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DIMENSION OF MIXED SPLINES ON POLYTOPAL CELLS

MICHAEL DIPASQUALE

Abstract. The dimension of planar splines on polygonal subdivisions of de-
gree at most d is known to be a degree two polynomial for d � 0. For planar
Cr splines on triangulations this formula is due to Alfeld and Schumaker; the
formulas for planar splines with varying smoothness conditions across edges on
convex polygonal subdvisions are due to Geramita, McDonald, and Schenck.
In this paper we give a bound on how large d must be for the known polynomial
formulas to give the correct dimension of the spline space. Bounds are given
for central polytopal complexes in three dimensions, or polytopal cells, with
varying smoothness across two-dimensional faces. In the case of tetrahedral
cells with uniform smoothness r we show that the known polynomials give

the correct dimension for d ≥ 3r+ 2; previously Hong and separately Ibrahim
and Schumaker had shown that this bound holds for planar triangulations. All
bounds are derived using techniques from computational commutative algebra.

1. Introduction

Let P be a subdivision of a region in Rn by convex polytopes. Cr(P) denotes
the set of piecewise polynomial functions (splines) on P that are continuously dif-
ferentiable of order r. Splines are a fundamental tool in approximation theory
and numerical analysis [8]; more recently they have also appeared in a geometric
context, describing the equivariant cohomology ring of toric varieties [24]. Prac-
tical applications include surface modeling, computer-aided design, and computer
graphics [8].

One of the fundamental questions in spline theory is to determine the dimension
of the space Cr

d(P) of splines of degree at most d. In the bivariate, simplicial case,
these questions are studied by Alfeld and Schumaker in [2] and [3] using Bernstein-
Bezier methods. A signature result in [3] is a formula for dimCr

d(Δ) when d ≥ 3r+1
and Δ ⊂ R2 is a generic simplicial complex. For Δ ⊂ R2 simplicial and nongeneric,
Hong [17] and Ibrahim and Schumaker [18] derive a formula for dimCr

d(Δ) when
d ≥ 3r + 2 as a byproduct of constructing local bases for these spaces.

An algebraic approach to the dimension question was pioneered by Billera in [5]
using homological and commutative algebra. In [6], Billera and Rose show that

Cr
d(P) ∼= Cr(P̂)d, the dth graded piece of the module Cr(P̂) of splines on the cone

P̂ over P. The function dimR Cr(P̂)d is known as the Hilbert function of Cr(P̂) in
commutative algebra, and a standard result is that the values of the Hilbert function

Received by the editor November 8, 2014, and, in revised form, January 30, 2016, July 15,
2016, and September 2, 2016.

2010 Mathematics Subject Classification. Primary 13P25; Secondary 13P20, 13D02.
Key words and phrases. Polyhedral spline, polytopal complex, Castelnuovo-Mumford regular-

ity, homological algebra.
The author was supported by National Science Foundation grant DMS 0838434

“EMSW21MCTP: Research Experience for Graduate Students”.

c©2017 American Mathematical Society

905

http://www.ams.org/mcom/
http://dx.doi.org/10.1090/mcom/3224


906 MICHAEL DIPASQUALE

Table 1. Known bounds on the postulation number for planar splines

Analytic Methods
Bound Context Computed by

℘(Cr(Δ̂)) ≤ 3r generic simplicial Δ ⊂ R2 Alfeld-Schumaker [3]

℘(Cr(Δ̂)) ≤ 3r + 1 all simplicial Δ ⊂ R2 Hong [17]
Ibrahim-Schumaker [18]

℘(C1(Δ̂)) ≤ 3 all simplicial Δ ⊂ R2 Alfeld-Piper-Schumaker [1]

Homological Methods
Bound Context Computed by

℘(Cr(Δ̂)) ≤ 4r all simplicial Δ ⊂ R2 Mourrain-Villamizar [23]

℘(C1(Δ̂)) ≤ 1 generic simplicial Δ ⊂ R2 Billera [5]

eventually agree with theHilbert polynomial HP (Cr(P̂), d) of Cr(P̂). An important

invariant of Cr(P̂) is the postulation number ℘(Cr(P̂)), which is the largest integer d

so thatHP (Cr(P̂), d) �= dimCr(P̂)d. In this terminology the Alfeld and Schumaker

result above could be viewed as a computation of HP (Cr(Δ̂), d) plus the bound

℘(Cr(Δ̂)) ≤ 3r.
The goal of this paper is to provide upper bounds on the postulation number

℘(Cα(P)) where Cα(P) is the module of mixed splines and P is a polytopal cell. By
a polytopal cell we mean a collection of (three-dimensional) polytopes P, all sharing
a common vertex, so that any pair of polytopes in P meeting nontrivially must meet
in a vertex, edge or face of both (the precise definition will be given in the next
section). We denote the set of (two-dimensional) faces of polytopes in P by P2.
The module of mixed splines Cα(P) on P is the module of splines in which different
smoothness conditions are imposed across faces, encoded by a map α : P2 → Z≥−1,
whose values we will refer to as the smoothness parameters associated to P. Note
that a planar subdivision P ⊂ R2 consisting of convex polygons becomes a polytopal

cell via the coning operation P → P̂ ⊂ R3 (this is explained in detail in Section 2).
Hence our results specialize to polygonal subdivisions and triangulations in R2.

The main reason for bounding ℘(Cα(P)), where P is a polytopal cell, is that
the Hilbert polynomial of Cα(P) has been computed in situations where there are
no known bounds on ℘(Cα(P)), rendering these formulas impractical. Currently,
bounds which do not make heavy restrictions on the complex P are known only in
the simplicial case. These bounds are recorded in Table 1. For particular types of
polytopal cells, better and sometimes exact bounds are known on the postulation
number. In contrast, the Hilbert polynomial HP (Cα(P), d) has been computed
for all polytopal cells. This is done in the simplicial case with mixed smoothness
by Schenck and Geramita [14], in the polytopal case with uniform smoothness by
Schenck and McDonald [20], and in the polytopal case with mixed smoothness and
boundary conditions in [10]. In this paper we provide the first bound on ℘(Cα(P))
valid for any polytopal cell. Our main result is:

Theorem 6.2. Let P ⊂ R3 be a polytopal cell, and let P◦
2 be the interior faces of

P. Set

e(P) = max
τ∈P◦

2

{
∑

γ∈(st(τ))2

(α(γ) + 1)},
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where st(τ ) denotes the union of two polytopes sharing the face τ and (st(τ ))2 de-
notes the two-dimensional faces of st(τ ). Then ℘(Cα(P)) ≤ e(P)−3. In particular,
HP (Cα(P), d) = dimR Cα(P)d for d ≥ e(P)− 2.

From an algebraic perspective, another reason for bounding ℘(Cα(P)) is that
almost all existing bounds, including most in Table 1, have been computed using
analytic techniques. There are a few instances where algebraic techniques are ap-

plied to bound ℘(Cα(P)). In [5], Billera proves ℘(C1(Δ̂)) ≤ 1 for generic planar
triangulations (this result relies on a computation of Whiteley [31]). The most
general bound produced by homological techniques to date is by Mourrain and
Villamizar [23]; building on work of Schenck and Stillman [27] they prove that

℘(Cr(Δ̂)) ≤ 4r for Δ a planar simplicial complex, recovering an earlier result of
Alfeld and Schumaker [2]. Our second result is the following.

Theorem 7.2. Let Δ ⊂ R3 be a simplicial cell. Let α : Δ2 → Z≥−1 satisfy
α(τ ) = r for all interior faces and α(τ ) = −1 or α(τ ) = r for boundary faces. Then
℘(Cα(Δ)) ≤ 3r + 1. In particular, HP (Cα(Δ), d) = dimR Cr(Δ)d for d ≥ 3r + 2.

This result was originally proved for planar splines as a byproduct of constructing
local bases by Hong [17] and Ibrahim and Schumaker [18], and is the best bound
valid for all planar triangulations recorded in Table 1. We will show that this bound
also holds for simplicial cells, even if uniform vanishing of order r is imposed along
some or all faces in the boundary of Δ.

A key tool we use to prove these results is the Castelnuovo-Mumford regularity of
Cα(P), denoted reg(Cα(P)). The relationship between reg(Cα(P)) and ℘(Cα(P))
is discussed in detail in §3. This invariant is also used in the context of splines
by Schenck and Stiller in [28]. Our particular way of using regularity is inspired
by an observation used in the Gruson-Lazarsfeld-Peskine theorem, bounding the
regularity of curves in projective space. In the context of splines this observation
is roughly that, if we are lucky, we can bound reg(Cα(P)) by the regularity of
a ‘bad’ approximation. This statement is made precise in Proposition A.7 and
Theorem 4.7. We take as our approximation the submodule LSα,1(P) ⊂ Cα(P)
consisting of splines F =

∑
τ Fτ which may be written as a sum of splines Fτ which

vanish outside the union two adjacent polytopes meeting along the face τ . In a
sense, this is an algebraic analogue of locally-supported bases used in [17, 18].

The paper is organized as follows. In §2 we give some background on the
spline module Cα(P), in particular, the algebraic approach pioneered by Billera [5]
and Billera and Rose [6]. In §3 we give a brief overview of some constructions
from graded commutative algebra, in particular syzygy modules and Castelnuovo-
Mumford regularity. We make precise the relationship between regularity and pos-
tulation number. Then we begin the process of proving Theorem 6.2. This is done
in three main reductions. First, in §4, we introduce the submodule LSα,1(P) of
Cα(P), which we use to approximate Cα(P). We then show that the regularity
of Cα(P), P a polytopal cell, may be bounded by the regularity of the approx-
imation LSα,1(P) (Theorem 4.7). Second, in §5, we show that the regularity of
LSα,1(P) (hence of Cα(P)) can be bounded by the maximum regularity of its sum-
mands (Theorem 5.5), these being the submodules Cα

st(τ)(P) of splines vanishing

outside the union of two polytopes sharing the face τ . Finally, in §6 we bound
the regularity of Cα

st(τ)(P) and deduce Theorem 6.2. We devote §7 to the proof of

Theorem 7.2, which involves a tighter regularity bound for Cα
st(τ)(Δ) in the case of
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Figure 1. The polygonal complex in Example 1.1

uniform smoothness on simplicial cells. This proof is more technical than the proof
of Theorem 6.2. We close the paper in §§8 and 9 with examples and conjectures.

1.1. Illustrating Theorem 6.2 and Theorem 7.2. Let P ⊂ R2 be a subdivision
of a simply connected polygonal domain by convex polygons. The most standard
assignment of smoothness parameters is to set α(τ ) = r for every interior edge and

α(τ ) = −1 for every boundary edge. The module of splines on the cone P̂ ⊂ R3

over P with these smoothness parameters is denoted Cr(P̂). By Corollary 3.14 of

[20], the Hilbert polynomial of Cr(P̂) is

(1) HP (Cr(P̂), d) =
f2
2
d2 +

3f2 − 2(r + 1)f0
1

2
d+ f2 +

((
r

2

)
− 1

)
f0
1 +

∑
j

cj ,

where

• f0, f1, f2 denote, respectively, the number of vertices, edges, and polygons
of P,

• f◦
0 , f

◦
1 denote, respectively, the number of interior vertices and edges of P,

• r is the smoothness parameter, and
• the constants cj record the dimension of certain vector spaces coming from
ideals of powers of linear forms.

Example 1.1. The polygonal complex Q in Figure 1 has f2 = 4, f0
1 = 6, f0

3 = 3.
It is shown in §4 of [20] that there are four constants cj in the formula (1), and
they are all equal to the constant(

r + 2

2

)
+

⌈
r + 1

2

⌉(
r −

⌈
r + 1

2

⌉)
.

Hence by equation (1),
(2)

HP (Cr(Q̂), d) = 2d2 − 6rd+6

(
r

2

)
− 2+4

((
r + 2

2

)
+

⌈
r + 1

2

⌉(
r −

⌈
r + 1

2

⌉))
.

By Theorem 6.2, ℘(Cr(Q̂)) ≤ e(Q)− 3, where

e(Q) = max
τ∈P◦

2

{
∑

γ∈(st(τ))2

(α(γ) + 1)}.

The union of any two polygons of Q meeting along an interior edge have five

edges which are interior. So e(Q) = 5(r + 1) and the Hilbert function dimCr(Q̂)d
agrees with the Hilbert polynomial HP (Cr(Q̂), d) above for d ≥ 5(r + 1) − 2, so
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Figure 2. Centrally triangulated octahedron in Example 1.2

℘(Cr(Q̂)) ≤ 5(r + 1) − 1. Computations in Macaulay2 [15] suggest that there is

agreement for d ≥ 2(r + 1), equivalently ℘(Cr(Q̂)) ≤ 2r + 1. We see the same
behavior in Example 8.3 in §8, indicating that there is room for improvement in
Theorem 6.2.

