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Abstract

Minimization diagrams encompass a large class of diagrams of interest in the literature, such as
generalized Voronoi diagrams. We develop an abstract perturbation theory and perform a sensitivity
analysis for functions depending on sets defined through intersections of smooth sets, and formulate
precise conditions to avoid singular situations. This allows us to define a general framework for solving
optimization problems depending on minimization diagrams. The particular case of Voronoi diagrams
is discussed to illustrate the general theory. A variety of numerical experiments is presented. The
experiments include constructing Voronoi diagrams with cells of equal size, cells satisfying conditions
on the relative size of their edges or their internal angles, cells with the midpoints of pairs of Voronoi
and Delaunay edges as close as possible, or cells of varying sizes governed by a given function. Overall,
the experiments show that the proposed methodology allows the construction of customized Voronoi
diagrams using off-the-shelf well-established optimization algorithms.

Keywords: minimization diagrams, generalized Voronoi diagrams, nonsmooth shape optimization.

AMS subject classification: 49Q10, 49J52, 49Q12

1 Introduction

Let A ⊂ R2 be an open and bounded set, L = {1, . . . , κ} a set of indices, a = {ai}i∈L a set of so-called
sites with ai ∈ Rq, and φ = {φi}i∈L a set of smooth functions φi : R2 ×Rq → R. Define

Vi(a) := int

{
x ∈ A such that φi(x, ai) = min

k∈L
φk(x, ak)

}
,

where intS denotes the interior of S ⊂ R2. The set V(a) := {Vi(a)}i∈L is called minimization diagram
and the sets Vi(a) are called cells of the diagram.

Minimization diagrams were introduced in [21] and generalize a large class of diagrams of interest in
the literature. They include various types of generalized Voronoi diagrams as particular cases, such as
Euclidean Voronoi diagrams [19], power diagrams [14], Möbius diagrams, Apollonius diagrams [12, 39],
multiplicatively weighted Voronoi diagrams [2] and anisotropic diagrams [3, 15]. For the computation
of minimization diagrams, we refer to [22] and the references therein. The concept of abstract Voronoi
diagrams has also been introduced in [27] where the Voronoi cells are viewed as intersections of regions
rather than defined via distance functions. The bulk of the literature on this topic is mainly focused on
studying the theoretical properties of specific types of generalized Voronoi diagrams and on their efficient
computation.

The optimization of Voronoi diagrams has several important applications such as grid generation
and optimization in the framework of the finite element method. In this context, the optimization
usually consists in obtaining centroidal Voronoi tessellations, see the reviews [19, 20] and the references
therein; see also [34] for alternative approaches. Other applications include land-use optimization [37]
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and inverse problems [13]. In some cases, the optimization of Voronoi diagrams is based on a sensitivity
analysis, which has been performed in the literature for specific classes of energies and minimization
diagrams such as centroidal Voronoi tessellation functions [19], centroidal power diagrams [14] and for
an inverse problem for Voronoi diagrams in [13]. The sensitivity analysis developed in the present paper
widely generalizes these approaches and provides a rigorous mathematical construction of the bi-Lipschitz
mappings required for integration by substitution. This construction process is key to determine sufficient
conditions to avoid singular cases, and to enable the calculation of derivatives of any order and any type
of cost functions. For instance, in [4], a similar construction allowed to compute second-order derivatives
of cost functions defined as domain integrals.

The theoretical part of the present work is structured in three layers of abstraction. In the first,
most abstract layer, a perturbation theory for sets defined as the intersection of subzero level sets of
functions is presented and natural conditions to avoid singular situations are provided. In the second
layer, this theory is applied to obtain a perturbation theory for functions depending on minimization
diagrams. In the third layer, the particular case of Euclidean Voronoi diagrams is discussed; this serves
as an illustration and enables a better understanding of the abstract concepts of the first two layers. In
the first layer, the main result consists in the construction of a bi-Lipschitz mapping between a reference
set and the perturbed domain, both defined as intersections of smooth sets. In [4, 5] a similar but simpler
situation has been investigated, where a bi-Lipschitz mapping was built to model the small perturbation
of sets defined as a union of balls. The main ideas of [4, 5] for building such mapping are generalized
here to the much larger class of sets defined as subzero level sets of smooth functions. The obtained bi-
Lipschitz mapping is a key tool for applying shape calculus and shape optimization techniques [18, 24, 36]
to compute the shape sensitivity of cost functionals defined as integrals. Indeed, the calculation of the
derivatives of integrals on moving domains requires a change of variables employing this mapping. The
main challenge here is to handle the nonsmoothness of sets defined via intersections. In this sense the
present work contributes to advance the theory of nonsmooth shape optimization [29, 31].

