‖2∂K

)
.
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Proof. The proof follows similar arguments as in the proof of Lemma 4.3. Define

G∗ :=
∑

F∈∂K

∑
t∈BF

ηF,tWF,t

where ηF,t is any extension of (v−μ)·t from F toK such that ηF,t|F = (v−μ)·t and
such that ‖ηF,t‖K is equivalent to h

1/2
K ‖(v−μ)·t‖F . Since (L, v,μ) ∈ Gh×Vh×Mh

satisfies the first equation defining the HDG method, (1.2a), we set G := G∗ ∈
Pk(K) therein to get

(L,G∗)K + 〈v− μ,G∗n〉∂K = (∇v,G∗)K ,

or, equivalently,

〈n× (v− μ)× n,G∗n〉∂K = (∇v,G∗)K − (L,G∗)K − 〈((v− μ) · n)n,G∗n〉∂K .

Since we defined the coefficient ηF,t in such a way that

‖(v− μ)× n‖2∂K = 〈n× (v− μ)× n,G∗n〉∂K ,

we immediately get that, by Lemma 4.3,

‖(v− μ)× n‖2∂K ≤ C(‖L‖2K +
∑

K∈Th

h−1
K ‖(v− μ) · n‖2∂K)1/2‖G∗‖K ,

which implies the result by the definition of G∗. �

Step 5: Conclusion. Proposition 2.2 now follows from Lemmas 4.3 and 4.4.

5. Proof of the existence, uniqueness and boundedness

of the approximate solution

In this section, we prove Theorem 2.3 on the existence, uniqueness and bounded-
ness of the approximate solution of the HDG method. The idea is to define mapping
F on

(5.1) Zh = {(v,μ) ∈ Vh ×M 0
h : Bh((v,μ), q) = 0, ∀q ∈ Qh},

such that any of its fixed points satisfies the equations defining the HDG method,
and prove that, on a certain ball contained in Zh, it is a contraction.

Step 1: Definition of the operator F. We start by defining F . For (w, ŵ) ∈ Zh,
we take F(w, ŵ) to be the component (u, û) of the solution (L,u, p, û) ∈ Gh×Vh×
Qh ×M 0

h of

(5.2) (L,G)Th
+Ah((u, û),G)−Ah((v,μ), νL)−Bh((v,μ), p) +Bh((u, û), q)

+ Jn((u, û), (v,μ)) +Oh(P(w, ŵ); (u, û), (v,μ)) = (f, v)Th

for all (G, v, q,μ) ∈ Gh×Vh×Qh×M 0
h . We clearly see that any of its fixed points

satisfy the equations defining the HDG approximate solution; see (3.1).
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Step 2: Proof of the upper bound of the approximate solution. Next, we
establish the boundedness result of Theorem 2.3 assuming that the solution exists.
We have, by Proposition 2.2, that

ν|||(uh, ûh)|||21,h ≤ C2
HDG ν

(
‖Lh‖2Th

+
∑

K∈Th

h−1
K ‖(uh − ûh) · n‖2∂K

)
.

To estimate the right-hand side, we use an energy argument. Thus, we take G :=
νLh, (v,μ) := (uh, ûh) and q := ph in the compact formulation of the HDG method,
(3.1). By the identity of Proposition 3.6 and by the definition of the stabilization
tensor Sβ, we obtain

ν ‖Lh‖2Th
+ 〈1

2
|β · n|(uh − ûh),uh − ûh〉∂Th

+ ν
∑

K∈Th

h−1
K ‖(uh − ûh) · n‖2∂K

= (f,uh)Th
.

As a consequence, we get that

ν |||(uh, ûh)|||21,h ≤ C2
HDG ν ‖f‖Ω ‖uh‖Th

≤ C2C
2
HDG ‖f‖Ω|||(uh, ûh)|||1,h

by the second (discrete Poincaré) inequality of Proposition A.2 with q = 2. This
proves the stability result of Theorem 2.3.

It also shows that F maps Kh into Kh, where

Kh := {(v,μ) ∈ Zh : |||(v,μ)|||1,h ≤ C2C
2
HDGν

−1‖f‖Ω}.

Step 3: The operator F is a contraction on Kh. To prove this, let (w1, ŵ1),
(w2, ŵ2) ∈ Kh and set (u1, û1) := F(w1, ŵ1) and (u2, û2) := F(w2, ŵ2). By
definition, there exists L1,L2 ∈ Gh, p1, p2 ∈ Qh such that both (L1,u1, p1, û1) and
(L2, p2,u2, û2) satisfy (5.2).

If we now set δL := L1 − L2, δu := u1 − u2, δp := p1 − p2 and δû := û1 − û2, we
get that

(δL,G)Th
+Ah((δu, δû),G)−Ah((v,μ), νδL)−Bh((v,μ), δp) +Bh((δu, δû), q)

+ Jn((δu, δû), (v− μ)) +Oh(P(w1, ŵ1); (u1, û1), (v,μ))

−Oh(P(w2, ŵ2); (u2, û2), (v,μ)) = 0

for all (G, v, q,μ) ∈ Gh×Vh×Qh×M 0
h . Taking (G, v, q,μ) := (νδL, δu, δp, δû), we

obtain

ν‖δL‖2Th
+ Jn((δu, δû), (δu, δû)) +Oh(P(w1, ŵ1); (u1, û1), (δu, δû))

−Oh(P(w2, ŵ2); (u2, û2), (δu, δû)) = 0.