Example 1.2. Consider a regular octahedron Δ ⊂ R3 triangulated by placing a
centrally symmetric vertex, whose interior faces are shown in Figure 2. This is the
natural extension of the well-known Morgan-Scott triangulation to the context of
simplicial cells. In [25, Example 5.2], Schenck shows that Cr(Δ) is free as a module
over the polynomial ring R[x, y, z] in three variables, with one generator in degree
zero, three generators in degree r + 1, three generators in degree 2(r + 1), and one
generator in degree 3(r + 1). It follows that

dimCr(Δ)d =

(
d+ 2

2

)
+ 3

(
d+ 1− r

2

)
+ 3

(
d− 2r

2

)
+

(
d− 1− 3r

2

)
,

where a binomial coefficient appearing in the above expression is interpreted as(
A
B

)
= 0 if A < 0. Expanding these binomial coefficients as polynomials in d

yields the Hilbert polynomial HP (Cr(Δ), d) = 4d2 − 12rd + 12r2 + 6r + 2. In-
spection yields that dimCr(Δ)d = HP (Cr(Δ), d) as long as d ≥ 3r + 1, so
℘(Cr(Δ)) = 3r. This is only one less than the predicted bound of Theorem 7.2

(in fact, since Cr(Δ̂) is free, we can adjust the bound predicted by Theorem 7.2
to be exact). Theorem 7.2 guarantees that, even if we perturb the vertices of
Δ, dimCr(Δ)d = HP (Cr(Δ), d) for d ≥ 3r + 2. Computations indicate that for
most perturbations, dimCr(Δ)d = HP (Cr(Δ), d) for d ≥ 2r + 1, equivalently
℘(Cr(Δ)) ≤ 2r. This generic behavior is akin to that of the two-dimensional
Morgan-Scott triangulation. The centrally triangulated regular octahedron has
additional symmetry that cannot be achieved by the Morgan-Scott triangulation,
hence the jump in postulation number to 3r from the generic 2r. This example
shows that, even though Theorem 7.2 is tight for certain simplicial cells, there may
be better bounds available for generic perturbations.

2. Preliminary material

We begin with some generalities on polytopal complexes and splines. By a
polygon in R2 we mean the convex hull of a set of points in R2 not contained in a
line. By a polytope in R3 we mean the convex hull of a set of points in R3 which
is not contained in any plane. Denote by R the polynomial ring R[x, y] in two
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variables and by S the polynomial ring R[x, y, z] in three variables. Given a linear
form α ∈ S and a real number a, set

Hα=a := {(x, y, z) ∈ R3 | α(x, y, z) = a},
Hα≥a := {(x, y, z) ∈ R3 | α(x, y, z) ≥ a}.

Let σ be a polytope and Hα≥a a half-space containing σ so that γ = Hα=a ∩ σ is
nonempty. If γ consists of a single point, it is called a vertex of σ. If the smallest
linear space containing γ is a line, γ is called an edge of σ. Otherwise the smallest
linear space containing γ is Hα=a and γ is called a face of σ. When we refer to the
boundary of σ we will mean its set of (two-dimensional) faces, denoted ∂σ. If σ is
a polygon in R2, define its vertices and edges the same way, and denote by ∂σ the
set of edges of σ.

A polytopal complex is a finite set of polytopes P = {σ1, . . . , σk} in R3 satisfying
the property that for any pair σi, σj ∈ P meeting nontrivially, the intersection
σi ∩ σj is a vertex, edge, or face of both σi and σj . The book of Ziegler [32] is an
excellent reference for polytopes and polytopal complexes; our terminology differs
slightly from his and is more restrictive to favor geometric intuition relevant to our
situation. If P consists entirely of tetrahedra, then P is a simplicial complex and
will be denoted Δ. Likewise, a polygonal complex is a finite set P of polygons in
R2 so that any pair of polygons in P intersecting nontrivially meet in a vertex or
edge. If the polygons of P are all triangles, we call P a triangulation and denote it
Δ. Whether P is a polygonal or polytopal complex will be evident from context.

We make the following definitions for polytopal complexes; they carry over to
polygonal complexes in the obvious way. If all the polytopes of P share a common
vertex then we say P is central. Without loss of generality, we will assume that
this common vertex is the origin in R3. By |P| we denote the underlying space of
P. A vertex, edge, or face of P is, respectively, a vertex, edge, or face of one of the
polytopes of P. We denote the set of vertices, edges, and faces of P by P0,P1,P2,
respectively. We call a face of P interior if it is contained in two polytopes of P
(clearly it cannot be contained in more than two); otherwise it is a boundary face of
P. Denote the set of boundary faces of P by ∂P. A vertex or edge of P is interior
if every face containing it is interior. We let P◦

0 ,P◦
1 ,P◦

2 denote the set of interior
vertices, edges, and faces of P, respectively. Furthermore, we set fi = #Pi and
f◦
i = #P◦

i for i = 0, 1, 2.
Given a polytopal complex P and a vertex, edge, or face γ of P, the star of γ

in P, denoted stP(γ), is the polytopal complex stP(γ) := {σ ∈ P | γ ∈ σ}. If the
complex P is understood we will write st(γ).

We define an abstract graph G(P) with a vertex corresponding to each polytope
of P; two vertices are joined by an edge if and only if the corresponding polytopes σ
and σ′ share a common face. We say that P is hereditary if G(stP(γ)) is connected
for every vertex and edge γ of P. An easy example of a polytopal complex which
is not hereditary is two polytopes meeting only at a single vertex (or along a single
edge). By a polytopal cell we mean a central, hereditary polytopal complex.

We will frequently use the following construction of a polytopal cell. Let i : R2 →
R3 be the map i(x, y) = (x, y, 1). For a polygon σ, denote by σ̂ the convex hull of
the origin in R3 and i(σ). Now suppose P is a polygonal complex. Then define the

cone P̂ over P to be the set of polytopes {σ̂ | σ ∈ P} (see Figure 3). This is clearly
a central polytopal complex. Suppose furthermore that the polygonal complex P
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Figure 3. A polygonal complex P (left) and its cone P̂ (right)

is hereditary (in the planar case, hereditary simply means that there is no ‘pinch

point’). Then clearly P̂ is a polytopal cell.
We now recall the definition of the module of splines on a polytopal complex;

again the obvious alterations are made to define splines over polygonal complexes.
For a set U ⊂ R3, let Cr(U) denote the set of functions F : U → R continuously
differentiable of order r. For a function F : |P| → R and a polytope σ ∈ P,
let Fσ denote the restriction of F to σ. The set Cr(P) of piecewise polynomials
continuously differentiable of order r on P is defined by

Cr(P) := {F ∈ Cr(|P|) | Fσ ∈ S = R[x, y, z] for every σ ∈ P}.

The polynomial ring S includes in Cr(P) as globally polynomial functions (these
are the trivial splines); this makes Cr(P) an S-module via pointwise multiplication.
Henceforth we will refer to Cr(P) as an S-module (or simply a module, since the
S-module structure of Cr(P) is the only structure we consider).

If, in addition, P⊂R3 is a hereditary polytopal complex, the global Cr condition
can be expressed as a differentiability condition across interior faces as follows
(see [6] for a proof). For a face τ ∈ P2, let lτ ∈ S denote a choice of affine linear
form (unique up to scaling) which vanishes on τ . Then a function F : |P| → R which
restricts to a polynomial on each polytope is in Cr(P) if and only if lr+1

τ |(Fσ1
−Fσ2

)
for every pair of polytopes σ1, σ2 which intersect in the face τ .

In [14], Schenck and Geramita study the dimension of mixed spline spaces, in
which the order of differentiability across faces varies. Specifically, let α : P2 →
Z≥−1 be a map yielding a list of smoothness parameters (α(τ ) | τ ∈ P2). We require
that α(τ ) ≥ 0 for τ ∈ P◦

2 and α(τ ) ≥ −1 for τ ∈ ∂P.
The module Cα(P) of mixed splines on P is defined as the set of splines F ∈

C0(P) satisfying

• l
α(τ)+1
τ |(Fσ1

− Fσ2
) for τ ∈ P◦

2 with σ1 ∩ σ2 = τ ,

• l
α(τ)+1
τ |Fσ for τ ∈ ∂P with τ ∈ ∂σ.

For hereditary polytopal complexes, the usual ring of splines Cr(P) is recovered by
setting α(τ ) = r for every τ ∈ P◦

2 and α(τ ) = −1 for every τ ∈ P2. The following
variant of [6, Proposition 4.3] encodes the mixed spline conditions as a matrix.
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Lemma 2.1. If P is hereditary and α = (α(τ ) | τ ∈ P2), then Cα(P) fits into the
exact sequence

0 → Cα(P) → Sf3+f2
φ−→ Sf2 → C → 0,

where φ =

⎛⎜⎜⎝
l
α(τ1)+1
τ1

δ3
. . .

l
α(τk)+1
τk

⎞⎟⎟⎠ .

Here k = f2, C = coker φ and δ3 is the f2 × f3 matrix of ±1’s coming from the
spline conditions.

We now introduce two vector spaces of splines which will be our main objects
of study. Let S≤d be the vector space of polynomials f ∈ S = R[x, y, z] of total
degree ≤ d and let Sd be the vector space of homogeneous polynomials of degree d.
For P ⊂ R3 we have a filtration of Cα(P) by R-vector spaces:

Cα
d (P) := {F ∈ Cα(P) | Fσ ∈ S≤d for all polytopes σ ∈ P}.

For central polytopal complexes we always assign α(τ ) = −1 for every two-
dimensional face τ ∈ P2 which does not contain the origin. Then the diagonal
portion of the matrix in Lemma 2.1 consists of constants and homogeneous poly-
nomials of degree α(τ ) + 1. Consider the vector spaces

Cα(P)d := {F ∈ Cα(P) | Fσ ∈ Sd for all polytopes σ ∈ P2}.

If P is central, then Cα(P) ∼=
⊕

d≥0 C
α(P)d. In other words, every spline F ∈

Cα(P) may be uniquely written as a sum F =
∑

d≥0 Fd where Fd ∈ Cα(P)d. We

say Cα(P) is a graded S-module. We will return to this notion in §3.
Now suppose P is a polygonal complex in R2, with smoothness parameters α

now attached to edges of P. We extend these to smoothness parameters α̂ on P̂ by
assigning

• α̂(τ ′) = α(τ ) for τ ′ ∈ P̂2 which is a cone over τ ∈ P1 and

• α̂(τ ′) = −1 for τ ′ ∈ P̂2 so that (0, 0, 0) /∈ τ ′.

Since this extension is natural we will abuse notation and drop the hat on α, de-

noting Cα̂(P̂) by Cα(P̂). In practice one computes the module Cα(P̂) by replacing
the polynomial ring R = R[x, y] by S = R[x, y, z] in Lemma 2.1 and homogenizing
the entries of the matrix φ with respect to z. The kernel of the homogenized matrix

is Cα(P̂). The following lemma is proved the same way as Theorem 2.6 of [6].

Lemma 2.2. Let P ⊂ R2 be a polygonal complex with smoothness parameters α.

Then Cα
d (P) ∼= Cα(P̂)d as R-vector spaces.

Remark 2.3. By Lemma 2.2, if P⊂R2 is a hereditary polygonal complex, dimCα
d (P)

= dimCα(P̂)d, hence the study of dimension formulas for planar splines is sub-
sumed in the study of dimension formulas for splines on polytopal cells.

For the remainder of the paper we will assume that all polytopal complexes are
polytopal cells. Moreover, whenever we refer to computing splines over a (hered-
itary) polygonal complex P, we assume that we are considering splines on the

polytopal cell P̂.
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3. Syzygies, resolutions, and regularity

In this section we briefly summarize some commutative algebra with the aim
of introducing the notion of Castelnuovo-Mumford regularity. This concept is the
fundamental tool we use to study when the function dimCr

d(P) starts agreeing with
the known polynomial functions in d. Along the way, we introduce syzygy modules
and their natural grading. Syzygy modules are central both to the definition of
Castelnuovo-Mumford regularity and to many of our later arguments. The first
chapter of [12] is an excellent introduction to the approach we take here.

Let M be a finitely generated positively graded module over the polynomial ring
S = R[x, y, z]. The module M is finitely generated if there is a finite set of elements

m1, . . . ,mk ∈ M so that every element m ∈ M can be written as m =
∑k

i=1 fimi

for some choice of polynomials f1, . . . , fk. The module M is positively graded
if there is a decomposition M =

⊕
d≥0 Md, where Md is an R-vector space for

every d. If M is finitely generated, then Md is finite dimensional for every d. If
P ⊂ R3 is a polytopal cell, the module Cr(P) is graded by Cr(P) =

⊕
d≥0 C

r(P)d,

where Cr(P)d is the space of splines of degree exactly d on P. Moreover, Cr(P) is
always finitely generated as an S-module. Theoretically, this is because Cr(P) is a
submodule of the finite rank free module Sf3 , so it is Noetherian. Computationally,
this is a simple consequence of Schreyer’s observation that Buchberger’s algorithm
provides a finite generating set for the kernel of any matrix like the matrix in
Lemma 2.1 (see [11, §15.5]). Hence, Cr(P)d is finite dimensional for any d ≥ 0.

