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3 The Diophantine Problem in Some Metabelian

Groups

Olga Kharlampovich∗, Laura López†, Alexei Myasnikov‡

Abstract

In this paper we show that the Diophantine problem for quadratic
equations in Baumslag-Solitar groups BS(1, k) and in wreath products
A ≀ Z, where A is a finitely generated abelian group and Z is an infinite
cyclic group, is decidable. We show also that one can decide if there
are non-trivial solutions of systems of equations without coefficients in
these groups and give some sort of description of solutions. Previously we
stated that there is an algorithm that given a finite system of equations
with constants in such a group decides whether or not the system has a
solution in the group, this proof, unfortunately, has a gap.

1 Introduction

The problem of solving equations in various classes of groups and monoids has
been an active research field for many years now. The first general results
on equations in groups appeared in the 1960’s in the works of Lyndon [11] and
Malcev [12]. In the 1970’s Makanin [13, 14] proved the solvability of (systems of)
equations for free monoids and free groups. Makanin’s decidability results have
been extended to hyperbolic groups and right-angled Artin groups [3], and it was
shown that certain group operations (graph products [2], HNN-extensions and
amalgamated products over finite groups) preserve decidability [10]. Moreover, a
significant progress concerning the computational complexity and the structure
of solution sets have been obtained in recent years. On the negative side, by the
Ershov-Romanovskii-Noskov result the first-order theory of a finitely generated
solvable group is decidable if and only if the group is virtually abelian. The
corresponding problem has been posed in [9]. Ershov proved this statement [5]
in the nilpotent case, Romanovskii [19] generalized it to the polycyclic case,
and finally, Noskov [15] established the most general statement for the case of a
finitely generated solvable group. Denote by EP1 the problem of solvability of
one equation. Roman’kov showed that EP1 is undecidable even for the subclass
of all split equations of the form w(x1, . . . , xn) = g, where w(x1, . . . , xn) is a

∗Hunter College and Graduate Center, CUNY
†Graduate Center, CUNY
‡Stevens Institute

1

http://arxiv.org/abs/1903.10068v3


2

coefficient-free word and g is an element of the underlying group G that is a free
nilpotent of class ≥ 9 [17] (this bound was later reduced to ≥ 4 in [18]) or G
is a free metabelian non-abelian group [18]. In [4] the authors proved that EP1

is decidable in the Heisenberg group that is free nilpotent of rank 2 and class
2. But the Diophantine problem (denoted by EP in [4]) is undecidable in any
non-abelian free nilpotent group.

In this paper we show that the Diophantine problem for quadratic equations
in solvable Baumslag-Solitar groups BS(1, k) and in wreath products A ≀ Z,
where A is a finitely generated abelian group and Z is an infinite cyclic group,
is decidable, i.e. there is an algorithm that given a finite quadratic system of
equations with constants in such a group decides whether or not the system has
a solution in the group. We show also that one can decide if there are non-trivial
solutions of systems of equations without coefficients in these groups. In the
published version of this paper we stated that there is an algorithm that given
a finite system of equations with constants in such a group decides whether or
not the system has a solution in the group, this proof, unfortunately, has a gap.

The metabelian Baumslag-Solitar groups are defined by one-relator presen-
tations BS(1, k) = 〈a, b | b−1ab = ak〉, where k ∈ N. If k = 1 then BS(1, 1)
is free abelian of rank 2, so the Diophantine problem in this group is decidable
(it reduces to solving finite systems of linear equations over the ring of inte-
gers Z). Furthermore, the first-order theory of BS(1, 1) is also decidable [21].
However, if k ≥ 2 then BS(1, k) is metabelain which is not virtually abelian,
so the first-order theory of BS(1, k) is undecidable by [15]. As we mentioned
above, in free metabelian non-abelian groups equations are undecidable [18]. In
fact, in a finitely generated metabelian group G given by a finite presentation in
the variety M2 of metabelian groups, the Diophantine problem is undecidable
asymptotically almost surely if the deficiency of the presentation is at least 2
[6].