As a consequence, by Proposition 2.2,

ν|||(δu, δû)|||21,h ≤ ν‖δL‖2Th
+ Jn((δu, δû), (δu, δû))

= C2
HDG

(
Oh(P(w2, ŵ2); (u2, û2), (δu, δû))−Oh(P(w1, ŵ1); (u1, û1), (δu, δû))

)
= C2

HDG

(
Oh(P(w2, ŵ2); (u1, û1), (δu, δû))−Oh(P(w1, ŵ1); (u1, û1), (δu, δû))

)
− C2

HDGOh(P(w2, ŵ2); (δu, δû), (δu, δû))

≤C2
HDG

(
Oh(P(w2, ŵ2); (u1, û1), (δu, δû))−Oh(P(w1, ŵ1); (u1, û1), (δu, δû))

)
≤ C2

HDG

(
CO‖P(w2, ŵ2)− P(w1, ŵ1)‖1,h|||(u1, û1)|||1,h|||(δu, δû)|||1,h

)
≤ C2

HDG

(
COCstab,1|||(w2 −w1, ŵ2 − ŵ1)|||1,h|||(u1, û1)|||1,h|||(δu, δû)|||1,h

)
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where the last three inequalities follow by Proposition 3.6, Proposition 3.4 and
Proposition 2.1, respectively. Since (u1, û1) ∈ Kh, we obtain

ν|||(δu, δû)|||1,h ≤ C2C
4
HDGCOCstab,1ν

−1‖f‖Ω|||(w2 −w1, ŵ2 − ŵ1)|||1,h.

Therefore, F is a contraction if

ν−2‖f‖Ω <
1

C2C4
HDGCOCstab,1

,

that is, if ν−2‖f‖Ω is small enough.

Step 4: Conclusion. Since F is a contraction on Kh, it has a unique fixed point
(uh, ûh) ∈ Kh which gives the solution (Lh,uh, ph, ûh) to the problem (3.1) satis-
fying the bound of Theorem 2.3. This concludes the proof of Theorem 2.3.

6. Proof of the error estimates

In this section, we prove the error estimates of Theorem 2.4. To do that, we
proceed in several steps.

Step 1: The error equations. We start our error analysis by obtaining the
equations satisfied by the projections of the errors.

Lemma 6.1 (Error equations). The projection of the error (eL, eu, ep, eû) satisfies

(eL,G)Th
+Ah((e

u, eû),G)−Ah((v,μ), νe
L)−Bh((v,μ), e

p) +Bh((e
u, eû), q)

+ Jn((e
u, eû), (v,μ)) = Oh(P(uh, ûh); (uh, ûh), (v,μ))−Oh(u; (u,u|Eh

), (v,μ))

+ 〈ν(L−ΠGL)n− (p−ΠQp)n, v− μ〉∂Th
,

for all (G, v, q,μ) ∈ Gh × V h ×Qh ×Mh.

Proof. Note that for any (G, v, q,μ) ∈ Gh × V h × Qh × Mh, the solution of the
equations (1.1) defining the HDG method satisfies

(L,G)Th
+Ah((u,u|Eh

),G)−Ah((v,μ), νL)−Bh((v,μ), p) +Bh((u,u|Eh
), q)

+ Jn((u,u|Eh
), (v,μ)) +Oh(u; (u,u|Eh

), (v,μ)) = (f, v)Th
.

By the definition of ΠRT, (2.1), and the fact that ΠG and ΠQ are simple L2-
projections, we have that for any (G, v, q,μ) ∈ Gh × V h ×Qh ×Mh,

(ΠGL,G)Th
+Ah((Π

RTu,ΠM (u|Eh
)),G)−Ah((v,μ), νΠGL)

− 〈ν(L−ΠGL)n, v− μ〉∂Th
−Bh((v,μ),ΠQp) + 〈(p−ΠQp)n, v− μ〉∂Th

+Bh((Π
RTu,ΠM (u|Eh

)), q) + Jn((Π
RTu,ΠM (u|Eh

)), (v,μ))

+Oh(u; (u,u|Eh
), (v,μ)) = (f, v)Th

.

Subtracting (3.1) from this equation gives the result. �
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Step 2: Estimate of the error in the velocity gradient. In this step, we prove
the estimate of the error in the velocity gradient (2.4a). The estimate (2.4b) is an
immediate consequence of (2.4a) due to the second discrete Poincaré inequality of
Proposition A.2.

First of all, note that by the definition of ΠRT in (2.1), (ΠGL,Π
RTu,ΠM (u|Eh

))
satisfies (1.2a), (1.2c). So, (eL, eu, eû) also satisfies (1.2a), (1.2c). Second, since u
is divergence free, ∇ · (ΠRTu) = 0 and this implies that ΠRTu, eu ∈ Vh. Thus we
take G := νeL, v := eu, q := ep and μ := eû in the error equations given in Lemma
6.1, to obtain

ν‖eL‖2Th
+ Jn((e

u − eû), (eu − eû)) = Oh(P(uh, ûh); (uh, ûh), (e
u, eû))

(6.1)

−Oh(u; (u,u|Eh
), (eu, eû)) + 〈ν(L−ΠGL)n− (p−ΠQp)n, e

u − eû〉∂Th

= T1 + T2 + T3 + T4 + T5,

where

T1 :=Oh(P(uh, ûh); (uh, ûh), (e
u, eû))−Oh(P(uh, ûh); (Π

RTu,ΠM (u|Eh
)), (eu, eû)),

T2 :=Oh(P(uh, ûh); (Π
RTu,ΠM (u|Eh

)), (eu, eû))

−Oh(P(u,u|Eh
); (ΠRTu,ΠM (u|Eh

)), (eu, eû)),

T3 :=Oh(P(u,u|Eh
); (ΠRTu,ΠM (u|Eh

)), (eu, eû))−Oh(Π
RTu; (u,u|Eh

), (eu, eû)),

T4 :=Oh(Π
RTu; (u,u|Eh

), (eu, eû))−Oh(u; (u,u|Eh
), (eu, eû)),

T5 :=〈ν(L−ΠGL)n− (p− ΠQp)n, e
u − eû〉∂Th

.

