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ON GENERALIZED AVERAGED GAUSSIAN FORMULAS. II

MIODRAG M. SPALEVIĆ

Abstract. Recently, by following the results on characterization of positive
quadrature formulae by Peherstorfer, we proposed a new (2�+ 1)-point quad-

rature rule ̂G2�+1, referred to as a generalized averaged Gaussian quadrature

rule. This rule has 2� + 1 nodes and the nodes of the corresponding Gauss
rule G� with � nodes form a subset. This is similar to the situation for the
(2� + 1)-point Gauss-Kronrod rule H2�+1 associated with G�. An attractive

feature of ̂G2�+1 is that it exists also when H2�+1 does not. The numerical
construction, on the basis of recently proposed effective numerical procedures,

of ̂G2�+1 is simpler than the construction of H2�+1. A disadvantage might

be that the algebraic degree of precision of ̂G2�+1 is 2� + 2, while the one of
H2�+1 is 3� + 1. Consider a (nonnegative) measure dσ with support in the
bounded interval [a, b] such that the respective orthogonal polynomials, above

a specific index r, satisfy a three-term recurrence relation with constant coef-

ficients. For � ≥ 2r − 1, we show that ̂G2�+1 has algebraic degree of precision

at least 3�+1, and therefore it is in fact H2�+1 associated with G�. We derive
some interesting equalities for the corresponding orthogonal polynomials.

1. Gauss quadratures and their Kronrod extensions

Let dσ be a given nonnegative measure on a bounded or an unbounded interval
[a, b] = supp (dσ). If σ is an absolutely continuous function on [a, b], then dσ(t) =
ω(t) dt, where ω is a weight function. We call an interpolatory quadrature formula
(abbreviated q.f.) of the form

(1.1) I(f) =

∫ b

a

f(t) dσ(t) = Qn[f ] +Rn[f ], Qn[f ] =

n∑
j=1

ωjf(xj),

where x1 < x2 < · · · < xn, ωj ∈ R (j = 1, . . . , n) and Rn[f ] = 0 for f ∈ P2n−m−1

(Pn denotes as usual the set of polynomials of degree at most n), 0 ≤ m ≤ n, a
(2n−m − 1, n, dσ) q.f. If in addition all quadrature weights ωj , j = 1, . . . , n, are
positive, then it is called a positive (2n − m − 1, n, dσ) q.f. Furthermore, we say
that a polynomial tn ∈ Pn generates a (2n − m − 1, n, w) q.f. if tn has n simple
zeros x1 < x2 < · · · < xn, tn(t) =

∏n
j=1(t− xj), and if the interpolatory q.f. based

on the nodes xj , j = 1, . . . , n, is a (2n−m− 1, n, dσ) q.f. A (2n−m− 1, n, dσ) q.f.
is internal if all its nodes belong to the closed interval [a, b]. A node not belonging
to the interval [a, b] is called external.
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Let us denote by pk the monic polynomial of degree k, which is orthogonal to
Pk−1 with respect to dσ, i.e.,

∫ b

a

tjpk(t)dσ(t) = 0, j = 0, 1, . . . , k − 1,

and let us recall that (pk) satisfies a three-term recurrence relation of the form

(1.2) pk+1(t) = (t− αk)pk(t)− βkpk−1(t), k = 0, 1, . . . ,

where p−1(t) = 0, p0(t) = 1, αk ∈ R, and the βk > 0 for all k; see, e.g., Gautschi
[5] for details.

The unique interpolatory q.f. (2�−1, �, dσ) with � nodes and the highest possible
degree of exactness 2�− 1 is the Gaussian formula with respect to the weight dσ,

G�[f ] =

�∑
j=1

ωG
j f

(
xG
j

)
.

Gauss (see [4]), in an attempt to improve upon the Newton-Cotes formula, dis-
covered this quadrature rule G� named after him in the simplest case dσ(t) = dt.

As discussed, e.g., by Wilf [26], the nodes of the q.f. G� are the eigenvalues,
and the weights are proportional to the squares of the first components of the
eigenvectors, of the symmetric Jacobi tridiagonal matrix

JG
� (dσ) =

⎡
⎢⎢⎢⎢⎣

α0

√
β1 0

√
β1 α1

. . .

. . .
. . .

√
β�−1

0
√
β�−1 α�−1

⎤
⎥⎥⎥⎥⎦ ∈ R

�×�.

Both the nodes and weights of the q.f. G� can be conveniently computed by the
Golub-Welsch algorithm [11], which is based on the observation by Wilf [26].