The function x 7→ mink∈L φk(x, ak) is called lower envelope of the set of functions φ. In [30], a lower-
envelope-based numerical method has been developed, and it was shown that this method generalizes
the level set method [33]. The theory developed in the present paper shares similarities with the theory
developed in [30], both being based on a lower envelope approach, but distinguishes itself from [30]
in several key aspects. Indeed, [30] can be seen as a study of time-dependent minimization diagrams
via transport equations, aimed at the tracking of interfaces motion in multiphase problems, while the
present work is a study of the dependence on the sites a of the implicit interfaces of the diagram cells. In
this sense, these two studies are complementary and contribute to build an abstract theory of evolving
minimization diagrams. It is interesting to observe that, perhaps unexpectedly, this theory encompasses
both the level set method and the optimization of Voronoi diagrams as particular cases, see [30].

From a practical point of view and by way of illustration, this paper applies the developed theory to
the construction of Voronoi diagrams satisfying pre-specified properties. The experiments show that it is
possible to formulate a priori the desired properties as differentiable functions and that Voronoi diagrams
can be obtained by minimizing one or more desirable metrics simultaneously. Moreover, experiments
show that the optimization process can be performed using well-established and available optimization
methods.

The rest of this work is organized as follows. In Section 2, a perturbation theory for sets defined as
the intersection of subzero level sets of functions is described. This theory is applied to minimization
diagrams in Section 3, and then to the particular case of Voronoi diagrams in Section 4. Section 5 presents
numerical experiments for the particular case of Voronoi diagrams. The calculations of the gradients
of the functions used in these numerical experiments are detailed in Appendix A. A brief discussion
included in Section 6 analyzes alternatives and options that remained unexplored in the computational
experiments. Conclusions and lines for future research are provided in the last section.

Notation. ‖ · ‖ denotes the Euclidean norm. Given x, y ∈ Rn, x · y = x>y ∈ R; while x ⊗ y = xy> ∈
Rn×n. We use y⊥ := Ry, for a vector y ∈ R2, where R is a rotation matrix of angle π/2 with respect
to a counterclockwise orientation. The transpose of a matrix M is denoted M>, and rankM is the rank
of M , i.e., the maximum number of linearly independent rows or columns of M . For a finite set I,
|I| denotes the cardinal of I. For a set S ⊂ R2, dimS denotes its dimension, intS its interior, S its
closure, |S| its perimeter if S is one-dimensional or its area if S is two-dimensional. We use B(x, r)
to denote an open ball of center x and radius r. The gradient with respect to x ∈ R2 of a function
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ψ : R2 → R is denoted ∇xψ and is a column vector. The divergence of a sufficiently smooth vector
field R2 3 (x1, x2) 7→ ψ(x1, x2) = (ψ1(x1, x2), ψ2(x1, x2)) ∈ R2 is defined by divψ := ∂ψ1

∂x1
+ ∂ψ2

∂x2
, and its

Jacobian matrix is denoted Dxψ. The gradient with respect to a of a function G : Rqκ → R is denoted
∇G. The Jacobian matrix with respect to a of a function G : Rqκ → Rn is denoted DG.

2 Perturbation theory for sets defined as intersections

Given a perturbation δa of the sites a, our main objective is to build a bi-Lipschitz transformation
T (·, t) that maps Vi(a) to the perturbed cell Vi(a + tδa). In order to handle the constraint Vi(a) ⊂ A,
it is convenient to first build a perturbation theory for sets defined as intersections and for functions
depending on a pseudo-time t. For this purpose we use and extend the results of [4, 5, 28, 30]. The
theory developed here share several similarities with the theory developed in [30]. Indeed, in [30] the
“phases”, corresponding to the cells here, are also defined by a minimization diagram. A key difference
is that in [30], the function φ itself corresponds to the control parameter, whereas in the present work
the set a of sites is the control. Thus, unlike in [30], we need here to express the perturbation of vertices
and edges (interfaces between cells) in terms of the perturbation δa. Still, several results from [30] can
be used or adapted to the present framework.