The Hilbert function of a finitely generated graded S-module M is the function
dimMd. A standard result from commutative algebra states that for d 
 0, dimMd

agrees with a polynomial function HP (M,d), called the Hilbert polynomial of M .
As we noted in the introduction, the largest integer d for which dimMd �= HP (M,d)
is called the postulation number of M , which we denote by ℘(M). The Krull
dimension of a graded module M is defined by dim(M) = deg(HP (M,d)) + 1;
this is a way of measuring the size of M . For instance, the Krull dimension of the
polynomial ring S = R[x, y, z] is three, the number of variables. The codimension of
M , denoted codim(M), is defined by codim(M) = dim(S)−dim(M) = 3−dim(M).

We now recall the notion of a syzygy module. Let N be a row vector with entries
m1, . . . ,mk ∈ M , where M is a graded S-module. Take formal basis elements

e1, . . . , ek corresponding to m1, . . . ,mk and let
⊕k

i=1 Sei be the free S module on
this basis. The module of syzygies (or relations) on the entries of N , denoted
syz(N), is defined as

syz(N) = ker

(
k⊕

i=1

Sei
φ−→ M

)
,

where φ(
∑k

i=1 fiei) =
∑

fimi. If the entries of N are homogeneous (that is, each
mi ∈ Mai

for some integer ai), one can make φ a degree-preserving map (and thus
syz(N) a graded S-module) by stipulating that deg(ei) = deg(mi) = ai. We denote
Sei using the shorthand S(−ai) to indicate that this is a copy of S with the unit
in degree ai. In other words, (Sei)d = S(−ai)d ∼= Sd−ai

.
If M is a graded S-module, a set of elements {m1, . . . ,mk0

} of M with degrees
a0,1, . . . , a0,k0

(the reason for two subscripts will soon be evident) is called aminimal
generating set for M if no proper subset of {m1, . . . ,mk0

} generates M as an S-
module. This is equivalent to requiring that no mi can be written as a polynomial
combination of {ms|s �= i}. If the entries of a row vector N are a set of minimal
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generators for the module M , then we denote syz(N) by syz(M); this is the module
of syzygies on M . The S-module M is free if there are no relations on a minimal
generating set; in other words syz(M) = 0.

Remark 3.1. As its name suggests, different choices of a minimal generating set give
rise to isomorphic syzygy modules, so syz(M) is well defined up to isomorphism.
In particular the degrees of the generators in a minimal generating set for M is
invariant, even if the generators themselves are not.

Put syz1(M) = syz(M). For n > 1, the nth syzygy module of M is induc-
tively defined as the module syzn(M) = syz(syzn−1(M)). The first index δ so that
syzδ(M) is free is called the projective dimension of M , which we denote by pd(M).
Since we are working over a polynomial ring in three variables, a famous result of
Hilbert, known as the Hilbert syzygy theorem, states that pd(M) ≤ 3. Suppose
that syzi(M) is minimally generated in degrees {ai,0, . . . , ai,ki

}. It is standard prac-
tice to encode all of the syzygy modules of M at once in the minimal free resolution
of M , which is an exact complex

F• : 0 → Fδ
φδ−→ Fr−1

φr−1−−−→ · · · φ1−→ F0,

where δ = pd(M), coker(φ0) = M , im(φi) = syzi(M), and Fi
∼=

⊕
j

S(−ai,j) for

i = 1, . . . , δ. We now come to the main concept.

Definition 3.2. Let M be a graded S-module and suppose that syzi(M) is min-
imally generated in degrees {ai,0, . . . , ai,ki

}. The Castelnuovo-Mumford regularity
of M , denoted reg(M), is defined by

reg(M) = max
i,j

{ai,j − i}.

Remark 3.3. The degrees of the minimal generators of M are the numbers a0,j
which appear in the summands S(−a0,j) of F0. According to Definition 3.2, reg(M)
bounds the minimal degree of generators of M as an S-module. If M is a free S-
module, i.e., M ∼=

⊕
j S(−a0,j), then reg(M) = maxj{a0,j}, the maximum degree

of a generator of M .

Theorem 3.4 ([12, Theorem 4.2]). Let M be a finitely generated graded module
over S = R[x, y, z]. Then dimMd = HP (M,d) for d ≥ reg(M) + pd(M) − 2.
Equivalently, ℘(M) ≤ reg(M) + pd(M)− 3.

Remark 3.5. Let P ⊂ R3 be a polytopal cell. In the remainder of the paper, we
focus our efforts on obtaining upper bounds on the regularity of Cα(P). Due to
Theorem 3.4, these bounds translate into upper bounds on the postulation number
of Cα(P). We will use a number of other results concerning regularity; for the
convenience of the reader these are collected in Appendix A.

4. Regularity of splines on cells: the first reduction

Now we return to the setting of splines. For P a polytopal cell, our goal in this
section is to show that the regularity of Cα(P) is bounded by the regularity of
certain ‘approximations’ to Cα(P), using Proposition A.7.

The approximations we use are essentially submodules of splines with ‘local
support.’ For Q a polytope σ or the union st(τ ) of two polytopes meeting along
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the face τ , put

Λ(Q) =
∏

τ∈∂Q
lα(τ)+1
τ ∈ S and λ(Q) = deg(Λ(Q)) =

∑
τ∈∂Q

(α(τ ) + 1).

If σ is a polytope of P, denote by Cα
σ (P) the submodule of Cα(P) consisting of

splines F which vanish outside of σ. Such splines are characterized by Fσ being a
polynomial multiple of Λ(σ). Hence Cα

σ (P) ∼= 〈Λ(σ)〉 ⊂ S, the principal ideal in
S generated by the polynomial Λ(σ). Likewise, if τ is an interior face of P denote
by Cα

st(τ)(P) the submodule of splines which vanish outside the union of the two

polytopes which meet along τ . Define the two ‘locally-supported’ submodules

LSα,0(P) :=
∑
σ∈P

Cα
σ (P) ∼=

⊕
σ∈P

〈Λ(σ)〉 and LSα,1(P) :=
∑
τ∈P◦

2

Cα
st(τ)(P).

Remark 4.1. The isomorphism LSα,0(P) ∼=
⊕

〈Λ(σ)〉 follows from the isomorphisms
Cα

σ (P) ∼= 〈Λ(σ)〉 and the fact that the summands Cα
σ (P) have disjoint support

inside of Cα(P).

Remark 4.2. Since Cα(P) is graded module over S = R[x, y, z], so are the sub-
modules Cα

Q(P) for Q = σ or Q = st(τ ). Hence the submodules LSα,0(P) and

LSα,1(P) are graded S-modules as well.

Remark 4.3. The modules LSα,0(P) and LSα,1(P) are introduced as part of a
larger family of approximations to Cα(P) in [9]. The definition given here differs
slightly from that given in [9], nevertheless it is equivalent.

Example 4.4. Consider the polygonal complex Q from Example 1.1. A spline

F ∈ LSα,1(Q̂) is a sum of splines F =
∑

τ∈Q◦
1
fτ so that the support of fτ is

contained in the union of two polytopes σ1, σ2 which meet along τ̂ . In other words,
the support of fτ is contained in (the cone over) one of the six shaded regions in
Figure 4. The order of vanishing of fτ along the boundary of st(τ ) is prescribed by
the smoothness parameters α.

Figure 4. Stars of edges for the complex Q in Example 4.4

The crucial property of the submodules LSα,k(P), explaining in what sense these
approximate Cα(P), is provided by the following result. Recall that the codimen-
sion of an S = R[x, y, z]-module M , denoted codim(M), is dim(S) − dim(M) =
3 − dim(M), where the dimension considered is the Krull dimension (see §3). We
provide a proof of the following result for k = 0, 1.
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Proposition 4.5 ([9, Theorem 4.3]). Let P be a polytopal cell. Then in the tauto-
logical short exact sequence of S-modules

0 → LSα,k(P)
i−→ Cα(P) → C → 0,

where C is the cokernel of the natural inclusion i, the codimension of C is at least
k + 1.

Proof of Proposition 4.5 for k = 0, 1. The key point of the proof is that codim(C)≥
k + 1 if and only if CP = 0 for all primes P of codimension at most k, where CP

is the localization of C at the prime P (see [11, Chapter 2]). To show this we will
localize the short exact sequence

0 → LSα,k(P)
i−→ Cα(P) → C → 0

at primes P ⊂ S with codimension at most k, and prove that the localized map iP
is an isomorphism. For k = 0, the only prime of codimension 0 is the zero ideal.
Localizing at the zero ideal is the same as tensoring with the fraction field Q(S) of S
(this is the field of rational functions in three variables). By definition of LSα,0(P),
it is clear that

LSα,0(P)⊗S Q(S) ∼=
(⊕

σ∈P
〈Λ(σ)〉

)
⊗S Q(S) ∼= Q(S)f3 .

From the containment LSα,0(P) ⊂ Cα(P) ⊂ Sf3 and the fact that Sf3 ⊗S Q(S) ∼=
Q(S)f3 , we have that Cα(P) ⊗S Q(S) ∼= Q(S)f3 ∼= LSα,0(P) ⊗S Q(S). Hence the
localized map iP is an isomorphism in the case k = 0.

For k = 1, we must show that the localized inclusion iP is an isomorphism
for prime ideals P ⊂ S of codimension one and zero. If P has codimension zero
(i.e., P = 0), then the containment LSα,0(P) ⊂ LSα,1(P) shows LSα,1(P) ⊗S

Q(S) ∼= Q(S)f3 ∼= Cα(P) ⊗S Q(S) as before. Now suppose P has codimension
one. Codimension one ideals of S are necessarily principal, so P = 〈f〉 for some

irreducible polynomial f ∈ S. If f �= lτ for some τ ∈ P2, then Cα(P)P = Sfn
P =

LSα,1(P)P (all gluing conditions in the matrix from Lemma 2.1 are inverted).
Otherwise, P = 〈lτ 〉 and only gluing conditions along edges whose affine span
contains τ are retained, yielding

Cα(P)P ∼= Sh
P ⊕

⊕
τ⊂aff(ψ)

Cα
st(ψ)(P)P ,

where in the rightmost direct sum ψ runs across faces of P having the same affine
span as τ and h is the number of polytopes having no face whose affine span contains
τ . Localizing LSα,1(P) at P yields the same result, so we are done. �

Before proving the main result of the section, we need the following observation
in order to apply Proposition A.7.

Lemma 4.6. [7, Proposition 3.4] If P ⊂ R3 is a polytopal cell, then

(1) pd(Cα(P)) ≤ 1,
(2) ℘(Cα(P)) ≤ reg(Cα(P))− 2.

Proof. It follows from Lemma 2.1 that Cα(P) is the kernel of a map φ between
free S-modules. This means it can be viewed as the second syzygy of coker(φ).
By the Hilbert syzygy theorem, the S = R[x, y, z]-module coker(φ) has projective
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dimension at most three. Since Cα(P) is a second syzygy module, pd(Cα(P)) ≤
3− 2 = 1. Part (2) follows from (1) and Theorem 3.4. �

Theorem 4.7. Let P ⊂ R3 be a polytopal cell. Then

(1) reg(Cα(P)) ≤ reg(LSα,1(P)),
(2) If Cα(P) is free, then reg(Cα(P)) ≤ reg(LSα,0(P)).

Proof. (1) By Lemma 4.6, pd(Cα(P)) ≤ 1. By Proposition 4.5, the cokernel of the
inclusion LSα,1(P) ↪→ Cα(P) has codimension at least two. The result follows from
Proposition A.7. (2) If Cα(P) is free, then pd(Cα(P)) = 0. By Proposition 4.5, the
cokernel of the inclusion LSα,1(P) ↪→ Cα(P) has codimension at least one. The
result follows again from Proposition A.7. �

For the following corollary, recall λ(σ) =
∑

τ∈∂σ(α(τ ) + 1).

Corollary 4.8. Let P ⊂ R3 be a polytopal cell and suppose that Cα(P) is free. Set
f(P) = max{λ(σ) | σ ∈ P}. Then Cα(P) is generated in degrees at most f(P).