Let us bound the terms Ti, i = 1, . . . , 5. We start with T1. By the definition of
the projection of the errors and Proposition 3.6, we have that

T1 =−Oh(P(uh, ûh); (e
u, eû), (eu, eû)) ≤ 0.

Let us bound T2. Applying Proposition 3.4, Proposition 2.1 and linearity of the
projection P, respectively, we obtain

T2 ≤ CO ‖P(uh, ûh)− P(u,u|Eh
)‖1,h|||(ΠRTu,ΠM (u|Eh

))|||1,h |||(eu, eû)|||1,h,
= CO ‖P(uh, ûh)− P(ΠRTu,ΠM (u|Eh

))‖1,h|||(ΠRTu,ΠM (u|Eh
))|||1,h |||(eu, eû)|||1,h,

= CO ‖P(eu, eû)‖1,h|||(ΠRTu,ΠM (u|Eh
))|||1,h |||(eu, eû)|||1,h.

Then

T2 ≤ CO Cstab,1 |||(ΠRTu,ΠM (u|Eh
))|||1,h |||(eu, eû)|||21,h, by Proposition 2.1,

≤ COCstab,1CHDG‖∇u‖L2(Ω)|||(eu, eû)|||21,h, by Lemma A.3,

≤ 1

2
νC−2

HDG|||(eu, eû)|||21,h,

if the smallness condition

ν−1‖∇u‖L2(Ω) ≤
1

2COCstab,1C3
HDG

,

is satisfied.
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Next we bound the term T3. Since, by Proposition 2.1(v), P(u,u|Eh
) = ΠRTu,

we have

T3 = Oh(Π
RTu; (ΠRTu− u,ΠM (u|Eh

)− u|Eh
), (eu, eû))

≤ C∞
O,1 ‖ΠRTu‖L∞(Ω)|||(ΠRTu− u,ΠM (u|Eh

)− u|Eh
)|||0,h|||(eu, eû)|||1,h,

≤ C∞
O,1 C

∞
stab ‖u‖L∞(Ω)|||(ΠRTu− u,ΠM (u|Eh

)− u|Eh
)|||0,h|||(eu, eû)|||1,h,

where to obtain the last two inequalities we applied Proposition 3.5 and Lemma A.3,
respectively.

Now, let us bound T4. We have, by Proposition 3.5,

T4 ≤ C∞
O,2 ‖u‖L∞(Ω)|||(ΠRTu− u,0)|||0,h|||(eu, eû)|||1,h.

Finally, let us bound T5. We have

T5 ≤
( ∑

K∈Th

hK‖ν(L− ΠGL)n‖2∂K
)1/2( ∑

K∈Th

h−1
K ‖eu − eû‖2∂K

)1/2

+
( ∑

K∈Th

ζ−1
n hK‖p−ΠQp‖∂K

)1/2( ∑
K∈Th

ζnh
−1
K ‖(eu − eû) · n‖2∂K

)1/2

≤
( ∑

K∈Th

hK‖ν(L− ΠGL)n‖2∂K
)1/2

|||(eu, eû)|||1,h

+
( ∑

K∈Th

ζ−1
n hK‖p−ΠQp‖2∂K

)1/2(
Jn((e

u − eû), (eu − eû))
)1/2

.

We are now ready to conclude. Indeed, since, by Proposition 2.2,

νC−2
HDG|||(eu, eû)|||21,h ≤ ν‖eL‖2Th

+ Jn((e
u − eû), (eu − eû)),

the inequality (6.1) implies that(
ν‖eL‖2Th

+ Jn((e
u−eû), (eu − eû)) + νC−2

HDG|||(eu, eû)|||21,h
)1/2

≤ C
[
C∞

O,1 C
∞
stab ‖u‖L∞(Ω)|||(ΠRTu− u,ΠM (u|Eh

)− u|Eh
)|||0,h

+ C∞
O,2 ‖u‖L∞(Ω)|||(ΠRTu− u,0)|||0,h

+
( ∑

K∈Th

hK‖ν(L−ΠGL)n‖2∂K + ζ−1
n hK‖p−ΠQp‖2∂K

)1/2]
,

and the result now follows by the approximation properties of the Raviart-Thomas
projection and those of the L2-projections ΠG and ΠQ.

Step 3: Estimate of the error in the pressure. In this step, we prove the
estimate (2.4c) of the error in pressure.

Since ep ∈ Qh ⊂ L2
0(Ω), we can apply Proposition 3.3 to get that

‖ep‖Ω ≤ CV,M

κ
sup

(v,μ)∈V h×M 0
h\{(0,0)}

Bh((v,μ), e
p)

|||(v,μ)|||1,h
.
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Using the error equation of Lemma 6.1 with G := 0, q := 0, v := Pw, μ := ΠMw,
we obtain

Bh((Pw,ΠMw), ep) = −Ah((Pw,ΠMw), νeL) + Jn((e
u, eû), (Pw,ΠMw))

−Oh(P(uh, ûh); (uh, ûh), (Pw,ΠMw)) +Oh(u; (u,u|Eh
), (Pw,ΠMw))

− 〈ν(L−ΠGL)n− (p−ΠQp)n, Pw−ΠMw〉Th

= T1 + T2 + T3 + T4 + T5,

where

T1 := −Ah((Pw,ΠMw), νeL),

T2 :=Jn((e
u, eû), (Pw,ΠMw)),

T3 :=−Oh(P(uh, ûh); (uh, ûh), (Pw,ΠMw))

+Oh(P(uh, ûh); (Π
RTu,ΠMu), (Pw,ΠMw)),

T4 :=−Oh(P(uh, ûh); (Π
RTu,ΠMu), (Pw,ΠMw))

+Oh(u; (Π
RTu,ΠMu), (Pw,ΠMw)),

T5 :=−Oh(u; (Π
RTu,ΠMu), (Pw,ΠMw)) +Oh(u; (u,u|Eh

), (Pw,ΠMw)),

T6 := − 〈ν(L−ΠGL)n− (p−ΠQp)n, Pw− ΠMw〉Th
.