Let K ⊂ N be a finite set of indices and Ir := {I ⊂ K | |I| = r}. Let {φ̂k}k∈K be a set of given
functions in C∞(R2 ×R,R). For a subset of indices I = {k1, k2, . . . , k|I|} ⊂ K, define

φ̂I := (φ̂k1 , φ̂k2 , . . . , φ̂k|I|)
> ∈ C∞(R2 ×R,R|I|). (1)

Definition 1. For k ∈ K and I ⊂ K, define

ωk(t) := int{x ∈ R2 | φ̂k(x, t) ≤ 0}, (2)

VK(t) :=
⋂
k∈K

ωk(t), (3)

γk(t) := {x ∈ R2 | φ̂k(x, t) = 0, φ̂j(x, t) < 0 for all j ∈ K \ {k}}, (4)

MI(t) := {x ∈ R2 | φ̂I(x, t) = 0}, (5)

Mr(t) :=
⋃
I∈Ir
MI(t). (6)

The goal of this section is to build a bi-Lipschitz mapping satisfying T (VK, t) = VK(t); in the next
sections VK(t) will play the role of the perturbed cell Vi(a + tδa). The sets MI(t) and Mr(t) are
introduced to study the behavior of the edges and vertices formed by the intersections of the boundaries
∂ωk(t), k ∈ K, and play an important role for the formulation of conditions to avoid singularities in the
perturbation theory developed here; see Assumptions 2 and 3. For the sake of simplicity, we use the
notation ωk := ωk(0), γk := γk(0), VK = VK(0), MI :=MI(0) and Mr :=Mr(0).

Assumption 1. There exists τ1 > 0, k ∈ K and an open ball B ⊂ R2 such that ωk(t) ⊂ B for all
t ∈ [0, τ1].

The purpose of Assumption 1 is to use the uniformly bounded set ωk(t) to represent the bounded set
A in Sections 3 and 4. Indeed, the sets defined in (2) need not be bounded in general. For instance in

the particular case of Voronoi diagrams one chooses φ̂k(x, t) = ‖xk − (ak + tδak)‖2 − ‖xi − (ai + tδai)‖2
and ωk(t) is a half-plane; see Section 4.

We observe that in general the sets ωk(t), k ∈ Kmay have nonempty intersections, which is undesirable
in applications. This may actually happen when a setMI(t) is “thick”, in the sense that dimMI(t) > 1.
This can be avoided using appropriate conditions that we describe now.

Assumption 2. ‖Dxφ̂I(x, 0)‖ > 0 for all x ∈MI and for all I ∈ I1.

Assumption 3. We have rankDxφ̂I(x, 0) = 2 for all x ∈MI and for all I ∈ I2, and

M3 = ∅. (7)
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Remark 1. In Assumption 3, the condition rankDxφ̂I(x, 0) = 2 for all x ∈ MI and for all I ∈ I2 is

equivalent to ∇xφ̂j(x, 0)⊥ · ∇xφ̂k(x, 0) 6= 0 for all x ∈MI and for all I = {j, k} ∈ I2.

Lemma 1 and Lemma 2 below are straightforward extensions of [30, Lemma 2] and [30, Lemma 4],

respectively, therefore we omit the proof here. Note however that the definition of φ̂I in [30] is slightly
different from the definition in (1), thus the results of [30, Lemma 2] and [30, Lemma 4] need to be
adapted to the notation in the present paper.

Lemma 1. Suppose |K| ≥ 3, B ⊂ R2 is an open ball, and Assumption 2 holds. Then there exists
τ1 > 0 such that for all I ∈ I1, MI(t) ∩B is either empty or is a one-dimensional, C∞-manifold for all
t ∈ [0, τ1].

Lemma 2. Suppose |K| ≥ 3, B ⊂ R2 is an open ball, and Assumption 3 holds. Then there exists τ1 > 0
such that for all I ∈ I2, MI(t) ∩B is either empty or a set of isolated points for all t ∈ [0, τ1].

