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ON USING SYMMETRIC POLYNOMIALS FOR

CONSTRUCTING ROOT FINDING METHODS

DMITRY I. KHOMOVSKY

Dedicated to the memory of my school teacher Alexander L. Smirnov.

Abstract. We propose an approach to constructing iterative methods for
finding polynomial roots simultaneously. One feature of this approach is using
the fundamental theorem of symmetric polynomials. Within this framework,
we reconstruct many of the existing root finding methods. The new results
presented in this paper are some modifications of the Durand-Kerner method.

1. Introduction

Let f(z) be a polynomial of degree n with coefficients in C and let its factorization
over the complex numbers be f(z) =

∏n
j=1(z − λj), where λj (j = 1, 2, ..., n) are

the roots (zeros) of f(z).
Let us consider some known methods for simultaneous approximation of roots.

The classical (Weierstrass) Durand-Kerner method [5, 6, 11, 26] is related to

(1.1) z
(k+1)
i = z

(k)
i −

f(z
(k)
i )

n
∏

j=1
j 6=i

(z
(k)
i − z

(k)
j )

(i = 1, . . . , n),

here k is the iteration number. Further in similar formulas we will use zi and ẑi
instead z

(k)
i and z

(k+1)
i , respectively. If the roots λi (i = 1, 2, ..., n) are distinct and

the initial approximations z
(0)
i (i = 1, 2, ..., n) are close to them, then the method

is of quadratic convergence proven by Dochev [5].
The Maehly-Ehrlich-Alberth method [1, 7, 12] with cubic convergence1 deals

with

(1.2) ẑi = zi −





f ′(zi)

f(zi)
−
∑

j 6=i

1

zi − zj





−1

(i = 1, . . . , n).

In practice, it is convenient to use a formula which does not contain division by a
near-zero value f(zi), since it may lead to loss of accuracy. So the following formula
is used:

ẑi = zi − f(zi)



f ′(zi)− f(zi)
∑

j 6=i

1

zi − zj





−1

.
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1Here and further we imply only the case of simple roots and good initial approximations.
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2 DMITRY I. KHOMOVSKY

There are modifications that significantly improve the iterative schemes above (see
Petcovic and Milovanovic [15, 16, 21] and references therein).

The Ostrowski-Gargantini method [9, 17] having the fourth order of convergence
is based on the following iterative formula:

(1.3) ẑi = zi −





(

f ′(zi)

f(zi)

)2

−
f ′′(zi)

f(zi)
−
∑

j 6=i

1

(zi − zj)2





−1/2

∗

(i = 1, . . . , n).

The symbol ∗ denotes that one of the values of the square root (more appropriate)
is chosen. In using such notation we follow [22, 23]. A criterion for the choice of an
appropriate value of the square root is given in [9]; we need to choose such a value
of the square root so that the following is minimal:

(1.4)

∣

∣

∣

∣

∣

∣

∣

f ′(zi)

f(zi)
−





(

f ′(zi)

f(zi)

)2

−
f ′′(zi)

f(zi)
−
∑

j 6=i

1

(zi − zj)2





1/2
∣

∣

∣

∣

∣

∣

∣

.

Since (1.4) contains only the terms which must be calculated in the current iteration
step, the direct way of choosing a value of the square root, which implies the
minimization of |f(ẑi)|, requires more calculations in a general case.

The generalization of (1.2), (1.3) was presented in [18, 22]. This result is as
follows:

(1.5) ẑi = zi −



Fm(zi)−
∑

j 6=i

1

(zi − zj)m





−1/m

∗

(i = 1, . . . , n),

where

(1.6) Fm(z) =
(−1)m−1

(m− 1)!

dm−1

dzm−1

(

f ′(z)

f(z)

)

(m ∈ Z
+).

To choose an appropriate value of the mth root we can use the minimization of

(1.7)

∣

∣

∣

∣

∣

∣

∣

f ′(zi)

f(zi)
−



Fm(zi)−
∑

j 6=i

1

(zi − zj)m





1/m
∣

∣

∣

∣

∣

∣

∣

.