Let us estimate the terms Ti, i = 1, . . . , 6. In what follows, we set (v,μ) :=
(Pw,ΠMw). We start by bounding T1. By Proposition 3.1, we have that

T1 ≤ CAν ‖eL‖Ω |||(v,μ)|||1,h.
We claim that T2 = 0. To see this, we only need to show that the expression

T2(K) := 〈(eu−eû) ·n, (Pw−ΠMw) ·n〉∂K is zero for any element K ∈ Th. Indeed,
note that, by [14, Lemma 4.1], for each element K ∈ Th, there exists q ∈ Pk(K)⊥

such that q|∂K = (Pw−ΠMw) · n. Then, by Lemma 6.1 with G := 0, v := 0, and
μ := 0, we have that

T2(K) = 〈(eu − eû) · n, q〉∂K = (∇ · eu, q)K = 0,

since ∇eu ∈ Pk−1(K) and q ∈ Pk(K)⊥. Hence, T2 = 0, as claimed.
Next, we bound T3. We have, by Proposition 3.4,

T3 = Oh(P(uh, ûh); (e
u, eû), (v,μ))

≤ CO‖P(uh, ûh)‖1,h|||(eu, eû)|||1,h|||(v,μ)|||1,h
≤ CO(‖P(uh, ûh)− u‖1,h + ‖∇u‖L2(Ω))|||(eu, eû)|||1,h|||(v,μ)|||1,h.

To bound T4, we first use Proposition 3.5 and then Lemma A.3 to get

T4 ≤ C∞
O,2|||(P(uh, ûh)− u,0)|||0,h|||(ΠRTu,ΠMu)|||∞,h|||(v,μ)|||1,h

≤ C∞
O,2|||(P(uh, ûh)− u,0)|||0,h‖u‖L∞(Ω)|||(v,μ)|||1,h.

Let us now bound T5. We have, by Proposition 3.5

T5 ≤ C∞
O,1 ‖u‖L∞(Ω)|||(ΠRTu− u,ΠMu− u)|||0,h|||(v,μ)|||1,h.

Finally, we bound T6 as follows:

T6 ≤ C
( ∑

K∈Th

hK‖ν(L−ΠGL)n− (p−ΠQp)n‖2∂K
)1/2

|||(v,μ)|||1,h.



ANALYSIS OF AN HDG METHOD 1661

We are now ready to conclude. Indeed, gathering the above estimates, we get that

‖ep‖Ω ≤ C CV,M

κ

(
CAν ‖eL‖Ω +

( ∑
K∈Th

hK‖ν(L−ΠGL)n− (p−ΠQp)n‖2∂K
)1/2

+ CO(‖P(uh, ûh)− u‖1,h + ‖∇u‖L2(Ω))|||(eu, eû)|||1,h
+ C∞

O,2|||(P(uh, ûh)− u,0)|||0,h‖u‖L∞(Ω)

+ C∞
O,1 ‖u‖L∞(Ω)|||(ΠRTu− u,ΠMu− u)|||0,h

)
.

Since, by property (v) of Proposition 2.1, P(ΠRTu,ΠMu) = ΠRTu, we can write,
for i = 0, 1, that

|||(P(uh, ûh)− u,0)|||i,h ≤ |||(P(uh, ûh)− P(ΠRTu,ΠMu),0)|||i,h
+ |||(ΠRTu− u,0)|||i,h

= |||(P(eu, eû),0)|||i,h + |||(ΠRTu− u,0)|||i,h
≤ Cstab,i |||(eu, eû)|||i,h + |||(ΠRTu− u,0)|||i,h.

Thus we get that

‖ep‖Ω ≤C CHDG

κ

(
ν ‖eL‖Ω +

( ∑
K∈Th

hK‖ν(L−ΠGL)n− (p−ΠQp)n‖2∂K
)1/2

+ CO(Cstab,1 |||(eu, eû)|||1,h + |||ΠRTu− u|||1,h + ‖∇u‖L2(Ω))|||(eu, eû)|||1,h
+ C∞

O,2(Cstab,0 |||(eu, eû)|||0,h + |||ΠRTu− u|||0,h)‖u‖L∞(Ω)

+ C∞
O,1 ‖u‖L∞(Ω)|||(ΠRTu− u,ΠMu− u)|||0,h

)
,

and the result follows by the approximation properties of ΠG,ΠQ,ΠM and ΠRT.

Step 4: A duality argument. To estimate the L2-error in the velocity, we use
a duality argument in which we are going to use the solution of the problem (2.2).
We have the following result.