In general, if the quotient G/γ3(G) of a finitely generated metabelian group
G by its third term of the lower central series is a non-virtually abelian nilpo-
tent group, then the decidability of the Diophantine problem in G would imply
decidability of the Diophantine problem for some finitely generated ring of al-
gebraic integers OG associated with G/γ3(G). The latter seems unlikely, since
there is a well-known conjecture in number theory (see, for example, [1, 16])
that states that the Diophantine problem in rings of algebraic integers is unde-
cidable. The discussion above shows that finitely generated metabelian groups
G with virtually abelian quotients G/γ3(G) present an especially interesting
case in the study of equations in metabelian groups. The groups BS(1, k) and
wreath products A ≀ Z, where A is a finitely generated abelian group and Z is
an infinite cyclic group, are the typical examples of such groups. This gives
also a new look at one-relator groups. The groups BS(1, k), k ≥ 2, were un-
til recently the only known examples of one-relator groups with undecidable
first-order theory. Recently, we were able to show (still unpublished) that any
one-relator group containing non-abelian group BS(1, k) has undecidable first-
order theory. However, it is quite possible that equations in such groups are
still decidable.
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2 Equations in BS(1, k)

Our first main result is

Theorem 1. Quadratic equations in BS(1, k) are decidable. There is also an
algorithm to decide if there is a non-trivial solution of a system of equations
without coefficients.

To prove the theorem we have to construct an algorithm that decides whether
the set of formulas of the form ∃x̄ ∧s

i=1ti(x̄, a, b) = 1 is decidable, where ti(x̄, a, b)
is a group word in the alphabet x̄, a, b. Recall that the group BS(1, k) is iso-
morphic to the group Z[1/k]⋊ Z, where Z[1/k] ∼= ncl(a) and Z ∼= 〈b〉, where

Z[1/k] = {zk−i, z ∈ Z, i ∈ N}

and the action of 〈b〉 is given by b−1ub = uk. Thus, we can think of elements in
BS(1, k) as pairs (zk−i, r) where z, r, i ∈ Z. The product is defined as

(z1k
−i1 , r1)(z2k

−i2 , r2) = (z1k
−i1 + z2k

−(i2+r1), r1 + r2).

The inverse of an element (zk−y, r) is (−zk−(y−r),−r)
The following lemma reduces systems of equations in BS(1, k) to systems of

equations in Z.

Lemma 1. Any finite system of equations in BS(1, k) is equivalent to a finite
system of equations of the form

∑

i

zik
−yi(

∑

j

±kτij(r̄))−
∑

t

γtk
τt(r̄) = 0 (1)

and
∑

βjrj = δ. (2)

where τt(r̄), τij(r̄) =
∑

q αqrq + cq and where αq, cq, δ, γt, βj ∈ Z, and yi, zi, ri,
are variables.

The product zik
−yi can be also considered as one variable in Z[1/k].

Proof. Note that

(z1k
−y1 , r1) · (z2k

−y2 , r2) · · · (znk
−yn , rn) =

(z1k
−y1 + z2k

−(y2+r1) + ...+ znk
−(yn+r1+...+rn−1), r1 + ...+ rn)

The system of equations in the first and second component corresponds to
a system of equations of the form (1) and (2), respectively.

To solve a system of equations in BS(1, k), we begin by solving system
(2). This system is just a linear system of equations AX = B with integer
coefficients, where X = (r1, . . . , rn)

T and A is the matrix of the system. Using
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integral elementary column operations on A and row operations on (A|B) we
can obtain an equivalent system ĀX̄ = B̄ such that Ā has a diagonal form.
This is Smith normal form. Column operations on A correspond to change
of variables. Row operations on (A|B) correspond to transformations of the
system of equations into an equivalent system. If the system ĀX̄ = B̄ does not
have a solution, then the corresponding system of equations in the group does
not have a solution. If the system ĀX̄ = B̄ is solvable, then we change variables
X to X̄ . Some of the new variables X̄ will have fixed integer values and some
will be arbitrary integers. Substitute those X̄’s into system (1). We only have
to check that there exist integer solutions Z = {z1, . . . , zn}, Y = {y1, . . . , yn}
and remaining X̄ that we denote X̂ = {ri1 . . . rim}.