In practice the common problem is to find some other q.f. for estimating the
error of G�[f ]. Typically, if it exists, the Gauss-Kronrod q.f. H2�+1, with 2� + 1
points and degree of exactness at least 3� + 1, is used under the assumption that
the � nodes of G� are part of the 2�+ 1 nodes,

(1.3)

I(f) =

∫ b

a

f(t) dσ(t) = H2�+1[f ] +RGK
2�+1[f ],

H2�+1[f ] =
�∑

j=1

ωGK
j f

(
xG
j

)
+

�+1∑
k=1

ω̃GK
k f

(
xS
k

)
.

This is an idea that was first put forward and implemented in the case dσ(t) = dt
by Kronrod [14]. Moreover, it seems that this problem has a longer tradition; see
Gautschi [7].

The polynomial of degree � + 1, which vanishes at the � + 1 additional nodes
xS
k (k = 1, . . . , �+1), the so-called Stieltjes polynomial, usually denoted by E�+1, is

characterized by an orthogonality relation with respect to a sign-changing weight.
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The efficient numerical methods for calculating the positive Gauss-Kronrod q.f. are
proposed by Laurie [15], and Calvetti et al. [1] (see also Monegato [17] and Gautschi
[5], jointly with [6]).

The existence of the positive Gauss-Kronrod q.f. depends on dσ, and there
are several known cases of nonexistence, e.g. for the Gauss-Laguerre and Gauss-
Hermite cases [13]. Recently, for the Gegenbauer weight ω(α,α)(t) = (1 − t2)α,
Peherstorfer and Petras [20] have shown nonexistence of Gauss-Kronrod formu-
las for � sufficiently large and α > 5/2. Analogous results for the Jacobi weight
function ω(α,β)(t) = (1 − t)α(1 + t)β can be found in their paper [21], particu-
larly nonexistence for large � of Gauss-Kronrod formulas when min(α, β) ≥ 0 and
max(α, β) > 5/2. In such cases it is of interest to find an adequate alternative to
the corresponding Gauss-Kronrod q.f.

2. Generalized averaged Gaussian quadrature formulas

Recently, by following the results on characterization of the positive quadrature
formulae by Peherstorfer [18] (see also [19]), we proposed in [24] a new (2�+1)-point
quadrature rule, referred to as a generalized averaged Gaussian quadrature rule and

denoted by Ĝ2�+1 below, for estimating the error |(I − G�)(f)| by the difference

|(Ĝ2�+1 −G�)(f)|. This rule has 2� + 1 nodes and the nodes of the corresponding
Gauss rule G� with � nodes form a subset. This is similar to the situation for the
(2� + 1)-point Gauss-Kronrod rule H2�+1 associated with G�, and estimating the
error |(I − G�)(f)| by the difference |(H2�+1 − G�)(f)|. An attractive feature of

Ĝ2�+1 is that it exists also when H2�+1 does not. The numerical construction, on

the basis of recently proposed effective numerical procedures, of Ĝ2�+1 in [24] is
simpler than the construction of H2�+1 in [15] (see also [5], jointly with [6]) and [1].

A disadvantage might be that the algebraic degree of precision of Ĝ2�+1 is 2� + 2,
while the one of H2�+1 is 3�+1. In the next section we will show that, for one class

of measures dσ, Ĝ2�+1 has algebraic degree of precision at least 3�+1, and therefore
it coincides with H2�+1 associated with G�. In this case the best way to compute

Ĝ2�+1 = H2�+1 is to use the simple numerical procedure for Ĝ2�+1 proposed in [24].
Generalized averaged Gaussian quadrature formulas may yield higher accuracy

than Gauss quadrature formulas that use the same moment information. This
makes them attractive to use when moments or modified moments are expensive or
difficult to evaluate. More details on the generalized averaged Gaussian quadrature

rules Ĝ2�+1 and their applications can be found in the recent papers [23], [22],

[12], [3], besides [24], [25]. The rule Ĝ2�+1 is the optimal stratified extension of the
Gauss rule G� (see [24]). This rule is of particular interest since it covers nested and

stratified formulas; see Peherstorfer [19, p. 2245] for a discussion. The rule Ĝ2�+1

can be expected to give a more accurate approximation of I(f) than the Gauss rule

G�+1 for essentially the same computational effort. The fact that Ĝ2�+1 may give
a smaller quadrature error than G�+1 has been shown in [23].