Lemma 3. Suppose that Assumptions 1 and 3 hold and let I ∈ I2. Then there exists τ1 > 0 such that
for all v ∈MI ∩ VK there exists a unique smooth function zv : [0, τ1]→ R2 such that zv(0) = v and

MI(t) ∩ VK(t) =
⋃

v∈MI∩VK

{zv(t)} for all t ∈ [0, τ1]. (8)

In addition we have

z′v(0) = −Dxφ̂I(v, 0)−1∂tφ̂I(v, 0) for all v ∈MI ∩ VK. (9)

Proof. Due to Assumption 1, there exists k ∈ K such that ωk(t) is uniformly bounded for all t ∈ [0, τ1],
hence VK(t) is uniformly bounded. Thus, in view of Lemma 1, MI ∩ VK is a finite set of points. We

have φ̂I(v, 0) = (0, 0)> for all v ∈ MI ∩ VK. Using Assumption 3, we get that Dxφ̂I(v, 0) is invertible
for all v ∈ MI ∩ VK. Thus we can apply the implicit function theorem, and for each v ∈ MI ∩ VK this
yields a unique smooth function zv : [0, τ1] → R2 such that zv(0) = v and φ̂I(zv(t), t) = (0, 0)> for all
t ∈ [0, τ1]. This proves (8).

Since φ̂I(zv(t), t) = (0, 0)> for all t ∈ [0, τ1] we get

∂tφ̂I(v, 0) +Dxφ̂I(v, 0)z′v(0) = (0, 0)>

and then z′v(0) = −Dxφ̂I(v, 0)−1∂tφ̂I(v, 0).

Lemma 4. Suppose that Assumptions 1 and 3 hold. Then there exists τ1 > 0 and r > 0 such that

M2(t) ∩ VK(t) =
⋃

v∈M2∩VK

{zv(t)} for all t ∈ [0, τ1], (10)

with zv(t) given by Lemma 3, zv(t) ∈ B(v, r) and B(v, r) ∩B(w, r) = ∅ for all {v, w} ⊂ M2 ∩ VK.

Proof. The functions zv in (8) depend in principle on I. However, we can show that to each v ∈M2∩VK
can be associated a unique function zv using Assumption 3. Indeed let v ∈ M2 ∩ VK, then there is a
unique I ∈ I2 such that v ∈ I, otherwise we would have v ∈ MI ∩MĨ ∩ VK = MI∪Ĩ ∩ VK for some

Ĩ 6= I, Ĩ ∈ I2, but this would contradict (7) since I ∪ Ĩ ∈ Ir, r ≥ 3. Thus, the functions zv in (8) are
actually independent on I ∈ I2, and using (8) and definition (6) we may write

M2(t) ∩ VK(t) =
⋃
I∈I2

⋃
v∈MI∩VK

{zv(t)} for all t ∈ [0, τ1],

which yields (10).
According to Lemma 1 and since there exists k ∈ K such that ωk is bounded due to Assumption 1,

M2∩VK is finite. Thus we can choose τ1 sufficiently smooth so that there exists r > 0 with the property
zv(t) ∈ B(v, r) for all v ∈M2 ∩ VK and B(v, r) ∩B(w, r) = ∅ for all {v, w} ⊂ M2 ∩ VK. This yields the
result.
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Remark 2. In (10), M2(t) ∩ VK(t) is the set of vertices of VK(t) and zv(t), v ∈ M2 ∩ VK, are the
vertices. This shows that M2(t) ∩ VK(t) for sufficiently small t, in the sense that the number of vertices
stays constant.

We now state a Lemma which provides a decomposition of the boundary of the cell VK(t) into edges
γk(t) and vertices M2(t) ∩ VK(t). Note that the properties γk(t) ⊂ ∂ωk(t) in Lemma 5 is not true in
general and requires Assumption 2, otherwise the dimension of γk(t) could be greater than one.

Lemma 5. Suppose that Assumptions 1, 2 and 3 hold. Then there exists τ1 > 0 so that, for all k ∈ K,
γk(t) ⊂ ∂ωk(t), γk(t) is uniformly bounded on [0, τ1] and is a finite union of open, smooth, connected
arcs. In addition, VK(t) is Lipschitz and

∂VK(t) =
⋃
k∈K

γk(t) = (M2(t) ∩ VK(t)) ∪
⋃
k∈K

γk(t) for all t ∈ [0, τ1]. (11)