Lemma 6.2. Assume that the regularity estimate (2.3) holds so that φ lies in
H2(Ω) whenever θ ∈ L2(Ω). Then, we have that

(eu, θ)Th
=T1 + · · ·+ T6,

where

T1 :=− 〈eu − eû, νδΦn+ δψn〉∂Th

T2 :=〈ν(L−ΠGL)n,Π
RTφ−ΠMφ〉∂Th

T3 :=−
(
(eu,∇ · (φ⊗ u))Th

+Oh(u; (e
u, eû), (ΠRTφ,ΠMφ))

)
T4 :=−Oh(u; (δu, δû), (Π

RTφ,ΠMφ))

T5 :=
(
Oh(u; (uh, ûh), (δφ, δû))−Oh(P(uh, ûh); (uh, ûh), (δφ, δû))

)
T6 :=

(
Oh(P(uh, ûh); (uh, ûh), (φ,φ|Eh

))−Oh(u; (uh, ûh), (φ,φ|Eh
))

− (eu, (∇φ)�u)Th

)
,

and δΦ := Φ−ΠGΦ, δφ := φ−ΠRTφ, δψ := ψ −ΠQψ, and δ
̂φ := φ−ΠMφ.
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Proof. By the first three equations defining the dual problem, (2.2a), (2.2b) and
(2.2c), we have

(eu, θ)Th
=− (eu, ν∇ · Φ)Th

− (eu,∇ · (φ⊗ u))Th
− (eu, (∇φ)�u)Th

− (eu,∇ψ)Th

− (νeL,Φ)Th
+ (νeL,∇φ)Th

− (ep,∇ · φ)Th

=− (eu, ν∇ · Φ)Th
− (νeL,Φ)Th

− (eu,∇ψ)Th

+ (νeL,∇φ)Th
− (eu,∇ · (φ⊗ u))Th

− (ep,∇ · φ)Th
− (eu, (∇φ)�u)Th

=− (eu, ν∇ ·ΠGΦ)Th
− (νeL,ΠGΦ)Th

− (eu, ν∇ · δΦ)Th

− (eu,∇ΠQψ)Th
− (eu,∇δψ)Th

+ I,

where I := (νeL,∇φ)Th
− (eu,∇ · (φ ⊗ u))Th

− (ep,∇ · φ)Th
− (eu, (∇φ)�u)Th

.
If we now set (G,v, q,μ) equal to (νΠGΦ,0,−ΠQψ,0) in the error equation of
Lemma 6.1, we see that we now have

(eu, θ)Th
=− 〈eû, νΠGΦn〉∂Th

− (eu, ν∇ · δΦ)Th
− 〈eû,ΠQψn〉∂Th

− (eu,∇δψ)Th
+ I

=− 〈eû, νΠGΦn〉∂Th
− 〈eu, νδΦn〉∂Th

− 〈eû,ΠQψn〉∂Th
− 〈eu, δψn〉∂Th

+ I

=− 〈eu − eû, νδΦn+ δψn〉∂Th
+ I.

Let us now work on the term I. By the definition of the projection ΠRT, we have

I =(νeL,∇ΠRTφ)Th
− (ep,∇ ·ΠRTφ)Th

− (eu,∇ · (φ⊗ u))Th
− (eu, (∇φ)�u)Th

+ (νeL,∇δφ)Th
.

Now, since ∇ · φ = 0, we have that ∇ · ΠRTφ = 0 and so ΠRTφ ∈ Vh. This
means that we can take (G, v, q,μ) := (0,ΠRTφ, 0,ΠMφ) in the error equation of
Lemma 6.1, to get

I =〈νeLn,ΠRTφ−ΠMφ〉∂Th
− 〈ep, (ΠRTφ−ΠMφ) · n〉∂Th

− ΣK∈Th
h−1
K 〈(eu − eû) · n, (ΠRTφ−ΠMφ) · n〉∂K

+Oh(P(uh, ûh); (uh, ûh), (Π
RTφ,ΠMφ))−Oh(u; (u,u|Eh

), (ΠRTφ,ΠMφ))

+ 〈ν(L−ΠGL)n− (p−ΠQp)n,Π
RTφ−ΠMφ〉∂Th

− (eu,∇ · (φ⊗ u))Th
− (eu, (∇φ)�u)Th

+ (νeL,∇δφ)Th

=〈ν(L−ΠGL)n,Π
RTφ−ΠMφ〉∂Th

+Oh(P(uh, ûh); (uh, ûh), (Π
RTφ,ΠMφ))−Oh(u; (u,u|Eh

), (ΠRTφ,ΠMφ))

− (eu,∇ · (φ⊗ u))Th
− (eu, (∇φ)�u)Th

.

So we have

(eu, θ)Th
=− 〈eu − eû, νδΦn+ δψn〉∂Th

+ 〈ν(L−ΠGL)n,Π
RTφ−ΠMφ〉∂Th

+Oh(P(uh, ûh); (uh, ûh), (Π
RTφ,ΠMφ))

−Oh(u; (u,u|Eh
), (ΠRTφ,ΠMφ))

− (eu,∇ · (φ⊗ u))Th
− (eu, (∇φ)�u)Th

,
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and the identity follows after simple algebraic manipulations. This completes the
proof. �

Step 5: Superconvergence of the velocity. Now, we are ready to prove the
superconvergence estimate (2.5). We need to bound each term Ti, i = 1, . . . , 6 in
Lemma 6.2. It is easy to see that

T1 ≤ Ch|||(eu, eû)|||1,h
(
‖Φ‖H1(Ω) + ‖ψ‖H1(Ω)

)
≤ Ch|||(eu, eû)|||1,h‖θ‖Ω by the regularity inequality (2.3),

T2 ≤ Chk+2‖u‖Hk+2(Ω)‖φ‖H2(Ω) by property (iii) of Lemma A.3,

≤ Chk+2‖u‖Hk+2(Ω)‖θ‖Ω by the regularity inequality (2.3),

T3 = −
(
(eu,∇ · (φ⊗ u))Th

+Oh(u; (e
u, eû), (ΠRTφ,ΠMφ))

)
= (eu ⊗ u,∇(ΠRTφ− φ))Th

− 〈(eû ⊗ u)n,ΠRTφ−ΠMφ〉∂Th

− 〈max(u · n, 0)(eu − eû),ΠRTφ−ΠMφ〉∂Th

≤ Ch‖u‖L∞(Ω)|||(eu, eû)|||1,h‖φ‖H2(Ω) by property (iii) of Lemma A.3,

≤ Ch‖u‖L∞(Ω)|||(eu, eû)|||1,h‖θ‖Ω,
by the regularity inequality (2.3).