The generalized iterative formula (1.5) is locally of (m+2)th order of convergence.
For more information about simultaneous root-finding methods see [2, 3, 13, 19, 24].

In this article, we discuss a new view on iteration methods for the simultaneous
approximation of polynomial roots based on relations for symmetric multivariate
polynomials. In the next section, we present a framework to reconstruct all sorts
of iterative methods illustrated by some well-known earlier results.

2. Constructing iterative formulas

The elementary symmetric polynomials are defined as follows

(2.1) e0(x1, . . . , xn) = 1, ek(x1, . . . , xn) =
∑

1≤j1···<jk≤n

xj1 · · ·xjk (1 ≤ k ≤ n).

It is known that any symmetric polynomial in x1, . . . , xn can be expressed as a
polynomial in ek(x1, . . . , xn) (1 ≤ k ≤ n), moreover, such a representation is unique.
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Example 2.1. For example, we consider the mth power sum of n variables, i.e.,
pm(x1, . . . , xn) =

∑n
j=1 x

m
j . There is the following recursive procedure:

p1 = e1,

p2 = e1p1 − 2e2,

p3 = e1p2 − e2p1 + 3e3,

p4 = e1p3 − e2p2 + e3p1 − 4e4, and so on.

The recurrence relation is

pm =
m−1
∑

j=1

(−1)m−1+jem−jpj + (−1)m−1mem, m ≥ 1.

Therefore, we can obtain the representation of pm via ek (1 ≤ k ≤ m). Also, there
are explicit formulas which express power sums in terms of elementary symmetric
polynomials, see [14].

Lemma 2.2. Let f(z) be a polynomial of degree n with coefficients in C and λj

(j = 1, 2, ..., n) be its roots. For an integer 0 ≤ k ≤ n the following holds:

(2.2)
1

k!

f (k)(z)

f(z)
= ek

(

1

z− λ1
, . . . ,

1

z− λn

)

,

here ek is the elementary symmetric polynomial of degree k in n variables.

Proof. We have the following two formulas which derived from the definition of
elementary symmetric polynomials (2.1):

(2.3) ek

(

1

z− λ1
, . . . ,

1

z− λn

)

f(z) = en−k (z− λ1, . . . , z− λn) ,

(2.4)
d

dz
ei (z− λ1, . . . , z− λn) = (n− i+ 1) ei−1 (z− λ1, . . . , z− λn) .

Suppose that (2.2) holds for k = m and m < n. By using (2.2) and (2.3) we get
the following:

(2.5) f (m)(z) = m! en−m (z− λ1, . . . , z− λn) .

From this formula with the help of (2.4) we obtain

(2.6) f (m+1)(z) = (m+ 1)! en−m−1 (z− λ1, . . . , z− λn) .

Thus, we conclude that (2.2) also holds for k = m+ 1. For k = 0 the statement of
the lemma is true. Then, using mathematical induction, we complete the proof. �

This lemma is used to construct iterative formulas. The main idea is as follows:
suppose we take some symmetric polynomial in the variables 1/(z−λj) (1 ≤ j ≤ n)
and express it via elementary symmetric polynomials, then using (2.2), we obtain a
formula which, after simple transformations, will give us a simultaneous root-finding
method.

Example 2.3. Let us consider the polynomial p3
(

(z − λ1)
−1, . . . , (z − λn)

−1
)

.

There is the representation p3 = e31 − 3e2e1 + 3e3. Using (2.2), we obtain
n
∑

j=1

1

(z− λj)3
=

(

f ′(z)

f(z)

)3

−
3f ′(z)f ′′(z)

2f(z)2
+

f ′′′(z)

2f(z)
.
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Making simple transformations, we derive an explicit expression for λi. We get

λi = z−





(

f ′(z)

f(z)

)3

−
3f ′(z)f ′′(z)

2f(z)2
+

f ′′′(z)

2f(z)
−
∑

j 6=i

1

(z− λj)3





−1/3

.