Proof. Due to Assumption 1, there exists an open ball B ⊂ R2 such that γk(t) ⊂ B for all k ∈ K and

all t ∈ [0, τ1]. Using Assumption 2 we get ∂ωk(t) = {x ∈ R2 | φ̂k(x, t) = 0} = M{k}(t) and Lemma 1
yields dim(M{k}(t) ∩ B) = 1 or M{k}(t) ∩ B = ∅ for all t ∈ [0, τ1]. Thus γk(t) ⊂ ∂ωk(t) in view of (4).
The boundary of γk(t), relatively to ∂ωk(t), is included in MI(t) for some I ∈ I2 with I 3 k. Due to
Assumption 3 and Lemma 2, the boundary of γk(t), relatively to ∂ωk(t), is a finite set of points, thus
γk(t) is a finite union of open, smooth and connected arcs.

Now we prove the first equality in (11). Let x ∈ ∂VK(t), then we must have φ̂k(x, t) = 0 for some

k ∈ K and φ̂j(x, t) ≤ 0 for all j ∈ K \ {k}, otherwise we would have φ̂k(x, t) < 0 for all k ∈ K which
would imply x ∈ VK(t). This would be a contradiction since VK(t) is open. Since

γk(t) = {x ∈ R2 | φ̂k(x, t) = 0, φ̂j(x, t) ≤ 0 for all j ∈ K \ {k}}, (12)

we have x ∈ γk(t) and this proves ∂VK(t) ⊂
⋃
k∈K γk(t).

Reciprocally, let x ∈ γk(t) for some k ∈ K, then x ∈ VK(t) by definition of γk(t). Further, if x ∈ VK(t)

we would have B(x, r) ⊂ VK(t), for some r > 0, and consequently φ̂k(y, t) ≤ 0 for all y ∈ B(x, r). Since

φ̂k(x, t) = 0 due to (12), we must have ∇xφ̂k(x, t) = 0 which contradicts Assumption 2 for t ∈ [0, τ1] and
τ1 sufficiently small. Thus x ∈ ∂VK(t) and this proves the first equality in (11).

Then we prove the following result

⋃
k∈K

γk(t) =

 ⋃
I={k1,k2}∈I2

γk1(t) ∩ γk2(t)

 ∪ ⋃
k∈K

γk(t) =

( ⋃
I∈I2
MI(t) ∩ VK(t)

)
∪
⋃
k∈K

γk(t). (13)

We start with the first equality in (13). Suppose x ∈
⋃
k∈K γk(t) \

⋃
k∈K γk(t), then, in view of (12),

φ̂k1(x, t) = 0 and φ̂k2(x, t) = 0 for some {k1, k2} ⊂ K, which proves
⋃
k∈K γk(t) \

⋃
k∈K γk(t) ⊂⋃

I={k1,k2}∈I2 γk1(t) ∩ γk2(t). The other inclusion is clear.

Now we prove the second equality in (13). Let x ∈ γk1(t) ∩ γk2(t), then x ∈ M{k1,k2}(t) in view
of (12). Using the first equality in (11), we also have x ∈ ∂VK(t) and this yields the first inclusion.

Reciprocally, suppose x ∈ MI(t) ∩ VK(t) for some I = {k1, k2} ∈ I2, then φ̂k1(x, t) = 0, φ̂k2(x, t) = 0,
therefore γk1(t) ∩ γk2(t), which proves the other inclusion.

Using (13) and ( ⋃
I∈I2
MI(t) ∩ VK(t)

)
∪
⋃
k∈K

γk(t) = (M2(t) ∩ VK(t)) ∪
⋃
k∈K

γk(t)

proves the second equality in (11).
Now we prove that VK(t) is Lipschitz. Recall that VK(t) is Lipschitz if ∂VK(t) is, in a neighborhood

of each of its points, the graph of a Lipschitz function and VK(t) is only on one side of its boundary. Let
x ∈ ∂VK(t). In view of (11), either x ∈ M2(t) ∩ VK(t) or x ∈ γk(t) for some k ∈ K. If x ∈ γk(t), then

we can use the function φ̂k to locally describe ∂VK(t) as the graph of a Lipschitz function, and VK(t) is

only on one side of its boundary since VK(t) satisfies φ̂k(·, t) ≤ 0 in a neighborhood of x ∈ γk(t).
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Now suppose x ∈ M2(t) ∩ VK(t), i.e., x is a vertex of VK(t). Then x ∈ γj(t) ∩ γk(t) for some
{j, k} ∈ I2. Since ∂VK(t) is smooth on both sides of x, one just needs to check that the tangent vectors
to γj(t) and γk(t) are not collinear at x. If the tangent vectors were collinear, then the normal vectors

to γj(t) and γk(t) would also be collinear and this would contradict the condition rankDxφ̂I(x, 0) = 2
of Assumption 3 (see Remark 1), for sufficiently small τ1. This shows that VK(t) is Lipschitz.