In order to bound T4, we define

(6.2) uh|K :=
1

|K| (u, 1)K ∀K ∈ Th.

Then, we have

T4 = −Oh(u; (δu, δû), (Π
RTφ,ΠMφ))

= (δu ⊗ u,∇ΠRTφ)Th
− 〈(δû ⊗ u)n,ΠRTφ−ΠMφ〉∂Th

− 〈max(u · n, 0)(δu − δû),Π
RTφ−ΠMφ〉∂Th

= (δu ⊗ (u− uh),∇ΠRTφ)Th
− 〈(δû ⊗ u)n,ΠRTφ−ΠMφ〉∂Th

− 〈max(u · n, 0)(δu − δû),Π
RTφ−ΠMφ〉∂Th

since ΠRTφ ∈ Vh because ∇ · φ = 0. So, we get

T4 ≤ Chk+2‖u‖W 1,∞(Ω)‖φ‖H2(Ω) by Lemma A.3,

≤ Chk+2‖u‖W 1,∞(Ω)‖θ‖Ω,
by the regularity inequality (2.3).

Let us now bound T5. We begin by rewriting this term as T5 = T51 + T52 + T53,
where

T51 :=
(
Oh(u; (e

u, eû), (δφ, δû))−Oh(P(uh, ûh); (e
u, eû), (δφ, δû))

)
,

T52 :=−
(
Oh(u; (δu, δû), (δφ, δû))−Oh(P(uh, ûh); (δu, δû), (δφ, δû))

)
,

T53 :=
(
Oh(u; (u,u|Eh

), (δφ, δû))−Oh(P(uh, ûh); (u,u|Eh
), (δφ, δû))

)
.

According to Proposition 3.4, we have

T51 ≤ C‖u− P(uh, ûh)‖1,h|||(eu, eû)|||1,h|||(δφ, δû)|||1,h ≤ Ch2k+2‖θ‖Ω,
T52 ≤ C‖u− P(uh, ûh)‖1,h|||(δu, δû)|||1,h|||(δφ, δû)|||1,h ≤ Ch2k+1‖θ‖Ω,
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and

T53 =− (u⊗ (u− P(uh, ûh)),∇δφ)Th
+ 〈(u⊗ (u− P(uh, ûh)))n, δu − δû〉∂Th

≤ C hk+2‖u‖L∞(Ω)‖θ‖Ω.

So, we have

T5 ≤ C(h2k+1 + hk+2‖u‖L∞(Ω))‖θ‖Ω ≤ Chk+2(1 + ‖u‖L∞(Ω))‖θ‖Ω, k ≥ 1.

Finally, let us estimate T6. Since (e
u, (∇φ)�u)Th

= (u⊗eu,∇φ)Th
, we can write

that T6 = T61 + T62 + T63, where

T61 :=(u⊗ (uh − P(uh, ûh),∇φ)Th

T62 :=(u⊗ (u−ΠRTu),∇φ)Th

T63 :=((u− uh)⊗ (P(uh, ûh)− u),∇φ)Th
.

Simple algebraic manipulations give us that

T61 = (u⊗ (uh − P(uh, ûh),∇φ)Th

= ((u− uh)⊗ (uh − P(uh, ûh)),∇φ)Th
+ (uh ⊗ (uh − P(uh, ûh)),∇φ)Th

= ((u− uh)⊗(uh − P(uh, ûh)),∇φ)Th
+(uh ⊗ (uh − P(uh, ûh)),∇(φ−ΠRTφ))Th

+ (uh ⊗ (uh − P(uh, ûh)),∇ΠRTφ)Th

= ((u− uh)⊗(uh − P(uh, ûh)),∇φ)Th
+(uh ⊗ (uh − P(uh, ûh)),∇(φ−ΠRTφ))Th

.

Indeed, since ∇ · u = 0, then ∇ΠRTu ∈ P k−1(Th) and, according to the definition
of P(uh, ûh) in (1.3), we have that (uh ⊗ (uh − P(uh, ûh),∇ΠRTu)Th

= 0. By
the definition of uh in (6.2), approximation property of ΠRT, Proposition 2.1 and
Theorem 2.4, we get

T61 ≤ Chk+2‖θ‖Ω ∀k ≥ 1.

The following estimate follows easily:

T62 ≤ Chk+2‖θ‖Ω ∀k ≥ 1.

The estimate of the term T63 is more delicate. Indeed, by Proposition A.2, Propo-
sition 2.1 and Theorem 2.4, we get

T63 = (eu ⊗ (P(uh, ûh)− u),∇φ)Th
+ ((u−ΠRTu)⊗ (P(uh, ûh)− u),∇φ)Th

≤ C
(
‖eu‖L4(Ω)‖P(uh, ûh)− u‖L4(Ω)+‖u−ΠRTu‖L∞(Ω)‖P(uh, ûh)−u‖Th

)
‖∇φ‖Th

≤ C
(
‖eu‖1,h‖P(uh, ûh)− u‖1,h + ‖u− ΠRTu‖L∞(Ω)‖P(uh, ûh)− u‖Th

)
‖∇φ‖Th

≤ C(h2k+1 + hk+2)‖φ‖1,Ω ≤ Chk+2‖θ‖Ω ∀k ≥ 1.

This implies that

T6 ≤ Chk+2‖θ‖Ω.