Proof. The maximum degree of a generator of Cα(P) is the regularity of Cα(P) (see
Remark 3.3), so we need to show reg(Cα(P)) ≤ f(P). The module Cα(P) is free if
and only if pd(Cα(P)) = 0. By Theorem 4.7, reg(Cα(P)) ≤ reg(LSα,0(P)). By defi-
nition, LSα,0 ∼=

⊕
σ∈P〈Λ(σ)〉. The principal ideal 〈Λ(σ)〉 is isomorphic, as a graded

S-module, to S(−λ(σ)). Since the regularity of a direct sum of modules is the max-
imum of the regularity of the summands, reg(LSα,0(P)) = max{reg(Cα

σ (P)) | σ ∈
P} = max{λ(σ) | σ ∈ P} = f(P). �

Remark 4.9. The centrally triangulated octahedron in Example 1.2 is a rare in-
stance when Corollary 4.8 is exact. In fact, the bound in Corollary 4.8 is typically

not tight. For instance, if Δ ⊂ R2 is a triangulation so that Cr(Δ̂) is free, it follows

from work of Schenck and Stillman [27] that reg(Cr(Δ̂)) ≤ 2(r+1). Corollary 4.8,

on the other hand, only implies that Cr(Δ̂) is generated in degrees at most 3(r+1).

5. Regularity of splines on cells: The second reduction

Let P ⊂ R3 be a polytopal cell. The goal in this section is to obtain a bound on
the regularity of LSα,1(P). To do that, we find an exact chain complex

0 → Cn → Cn−1 → · · · → C2 → C1 → LSα,1(P) → 0

of modules that will allow us to bound the regularity of M using Lemma A.4. The
length of the chain complex is controlled by the maximal number of interior faces
of the polytopes in P.

We introduce a simplicial complex Δ(P). This complex will provide a convenient
combinatorial structure that we will use to describe the chain complex of modules.
The idea is that each polytope σ ∈ P will correspond to a (d(σ) − 1)-dimensional
simplex in Δ(P), where d(σ) is the number of interior faces of σ.

Formally, the vertices of Δ(P ) are given by the pairs

Δ0(P) = {(τ, σ) | σ ∈ P, τ an interior face of σ}.
Fix an enumeration {τ1, . . . , τd(σ)} of the interior faces of σ. For k ≥ 2, the set of
(k − 1)-faces of Δ(P) is the set of k-tuples of vertices

Δk−1(P) = {((τi1 , σ), . . . , (τik , σ)}.
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τ3

τ2

τ5

τ6τ4

τ1
σ3

σ1

σ2

σ4

Figure 5. Labeling used in Examples 5.1 and 5.2 and

(τ1, σ1)

(τ2, σ1)

(τ3, σ1)

Figure 6. The simplex Δ(σ1) in Example 5.1

Let us denote by Δk(σ) the set of k-faces whose vertices have the second coordinate
σ. Finally, let

Δ(σ) :=

d(σ)⋃
k=1

Δk(σ) and Δ(P) =
⋃
σ∈P

Δ(σ).

Note that Δ(σ) is a simplex for every σ ∈ P.

Example 5.1. We describe the simplicial complex Δ(P) for the polytopal cell

P = Q̂ in Example 1.1 and Example 4.4, using the labeling of polytopes and
faces given in Figure 5. The simplicial complex Δ(P) is two-dimensional; it is
a disjoint union of the four two-dimensional simplices Δ(σ1),Δ(σ2),Δ(σ3),Δ(σ4).
The simplex Δ(σ1) is shown in Figure 6.

If I is an indexing set and M is the direct sum of modules {Mi | i ∈ I} indexed
by I, it is convenient to introduce formal basis elements ei for the summand corre-
sponding to the index i and write M =

⊕
i∈I Miei. Elements of M are then written

as
∑

i∈I fiei, where fi ∈ Mi. We are now ready to describe the chain complex of
modules. For σ ∈ P define

C0(σ) := Cα
σ (P)eσ and C0 :=

⊕
σ∈P

C0(σ) =
⊕
σ∈P

Cα
σ (P)eσ,

where eσ is a formal basis element corresponding to the polytope σ. For k ≥ 1,
define

Ck(σ) :=
⊕

s∈Δk−1(σ)

Cα
σ (P)es and Ck :=

⊕
σ∈P

Ck(σ) =
⊕

s∈Δk−1

Cα
σ (P)es,
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where the es are formal basis elements corresponding to s ∈ Δk−1(σ) or s ∈ Δk−1,
respectively. Note that each of the summands Cα

σ (P) in the modules Ck are iso-
morphic (as ungraded modules) to the polynomial ring S. This will come into play
in the proof of Proposition 5.4.

The map δ1 : C1 → C0 is an augmentation map. For F =
∑

τ⊂σ f(τ,σ)e(τ,σ)
∈ C1(σ),

δ1(F ) =

(∑
τ⊂σ

f(τ,σ)

)
eσ,

and extend to C1 by linearity. The maps δk : Ck → Ck−1, for k ≥ 2, are the sim-
plicial boundary maps. For f ∈ Cα

σ (P) and ((τ0, σ), (τ1, σ), . . . , (τk, σ)) ∈ Δk(σ),
let

δk(f · e((τ0,σ),(τ1,σ),...,(τk,σ))) :=
k∑

j=0

(−1)jf · e
((τ0,σ),(τ1,σ),...,(̂τj ,σ),...,(τk,σ))

,

and extend to Ck by linearity. We denote by C• the chain complex

· · · δ3−→ C2
δ2−→ C1

δ1−→ C0 → 0.

Example 5.2. We explicitly write out the chain complex C• for the polytopal

cell P = Q̂ from Example 5.1. First we describe the formal basis elements. We
write eσi

for a formal basis elements in C0, eiσj
for the formal basis element cor-

responding to (τi, σj) in C1, eisσj
for the formal basis element corresponding to

((τi, σj), (τs, σj)) in C2, and eistσj
for the formal basis element corresponding to

((τi, σj), (τs, σj), (τt, σj)) in C3. The chain complex C• has the form

0 → S4 δ3−→ S12 δ2−→ S12 δ1−→ S4 → 0.

The matrices for the differentials (with rows and columns labeled according to the
formal basis elements) are shown in Figure 7. The structure of these matrices
reflect the fact that the chain complex C• decomposes as a direct sum of four
subcomplexes, one for each simplex Δ(σi).

Now let C ′
1 :=

⊕
τ∈P◦

2
Cα

st(τ)(P)eτ and define δ′1 : C ′
1 → LSα,1(P) by

δ′1 :
∑
τ

fτeτ �→
∑
τ

fτ .

We next note that since each interior face τ is shared by exactly two polytopes, say
σ1 and σ2, there is a natural inclusion ι1 of C1 into C ′

1 given by

ι(f1 · e(τ,σ1) + f2 · e(τ,σ2)) = (f1 + f2) · eτ ,

where eτ is the formal basis element corresponding to the summand Cα
st(τ)(P) for

an interior face τ . We denote by C ′
• the chain complex

· · · δ3−→ C2
δ2◦ι1−−−→ C ′

1

δ′1−→ LSα,1(P) → 0.

There is also a natural inclusion of C0 into LSα,1(P) which we call ι0. To see this,
note that C0 and LSα,1(P) occur as submodules of Cα(P), and it is immediate that
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δ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

123 145 256 346

23 1
13 −1
12 1
45 1
15 −1
14 1
56 1
26 −1
25 1
46 1
36 −1
34 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

δ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

23 13 12 45 15 14 56 26 25 46 36 34

1σ1 −1 −1
2σ1 −1 1
3σ1 1 1
1σ2 −1 −1
4σ2 −1 1
5σ2 1 1
2σ3 −1 −1
5σ3 −1 1
6σ3 1 1
3σ4 −1 −1
4σ4 −1 1
6σ4 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

δ1 =

⎛⎜⎜⎝
1σ1 2σ1 3σ1 1σ2 4σ2 5σ2 2σ3 5σ3 6σ3 3σ4 4σ4 6σ4

σ1 1 1 1
σ2 1 1 1
σ3 1 1 1
σ4 1 1 1

⎞⎟⎟⎠
Figure 7. Differentials of C• in Example 5.2

C0 ⊂ LSα,1(P). It is a simple exercise to see that ι0 ◦ δ1 = δ′1 ◦ ι1. We thus have
an inclusion of chain complexes ι : C• ↪→ C ′

• indicated in the following diagram:

. . . C2 C1 C0 0

. . . C2 C ′
1 LSα,1(P) 0

δ3 δ2

∼=

δ1

ι1 ι0

δ3 ι1◦δ2 δ′1

It is clear that the map δ′1 is surjective (this is the reason for considering the
module C ′

1 instead of C1), but we show below that the kernel of δ′1 is contained in
the image of C1 under ι1.

Lemma 5.3. For every F ∈ ker δ′1, there is G ∈ C1 such that ι1(G) = F .
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Proof. Write F =
∑

τ fτeτ , where fτ ∈ Cα
st(τ)(P). We show that fτeτ is in the

image of ι1 for all τ . For a polytope σ ∈ P, write f(τ,σ) for the restriction fτ |σ (this
is zero unless τ is a face of σ). It suffices to show that f(τ,σ) ∈ Cα

σ (P) for every pair
(τ, σ). By assumption,

∑
τ fτ = 0; restricting to a polytope σ yields

∑
τ f(τ,σ) = 0,

where the sum runs across faces of σ (no repeats). Now since f(τ,σ) ∈ Cα
st(τ)(P),

it must vanish on every face of σ other than τ . Since every summand f(τ ′,σ) for
τ ′ �= τ must vanish on τ , and the sum

∑
τ f(τ,σ) vanishes, f(τ,σ) must also vanish

along τ , hence f(τ,σ) ∈ Cα
σ (P), as desired. �

Proposition 5.4. The chain complex

C ′
• = · · · δ3−→ C2

δ2◦ι1−−−→ C ′
1

δ′1−→ LSα,1(P) → 0

is exact.

Proof. The map δ′1 is clearly surjective, so the chain complex is exact at LSα,1(P).

The inclusion ι : C• ↪→ C ′
• induces a map on homologies ι#i : Hi(C•) → Hi(C

′
•).

We claim that ι#i is an isomorphism for every i ≥ 1. This is immediate for i ≥ 2.
For i = 1, we need to show that

H1(C•) =
ker(δ1)

im(δ2)
∼=

ker(δ′1)

im(ι1 ◦ δ2)
= H1(C

′
•).

Since ι0 ◦δ1 = ι1 ◦δ′1 and ι0, ι1 are both injective, ι1(ker(δ1)) = ι1(C1)∩ker(δ′1). By
Lemma 5.3, ker(δ′1) is a subset of ι1(C1). So we have ι1(ker(δ1)) = ker(δ′1) and thus
the quotient map ῑ1 : ker(δ1) → H1(C

′
•) is surjective. The kernel of ῑ1 is clearly

im(δ2), so the isomorphism H1(C•) ∼= H1(C
′
•) follows from the first isomorphism

theorem.
Now it suffices to show that the complex C• is exact. From the definition of

the differentials δk it is clear that the chain complex C• is a direct sum of chain
complexes C• =

⊕
σ∈P C•(σ) (see also Example 5.2), where C•(σ) is the chain

complex

· · · δ3−→ C2(σ)
δ2−→ C1(σ)

δ1−→ C0(σ) → 0.

So it suffices to show thatHi(C•(σ)) = 0 for i ≥ 1. The maps δi, i ≥ 1, are the maps
used in simplicial homology (see [16, Chapter 2]). In particular, the presence of the
augmentation map δ1 : C1(σ) → C0(σ) ensures that the homology H•(C•) is the

reduced simplicial homology H̃•−1(Δ(σ);S) of the simplex Δ(σ) with coefficients
in S (there is a shift of −1 in dimension because simplicial homology is indexed
by dimension, whereas the index i in Ci corresponds to faces of Δ(P) which have
dimension i−1). It is well known that the reduced simplicial homology of a simplex
vanishes in all dimensions, thus Hi(C•) = 0 for all i ≥ 0. �

Theorem 5.5. Suppose P ⊂ R3 is polytopal cell. Let f(P) = max{λ(σ) | σ ∈ P}
and T = maxτ∈P◦

2
{reg(Cα

st(τ)(P))}. Then reg(Cα(P)) ≤ max{f(P)− 1, T}.

Proof. By Corollary 4.7, reg(Cα(P))≤reg(LSα,1(P)). By Proposition 5.4, LSα,1(P)
fits into the exact sequence

· · · → C2 → C ′
1

δ′1−→ LSα,1(P) → 0.

The summands of Ci, i ≥ 2, have the form Cα
σ (P). As we saw in Section 4,

Cα
σ (P) ∼= S(−λ(σ)). Since the regularity of a direct sum is the maximum of the
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regularity of its summands,

reg(Ci) ≤ max{λ(σ) | σ ∈ P} = f(P)

for every i ≥ 2. Now C ′
1 =

⊕
τ∈P◦

2
Cα

st(τ)(P), so

reg(C ′
1) = max

τ∈P◦
2

{reg(Cα
st(τ)(P))} = T.