Lemma 6. Suppose that Assumptions 1, 2 and 3 hold. Then there exists τ1 > 0 and a continuous
function T : ∂VK × [0, τ1]→ R2 such that

T (γk, t) = γk(t) for all k ∈ K and T (∂VK, t) = ∂VK(t).

In addition, T (·, t) is Lipschitz with constant 1 + Ct for all t ∈ [0, τ1], where C is independent of t.

Proof. Let k ∈ K such that γk 6= ∅; if γk is empty for all k ∈ K then the result follows trivially. Using
Assumption 2 and Lemma (5) we get γk(t) ⊂ ∂ωk(t) for all t ∈ [0, τ1]. We need to separate two cases,
the case where the boundary of γk, relatively to ∂ωk, is empty, and the case where it is not empty.

Suppose first that the boundary of γk is not empty. We have γk(t) ⊂ B due to Assumption 1. In
view of (10), let zv(t), zw(t) ∈ M2(t) ∩ VK(t) be two consecutive vertices of γk(t) with respect to a
counterclockwise orientation on ∂VK(t), and write zv := zv(0), zw := zw(0) for simplicity. Then the
vertices zv(t), zw(t) define a unique connected and relatively open (with respect to ∂ωk(t)) subarc γ(t) ⊂
γk(t); we will write γ := γ(0) for simplicity. Let U ⊂ R be an open interval, ξ : U → ∂ωk be a smooth
parameterization of ∂ωk, and {sv, sw} be such that ξ(sv) = zv and ξ(sw) = zw, [sv, sw] ⊂ U and ξ|[sv,sw]

is a parameterization of γ. Let P be the projection onto ∂ωk. For sufficiently small τ1, this projection
is unique for all x ∈ ∂ωk(t) ∩ B, where B is the ball given by Assumption 1. Define λ(s) := s−sv

sw−sv ,

s(x) := ξ−1(x), sv(t) := s(P (zv(t))), sw(t) := s(P (zw(t))), σ(s, t) := λ(s)sw(t) + (1− λ(s))sv(t) and

β(x, t) := ξ(σ(s(x), t)) ∈ γ. (14)

Note that σ(s, 0) = s, thus β(x, 0) = ξ(s(x)) = x. It can also be checked that β(zv, t) = P (zv(t)) and
β(zw, t) = P (zw(t)).

Since γk ⊂ ∂ωk, if ∂ωk ∩ B = ∅ then γk is empty. If ∂ωk ∩ B is not empty, then according to [28,
Lemma 3.1], and using Assumption 1, there exists α̂ ∈ C∞(∂ωk ∩B× [0, τ1],R) satisfying α̂(y, 0) = 0 for
all y ∈ ∂ωk ∩B and

φ̂k(y + α̂(y, t)∇xφ̂k(y, 0), t) = 0 for all y ∈ ∂ωk ∩B and t ∈ [0, τ1]. (15)

Note that ∇xφ̂k(y, 0) is normal to ∂ωk. For τ1 sufficiently small, we have β(x, t) ∈ ∂ωk ∩B for all x ∈ γ
and all t ∈ [0, τ1]. Thus we can define

T (x, t) := β(x, t) + α̂(β(x, t), t)∇xφ̂k(β(x, t), 0) on γ × [0, τ1]. (16)

Let us also define S : [sv, sw] × [0, τ1] → R2 as S(s, t) := T (ξ(s), t) − ξ(s). Since P, zv, zw, α̂, φ̂k are
smooth functions on their domain of definition, then by composition sv, sw, ξ, λ, σ, β and S are also
smooth on their domain of definition. Also we have S(s, 0) = T (ξ(s), 0) − ξ(s) = β(ξ(s), 0) − ξ(s) = 0
for all s ∈ [sv, sw]. Thus, a Taylor expansion provides

∂sS(s, t) = ∂sS(s, 0) + t∂s∂tS(s, η) = t∂s∂tS(s, η) with |η| < t.