With all the above estimates, and after taking θ = eu, we can conclude that the
superconvergence estimate (2.5) of Theorem 2.4 does hold. To complete the proof
of Theorem 2.4, it remains to prove the estimate for the post processed velocity.
For a proof using the post processing operator defined in [9, (2.9)] to obtain the
superconvergence result, see [9, Theorem 2.5].
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7. Extension to H(div)-conforming HDG methods

We have seen that all our error estimates provide the same orders of convergence
as the stabilization parameter of the jumps of the normal component of the velocity
goes to infinity. This means that we can work with H(div)-conforming spaces for
the velocity exactly as it was done for the HDG methods for the Stokes equations
in [14].

Appendix A. Stability estimates

A.1. An estimate of the trace of the nonlinear term.

Lemma A.1. For any v,μ ∈ L2(∂Th) and β ∈ L4(∂Th), there exists a constant
C > 0 such that

〈(v⊗ β)n,μ〉∂Th

≤ C
( ∑

K∈Th

h
2−d
2

K ‖v‖2∂K
) 1

2
( ∑

K∈Th

hK‖β‖4L4(∂K)

) 1
4
( ∑

K∈Th

h−1
K ‖μ‖2∂K

) 1
2

.

Proof. By the generalized Hölder’s inequality,

〈(v⊗β)n,μ〉∂Th
=

∑
K∈Th

〈(v⊗ β)n,μ〉∂K

≤
∑

K∈Th

‖v‖∂K‖β‖L4(∂K)‖μ‖L4(∂K)

≤
∑

K∈Th

h
2−d
4

K ‖v‖∂Kh
1
4

K‖β‖L4(∂K)h
d−3
4

K ‖μ‖L4(∂K)

≤
( ∑

K∈Th

h
2−d
2

K ‖v‖2∂K
) 1

2
( ∑

K∈Th

hK‖β‖4L4(∂K)

) 1
4
( ∑

K∈Th

hd−3
K ‖μ‖4L4(∂K)

) 1
4

≤ C
( ∑

K∈Th

h
2−d
2

K ‖v‖2∂K
) 1

2
( ∑

K∈Th

hK‖β‖4L4(∂K)

)1/4( ∑
K∈Th

h−1
K ‖μ‖2∂K

) 1
2

.

Note that in the last inequality, we used ‖μ‖L4(∂K) � h
1−d
4

K ‖μ‖∂K for all K ∈ Th
and that

∑
a2i ≤ (

∑
ai)

2. This completes the proof. �
A.2. A bound for the the discrete Lq-norm.

Proposition A.2. For k ≥ 0 and 1 ≤ q < ∞ for d = 2, 1 ≤ q ≤ 6 for d = 3, there
exist positive constants C and Cq such that

‖v‖Lq(Ω) ≤ C‖v‖1,h, ∀v ∈ V(h),

‖v‖Lq(Ω) ≤ Cq|||(v,μ)|||1,h, ∀(v,μ) ∈ V(h)×M 0
h ,

where Cq is independent of the mesh-size. Here V(h) := H1
0(Ω) +Vh.

Note that for q = 2, the first inequality is a discrete version of the Poincaré
inequality; see [2, 5].

Proof. The first inequality has been obtained in [22, Proposition 4.5]; see also
[16, Theorem 5.3]. The second inequality follows from the first and from

‖v‖1,h ≤ C|||(v,μ)|||1,h ∀(v,μ) ∈ V(h)×M 0
h .

This completes the proof. �
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A.3. Proof of the stability properties of the convective form.

A.3.1. Proof of Proposition 3.4. Since β ∈ V(h), after integrating by parts, we get

Oh(β; (u, û), (v,μ)) =(∇u, v⊗ β)Th
− 〈((u− û)⊗ β)n, v〉∂Th

+ 〈Sβ(u− û), v− μ〉∂Th
,

and so, we can write

Oh(β; (u, û), (v,μ))−Oh(γ; (u, û), (v,μ)) = O1 +O2 +O3,

where

O1 := (∇u, v⊗ (β − γ))Th
,

O2 :=− 〈((u− û)⊗ (β − γ))n, v〉∂Th
,

O3 := 〈(Sβ − Sγ)(u− û), v− μ〉∂Th
.

Let us estimate the first term O1. Applying the Cauchy-Schwarz inequality, we
get

O1 ≤ ‖β − γ‖L4(Th)‖u‖1,h‖v‖L4(Th),

≤ C‖β − γ‖L4(Th)‖u‖1,h‖v‖1,h, by the first inequality of Proposition A.2,

≤ C‖β − γ‖1,h|||(u, û)|||1,h|||(v,μ)|||1,h,

by the second inequality of Proposition A.2. Next, let us estimate O2. We have

O2 ≤C
( ∑

K∈Th

hK‖β − γ‖4L4(∂K)

) 1
4
( ∑

K∈Th

h−1
K ‖u− û‖2∂K

) 1
2
( ∑

K∈Th

hK‖v‖4L4(∂K)

) 1
4

≤C‖β − γ‖1,h|||(u, û)|||1,h|||(v,μ)|||1,h,

by [22, (7.7)] and the second inequality of Proposition A.2. It remains to bound
O3. Since, by definition, Sβ = max(β · n, 0) and the function a �→ max(a, 0) is
Lipschitz, we obtain by Lemma A.1, that

O3 ≤
( ∑
K∈Th

hK‖β − γ‖4L4(∂K)

) ( ∑
K∈Th

h−1
K ‖u− û‖2∂K

) 1
2
( ∑
K∈Th

h−1
K ‖v− μ‖2∂K

) 1
2

≤ C
( ∑
K∈Th

hK‖β − γ‖4L4(∂K)

)
|||(u, û)|||1,h|||(v,μ)|||1,h

≤ C ‖β − γ‖1,h |||(u, û)|||1,h|||(v,μ)|||1,h,

by [22, (7.7)] and the second inequality of Proposition A.2 again. This completes
the proof of Proposition 3.4.