Finally, we have the following iterative method

(2.7) ẑi = zi −





(

f ′(zi)

f(zi)

)3

−
3f ′(zi)f

′′(zi)

2f(zi)2
+

f ′′′(zi)

2f(zi)
−
∑

j 6=i

1

(zi − zj)3





−1/3

∗

.

This is exactly (1.5) when m = 3. Usually, the method (2.7) is not used in practice.

Remark 2.4. If we consider pm
(

(z− λ1)
−1, . . . , (z− λn)

−1
)

, then we obtain (1.5)
and derive the following relation

(2.8) Fm(z) = um

(

f ′(z)

f(z)
,
1

2!

f ′′(z)

f(z)
, . . . ,

1

n!

f (n)(z)

f(z)

)

,

where the polynomial um is defined by

(2.9) pm(x1, . . . , xn) = um (e1(x1, . . . , xn), . . . , en(x1, . . . , xn)) .

Halley’s method for simultaneous approximation of polynomial zeros.

Let α and β be nonzero elements in C. We consider the symmetric polynomial
αp2 + βp21 in variables 1/(z − λj) (1 ≤ j ≤ n). Let us introduce the notation:

(2.10) q =
1

z − λi
, Sr =

∑

j 6=i

1

(z− λj)
r (r ∈ Z

+).

Then pr = qr + Sr. Using this, we have the following:

αp2 + βp21 = α(q2 + S2) + β(q2 + 2qS1 + S2
1)

= α(q2 + S2) + β(q2 + 2q(p1 − q) + S2
1)

= (α − β)q2 + 2βp1q + αS2 + βS2
1 .

We see that it is convenient to put α = β = 1. Then q = (p2 −S2+ p21−S2
1)/(2p1).

Since p1 = e1, p2 = e21 − 2e2, with the help of (2.2) we get

(2.11) λi = z−
2f(z)f ′(z)

2[f ′(z)]
2
− f(z)f ′′(z)− [f(z)]

2
(S2 + S2

1)
.

Finally, this formula leads to the simultaneous root-finding method
(2.12)

ẑi = zi −
2f(zi)f

′(zi)

2[f ′(zi)]
2
− f(zi)f ′′(zi)− [f(zi)]

2 (
∑

j 6=i

(zi − zj)−2 + [
∑

j 6=i

(zi − zj)−1]
2 ) .

This result was derived by Wang and Zheng in [25]. Since (2.11) is related to
Halley’s method [8] for solving a nonlinear equation, so (2.12) is sometimes called
the Halley-like method for simultaneous approximation of polynomial zeros. Its
convergence analysis can be found in [4, 19], the method is locally of the fourth
order of convergence. In the next section we will get this result.
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Remark 2.5. It is necessary to clarify how we came to the idea of choosing the
polynomial αp2+βp21. First, we considered the cases when the starting polynomials
are p2, p

2
1. In both cases, we obtained fourth-order methods, but they contained

a squaring operation, see the Ostrowski-Gargantini method (1.3). Then we chose
the starting polynomial as a linear combination of p2 and p21 in order to exclude a
squaring operation by choosing values of the coefficients α, β. If we deal with α, β
as symbolic parameters (without setting them equal to certain values), we would
get a family of fourth-order methods.

Simultaneous Householder’s method. In 1984, Wang and Zheng [25] presented
a family of iterative methods. This family contains the Maehly-Ehrlich-Alberth
method (1.2), and the Halley-like method (2.12); the authors used a concept based
on Bell’s polynomials. Below, within the proposed framework, we reproduce some
results.

We consider αp3 + βp1p2 + γp31 in variables 1/(z − λj) (1 ≤ j ≤ n). Then

αp3 + βp1p2 + γp31 = α(q3 + S3) + β(q + S1)(q
2 + S2) + γ(q + S1)

3

= (α + β + γ)q3 + (β + 3γ)S1q
2 + (βS2 + 3γS2

1)q + αS3 + βS1S2 + γS3
1

= (α − β + γ)q3 + (β − 3γ)p1q
2 + (βp2 + 3γp21)q + αS3 + βS1S2 + γS3

1 .