We say that a system of equations S(X) = 0 with variables X is equivalent
to a disjunction of systems S1(X) = 0, . . . , Sm(X) = 0 if every solution of
S(X) = 1 is a solution of one of Si(X) = 0, i = 1, . . . ,m and every solution of
Si(X) = 0 is a solution of S(X) = 0. One can consider system (1) as a linear
system with variables zik

−yi , and linear combinations of exponential functions
as coefficients (which contain variables X̂). It can be transformed using row
operations to an equivalent disjunction of triangular like systems (with respect
to variables zsk

−ys , s = 1, . . . , q) of the following form:

zsk
−ys(

∑

j

δsjk
τsj(r̄)) =

∑

i>q

zik
−yi(

∑

j

δijk
σij(r̄)) +

∑

t

γtk
τt(r̄), s = 1, . . . , q,

(3)

∑

j

ajk
φj(r̄) = 0 (system of such equations). (4)

where δsj , δij , γt, aj ∈ Z and τsj , σij , τt, φj are linear combinations of elements in

X̂ and constants. We will get a disjunction of systems because when multiplying
equations by some coefficient we have to consider separately the case when this
coefficient is zero.
Now we have to solve systems (3) and (4). We will first find all solutions
of system (4). Semenov’s ideas in [20] (where he proved that the theory of
〈Z,+, kx〉 is decidable) can be used to prove the following lemma.

Lemma 2. Any system of equations over Z of the form

F (ȳ) =
∑

j

βjk
yj + C = 0, (5)

where βj ∈ Z, k ∈ N, k > 1, with variables ȳ = (y1, ..., yn), is equivalent to a
disjunction of linear systems of equations over Z.

Proof. Let ȳ = (y1, . . . , yn) and let λ : {y1, . . . , yn} → {+,−} be a map that
assigns to each variable a positive or negative sign (the agreement will be that
zero has a positive sign). System (5) over Z is equivalent to a disjunction of 2n

systems each with an assignment λ. Now we fix one of these systems and we
show how to describe all solutions.
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We begin by rewriting each equation so that all variables are positive. We
may do this by substituting in each equation −yi for yi for each yi that has
a negative assignment. Then we multiply each equation by kyi1+...+yis , where
yi1 , . . . , yis are all the variables whose signs were changed. For instance, suppose
we have an equation ky1 − ky2 + ky3 + c = 0 with assignment y1 < 0, y2 ≥
0, y3 ≥ 0. Then we rewrite it as k−y1 − ky2 + ky3 + c = 0 with assignment
y1 ≥ 0, y2 ≥ 0, y3 ≥ 0 and multiply the equation by ky1 . We then obtain the
equation

1− ky1+y2 + ky1+y3 + cky1 = 0

with assignment y1 ≥ 0, y2 ≥ 0, y3 ≥ 0. We now obtain a system over N of the
form

∑

i

βik
∑

j
yij + C = 0

Next, we substitute all sums in exponents of k by new variables to obtain a
system of equations over N of the form

F ′(ȳ) =
∑

i

βik
ŷi + C = 0 (6)

Claim: A finite system of equations in the form (6) is equivalent to a disjunction
of systems of linear equations of the form {ŷ1 = ŷ2+ c1, ŷ2 = ŷ3+ c2, . . . , ŷs−1 =
ŷs + cs}.

Proof. Denote the new variables as ȳ′ = (ŷ1, . . . ŷm). We begin by showing that
for each i, there is a ∆i ∈ N such that system (6) does not have a solution if
ŷi > ŷj +∆i for all j 6= i.