Now the conclusion follows from Lemma A.4. �

6. Regularity of splines on cells: The third reduction

Suppose P ⊂ R3 is a polytopal cell. In this section we complete the proof
of Theorem 6.2 by providing an explicit bound on reg(Cα

st(τ)(P)), where τ is an

interior face of P, and using Theorem 5.5. As in Section 4, we accomplish this by
‘approximating’ Cα

st(τ)(P) and using Proposition A.7.

Let τ ∈ P◦
2 be an interior face of P, and σ1, σ2 the two polytopes which meet

along τ to form st(τ ). Recall that if Q is a polytope σ or the union st(τ ) of two

polytopes sharing the face τ , then Λ(Q) =
∏

τ∈∂Q l
α(τ)+1
τ and λ(Q) = deg(Λ(Q)).

Take formal basis symbols e1, e2 corresponding to σ1, σ2 and let Se1 + Se2 be
the free S-module of rank two containing Cα

st(τ)(P). Let

F1 = Λ(σ1)e1, F2 = Λ(σ2)e2, Fτ = Λ(st(τ ))(e1 + e2),

and define M(τ ) to be the submodule of Cα
st(τ)(P) generated by F1, F2, and Fτ . Set

Lτ = l
α(τ)+1
τ , L1 = Λ(σ1)/Lτ , and L2 = Λ(σ2)/Lτ . If Λ(st(τ )) �= 1 (in other words,

if α(τ ′) �= −1 for all τ ′ ∈ ∂st(τ )), then there is a single nontrivial syzygy among
F1, F2, Fτ given by LτFτ = L2F1 + L1F2. So M(τ ) has minimal free resolution

S(−λ(σ1))
⊕

0 −→ S(−λ(st(τ ))− α(τ )− 1) −→ S(−λ(st(τ )))
⊕

S(−λ(σ2)).

It follows immediately from Definition 3.2 that, if Λ(st(τ )) �= 1, then reg(M(τ )) =
λ(st(τ ))+α(τ ). If Λ(st(τ )) = 1, then M(τ ) is free, generated by Fτ and either F1 or
F2, so it follows from Remark 3.3 that reg(M(τ )) = deg(F1) = deg(F2) = α(τ )+1.
In fact, it is clear in this case that M(τ ) = Cα

st(τ)(P).

Proposition 6.1. Let P ⊂ R3 be a polytopal cell and τ ∈ P◦
2 a face of P. Define

λ(τ ) = λ(st(τ ))+α(τ )+1 =
∑

γ∈(st(τ))2
(α(γ)+1). Then reg(Cα

st(τ)(P)) ≤ λ(τ )−1

unless α(γ) = −1 for all γ �= τ ∈ ∂st(τ ), when reg(Cα
st(τ)(P)) = α(τ ) + 1.

Proof. The remarks directly preceding Proposition 6.1 establish that reg(Cα
st(τ)(P))

= α(τ ) + 1 if α(γ) = −1 for all γ �= τ ∈ ∂st(τ ), so assume α(γ) ≥ 0 for at
least one γ �= τ ∈ ∂st(τ ). We use the approximation M(τ ) introduced above
and Proposition A.7. We have already seen that reg(M(τ )) = λ(τ ) − 1. By
Proposition A.7, it suffices to show that codim(Cα

st(τ)(P)/M(τ )) ≥ 2. As in the

proof of Proposition 4.5, we accomplish this by showing equality of localizations
(Cα

st(τ)(P))P = M(τ )P for every prime P of codimension at most one.
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If codim(P ) = 0, then P is the zero ideal. Just as in the proof of Proposition 4.5,
Cα

st(τ)(P)P ∼= Cα
st(τ)(P)⊗S Q(S) ∼= Q(S)2 ∼= M(τ )⊗S Q(S) = M(τ )P .

Now suppose codim(P ) = 1. Primes of S with codimension one are principle,
generated by a single irreducible polynomial. If P �= 〈lγ〉 for any γ ∈ (st(τ ))2, then

(Cα
st(τ)(P))P = M(τ )P = S2

P .

If P = 〈lγ〉 for some γ �= τ ∈ (st(τ ))2, then

(Cα
st(τ)(P))P = M(τ )P ∼=

⎧⎪⎪⎨⎪⎪⎩
l
α(γ)+1
γ SP ⊕ SP aff(γ) meets a face of

only one of σ1 and σ2,

l
α(γ)+1
γ SP ⊕ l

α(γ)+1
γ SP aff(γ) meets a face of

both σ1 and σ2.

If P = 〈lτ 〉, then (Cα
st(τ)(P))P = M(τ )P = (Cα(τ)(st(τ )))P , where Cα(τ)(st(τ )) is

the module of splines on st(τ ) with α(τ ′) = −1 for every τ ′ ∈ ∂st(τ ).
It follows that codim(Cα

st(τ)(P)/M(τ )) ≥ 2. By Lemma 4.6, pd(Cα
st(τ)(P)) ≤ 1,

so reg(Cα
st(τ)(P)) ≤ reg(M(τ )) = λ(τ )− 1 by Proposition A.7. �

Theorem 6.2. Let P ⊂ R3 be a polytopal cell and set e(P) = max{λ(τ ) | τ ∈ P◦
2},

where λ(τ ) is as in Proposition 6.1. Then:

(1) reg(Cα(P)) ≤ e(P)− 1,
(2) ℘(Cα(P)) ≤ e(P)− 3.

In particular, HP (Cα(P), d) = dimR Cr
d(P) for d ≥ e(P)− 2.

Proof. (1) follows by applying Theorem 5.5 to Proposition 6.1 (notice λ(τ ) ≥ λ(σ)
whenever τ ⊂ σ). (2) follows from (1) by Lemma 4.6. �

Remark 6.3. General formulas for the polynomial HP (Cα(P), d) appearing in The-
orem 6.2 may be found in [20] (uniform smoothness) and [10] (mixed smoothness).
For Example 1.1 and Example 8.3 we give the polynomial HP (Cα(P), d) explicitly.

Example 1.1 indicates that the bound given in Theorem 6.2 can be far from
optimal. In the next section we bound reg(Cα

st(τ)(Δ)) more precisely for Δ ⊂ R3 a

simplicial cell with uniform smoothness.

7. Regularity of splines on simplicial cells with uniform smoothness

In this section we derive our main result on the regularity of the spline module
Cα(Δ), where Δ is a simplicial cell with uniform smoothness r. That is, α(τ ) = r
for every interior face τ ∈ Δ◦

2, and α(τ ) = −1 or α(τ ) = r for every boundary
face τ ∈ ∂Δ. This is slightly more general than the module Cr(Δ) since we allow
vanishing of order r to be imposed along boundary faces. By Theorem 5.5, we
may achieve a regularity bound on Cα(Δ) by bounding the regularity of splines
Cα

st(τ)(Δ) vanishing outside the union of two tetrahedra meeting along the face τ .

Our main result in this section is the following.

Theorem 7.1. Let τ ∈ Δ◦
2 be a face of the simplicial cell Δ, and let α be a set of

smoothness parameters on Δ2 so that α(τ ) = r for every τ ∈ Δ◦
2 and α(τ ) = −1

or α(τ ) = r for every τ ∈ ∂Δ. Then reg(Cα
st(τ)(Δ)) ≤ 3r + 3.
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Before proving Theorem 7.1 we derive the main result.

Theorem 7.2. Let Δ ⊂ R3 be a simplicial cell and let α be a set of smoothness
parameters on Δ2 so that α(τ ) = r for every τ ∈ Δ◦

2 and α(τ ) = −1 or α(τ ) = r
for every τ ∈ ∂Δ. Then:

(1) reg(Cα(Δ)) ≤ 3r + 3,
(2) ℘(Cα(Δ)) ≤ 3r + 1.

In particular, HP (Cα(Δ), d) = dimR Cr(Δ)d for d ≥ 3r + 2.

Proof. (1) follows by applying Theorem 5.5 to Theorem 7.1 (notice that λ(σ) ≤
3r + 3). (2) follows by applying Theorem 3.4 to (1). �

Corollary 7.3. Let Δ ∈ R2 be a triangulation and let α be smoothness parameters
so that α(τ ) = r for every interior edge τ and α(τ ) = r or α(τ ) = −1 for every
boundary edge τ (in particular, this includes the case where vanishing of order

r is imposed along the entire boundary). Then dimCα
d (Δ) = HP (Cα(Δ̂), d) for

d ≥ 3r + 2.
In particular, if no vanishing is imposed along the boundary, then the Alfeld-

Schumaker formula for dimCr
d(Δ) holds for d ≥ 3r + 2. That is, for d ≥ 3r + 2,

dimCr
d(Δ) =

(
d+ 2

2

)
+

(
d− r + 1

2

)
f◦
1 −

((
d+ 2

2

)
−

(
r + 2

2

))
f◦
0 + σ,

where

σ =
∑
v∈Δ◦

0

σv σv =
r∑

j=1

(r + j + 1− jn(v))+,

n(v) is the number of distinct slopes at the interior vertex v, and

(r + j + 1− jn(v))+ = max{r + j + 1− jn(v), 0}.

Proof. Applying Theorem 7.2 to the simplicial cell Δ̂ yields ℘(Cα(Δ̂)) ≤ 3r+1, so

dimCα
d (Δ) = dimCα(Δ̂)d = HP (Cr(Δ̂), d) for d ≥ 3r+2, where the first equality

follows from Lemma 2.2. This finishes the proof of the first statement. In the
second statement, the expression for dimCr

d(Δ) is the well-known Schumaker lower

bound [29], which was shown to be equal to HP (Cr(Δ̂), d) by Schenck [26]. �

Remark 7.4. The second statement in Corollary 7.3, that dimCr
d(Δ) agrees with

Schumaker’s lower bound for d ≥ 3r+2, was obtained by Hong [17] and Ibrahim and
Schumaker [18] (see Table 1 in the introduction). If the triangulation Δ is in addi-
tion nondegenerate, then Alfeld and Schumaker proved in [3] that dimCr

d(Δ) agrees

with Schumaker’s lower bound for d ≥ 3r + 1. An expression for HP (Cα(Δ̂), d)
where vanishing of order r is imposed along the entire boundary of a planar trian-
gulation Δ (relevant to the first statement of Corollary 7.3) may be found in [19].

The proof we give of Theorem 7.1 is more delicate than the proof of Proposi-
tion 6.1, so we break it up over a sequence of several lemmas proving special cases
or equivalent formulations. We attempt to introduce all tools from commutative
algebra in a self-contained manner.

First we set up the notation for the proof of Theorem 7.1. Figure 8 depicts our
situation. We will abuse notation and write vi both for the corresponding edge of
st(τ ) and for the vector we obtain by taking positive real multiples of this edge.
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x

y

z

v1

v2

v3

v4

e24

e14

τ

e13

e23

Figure 8. A typical configuration for st(τ )

Let u1, u2 ∈ S be the forms vanishing on the affine spans of e13, e23, let w1, w2 be
the forms vanishing on the affine spans of e14, e24, and lτ be the form vanishing on
the affine span of τ (for now do this without coordinates). Denote by σ1 the tetra-
hedron with faces defined by u1, u2, lτ and by σ2 the tetrahedron with faces defined
by w1, w2, lτ . Let α1 = α(e13)+1, α2 = α(e23)+1, β1 = α(e14)+1, β2 = α(e24)+1
be the exponents to appear on u1, u2, w1, w2 corresponding to the smoothness pa-
rameters specified by α. By our assumption of uniform smoothness, α1, α2, β1, and
β2 can only take on the values 0 and r + 1. Since the face τ is interior, α(τ ) = r.
We first take care of a special case of Theorem 7.1 which follows immediately from
Proposition 6.1.

Lemma 7.5. Suppose that at most two of α1, α2, β1, β2 do not vanish. Then
reg(Cα

st(τ)(Δ)) ≤ 3r + 3.

Now assume that three or more of α1, α2, β1, β2 do not vanish. Without loss of
generality, we will assume that α2 = β1 = β2 = r + 1, and α1 is either 0 or r + 1.
Our next step is to identify Cα

st(τ)(Δ) as the module of syzygies of a row vector

with entries in S. Let N(τ ) be the row vector

N(τ ) =
[
lr+1
τ uα1

1 ur+1
2 wr+1

1 wr+1
2

]
.

Using the convention introduced in Section 3, we take formal basis elements sτ of
degree r + 1, s1 of degree α1 + r + 1, and s2 of degree 2(r + 1) corresponding to
the entries of N(τ ) reading from left to right. By definition, a syzygy of N(τ ) is a
formal sum Gτsτ +G1s1 +G2s2 ∈ S3 satisfying

Gτ l
r+1
τ +G1u

α1
1 ur+1

2 +G2w
r+1
1 wr+1

2 = 0.