Peherstorfer [18] showed that a polynomial tn generates a positive (2n − 1 −
m,n, dσ) q.f. (0 ≤ m ≤ n) if and only if tn can be generated by a three-term
recurrence relation of the form

tj+1(x) = (x− α̃j)tj(x)− β̃jtj−1(x), j = 0, 1, . . . , n− 1,
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where t−1(x) ≡ 0, t0(x) ≡ 1, α̃j ∈ R, β̃j > 0, and

(2.1)

α̃j = αj for j = 0, 1, . . . , n− 1−
[
m+ 1

2

]
,

β̃j = βj for j = 0, 1, . . . , n− 1−
[m
2

]
,

such that

sgn tj(a) = (−1)j , tj(b) > 0, j = 1, 2, . . . , n.

These properties of the polynomials tj are equivalent to that tn can be represented
in the form (� := [(m+ 1)/2], n ≥ 2�, i.e., n− � ≥ �)

(2.2) tn = g�pn−� − β̃n−�g�−1pn−�−1,

where g�−1 and g� are generated by a three-term recurrence relation

gj+1(x) = (x− α̃n−1−j)gj(x)− β̃n−jgj−1(x), j = 0, 1, . . . , �− 1,

and g−1(x) ≡ 0, g0(x) ≡ 1, with α̃n−1−j ∈ R and β̃n−j > 0 for j = 0, 1, . . . , � − 1;

β̃n−� > 0, β̃n−� = βn−� if m = 2�− 1, such that

sgn gj(a) = (−1)j , gj(b) > 0, j = 1, 2, . . . , �;

see the proof of [18, Theorem 3.2], in particular (d) =⇒ (a).
We may define quadrature formulas of the kind discussed as follows. Let dμ be a

nonnegative measure on the same bounded or unbounded interval [a, b] = supp (dμ).
Let p̃k denote the monic polynomial of degree k that is orthogonal to Pk−1 with
respect to dμ, i.e., ∫ b

a

xj p̃k(x)dμ(x) = 0, j = 0, 1, . . . , k − 1.

Then the polynomials {p̃k}∞k=0 satisfy a three-term recurrence relation of the form

p̃k+1(x) = (x− γk)p̃k(x)− λkp̃k−1(x), k = 0, 1, . . . ,

where p̃−1(x) ≡ 0, p̃0(x) ≡ 1, γk ∈ R and λk > 0.
Consider the positive quadrature formula (2n− 1−m,n, dσ, dμ), in which

(2.3)
α̃n−1−j = γj and β̃n−j = λj for j = 0, 1, . . . , �− 1,

β̃n−� = βn−� (m = 2�− 1), i.e., β̃n−� = λ� (m = 2�) .

We then obtain

gj ≡ p̃j , j = 1, 2, . . . , �.

Conversely, letting

(2.4) g� ≡ p̃� and g�−1 ≡ p̃�−1,

we obtain the relations (2.3). Hence, if (2.4) or (2.3) holds, then (2.2) is reduced to

(2.5) tn = p̃� · pn−� − β̃n−� p̃�−1 · pn−�−1,

and tn generates a positive quadrature formula, which we denote by (2n − m −
1, n, dσ, dμ). The associated symmetric tridiagonal matrix Jn,�(dσ, dμ) ∈ R

n×n is
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given by
(2.6)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0

√
β1 0√

β1 α1

√
β2

. . .
. . .

. . .√
βn−�−2 αn−�−2

√
βn−�−1

√
βn−�−1 αn−�−1

√
β̃n−�

√
β̃n−� γ�−1

√
λ�−1

√
λ�−1 γ�−2

. . .

. . .
. . .

γ1
√
λ1

0
√
λ1 γ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where we circumscribe the last entries determined by the measure dσ by rectangles.

3. The main result

The special case dμ = dσ is analyzed in [24,25]. In that case, with β̃n−� = βn−�,
it holds that

(3.1) tn = p� · pn−� − βn−� p�−1 · pn−�−1,

and tn generates a positive quadrature formula, which we denote by (2n−2�, n, dσ).
The associated symmetric tridiagonal matrix (2.6) reduces to Jn,�(dσ) ∈ R

n×n in
the form
(3.2)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0

√
β1 0√

β1 α1

√
β2

. . .
. . .

. . .√
βn−�−2 αn−�−2

√
βn−�−1√

βn−�−1 αn−�−1

√
βn−�

√
βn−� α�−1

√
β�−1

√
β�−1 α�−2

. . .

. . .
. . .