Fix i. We can rewrite each equation in the system in the form kŷ+
∑

i γik
x̂i =

∑

j δjk
ẑj + C, where all γi, δj are positive integers, ŷ = ŷi and x̂i, ẑj are all

variables in ȳ′ − ŷi. For each equation, let ∆ > logk(
∑

j δj + C) if C ≥ 0 and
∆ > logk(

∑

j δj) if C < 0, and ŷ > x̂i + ∆ and ŷ > ẑj + ∆ for all i, j. Then

kŷ > k∆kẑj > (
∑

j δj +C)kẑj for all j. Thus, the right side of the equation will
always be smaller than the left side, and the equation has no solution. Thus,
we can take ∆i to be the smallest such ∆.

So we have shown that for all variables ŷi, if F
′ (or a finite system of equa-

tions where each equation has form F ′) has a solution then there is a j 6= i
such that ŷi ≤ ŷj + ∆i. Now consider a finite graph G with n vertices la-
beled ŷ1, . . . , ŷm and directed edges from ŷi to ŷj whenever ŷi ≤ ŷj +∆i. Note
that each vertex must be the initial vertex of some edge and thus the graph
must contain a cycle in every connected component. Suppose there is a cycle
ŷi1 , . . . , ŷis = ŷi1 , s ≤ m+ 1. Then

ŷi1 ≤ ŷi2 +∆i1 ≤ ŷi3 +∆i2 +∆i1 ≤ . . . ≤ ŷis +∆i(s−1)
+ . . .+∆i1

= ŷi1 +∆i(s−1)
+ . . .+∆i1
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Therefore for any 2 ≤ j ≤ s− 1, we have that

ŷi1 −

j−1
∑

t=1

∆it ≤ ŷij ≤ ŷi1 +

s−1
∑

t=j

∆it

Therefore, the value of any ŷij with 2 ≤ j ≤ s − 1 is bounded by the value of
ŷi1 .

Fix a yij and let ∆j1 =
∑j−1

t=1 ∆it and ∆j2 =
∑m−1

t=j ∆it . Then we may
replace the equation F ′(ȳ) by a disjunction of equations G(ȳ\ŷij ) where G is
the same as the formula F ′, but ŷij is replaced by ŷi1 − ∆j1 in one equation,
yi1 −∆j1 + 1 in the next, and so on until yi1 +∆j2 .

Now we may eliminate variables from each equation in m variables induc-
tively, obtaining at each step a new disjunction consisting of a system of equa-
tions in less variables and a set of linear equations of the form ŷi = ŷj + ci
which we use to eliminate one variable. At the last level of each branch of this
procedure, we will have one of three possible outcomes:

1. All exponential terms have canceled out and we have a false equation with
constant terms. In this case there is no solution to (6) or (5) in this branch.

2. There is an equation 0 = 0 (i.e. all terms cancel out after a substitution).
In this case all variables (after renumbering) ŷi+1, . . . , ŷm that remained in
the previous step of the branch are taken as free variables, and we obtain
a general solution ŷ1 = ŷ2 + c1, ŷ2 = ŷ3 + c2, . . . , ŷi = ŷi+1 + ci to system
(6) along this branch.

3. There is one equation left of the form βsk
ys + C = 0. In this case, this

equation has a unique solution ys = b or no solution.

In the second case, any solution in Z of the linear system ŷ1 = ŷ2 + c1, ŷ2 =
ŷ3+c2, . . . , ŷi = ŷi+1+ci will be a solution to system (6) since when we substitute
the variables into this equation, the same cancellations will occur and we will
remain with the equation 0 = 0. This proves the claim.

System (5) can also be reduced to a disjunction of linear systems by substi-
tuting each ŷi back to the corresponding linear combination of y1, . . . , yn. This
completes the proof of the lemma.

System (4) is also equivalent to a disjunction of linear systems –we first
replace sums appearing in the exponent of k by new variables and then apply
Lemma 2. We now solve this disjunction of linear systems –if it is solvable, the
general solution will correspond to the disjunction of systems of linear equations
on X̂ . We fix one of these systems and substitute those ri’s that are fixed
numbers into system (3) that has triangular form. Denote the new tuple of ri’s
by X̃.