Take formal basis elements e1, e2 (both of degree zero) corresponding to the
tetrahedra σ1, σ2 and let Se1 + Se2 be the free S-module of rank two containing
Cα

st(τ)(P). Consider the S-module map π : Ssτ +Ss1+Ss2 → Se1+Se2 defined by

π(Gτsτ +G1s1+G2s2) = G1u
r+1
1 ur+1

2 e1−G2w
r+1
1 wβ2

2 e2. Notice that the image of
syz(N(τ )) under π is contained in Cα

st(τ)(Δ). To see this let F1 = G1u
α1
1 ur+1

2 and

F2 = −G2w
r+1
1 wr+1

2 and observe that the three spline conditions

uα1
1 ur+1

2 |F1, w
r+1
1 wr+1

2 |F2, and lr+1
τ |F1 − F2
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are satisfied. It is straightforward to check that the map π above restricted to
syz(N(τ )) yields an isomorphism of syz(N(τ )) and Cα

st(τ)(Δ) as S-modules. More-

over, the grading assigned to the formal symbols sτ , s1, s2, e1, e2 guarantee that this
map is a graded map. We have proved the following lemma.

Lemma 7.6. The modules Cα
st(τ)(Δ) and syz(N(τ )) are isomorphic as graded S-

modules.

Denote by K(τ ) the ideal in S generated by the entries of N(τ ). Recall from
Section 3 that K(τ ) is minimally generated by the entries of N(τ ) if none of the
entries of N(τ ) can be written as an S-linear combination of the remaining entries.

Lemma 7.7. Suppose K(τ ) is not minimally generated by the entries of N(τ ).
Then reg(syz(N(τ ))) ≤ 3(r + 1). In particular, reg(Cα

st(τ)(Δ)) ≤ 3(r + 1).

Proof. By degree considerations we may assume that wr+1
1 wr+1

2 can be written as a
polynomial combination of lr+1

τ and uα1
1 ur+1

2 . In other words, there is the equation

fτ l
r+1
τ + f1u

α1
1 ur+1

2 = wr+1
1 wr+1

2 .

Clearly this yields the syzygy F = lr+1
τ sτ +f1s1−s2 ∈ syz(N(τ )) of degree 2(r+1).

In this case the only other syzygy of interest is

G = uα1
1 ur+1

2 sτ − lr+1
τ s1

of degree 2(r + 1) + α1 ≤ 3(r + 1). It is not difficult to check that the two syzy-
gies F and G generate syz(N(τ )) as an S-module. There are clearly no relations
among F,G, so syz(N(τ )) is free as an S-module, generated in degrees 2(r+1) and
2(r+1)+α1. Now the result follows at once from Remark 3.3 and Lemma 7.6. �

From Lemma 7.7 we may now assume that K(τ ) is minimally generated by the
entries of N(τ ) and so can identify syz(N(τ )) with syz(K(τ )). In the remainder of
the cases we will fit the ideal K(τ ) into exact sequences and make use of Proposi-
tion A.3. The first exact sequence we use is

(3) 0 → syz(K(τ )) → Ssτ + Ss1 + Ss2
φ−→ S → S/K(τ ) → 0,

where φ(Gτsτ + G1s1 + G2s2) = Gτ l
r+1
τ + G1u

α1
1 ur+1

2 + G2w
r+1
1 wr+1

2 . Clearly
im(φ) = K(τ ), so the above sequence is exact. Recalling the convention from
Section 3, we will write Ssτ+Ss1+Ss2 as S(−(r+1))⊕S(−α1−r−1)⊕S(−2(r+1))
to encode the degrees of sτ , s1, s2. The exact sequence (3), coupled with Lemma A.4
and Lemma 7.6, yields the following lemma.

Lemma 7.8. If K(τ ) is minimally generated by the entries of N(τ ), then

reg(Cα
st(τ)(Δ)) = reg(syz(K(τ ))) ≤ max{2r + 2, reg(S/K(τ )) + 2}.

Hence to prove Theorem 7.1 it suffices to show that reg(S/K(τ )) ≤ 3r + 1.

To handle the remainder of the cases, we introduce the multiplication sequence
from graded commutative algebra. Recall that if Q ⊂ S is an ideal and f ∈ S is a
polynomial, then the colon ideal of Q with f is the ideal Q : f = {g ∈ S | gf ∈ I}.
For any Q, f we always have the graded short exact multiplication sequence

0 → S(− deg(f))

Q : f

·f−→ S

Q
→ S

Q+ 〈f〉 → 0.
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We use this as follows. Let Q =
〈
lr+1
τ , uα1

1 ur+1
2

〉
and f = wr+1

1 wr+1
2 . We then have

the multiplication sequence

(4) 0 → S(−2(r + 1))

Q : (wr+1
1 wr+1

2 )

·wr+1
1 wr+1

2−−−−−−−→ S

Q
→ S

K(τ )
→ 0.

Lemma 7.9. With Q and K(τ ) as above, the regularity of S/K(τ ) satisfies

reg

(
S

K(τ )

)
≤ max

{
reg

(
S

Q : (wr+1
1 wr+1

2 )

)
+ 2r + 1, 3r

}
.

Hence, to prove Theorem 7.1 it suffices to prove that

reg

(
S

Q : (wr+1
1 wr+1

2 )

)
≤ r.

Proof. From the multiplication sequence (4) and Proposition A.3 we conclude that

reg

(
S

K(τ )

)
≤ max

{
reg

(
S(−2(r + 1))

Q : (wr+1
1 wr+1

2 )

)
− 1, reg

(
S

Q

)}
.

Since the two generators of Q are relatively prime, they form a regular sequence
(see Appendix A) with degrees r + 1 and r + 1 + α1. Hence by Proposition A.5,
reg(S/Q) = 2r + 2 + α2 − 3 ≤ 3r. Now the first result follows since S(−2(r + 1))
represents a free S-module of rank one generated in degree 2(r + 1), so

reg

(
S(−2(r + 1))

Q : (wr+1
1 wr+1

2 )

)
= reg

(
S

Q : (wr+1
1 wr+1

2 )

)
+ 2(r + 1).

The final statement now follows from Lemma 7.8. �

Next we analyze the ideal Q : (wr+1
1 wr+1

2 ). The ideal Q can be written as
Q = 〈lr+1

τ , uα1
1 〉 ∩ 〈lr+1

τ , ur+1
2 〉. Write J1 = 〈lr+1

τ , uα1
1 〉 and J2 = 〈lr+1

τ , ur+1
2 〉. Since

colons split over intersections (symbolically, (J1∩J2) : f = J1 : f ∩J2 : f), we have
Q : (wr+1

1 wr+1
2 ) = I1 ∩ I2, where I1 = J1 : (wr+1

1 wr+1
2 ) and I2 = J2 : (wr+1

1 wr+1
2 ).

Now the polynomials lr+1
τ , uα1

1 , wr+1
2 form a regular sequence. In particular, any

polynomial f which multiplies wr+1
2 into the ideal J1 must already be in J1. So

I1 = J1 : (wr+1
1 wr+1

2 ) = J1 : wr+1
1 . Likewise, I2 = J2 : (wr+1

1 wr+1
2 ) = J2 : wr+1

2 .
We prove one last special case of Theorem 7.1 before moving on to the general case.
We make use of the following result of Schenck and Stillman [26] (they state the
result for an arbitrary number of powers of linear forms).

Proposition 7.10 ([26, Corollary 3.4]). Suppose l1, l2, and l3 are distinct linear
forms in S = R[x, y, z] all of which vanish along a common line (equivalently, up
to a change of variables, l1, l2, l3 ∈ R[x, y]). For a positive integer r put J =
〈lr+1
1 , lr+1

2 , lr+1
3 〉. Then reg(S/J) = r + � r+1

2 � − 1.

Lemma 7.11. Suppose that K(τ ) is minimally generated by the entries of N(τ )
and

(1) α1 = 0 or
(2) α1 �= 0 and u1 = w1 or u2 = w2.

Then reg(Cα
st(τ)(Δ)) ≤ 3(r + 1).
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Proof. By Lemma 7.9, it suffices to prove that reg
(

S
Q:(wr+1

1 wr+1
2 )

)
≤ r. From the

above discussion we know that Q = I1 ∩ I2, where

I1 = J1 : wr+1
1 = 〈lr+1

τ , uα1
1 〉 : wr+1

1

and
I2 = J2 : wr+1

2 = 〈lr+1
τ , ur+1

2 〉 : wr+1
2 .

If α1 = 0, then J1 = I1 = S, hence Q : (wr+1
1 wr+1

2 ) = I2. If α1 �= 0 and u1 = w1,
then I1 = S and Q : (wr+1

1 wr+1
2 ) = I2. Likewise if α1 �= 0 and u2 = w2, then

Q : (wr+1
1 wr+1

2 ) = I1. Since it makes no difference to the analysis, we assume that
Q : (wr+1

1 wr+1
2 ) = I2. Hence it suffices to prove that reg(S/I2) ≤ r. We use the

multiplication sequence

0 → S(−r − 1)

〈lr+1
τ , ur+1

2 〉 : wr+1
2

·wr+1
2−−−−→ S

〈lr+1
τ , ur+1

2 〉
→ S

〈lr+1
τ , ur+1

2 , wr+1
2 〉

→ 0.

The ideal 〈lr+1
τ , ur+1

2 〉 is generated by a regular sequence with both generators in
degree r + 1, hence by Proposition A.5 reg(S/〈lr+1

τ , ur+1
2 〉) = 2r.

Notice that lτ , u2, and w2 all vanish along a common line, the span of the vector
v2 in Figure 8. Hence by Proposition 7.10,

reg

(
S

〈lr+1
τ , ur+1

2 , wr+1
2 〉

)
= r +

⌈
r + 1

2

⌉
− 1 ≤ 2r − 1.

By Proposition A.3, reg(S(−r − 1)/I2) ≤ 2r, hence reg(S/I2) ≤ r − 1, completing
the proof. �
7.1. The general case. Due to Lemma 7.11, we may assume that α1 = r + 1, so
α1 = α2 = β1 = β2 = α(τ ) = r. Furthermore, referring to Figure 8, we may by
Lemma 7.11 assume that each of the two sets of vectors {v1, v3, v4} and {v2, v3, v4}
are linearly independent.

It follows that we may make a change of coordinates so that v1 points along
the y-axis, v2 points along the x-axis, and v3 points along the z-axis. Applying
appropriate scaling in the x, y, and positive z directions, we can assume that the
vector defined by v4 points in the direction of 〈1, 1,−1〉. Under this change of
coordinates, st(τ ) has four possible configurations, shown in Figure 9. The ideal
K(τ ) is the same for all of these. We have

lτ = z,
u1 = x,
u2 = y,
w1 = x+ z,
w2 = y + z,

I1 = 〈lr+1
τ , ur+1

1 〉 : wr+1
1 = 〈xr+1, zr+1〉 : (x+ z)r+1,

I2 = 〈lr+1
τ , ur+1

2 〉 : wr+1
2 = 〈yr+1, zr+1〉 : (y + z)r+1.

Since linear changes of coordinate yield a graded isomorphism on S, the ideals I1
and I2 for any general configuration will be isomorphic to the above ideals.

We also make one further simplification using Proposition A.3 and the short
exact sequence

(5) 0 → S

I1 ∩ I2

q−→ S

I1
⊕ S

I2

φ−→ S

I1 + I2
→ 0,

where q : S/(I1 ∩ I2) → S/I1 ⊕ S/I2 is the difference q1 − q2 of the two quotient
maps q1 : S/(I1 ∩ I2) → S/I1 and q2 : S/(I1 ∩ I2) → S/I2, and φ is the sum of the
two quotient maps φ1 : S/I1 → S/(I1 + I2) and φ2 : S/I2 → S/(I1 + I2).
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Figure 9. Possible configurations for st(τ ) in the proof of Theorem 7.2

Lemma 7.12. Let

I1 = 〈xr+1, zr+1〉 : (x+ z)r+1,
I2 = 〈yr+1, zr+1〉 : (y + z)r+1.

To complete the proof of Theorem 7.1 it suffices to prove that reg(S/(I1 ∩ I2)) ≤ r.
Equivalently, it suffices to show that reg(S/(I1 + I2)) ≤ r − 1, or Sr = (I1 + I2)r.