We put α = 2, β = 3, γ = 1 and get

q =
2(p3 − S3) + 3(p1p2 − S1S2) + p31 − S3

1

3(p2 + p21)
.

Therefore, we have

(2.13) λi = z−
6ff ′2 − 3f2f ′′

6f ′3 − 6ff ′f ′′ + f2f ′′′ − f3(2S3 + 3S1S2 + S3
1)

.

Using this formula, we can get the corresponding simultaneous root-finding method,
which is connected to Householder’s method [10] for solving a nonlinear equation
g(x) = 0, where g is a function in one real variable. Indeed, the iterative formula
of the dth-order Householder’s method2 is

(2.14) x̂ = x+ d
(1/g)

(d−1)
(x)

(1/g)
(d)

(x)
(d ∈ Z

+),

then for d = 3 we have

x̂ = x−
6gg′

2
− 3g2g′′

6g′3 − 6gg′g′′ + g2g′′′
.

Let us consider αp4 + βp1p3 + γp22 + δp21p2 + ǫp41; the number of summands is
equal to the integer partition of 4. By analogy with the previous we get

α(p4 − S4) + β(p1p3 − S1S3) + γ(p22 − S2
2) + δ(p21p2 − S2

1S2) + ǫ(p41 − S4
1)

= (α− β − γ + δ − ǫ)q4 + (β − 2δ + 4ǫ)p1q
3 +

(

(2γ − δ)p2 + (δ − 6ǫ)p21
)

q2

+(βp3 + 2δp1p2 + 4ǫp31)q.

2The rate of convergence of the method has order d+ 1.
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We put ǫ = 1, then in order to obtain a linear equation with respect to the variable
q we need to solve the following system:



















α− β − γ + δ − 1 = 0,

β − 2δ + 4 = 0,

2γ − δ = 0,

δ − 6 = 0.

The solution is α = 6, β = 8, γ = 3, δ = 6. Finally, we have

(2.15) λi = z−
4f(6f ′3 − 6ff ′f ′′ + f2f (3))

24f ′4 − 36ff ′2f ′′ + 6f2f ′′2 + 8f2f ′f (3) − f3f (4) − f4T
,

where T = 6S4 + 8S1S3 + 3S2
2 + 6S2

1S2 + S4
1 . Since (2.15) is also related to (2.14),

we can represent (2.11), (2.13), (2.15) in the following form

(2.16) λi = z + d
(1/f)

(d−1)
(z)

(1/f)(d) (z) + (−1)d−1Hd/f(z)
,

where d = 2, 3, 4, respectively and

H2 = S2 + S2
1 ,

H3 = 2S3 + 3S1S2 + S3
1 ,

H4 = 6S4 + 8S1S3 + 3S2
2 + 6S2

1S2 + S4
1 .

Since the relation (2.16) is already established [25, 19] for any positive integer d, we
will not do it in this paper. It should be noted that when d = 1, we have H1 = S1.
This case corresponds to the Maehly-Ehrlich-Alberth method (1.2).

The explicit formula for Hd. The homogeneous symmetric polynomial of degree k
in x1, . . . , xn is

hk(x1, . . . , xn) =
∑

1≤j1≤···≤jk≤n

xj1 · · ·xjk .

As is known, hk can be expressed in terms of power sums; the formula is as follows:

(2.17) hk =
∑

r1+2r2+···+krk=k
r1≥0,...,rk≥0

k
∏

j=1

p
rj
j

rj ! jrj
.

Using this, we get

h2 = (p2 + p21)/2,

h3 = (2p3 + 3p1p2 + p31)/6,

h4 = (6p4 + 8p1p3 + 3p22 + 6p21p2 + p41)/24.