Proof of Theorem 1.
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We will first prove the second statement. Suppose a system of equations in
BS(1, k) does not have coefficients. Then systems (1) and (3) do not have the
last term.

The system has a non-trivial solution if and only if system (4) has a non-
trivial solution. We can describe all solutions of (4) because they come from
systems of linear equations. Then we substitute any solution of (4) in (3) and
find all solutions of (3) in Z(1/k) as a homogenous system of linear equations
over Z(1/k).

It cannot happen that (4) has only finitely many solutions and the number
of equations is more than the number of variables (so each zi = 0). Indeed then
there are no a′s in the solution and we have a homogeneous linear system in
abelian group that either has only zero solution or infinitely many.

Now we will show that there is an algorithm to decide if a quadratic equation
has a solution. Every quadratic equation is equivalent to an equation in the
standard form

Πg
i=1[xi, yi]Π

n
i=1z

−1
i cixi = 1

or
Πg

i=1[xi, yi]Π
n
i=1z

−1
i cixi = 1

The commutator width of BS(1, n) is one. Indeed, since the relator has
b-exponent 0 and a-exponent 1− k, any word on a, b tat represents an element
of the derived subgroup must have b-exponent 0 and a-exponent a multiple
of k − 1. Therefore, each element of the derived subgroup may be written as
bsam(k−1)b−s, which is equal to

bsamkb−sbsa−mb−s = bs−1amb1−sbsa−mb−s = bs−1amba−mb−s = [b, a−mb−s].

The verbal width of the subgroup generated by the squares in BS(1, n) is
two. Hence an orientable equation of genus g ≥ 1 has a solution if and only if
Πn

i=1ci ∈ BS(1, n)′. A non-orientable equation of genus g ≥ 2 has a solution
if and only if Πn

i=1ci belongs to this verbal subgroup. Therefore (except non-
orientable of genus 1) we only have to deal with equations of genus zero.

Πn
i=1z

−1
i cizi = 1.

Lemma 3. The question about the existence of solutions to quadratic equation
of genus zero reduces to the question about existence of solutions to certain
system (4) or, equivalently, (6).

Proof. Consider
Πn

i=1x
−1
i c̄ixi = 1

and let xi = (zik
−yi , ri) and c̄i = (cik

−d, si). Then

Πn
i=1(zik

−yi , ri)(cik
−di , si)(zik

−yi , ri)
−1 = Πn

i=1(zik
−yi , ri)(cik

−di, si)(−zik
−yi+ri ,−ri)

= (
n
∑

i=1

k−
∑i−1

j=1 si(cik
−di−ri + zik

−yi(1− k−si)),
n
∑

i=1

si) = (0, 0).
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Therefore,
∑n

i=1 si.
There are two possible cases. In the first case si = 0 for all i = 1, . . . , n, then

the system is equivalent to a system
∑n

i=1 cik
ȳi = 0 for new integer variables

ȳi, i = 1, . . . , n. This is exactly system (6).
In the second case, some si is non-zero. Take s = gcd(|s1|, . . . , |si|), then

(ks−1) = gcd((k|si|−1), i = 1, . . . , n) and the quadratic equation has a solution
if and only if the congruence

n
∑

i=1

cik
ȳi ≡ 0(mod(ks − 1))

has a solution in Z(1/k). Therefore we only have to consider ȳi’s such that
−s ≤ yi ≤ s. This finishes the proof in the second case.

3 Restricted wreath products with Z

The restricted wreath product G ≀ Z is isomorphic to the semidirect product
⊕i∈ZG⋊Z, where the action of Z on ⊕i∈ZG is by translation of indices, that is,
k·{gn}n∈Z = {gn+k}n∈Z. The product of two elements ({gn}n∈Z, k)·({hn}n∈Z, l)
is ({gn + hn+k}n∈Z, k + l). When G = Z2 the group is called the lamplighter
group.