α1

√
β1

0
√
β1 α0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, it seems the most interesting and useful subcase n = 2� + 1 has been
proposed and analyzed in [24]. In this case it holds that

(3.3) tn ≡ t2�+1 = p� · F�+1,

where

(3.4) F�+1 = p�+1 − β�+1 · p�−1,

and t2�+1 generates a positive quadrature formula (2� + 2, 2� + 1, dσ), i.e., Ĝ2�+1,
which we name the generalized averaged Gaussian quadrature rule. The associated
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symmetric tridiagonal matrix (3.2) reduces to J2�+1,�(dσ) ∈ R
2�+1×2�+1 in the form

(3.5)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0

√
β1 0√

β1 α1

√
β2

. . .
. . .

. . .√
β�−1 α�−1

√
β�

√
β� α�

√
β�+1

√
β�+1 α�−1

√
β�−1

√
β�−1 α�−2

. . .

. . .
. . .

α1

√
β1

0
√
β1 α0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The nodes of Gauss rule G� form a subset of the nodes of the rule Ĝ2�+1 (cf.
(3.1); see also [23, proof of Proposition 2.1]). The leading and trailing principal �×�
submatrices of J2�+1,�(dσ) given by (3.5) have the same eigenvalues. By considering
the characteristic polynomial for (3.5) and expanding the determinant along row
�+1, one can show that the spectrum of the leading principal submatrix is a subset
of the spectrum of the latter matrix; see [15] for details.

Now Ĝ2�+1 is constructed as the Gaussian q.f. by the associated symmetric
tridiagonal matrix J2�+1,�(dσ) ∈ R

2�+1×2�+1 of the form (3.5), and therefore by the
simpler manner than the corresponding positive Gauss-Kronrod q.f. H2�+1 (cf. [1],

[15]), if the latter exists. Ĝ2�+1 can be constructed whenever G� is constructed.

The weights of Ĝ2�+1 are all positive, and the interlacing property holds for the
nodes of p� and F�+1 (cf. [24]). A disadvantage might be that the algebraic degree

of precision of Ĝ2�+1 is 2� + 2, while the one of H2�+1 is 3� + 1. An interesting
heuristic analysis concerning this question has been done in [25], where we try to

answer whether the averaged Gaussian formula Ĝ2�+1 is an adequate alternative
to the corresponding Gauss-Kronrod quadrature formula H2�+1, to estimate the
remainder term of the Gaussian rule G�.

Assume now that the monic orthogonal polynomials relative to dσ satisfy a
three-term recurrence relation of the following kind:

(3.6)
p�+1(t) = (t− α�)p�(t)− β�p�−1(t), � = 0, 1, . . . ,

α� = α, β� = β for � ≥ r,

where α� ∈ R, β� > 0, r ∈ N, and p0(t) = 1, p−1(t) = 0. Thus, the coefficients α�

and β� are constant equal, respectively, to some α ∈ R and β > 0 for � ≥ r. Any
such measure dσ is known to be supported on a finite interval [16, Theorem 10]
(see also Chihara [2, Theorem 2.2 on p. 109]), say [a, b], together with the property
(3.6), has been denoted by dσ ∈ Mα,β

r [a, b] (see [9]).

Theorem 3.1. Consider a measure dσ ∈ Mα,β
r [a, b]. Then for � ≥ 2r− 1 the gen-

eralized averaged Gaussian q.f. Ĝ2�+1 has the algebraic degree of precision at least
3� + 1. Therefore it coincides with the corresponding Gauss-Kronrod q.f. and the
monic polynomials F�+1 coincide with the corresponding monic Stieltjes polynomials
given by

(3.7) F�+1(t) ≡ E�+1(t) = pl+1(t)− βp�−1(t) for � ≥ 2r − 1.



ON GENERALIZED AVERAGED GAUSSIAN FORMULAS. II 1883

Proof. Let dσ ∈ Mα,β
r [a, b].

It is well known that the algebraic degree of precision 2n − 1 −m of a positive
(2n − 1 − m,n, dσ) q.f. (0 ≤ m ≤ n) is equal to the number of the entries in
the corresponding Jacobi matrix, i.e., the coefficients of the three-term recurrence
relation in (1.2), without β0 (cf. (2.1); see also Characterization theorems in [18],
[19]).

If � ∈ {1, 2, . . . , r − 1}, then Ĝ2�+1 has the algebraic degree of precision 2� + 2.

(For � = 1 this means that 2�+ 2 = 3�+ 1 and Ĝ2�+1 = H2�+1, i.e., Ĝ3 = H3.)
Let � ≥ r. Then the algebraic degree of precision of the corresponding positive

q.f. based on the construction by the Jacobi matrix of the type (3.2), with n = 2�+1,
is 2n − 1 − (2r − 1) = 2(2� + 1) − 1 − (2r − 1) and it is greater than or equal to
3�+ 1 if and only if 4�+ 1− (2r − 1) ≥ 3�+ 1, i.e.,

� ≥ 2r − 1.