A.3.2. Proof of the stability properties of Proposition 3.5. Let us prove the first
estimate. We have

Θ := Oh(β; (u, û), (v,μ))

=− (u⊗ β,∇v)Th
+ 〈û⊗ β + Sβ(u− û), v− μ〉∂Th

≤ ‖β‖L∞(Ω)

( ∑
K∈Th

‖u‖K ‖∇v‖K + h
1/2
K (‖û‖∂K + ‖u− û‖∂K)h

−1/2
K ‖v− μ‖∂K

)
,

and the result follows.
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Let us now prove the second estimate. We have

Θ := Oh(β; (u, û), (v,μ))−Oh(γ; (u, û), (v,μ))

=− (u⊗ (β − γ),∇v)Th
+ 〈û⊗ (β − γ) + (Sβ − Sγ)(u− û), v− μ〉∂Th

≤ |||(u, û)|||∞,h

( ∑
K∈Th

‖β − γ‖K ‖∇v‖K + h
1/2
K ‖β − γ‖∂K h

−1/2
K ‖v− μ‖∂K

)
,

and the result follows. This completes the proof of Proposition 3.5.

A.4. Properties of the convective velocity. Here, we prove Proposition 2.1.
The fact that P(uh, ûh) is well defined is a direct consequence of the fact that the
Raviart-Thomas projection is well defined; see [6]. Also since ûh is single-valued
along the interelement boundaries, the second equation defining P(uh, ûh), (1.3b),
immediately implies property (i). Property (iii) follows directly form property (ii).
Let us prove property (ii). If (uh, ûh) satisfies (1.2c), then, for all q ∈ Pk(K),

0 = −(uh,∇q)K + 〈ûh · n, q〉∂K = −(P(uh, ûh),∇q)K + 〈P(uh, ûh) · n, q〉∂K
= (∇ · P(uh, ûh), q)K

by the equations defining the convective velocity (1.3). This readily implies property
(ii).

To prove property (iv), we observe that the equations defining the convective
velocity, (1.3), imply that for any K ∈ Th, we have

(P(uh, ûh)− uh, v)K = 0 ∀v ∈ Pk−1(K),

〈(P(uh, ûh)− uh) · n, λ〉F = −〈(uh − ûh) · n, λ〉F ∀λ∈Pk(F ) for all faces F of K.

Since (P(uh, ûh)− uh)|K ∈ RTk(K), we have

‖P(uh, ûh)− uh‖K ≤ Ch
1/2
K ‖uh − ûh‖∂K ,

and property (iv) immediately follows by using standard inverse inequalities.
Finally, property (v) immediately follows by comparing the equations defining

the operator P, (1.3), with those defining the Raviart-Thomas projection, (2.1).
This concludes the proof of Proposition 2.1.

A.5. Properties of the auxiliary projection P . Let us recall the projection
P : H1(Th) → Vh [14, Section 6.1]. On each element K, Pw is defined as the
solution of

(Pw−w, v)K = 0 ∀v ∈ Pk−1(K),

〈(Pw−w) · n, v · n〉∂K = 0 ∀v ∈ Pk(K)⊥.

Here Pk(K)⊥ := {p ∈ Pk(K) : (p, q)K = 0, ∀q ∈ Pk−1(K)}. As shown in
[14, Section 6.1], this is a well-defined projection which coincides with the Raviart-
Thomas projection ΠRT, (2.1), whenever w is divergence free. Moreover,

(A.1) ‖Pw−w‖K + h
1/2
K ‖Pw−ΠMw‖∂K ≤ Chk+1

K |w|k+1,K ∀w ∈ Hk+1(K).
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A.6. Stability estimates of the Raviart-Thomas projection. In the following
result we gather some simple properties of the Raviart-Thomas projection.

Lemma A.3. We have

(i) |||(ΠRTu,ΠMu)|||1,h ≤ CHDG‖∇u‖L2(Ω) for any u ∈ H1(Ω).

(ii) ‖ΠRTu‖L∞(Ω) ≤ C∞
stab‖u‖L∞(Ω) for any u ∈ C0(Ω).

(iii) ‖ΠRTφ−ΠMφ‖∂K ≤
{
Ch

3/2
K ‖φ‖2,K if φ ∈ H2(K) and k ≥ 1,

Ch
1/2
K ‖φ‖1,K if φ ∈ H1(K).

Proof. Let us prove property (i). It is easy to see that (ΠG(∇u),ΠRTu,ΠMu)
satisfies the first and third equations defining the HDG methods, namely, (1.2a)
and (1.2c), respectively. Then, by Proposition 2.2, we have

|||(ΠRTu,ΠMu)|||1,h ≤ CHDG

(
‖ΠG(∇u)‖2Th

+
∑

K∈Th

h−1
K ‖(ΠRTu−ΠMu) · n‖2∂K

)1/2
= CHDG‖ΠG(∇u)‖Th

≤ CHDG‖∇u‖Th
,

due to the fact that (ΠRTu − ΠMu) · n|∂Th
= 0 and to the fact that ΠG is the

L2(Ω)-projection into Gh. This proves property (i).
Property (ii) follows by a straightforward scaling argument. It remains to prove

property (iii). We have

‖ΠRTφ−ΠMφ‖∂K ≤ ‖ΠRTφ− φ‖∂K + ‖φ−ΠMφ‖∂K
≤ Ch

−1/2
K ‖ΠRTφ− Pφ‖K + Ch

1/2
K ‖∇(ΠRTφ− Pφ)‖K + ‖ΠMφ− φ‖∂K

≤ Ch
3/2
K ‖φ‖2,K ,

by the approximation properties of the Raviart-Thomas projection [6]. The other
inequality can be shown similarly. This completes the proof. �
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