If A is finitely generated abelian, then A = Z
m ⊕ Zn1 ⊕ . . . ⊕ Znk

as an
additive group. Denote by R the ring Z

m ⊕ Zn1 ⊕ . . .⊕ Znk
. In this case A ≀ Z

is isomorphic to the group of matrices of the form

M =

(

tx P
0 1

)

where P is a Laurent polynomial in R[t, t−1]. Note that P = f(t)t−k where
f(t) ∈ R[t] and k ∈ N.

We will first show that equations in A ≀ Z are decidable for A = Zn and
A = Z. We will denote Zn ≀ Z by Ln and Z ≀ Z by L.

Theorem 2. Quadratic equations in Ln are decidable. There is also an algo-
rithm to decide if an arbitrary coefficient free system has a non-trivial solution.

Proof. The product of n elements in Ln is

(

tx1 P1

0 1

)

. . .

(

txn Pn

0 1

)

=

(

tx1+...+xn Q
0 1

)

where Pj = fj(t)t
−yj and

Q = fn(t)t
−yntx1+...+xn−1 + fn−1(t)t

−yn−1tx1+...+xn−2 + . . .+ f1(t)t
−y1

In a system of equations in Ln, some of the xi, fj(t) and yj may be constants
and some may be variables.
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Thus, any system of equations in Ln is equivalent to a system of equations
of the form:

F1(x̄, t, t
−1)f1(t)t

−y1 + . . .+ Fm(x̄, t, t−1)fm(t)t−ym = P (x̄, t, t−1) (7)

and
∑

i

cixi + C = 0 (8)

where Fj(x̄, t, t
−1) =

∑

i αit
σi(x̄) where αi = ±1, and σi(x̄) is a linear combi-

nation of elements in x and a constant, and fj(t) is a variable that runs over
Zn[t], yj is a variable that runs over N, P (x̄, t, t−1) is a polynomial in Zn[t, t

−1]
with linear combinations of x̄ in the exponents of t and ci, C ∈ Z.

We begin by solving the linear system (8) as in Section 2. If the system
does not have a solution, then system (7) will not have a solution either. If the
system has a solution, then we substitute those values of xi into system (7).
Some xi will be replaced by integers, others by linear combinations of elements
in x̄ and constants.

Now we solve system (7). This system can be put in Smith normal form by
regarding the terms fj(t)t

−yj as variables, the terms Fj(x̄, t, t
−1) as coefficients,

and P (x̄, t, t−1) as a constant coefficient.
Thus, the system is equivalent to a disjunction of systems of the form:

F ′
s(x̄, t, t

−1)fs(t)t
−ys =

∑

i>q

F ′
si
(x̄, t, t−1)fi(t)t

−yi + P ′
s(x̄, t, t

−1) (9)

for s = 1, . . . , q, and
∑

i

ait
σi(x̄,di) = 0 (10)

where ai,∈ Zn and σi(x̄, di) is a linear combination of elements in x̄ with con-
stants.

To solve system (10), we begin by grouping terms in each equation such that
the sum of the coefficients of each group is zero modulo n. If there is no way to
group each equation in the system in this way, then this system does not have a
solution. For, suppose there is a solution to system (10), then after substituting
the solution in each equation and simplifying, the coefficients of each ti should
be zero in each equation, thus the sum of the coefficients of ti before simplifying
must be zero modulo n.

There may be many ways to group the terms of each equation. We fix one
system after grouping and for each equation, we set the powers of t in the terms
that were grouped together equal to each other, consequently obtaining a system
of linear equations.

For example in L5, the equation

3t3−x1+x2 + 4t−2+x1 + 2tx3−2 + 1 = 0

can be grouped as follows:

(3t3−x1+x2 + 2tx3−2) + (4t−2+x1 + 1) = 0
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We then obtain the linear system

3− x1 + x2 = x3 − 2

−2 + x1 = 0

We now solve this system of linear equations. If there is no solution, system
(9) has no solution in this branch. If there is a solution, then we substitute the
general solution back into (9).