Therefore, we see that

Hd = d!hd

(

1

z − λ1
, . . . ,

1

z − λi−1
,

1

z − λi+1
, . . . ,

1

z − λn

)

(2.18)

=
∑

r1+2r2+···+drd=d
r1≥0,...,rd≥0

d
∏

j=1

d!S
rj
j

rj ! jrj
.
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Also, Hd can be represented in terms of the Bell polynomials, see [19, 25]. The
simultaneous root-finding method based on (2.16), (2.18) is:

(2.19) ẑi = zi + d
(1/f)

(d−1)
(zi)

(1/f)
(d)

(zi) + (−1)d−1Ĥd;i/f(zi)
(i = 1, . . . , n),

where

(2.20) Ĥd;i = d!hd

(

1

zi − z1
, . . . ,

1

zi − zi−1
,

1

zi − zi+1
, . . . ,

1

zi − zn

)

.

The order of convergence of the method is d+ 2.

3. Convergence analysis

In this section, we show that simultaneous Halley’s method is of the fourth order
of convergence. We consider only the case when all the roots of f(z) are distinct,
in other words, we assume that there exists a positive real number M such that
|λl − λk| > M for any l 6= k. Let us denote the right side of the formula (2.12)
by ϕi(z1, . . . , zn). To study the convergence of the method we put zk = λk + αkε
(1 ≤ k ≤ n), where ε is real and αk, . . . , αn are arbitrary complex numbers. Then
we consider the expression ϕi(λ1 +α1ε, . . . , λn +αnε) as a function of the variable
ε. We note that (2.12) is obtained from the exact formula (2.11). So if zi is
arbitrary and the remaining zj are equal to λj , then ϕi(z1, . . . , zn) = λi. In this
case only one iterative step is necessary to obtain λi. Thus, a computational error
in some iteration step is caused by errors related to the sums in ϕi. Therefore, it
is convenient to get the following:

f(zi)
2

(

∑

j 6=i

(zi − zj)
−2+

[
∑

j 6=i

(zi − zj)
−1

]2
)

= f(zi)
2

(

∑

j 6=i

(zi − λj)
−2+

[
∑

j 6=i

(zi − λj)
−1

]2
)

+O(ε3) as ε → 0.

Here, we use that f(zi) = f(λi + αiε) = O(ε) and (since the roots are distinct)
∑

j 6=i

(zi − zj)
−2+

[

∑

j 6=i

(zi − zj)
−1

]2
=

∑

j 6=i

(zi − λj)
−2+

[

∑

j 6=i

(zi − λj)
−1

]2
+O(ε).

Also, since the roots are distinct, it follows that f ′(λi) 6= 0. Then using this, we
obtain

2f(zi)f
′(zi)

2[f ′(zi)]
2 − f(zi)f ′′(zi)− [f(zi)]

2 (
∑

j 6=i

(zi − λj)−2 + [
∑

j 6=i

(zi − λj)−1]2
)

+O(ε3)

=
2f(zi)f

′(zi)

2[f ′(zi)]
2
− f(zi)f ′′(zi)− [f(zi)]

2 (
∑

j 6=i

(zi − λj)−2 + [
∑

j 6=i

(zi − λj)−1]
2 ) +O(ε4).

Finally, we have ϕi(λ1 + α1ε, . . . , λn + αnε) = ϕi(λ1, . . . , λi + αiε . . . , λn) +O(ε4)
as ε → 0. As discussed above, ϕi(λ1, . . . , λi + αiε . . . , λn) = λi. So we conclude
that the method has the fourth order of convergence.

The above illustrates how we can analyze the convergence of iterative methods
like (2.12). But since we did not give a convergence theorem with error estimates,
we refer the reader to [4, 20].
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4. Modifications of the Durand-Kerner method

Let f(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 and, as before, f(z) =

∏n
j=1(z− λj).

We begin by introducing the following notation:

(4.1) ek;i = ek

(

1

z− λ1
, . . . ,

1

z− λi−1
,

1

z− λi+1
, . . . ,

1

z− λn

)

(0 ≤ k ≤ n− 1).

Also, for convenience, we assume that if k ≥ n, then ek;i = 0. It is easy to see that
for k ≥ 1 the following identity holds:

(4.2) ek = qek−1;i + ek;i.