Proof. The only thing left to prove are the two reformulations given in terms of
(I1 + I2). It follows from the proof of Lemma 7.11 that reg(S/I1) ≤ r − 1 and
reg(S/I2) ≤ r − 1. Hence reg(S/I1 ⊕ S/I2) = max{reg(S/I1), reg(S/I2)} ≤ r −
1. Now the exact sequence (5) and Proposition A.3 together yield the equivalent
formulation reg(S/(I1 + I2)) ≤ r− 1. The module S/(I1 + I2) is a module of finite
length. This means that in large degree d, (S/(I1 + I2))d = 0. By Corollary A.2,
reg(S/(I1 + I2)) is the largest degree d for which (S/(I1 + I2))d �= 0. Hence if
Sr = (I1 + I2)r, then reg(S/(I1 + I2)) ≤ r − 1. �

Given Lemma 7.12, our goal will be to prove that every monomial xaybzc in S
of degree a+ b+ c = r is contained in the ideal I1 + I2. A main tool we use in this
endeavor is the initial ideal with respect to the standard graded lexicographic order
<glex on monomials (see [11, Chapter 15]). Recall that xa1yb1zc1 <glex xa2yb2zc2

if (a1 + b1 + c1) < (a2 + b2 + c2) or a1 + b1 + c1 = a2 + b2 + c2 and the leftmost
nonzero entry of (a2 − a1, b2 − b1, c2 − c1) is positive. We can pick out the initial
term in<glex

(f) (henceforth in(f)) of a polynomial f ∈ S by taking the term whose

underlying monomial is largest under <glex. For instance, if f = 3x2y + y3, then
in(f) = 3x2y. Likewise, if I is an ideal, then in(I) is the monomial ideal generated
by {in(f) | f ∈ I}. The choice of lexicographic ordering gives a preferred basis
of forms of degree d, and the point is that linear independence of this basis can
be determined just from the leading terms, which are the monomials of degree d
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in in(I). In particular, initial ideals preserve the Hilbert function of I, namely
dim Id = dim in(I)d [11, Theorem 15.26].

Lemma 7.13. To prove that Sr = (I1+I2)r, it suffices to prove that in(I1+I2)r =
Sr or (in(I1) + in(I2))r = Sr.

Proof. If in(I1 + I2)r = Sr, then dim(I1 + I2)r = dim in(I1 + I2)r = dimSr. But
this can only happen if (I1 + I2)r = Sr. Furthermore in(I1) + in(I2) ⊂ in(I1 + I2),
so the final statement is clear. �

With Lemma 7.13 as motivation, we study the initial ideals in(I1) and in(I2).
Since I1 and I2 are the same ideal when x and y are interchanged, we simplify
by working in the polynomial ring R = R[s, t] and studying the initial ideal of
I = I(r) = 〈sr+1, tr+1〉 : (s + t)r+1. At the heart of our analysis is a matrix
condition on the coefficients of a form f of degree d which distinguishes when
f ∈ I(r)d. This approach is due to Tohaneanu and Minac, who study an ideal very
similar to ours in [22]. A small example illustrates how the matrix is constructed.

Example 7.14. Consider the case r = 4. We determine what conditions must be
placed on the coefficients of a general form f = a20s

2 + a11st+ a02t
2 of degree two

to satisfy f ∈ I(4) = 〈s5, t5〉 : (s+ t)5. Since the ideal 〈s5, t5〉 is a monomial ideal,
f(s+ t)5 ∈ 〈s5, t5〉 ⇐⇒ every monomial of f(s+ t)5 is divisible by either s5 or t5.
Expanding,

f(s+ t)5 = s7a20 + s6t (a11 + 5a20) + s5t2 (a02 + 5a11 + 10a20)

+s4t3 (5a02 + 10a11 + 10a20) + s3t4 (10a02 + 10a11 + 5a20)

+s2t5 (10a02 + 5a11 + a20) + st6 (5a02 + a11) + t7a02

is in 〈s5, t5〉 if and only if the coefficients in the middle row vanish, i.e.,(
5 10 10
10 10 5

)⎛⎝ a02
a11
a20

⎞⎠ = 0.

Now suppose f =
∑

i+j=d ai,js
itj ∈ Rd. Then, generalizing Example 7.14, we

find that f ∈ I(r)d if and only if⎛⎜⎜⎜⎜⎜⎜⎝

(
r+1
d+1

) (
r+1
d

) (
r+1
d−1

)
· · ·

(
r+1
1

)(
r+1
d+2

) (
r+1
d+1

) (
r+1
d

)
· · ·

(
r+1
2

)
...

...
...

. . .
...(

r+1
r−1

) (
r+1
r−2

) (
r+1
r−3

)
· · ·

(
r+1

r−d−1

)(
r+1
r

) (
r+1
r−1

) (
r+1
r−2

)
· · ·

(
r+1
r−d

)

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎝
a0,d

a1,d−1

...
ad−1,1

ad,0

⎞⎟⎟⎟⎟⎟⎠ = 0,

where we use the convention that
(
A
B

)
= 0 when B < 0 or B > A. Denote the

(r − d)× (d+ 1) matrix on the left by M(r, d). This matrix has entries

M(r, d)i,j =

(
r + 1

d+ 1 + i− j

)
,

where i = 0, . . . , r − d − 1 and j = 0, . . . , d. With this choice of indexing, column
cj of M(r, d) corresponds to the coefficient aj,d−j .
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Remark 7.15. Notice that if f ∈ Rd and d ≥ r, then f · (s+ t)r+1 has degree 2r+1.
It is clear that any polynomial of degree 2r + 1 is in the ideal 〈sr+1, tr+1〉, so it
makes sense that the matrix condition given by M(r, d) is vacuous for d ≥ r.

Tohaneanu and Minac [22, § 3.1] make the fundamental observation that matrices
such as M(r, d) appear in the representation theory of the special linear group.
In particular, maximal minors of M(r, d) tend to be invertible. We record this
observation in the next lemma.

Lemma 7.16. Let M = M(r, d) be the (r − d)× (d+ 1) matrix defined above and
let r denote the rank of M . If d < r, then M has full rank and the first r columns
of M are linearly independent.

Proof. Let k = min{r−d−1, d}. Starting in the upper left-hand corner of M(r, d),
consider the square (k + 1)× (k + 1) submatrix N with entries

Ni,j = M(r, d)i,j =

(
r + 1

d+ 1 + i− j

)
,

0 ≤ i, j ≤ k. We are done if we show this matrix is invertible. Following Tohaneanu
and Minac, we appeal to representation theory. Explicitly, let μ be the list with
k + 1 entries (d+ 1, . . . , d+ 1). This is a partition. The conjugate partition to μ is
the list λ = (k+1, . . . , k+1) with d+1 entries. Then det(N) is the dimension of the
Weyl module SλV , which is a nontrivial irreducible representation of SL(V ), where
V is an r-dimensional vector space. More explicitly, det (N) = sλ(1, . . . , 1), where
sλ(x1, . . . , xr) is the Schur polynomial in r variables of the conjugate partition λ of
μ. Such evaluations are always positive integers. See [13, § 6.1] and Exercise A.30
in [13, Appendix A.1] for more details. �
Corollary 7.17. Let I = I(r) as above and set a = �(r + 1)/2�. We have

dim Id =

⎧⎨⎩
0 0 ≤ d < a,
2d+ 1− r a ≤ d < r,
d+ 1 d ≥ r.

Proof. If d ≥ r, it follows from Remark 7.15 that dim Id = dimRd = d + 1.
For a fixed degree d < r, let r be the rank of M(r, d). By definition, dim Id =
dimkerM(r, d), hence dim Id = d+1− r. Now the result follows from the fact that
M(r, d) has full rank r = min{r + d, d+ 1} by Lemma 7.16. �
Lemma 7.18. The vector space in(I)d consists of the dim Id monomials of R with
lexicographically largest degree.

Proof. Set a = �(r + 1)/2�. For fixed degree d with a ≤ d < r, let r be the rank
of M(r, d). We saw in the proof of Corollary 7.17 that dim Id = d + 1 − r. By
Lemma 7.16, the first r columns of M are linearly independent. It follows that for
any column cl of M(r, d) with r ≤ l ≤ d, there is a unique (up to scaling) relation(

r−1∑
i=0

ai,d−ici

)
+ al,d−lcl = 0,

where al,d−l �= 0. This gives rise to the polynomial f =
∑r−1

i=0 ai,d−is
itd−i +

al,d−ls
ltd−l ∈ I with leading monomial sltd−l. These monomials are the largest

d + 1 − r monomials of degree d with respect to lex ordering, so the result fol-
lows. �



932 MICHAEL DIPASQUALE

Remark 7.19. Lemma 7.18 shows that in(I) is a so-called lex-segment ideal. Such
ideals are of central importance to classifying Hilbert functions and providing ex-
tremal bounds on betti numbers. See [21, § 2.4] for more on these ideals.

By Lemma 7.13 and Lemma 7.12, the next proposition completes our proof of
Theorem 7.1.

Proposition 7.20. Let I1 and I2 be as in Lemma 7.12. Then (I1 + I2)r = Sr.

Proof. By Lemma 7.13, it suffices to show that (in(I1)+in(I2))r = Sr. To this end,
take a monomial m = xiyjzk of S with degree r. We claim m ∈ in(I1) + in(I2).

Assume i ≥ j. We then have i + k ≥ �(r − k + 1)/2� + k ≥ �(r + 1)/2�. By
Corollary 7.17,

dim I(r)i+k = 2(i+ k) + 1− r

≥ 2(�(r − k + 1)/2�+ k) + 1− r

≥ r − k + 2k + 1− r

= k + 1.

By Lemma 7.18, in(I1)i+k consists of the dim I(r)i+k ≥ k+1 largest monomials of
degree i+k in the variables x, z. Now notice that xizk is the (k+1)st largest mono-
mial of degree i+ k in the variables x, z with respect to lex order. By Lemma 7.18,
xizk ∈ in(I1), hence m ∈ in(I1).

By the same argument, if j ≥ i, then m ∈ in(I2). In either case, we have shown
that m ∈ in(I1) + in(I2), completing the proof. �

8. Examples

In this section we give several examples to illustrate both how the bounds in
Theorems 6.2 and 7.2 may be used and how well they approximate the actual
regularity of the spline module.

Example 8.1. Our first example illustrates that the number of faces in a polytope
of P, where P is a polytopal cell, can indeed impact the regularity of Cα(P). In
particular we show that, contrary to most of our examples, the bound of Theo-
rem 6.2 may not be so far off in worst case scenarios. This example generalizes the
construction in [9, Theorem 5.7].

For simplicity we restrict to the case of uniform smoothness. Suppose P ⊂ R2 is

a polygon so that (0, 0) ∈ P and no pair of edges of P is parallel. Let A = P̂ ⊂ R3.
We construct a polytopal cell P(A) so that the regularity of Cr(P(A)) grows in
direct correlation with the number of edges of P .

We construct P(A) as follows. Let Ā be the reflection of A across the xy-
plane. For a face τ of A containing (0, 0, 0) let τ̄ denote the face of Ā obtained by
reflecting τ across the xy-plane. Let σ(τ ) denote the polytope formed by taking
the convex hull of τ and τ̄ . Now let P(A) be the polytopal cell with polytopes
{A, Ā} ∪ {σ(τ ) | τ ∈ ∂A, (0, 0, 0) ∈ γ} (see Figure 10 for a depiction of the interior
faces of P(A)). We take uniform smoothness parameter r on P(A), so α(τ ) = r for
τ ∈ P(A)◦2 and α(τ ) = −1 for τ ∈ ∂P(A).

Consider the graded S = R[x, y, z]-module Cr(P(A)). We will show that a
certain spline G(A) ∈ Cr(P(A)), which is supported only on the polytope A, is
a minimal generator of Cr(P(A)). Since reg(Cr(P(A))) bounds the degrees of
generators, this will force reg(Cr(P(A))) to be large.
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Figure 10. The polytopal cell P(A)

Let φ̄ : Cr(P(A)) → S be the map of S-modules obtained by restricting splines
F ∈ Cr(P(A)) to the polytope Ā. This is a splitting of the inclusion S → Cr(P(A))
as global polynomials on P(A). Let NT r(P(A)) be the kernel of φ̄. Then

Cr(P(A)) ∼= S ⊕NT r(P(A)).

Let S′ = R[x, y] and, for f ∈ S, set f = f(x, y, 0). Define an S-module map φ :
Cr(P(A)) ∼= S⊕NT r(P(A)) → S′ by φ(f, F ) = FA, where f ∈ S, F ∈ NT r(P(A)),
and FA is the restriction of F to the polytope A.

For a polytope σ, set ∂◦(σ) = ∂σ ∩ P(A)◦2. We have

Λ(A) =
∏

τ∈∂A

lα(τ)+1
τ =

∏
τ∈∂◦(A)

lr+1
τ .