Proof of Theorem 2 Every non-abelian abelian-by-cyclic group A ⋊φ Z

has commutator width 1. Indeed, the derived subgroup equals the image of
φ− 1 ∈ End(A) that consists of commutators. The action of φ on A/(φ− 1)A
is trivial, therefore (A ⋊φ Z)′ ∈ (φ − 1)A. Therefore, everything again reduces
to genus zero equations.

Consider
Πn

i=1x̄ic̄ix̄
−1
i = 1

and let x̄i =

(

txi fi(t)t
−yi

0 1

)

Then Πn
i=1x̄i c̄ix̄

−1
i =

(

t
∑i

i=1 si P
0 1

)

, where

P =
n
∑

i=1

(fi(t)t
yi(1− tsi) + cit

−di−xi)t
∑i−1

j=1 si

Therefore,
∑n

i=1 si.
There are two possible cases. In the first case si = 0 for all i = 1, . . . , n, then

the system is equivalent to a system
∑n

i=1 cit
ȳi = 0 for new integer variables

ȳi, i = 1, . . . , n. This is exactly system (10).
In the second case, some si is non-zero. Take s = gcd(|s1|, . . . , |si|), then

(ts − 1) = gcd((t|si| − 1), i = 1, . . . , n). For non-prime n, the ring Zn[t, t
−1] is

not a domain. But one can still use an analogue of the Euclidean algorithm
and induction on n, to show that ts − 1 can be represented as a linear combina-
tion of t|si| − 1, i = 1, . . . , n with coefficients in Zn[t, t

−1]. Quadratic equation
Πn

i=1x̄ic̄ix̄
−1
i = 1 in this case has a solution if and only if the congruence

n
∑

i=1

cit
ȳi ≡ 0(mod(ts − 1))

has a solution in Z[t, t−1]. To check this congruence we only have to consider
ȳi’s such that −s ≤ yi ≤ s. This finishes the proof in the second case.

The second statement of the theorem is proved similarly to the proof for
BS(1, k).

Theorem 3. Quadratic equations in L are decidable. There is also an algorithm
to decide if an arbitrary coefficient free system has a non-trivial solution.

A system of equations in L reduces to equations of the form (7) and (8), but
the fj(t) are variables in Z[t] and P (x̄, t, t−1) is a polynomial with coefficients
in Z. To solve system (10) we group terms whose coefficients add up to 0. Then
we reduce this system to system (??).

Theorem 3 implies the following corollary.
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Corollary 1. The Diophantine problem is decidable for coefficient free and for
quadratic equations in Z

n ≀ Z.

Proof. Equations in Z
n ≀ Z have the same form as equations (7) and (8) in the

proof of Theorem 3, with the exception that the terms fi(t) are in the ring Z
n[t].

Each equation of the form (7) is equivalent to n equations, each corresponding
to a component of Zn. Thus, any system of equations in Z

n ≀ Z is equivalent to
a system in Z ≀ Z, so the decidability follows from the decidability of Z ≀ Z.

Combining Theorems 2 and 3 we obtain the second main result.

Theorem 4. The Diophantine problem is decidable for coefficient free and for
quadratic equations in A ≀ Z, where A is a finitely generated abelian group.

Proof. Let A = Z
m ⊕ Zn1 ⊕ . . . ⊕ Znk

. Equations in A ≀ Z have the same
form as equations (7) and (8) in the proof of Theorems 2, 3 with the exception
that the terms fi(t) are in the ring R[t] (recall that R is the same as A but
viewed as a ring). Each system of the form (7) is equivalent to several systems,
some of them over Z and some over Zni

, each corresponding to a component of
Z
m ⊕ Zn1 ⊕ . . . ⊕ Znk

. Solving these systems simultaneously we will solve the
original system.

We conclude with some open problems.

Problem 1. Is the Diophantine problem decidable in BS(1, k) and in wreath
products A ≀ Z, where A is a finitely generated abelian group?

Problem 2. Is the existential theory of BS(1, k) and wreath products A ≀ Z,
where A is a finitely generated abelian group, decidable?

Problem 3. Describe finitely generated metabelian groups with decidable Dio-
phantine problem.
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