Here, as above q = 1/(z− λi); also ek is the elementary symmetric polynomial in
variables 1/(z− λj) (1 ≤ j ≤ n). If we put k = n in (4.2), then

1/q =
en−1;i

en
.

By (2.2) and (4.1) we have

en =
1

n!

f (n)(z)

f(z)
=

1

f(z)
and en−1;i =

∏

j 6=i

1

z− λj
.

Finally, we get

(4.3) λi = z− f(z)/
∏

j 6=i

(z− λj).

As is seen, this is the main formula for the Durand-Kerner method (1.1). Although
the derivation of (4.3) from the full factorization of f(z) is simpler, we have shown
the technique that will be used below.

Now we put k = n− 1 in (4.2), then

(4.4) en−1 = qen−2;i + en−1;i.

Since f(z)en−1 = nz + an−1 and f(z)en−1;i = 1/q, we have the following:

(4.5) nz + an−1 = f(z)qen−2;i + 1/q.

Dividing this formula by q and taking into account that 1/q = z− λi, we obtain

(4.6) (z− λi)
2 − (nz + an−1)(z− λi) + f(z)en−2;i = 0.

This formula can be used to obtain Weierstrass-like methods. We have two possible
ways: the first is to solve the equation (4.6) in the variable λi, the second is to use
(4.3) so that the equation becomes linear, which is to be solved in λi. In addition,
we use the following formula, which can be proved by simple transformations,

(4.7) en−2;i = (nz− z−
∑

j 6=i

λj)/
∏

j 6=i

(z− λj).

Then, following the second way, we have

(4.8) λi = z−
1

nz + an−1

f(z)
∏

j 6=i(z− λj)



(n− 1)z−
∑

j 6=i

λj +
f(z)

∏

j 6=i(z− λj)



 .

The corresponding iterative method is as follows:

(4.9) ẑi = zi −
Wi

nzi + an−1



nzi −

n
∑

j=1

zj +Wi



 , where Wi =
f(zi)

∏

j 6=i(zi − zj)
.
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This method is very close to the Durand-Kerner method. The convergence analysis
can be performed by analogy with the previous section. If initial approximations
are good and all the roots of f(z) are distinct, then the method has quadratic
convergence. We did some numerical tests to investigate the convergence properties
of the new method. Based on the results, it can be said that (4.9) does not have
advantages over (1.1). Nevertheless, we generalize the method obtained. We have

(4.10) en−m = qen−m−1;i + en−m;i.

The following holds:

(4.11) en−m =
vm(z)

f(z)
, where vm(z) =

m
∑

l=0

an−m+l

(

n−m+ l

n−m

)

zl

and

(4.12) ek;i =
cn−k−1;i

∏

j 6=i(z− λj)
,

where cm;i = em(z− λ1, . . . , z− λi−1, z− λi+1, . . . , z− λn) (0 ≤ m ≤ n− 1). From
these formulas and (4.10) it follows that

(4.13) (z− λi)
2cm−1;i − (z− λi)vm(z) +

f(z)
∏

j 6=i(z− λj)
cm;i = 0.

Using (4.3), we obtain a linear equation in λi, solving which we find

(4.14) λi = z−
1

vm(z)

f(z)
∏

j 6=i(z− λj)

[

cm;i +
f(z)

∏

j 6=i(z− λj)
cm−1;i

]

.

The first values of cm;i are given below:

c0;i = 1,

c1;i = (n− 1)z− b1,

c2;i = (n− 1)(n− 2)z2/2− (n− 2)b1z + (b21 − b2)/2,

where bk =
∑

j 6=i λ
k
j (k ∈ Z+). The general formula is

cm;i =

m
∑

l=0

(

n− 1−m+ l

l

)









∑

r1+2r2+···+(m−l)rm−l=m−l
r1≥0,...,rm−l≥0

m−l
∏

j=1

(−bj)
rj

rj ! jrj









zl.

In this formula, we assume that the sum over r1, . . . , rm−l is equal to 1 if m− l = 0.
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F(x)= 0, racines d’un polynôme, Masson, Paris, 1960.
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