We claim that the image of φ is the principal ideal I = 〈Λ(A)〉. Define the spline
G(A) ∈ NT r(P(A)) by G(A)A = Λ(A) and G(A)σ′ = 0 for every other polytope

σ′ ∈ P(A). Clearly φ(G(A)) = Λ(A), so I ⊂ im(φ). To see that im(φ) ⊂ I, let
F ∈ NT r(P(A)). Then, since FĀ = 0, lr+1

τ̄ |Fσ(τ) for every τ ∈ ∂◦(A). We also

have lr+1
τ |(FA − Fσ(τ)) for every τ ∈ ∂◦(A). Hence FA ∈

⋂
τ∈∂◦A〈lr+1

τ , lr+1
τ̄ 〉. But

lτ and lτ̄ differ at most by a scalar multiple and a sign on the variable z, so lτ = lτ̄
and

φ(F ) ∈
⋂

τ∈∂◦(A)

〈lr+1
τ 〉 = 〈

∏
τ∈∂◦(A)

lr+1
τ 〉 = 〈Λ(A)〉

as claimed. In the first equality we use the fact that no pair of edges of the polygon
P are parallel; this guarantees all the forms lτ are distinct. It follows that the spline
G(A), which is supported only on the polytope A and generates splines supported
on A, is a minimal generator of Cr(P(A)). Since G(A) has degree |∂◦(A)|(r + 1),
it follows from Remark 3.3 that reg(Cr(P(A))) ≥ |∂◦(A)|(r + 1).

Now we compute the bound from Theorem 6.2. Each face τ ∈ P(A)2 either has
λ(τ ) = (|∂◦(A)| + 3)(r + 1) or λ(τ ) = 7(r + 1). As long as the polygon P has at
least four edges, Theorem 6.2 yields reg(Cr(P(A))) ≤ (|∂◦(A)|+ 3)(r + 1).

Remark 8.2. The construction in Example 8.1 is inherently nonsimplicial. Some
other construction needs to be used to obtain high degree generators in the sim-
plicial case. In the planar simplicial case, there is an example in [30] of a planar
simplicial complex Δ with minimal generator in degree 2r + 2.

Example 8.3. In this example we apply Theorem 6.2 to bound the regularity of
Cα(P) where boundary vanishing is imposed. Consider the polygonal complex Q
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Figure 11. Polygonal complex Q in Example 8.3

in Figure 11 with five faces, eight interior edges, and four interior vertices. Impose
vanishing of order r along interior edges and vanishing of order s along boundary
edges. The following Hilbert polynomials are computed in [10, Example 8.5]. If

s = −1, so Cα(Q̂) = Cr(Q̂), then

HP (Cr(Q̂), d) = 5
2d

2 +
(
−8r − 1

2

)
d

−4
⌊
3r
2

⌋2
+ 12r

⌊
3r
2

⌋
− r2 + 4r + 2.

By Theorem 6.2, reg(Cr(Q̂)) ≤ 6(r + 1) − 1 and HP (Cr(Q̂), d) = dimCr
d(Q) for

d ≥ 6(r+1)− 2. We compare the regularity bound 6(r+1)− 1 with reg(Cr(Q̂)) as

computed in Macaulay2 in Table 2, where reg(Cr(Q̂)) appears to have alternating

differences of 1 and 3 and grows roughly as 2(r+1)+1. In fact, reg(Cr(Q̂)) appears
to agree with the regularity of r-splines on the complex from Example 1.1.

Table 2

r 0 1 2 3 4 5 6 7 8 9
6(r + 1)− 1 5 11 17 23 29 35 41 47 53 59

reg(Cr(Q̂)) 3 4 7 8 11 12 15 16 19 20

Now suppose that vanishing of degree s ≥ 0 is imposed along ∂Q. Then

HP (Cα(P̂), d) = 5
2d

2 +
(
−8r − 4s− 9

2

)
d

−3
⌊
2(r+s)

3

⌋2
+ 4r

⌊
2(r+s)

3

⌋
+ 4s

⌊
2(r+s)

3

⌋
−

⌊
2(r+s)

3

⌋
−4

⌊
r
2

⌋2 − 4
⌊
3r
2

⌋2
+ 4r

⌊
r
2

⌋
+ 12r

⌊
3r
2

⌋
−5 r2 + 4rs+ 8r + 4s+ 4.

This formula is correct when r, s are not too small; for instance if r = 3 and
s = 0, the above formula has constant term 81 while the actual constant, according
to Macaulay2, is 87. By Theorem 6.2,

reg(Cα(Q̂)) ≤ max{6(r + 1) + (s+ 1), 5(r + 1) + 2(s+ 1)} − 1

and HP (Cα(P̂), d) = dimCα
d (P) for

d ≥ max{6(r + 1) + (s+ 1), 5(r + 1) + 2(s+ 1)} − 2.
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A comparison of the bound on reg(Cα(Q̂)) and its actual value computed in Macau-
lay2 appears in Table 3 for r, s ≤ 5.

Table 3. Comparing regularity bound to regularity for Example 8.3

max{6(r + 1) + (s+ 1), 5(r + 1) + 2(s+ 1)} − 1
s = 0 s = 1 s = 2 s = 3 s = 4

r = 0 7 8 10 12 14
r = 1 13 14 15 17 19
r = 2 19 20 21 22 24
r = 3 25 26 27 28 29
r = 4 31 32 33 34 35

reg(Cα(Q̂))
s = 0 s = 1 s = 2 s = 3 s = 4

r = 0 4 4 5 6 7
r = 1 4 5 6 8 9
r = 2 7 8 8 9 10
r = 3 8 8 9 10 12
r = 4 11 11 12 12 13

Example 8.4. We now give an example which has very different behavior from
Example 8.1. Consider the polygonal complex Q formed by placing a regular (or
almost regular) n-gon inside of a scaled copy of itself and connecting corresponding
vertices by edges. The complex Q has one polygon with n edges and n quadrilateral
polygons. An example for n = 10 is shown in Figure 12. We may or may not perturb
the vertices so that the affine spans of the edges between the inner and outer n-
gons do not all meet at the origin. This does not appear to have much effect on

regularity, although it does change the constant term of HP (Cr(Q̂), d).

Figure 12. The complex Q in Example 8.4

According to Theorem 6.2, reg(Cr(Q̂)) ≤ max{(r + 1)(n+ 2), 5(r + 1)} ≤
(r+ 1)(n+ 2) as long as n ≥ 3. However, according to computations for r ≤ 3 and

n ≤ 10 in Macaulay2, reg(Cr(Q̂)) ≤ 3(r + 1) regardless of what value n takes.
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9. Regularity conjecture

We conclude with a conjecture in the case of uniform smoothness (see also [9,
Conjecture 5.6]). As in Example 8.1, given a polytope σ of the polytopal cell P,
denote by ∂◦(σ) the number of faces of σ which are interior to P. We call the
polytopal cell P complete if the origin is an interior vertex.

Conjecture 9.1. Let P ⊂ R3 be a polyhedral cell. Let F = max{|∂◦(σ)| : σ ∈ P}.
(1) P is central and complete =⇒ reg(Cr(P)) ≤ reg(LSr,1(P)) ≤ F (r + 1).
(2) P is central but not complete =⇒ reg(Cr(P)) ≤ (F − 1)(r + 1).

Remark 9.2. [9, Theorem 5.7] shows that generators can be obtained in degree
(F − 1)(r + 1) in the noncomplete central case. Example 8.1 shows generators
can be obtained in degree F (r + 1) for the complete central case. Hence these are
the lowest regularity bounds that we can conjecture which take into account the
statistic |∂◦(σ)| for each polytope σ.

Remark 9.3. The generic perturbation of the octahedron in Example 1.2 suggests
that Conjecture 9.1 part (1) could perhaps be made closer to the bound in part (2)
for generic complete polytopal cells.

Remark 9.4. Conjecture 9.1 part (2) is a natural generalization of a conjecture of

Schenck [28], that reg(Cr(Δ̂)) ≤ 2(r + 1) for Δ ⊂ R2. This is a highly nontrivial

conjecture in the simplicial case; it implies, for instance, that ℘(C1(Δ̂)) ≤ 2. To

date, it is unknown whether HP (C1(Δ̂), 3) = dimC1
3 (Δ̂). The difficulty of this

problem is in large part due to the fact that nonlocal geometry plays an increasingly
important role in low degree [1,4]. Since our methods hinge on using the submodules
LSα,1(P), which are locally supported approximations to Cα(P), our approach will
not be effective in proving Conjecture 9.1 part (2).

Remark 9.5. Example 8.4 indicates that a polytope with a large number of interior
faces does not always impose large regularity. Hence there is a need to study when
a large polytope actually imposes large regularity, as is the case in Example 8.1 (in
practice one would want to avoid these polytopal cells).

Appendix A. Additional results concerning regularity

In this appendix we summarize some results about regularity which are used
in the paper. We provide a proof for one of these results (Proposition A.7) since
we are not aware of a proof of this exact statement in the literature. For this
we will need an alternate characterization of regularity via local cohomology. We
briefly summarize this characterization; see [12, Appendix 1] for more details. Let
S = R[x0, . . . , xn]. The local cohomology modules Hi

m(M) of M with respect to
the homogeneous maximal ideal m = 〈x0, . . . , xn〉 are the right derived functors of
the functor H0

m( ), where

H0
m(M) = {m ∈ M | mjm = 0 for some j ≥ 0}.

If M is a graded module, then the local cohomology modules Hi
m(M) are also

graded. A standard fact about the modules Hi
m(M) is that they have finite length,

in other words, Hi
m(M)d = 0 for d 
 0. The module M is called d-regular if

(1) H0
m(M)j = 0 for every j > d,

(2) Hi
m(M)d−i+1 = 0 for every i > 0.
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Theorem A.1 (Theorem 4.3 of [12]). Let m ⊂ S be the maximal ideal of S and M
a graded S-module. Then reg(M) = min{d | M is d-regular}.

The next two results follow from Theorem A.1 using standard homological tools.

Corollary A.2 ([12], Corollary 4.4). If M has finite length, then reg(M) = max{d |
Md �= 0}.

Proposition A.3 ([11], Corollary 20.19). Let 0 → A → B → C → 0 be a graded
exact sequence of finitely generated S modules. Then:

(1) reg(A) ≤ max{reg(B), reg(C) + 1},
(2) reg(B) ≤ max{reg(A), reg(C)},
(3) reg(C) ≤ max{reg(A)− 1, reg(B)}.

Proposition A.3 can be applied to long exact sequences by breaking them into
short exact sequences. The next lemma can be proved in this way. The first
statement may be found in [12, Lemma 5.9].

Lemma A.4. Let m ≥ 0. If

0 → Cm → Cm−1 → · · · → C0 → M → 0

is an exact sequence of S-modules, then reg(M) ≤ maxi{reg(Ci)− i}. Similarly, if

0 → M → C0 → · · · → Cm−1 → Cm → 0

is an exact sequence of S-modules, then reg(M) ≤ maxi{reg(Ci) + i}.

An additional concept we need is the depth of a module. The depth of a graded S-
moduleM with respect to the homogeneous maximal ideal m, denoted depth(M), is
the length of a maximal sequence of homogeneous forms {f1, . . . , fk} ⊂ m satisfying
that f1 is a nonzerodivisor on M (there is no m ∈ M so that f1m = 0) and fl is

a nonzerodivisor on M/(
∑l−1

i=1 fiM) for l = 2, . . . , k. Such a sequence is called an
M -sequence. If the module M is simply S, then an S-sequence is called a regular
sequence. An ideal generated by a regular sequence is called a complete intersection.
We pause to give a result concerning the regularity of complete intersections.

Proposition A.5. If I is a complete intersection generated by a regular sequence of

homogeneous forms f1, . . . , fk of degrees d1, . . . , dk, then reg(S/I) =
∑k

i=1(di−1) =

(
∑k

i=1 di)− k.

We will use the following result of Auslander and Buchsbaum to move back and
forth between the notions of depth and projective dimension.

Theorem A.6 (Auslander-Buchsbaum). Let M be an S = R[x0, . . . , xn]-module.
Then depth(M) + pd(M) = depth(S) = n+ 1.

In particular, Theorem A.6 implies that pd(M) ≤ n + 1. This inequality is
known as the Hilbert syzygy theorem.

The following proposition is one of the ingredients used in the proof of the
Gruson-Lazarsfeld-Peskine theorem bounding the regularity of curves in projective
space [12, Proposition 5.5].

Proposition A.7. Let M be an S-module and N ⊂ M a submodule of M with
codim(M/N) > pd(M). Then reg(M) ≤ reg(N).
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Proof. Note that the inequality codim(M/N) > pd(M) in Proposition A.7 is
equivalent, via the Auslander-Buchsbaum theorem, to dim(M/N) < depth(M).
We prove reg(M) ≤ reg(N) if dim(M/N) < depth(M). Set d = depth(M).
By [12, Proposition A1.16], Hi

m(M) = 0 for i < d and Hi
m(M/N) = 0 for i >

dim(M/N). The long exact sequence in local cohomology resulting from the short
exact sequence

0 → N → M → M/N → 0

yields a surjection Hd
m(N) � Hd

m(M) and isomorphisms Hi
m(N) ∼= Hi

m(M) for
i > d. Since Hi

m(M) = 0 for i < d, if N is j-regular for some j, then so is M . Now
Theorem A.1 yields reg(N) ≥ reg(M). �
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