The given matrix (3.2) coincides with (3.5) for construction of the generalized

averaged Gaussian q.f. Ĝ2�+1, relative to (3.6). Therefore, if � ≥ 2r − 1, then

Ĝ2�+1 has the algebraic degree of precision at least 3� + 1 and it coincides with
the corresponding Gauss-Kronrod q.f. H2�+1, which is uniquely determined in this
way. On the basis of (3.4), relative to (3.6), the monic polynomials F�+1 coincide
with the corresponding monic Stieltjes polynomials E�+1 given by (3.7). �

A statement similar to Theorem 3.1 has been proved by Gautschi and Notaris
(see [9, Theorem 2.3]) in a different manner, from the viewpoint of Gauss-Kronrod
quadrature formulae theory. The generalized averaged Gaussian q.f. are introduced
much later (see [24], [25]).

Among the many orthogonal polynomials satisfying (3.6) we mention the four
Chebyshev-type polynomials and their modifications discussed by Allaway in his
thesis, as well as those associated with the Bernstein-Szegő measures; see [10], [8],
and [9] with references therein.

We end with an interesting representation for orthogonal polynomials with re-
spect to the measure dσ ∈ Mα,β

r [−1, 1]. As noted by Peherstorfer (cf. [19, p. 2245])
for the recurrence coefficients of (p�) by Rakhmanov’s theorem it holds that

lim
�→0

α� = 0, lim
�→0

β� =
1

4

if σ′ > 0 a.e. on [−1, 1], i.e., dσ(t) = ω(t) dt, where ω is a weight function on

[−1, 1]. Therefore, in this case it has to be Mα,β
r [−1, 1] = M0,1/4

r [−1, 1], and for

any orthogonal polynomial pn with respect to dσ ∈ M0,1/4
r [−1, 1], on the basis of

(2.5), (2.6), it holds that

(3.8) pn = Û� · pn−� −
1

4
Û�−1 · pn−�−1 (n ≥ 2�, � ≥ r),

where Û� is the �-degree monic Chebyshev polynomial of the second kind. Recall
that for the monic Chebyshev polynomials of the second kind Û� it holds that

γk = 0 (k = 0, 1, 2, . . . ); λk =
1

4
(k = 1, 2, . . . ) [λ0 = π/2].

For example, as a consequence of (3.8) we have

T̂n = Û� · T̂n−� −
1

4
Û�−1 · T̂n−�−1 (n ≥ 2�, � ≥ 2),
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i.e.,

Tn = U� · Tn−� − U�−1 · Tn−�−1 (n ≥ 2�, � ≥ 2),

since for the monic Chebyshev polynomials of the first kind T̂� it holds that

αk = 0 (k = 0, 1, 2, . . . ); β1 =
1

2
, βk =

1

4
(k = 2, . . . ) [λ0 = π].

Further,

Un = U� · Un−� − U�−1 · Un−�−1 (n ≥ 2�, � ≥ 1).

In a similar manner we derive the given representation for the Chebyshev poly-
nomials of the third and fourth kind, monic orthogonal polynomials relative to the
Bernstain-Szegő weight functions introduced in [8], etc.

4. Conclusion

The (2�+ 1)-point generalized averaged Gaussian quadrature rule Ĝ2�+1 for the
class of nonnegative measures dσ ∈ Mα,β

r [a, b] has algebraic degree of precision
at least 3� + 1 and coincides in this case with the corresponding Gauss-Kronrod
quadrature rule H2�+1. We proposed its construction by using the method from
[24]. We derived some interesting equalities for the orthogonal polynomials relative

to dσ ∈ M0,1/4
r [−1, 1].
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rature rules, J. Comput. Appl. Math. 308 (2016), 408–418, DOI 10.1016/j.cam.2016.06.016.
MR3523014

[4] C. F. Gauss, Methodus nova integralium valores per approximationem inveniendi, Commen-
tationes Societatis Regiae Scientiarum Göttingensis Recentiores 3 (1814). Also in Werke III,
163–196.

[5] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Numerical Mathe-
matics and Scientific Computation, Oxford University Press, New York, 2004. MR2061539

[6] W. Gautschi, OPQ suite (http://www.cs.purdue.edu/archives/2001/wxg/codes).
[7] W. Gautschi, A historical note on Gauss-Kronrod quadrature, Numer. Math. 100 (2005),

no. 3, 483–484, DOI 10.1007/s00211-005-0592-7. MR2195449

[8] W. Gautschi and S. E. Notaris, Gauss-Kronrod quadrature formulae for weight functions of
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