Using the smoothness of S, this yields

‖∂sS(s, t)‖ ≤ ct for all t ∈ [0, τ1] and s ∈ [sv, sw], (17)

for some constant c independent of s and t.
Now we show that (17) implies the existence of a constant C > 0 such that x 7→ S(x, t) := T (x, t)−x

is Lipschitz on γ with Lipschitz constant Ct, i.e.,

‖S(x, t)− S(y, t)‖ ≤ Ct‖x− y‖, ∀(t, x, y) ∈ [0, τ1]× γ2. (18)

6



Indeed if this were not the case, then there would exist a sequence (tn, xn, yn) ∈ [0, τ1]× γ2 such that

‖S(xn, tn)− S(yn, tn)‖
tn‖xn − yn‖

→ ∞ as n→ +∞. (19)

Suppose that (19) holds. In view of (16) the numerator ‖S(xn, tn)−S(yn, tn)‖ is uniformly bounded on
[0, τ1]× γ2, thus we must have tn‖xn − yn‖ → 0. We suppose that both tn → 0 and ‖xn − yn‖ → 0, the
other cases follow in a similar way. Using the compactness of [0, τ1]× γ2, we can extract a subsequence,
still denoted (tn, xn, yn) for simplicity, that converges towards (0, x?, x?) ∈ [0, τ1] × γ2. Then we write,
recalling that s(x) = ξ−1(x) where ξ|[sv,sw] is a parameterization of γ,

‖S(xn, tn)− S(yn, tn)‖
tn‖xn − yn‖

=
‖S(s(xn), tn)− S(s(yn), tn)‖

tn‖s(xn)− s(yn)‖︸ ︷︷ ︸
bounded using (17) at s(x?)

‖s(xn)− s(yn)‖
‖xn − yn‖︸ ︷︷ ︸

bounded

.

This contradicts (19) which proves (18). This proves that T (·, t) is Lipschitz on γ with constant 1 + Ct
for all t ∈ [0, τ1]. Then the mapping T is built in the same way on each connected subarc of γk.

Then, taking y = β(x, t) in (15) we get φ̂k(T (x, t), t) = 0 for all x ∈ γk and t ∈ [0, τ1]. This proves
that T (γk, t) ⊂ ∂ωk(t). Since T (·, t) is Lipschitz on γ with constant 1 + Ct for all t ∈ [0, τ1], T (·, t) is
invertible on γ for sufficiently small τ1, thus T (·, t) is a homeomorphism from γ onto T (γ, t).

We also have

T (zv, t) = β(zv, t) + α̂(β(zv, t), t)∇xφ̂k(β(zv, t), 0) = P (zv(t)) + α̂(P (zv(t)), t)∇xφ̂k(P (zv(t)), 0)

and T (zw, t) = P (zw(t)) + α̂(P (zw(t)), t)∇xφ̂k(P (zw(t)), 0). In fact we can show T (zv, t) = zv(t) and
T (zw, t) = zw(t) for all t ∈ [0, τ1] and τ1 > 0 sufficiently small. Indeed, suppose that T (zv, tn) 6= zv(tn)
for some sequence tn → 0. Then, by definition of the projection P we have

zv(tn) = P (zv(tn)) + ζ(tn)∇xφ̂k(P (zv(tn)), 0),

with ζ(tn) → 0 as n → ∞. Also, we have φ̂k(zv(tn), tn) = φ̂k(T (zv, tn), tn) = 0 due to (15) and
zv(tn) ∈ γk(tn). Thus, there exists µ(tn) with

min{|ζ(tn)|, |α̂(P (zv(tn)), tn)|} ≤ |µ(tn)| ≤ max{|ζ(tn)|, |α̂(P (zv(tn)), tn)|}

such that
∇xφ̂k(P (zv(tn)) + µ(tn)∇xφ̂k(P (zv(tn)), 0), tn) · ∇xφ̂k(P (zv(tn)), 0) = 0.

Passing to the limit tn → 0 we get zv(tn)→ zv, P (zv(tn))→ zv, µ(tn)→ 0 and

‖∇xφ̂k(zv, 0)‖2 = 0,

which contradicts Assumption 1. Thus we have indeed T (zv, t) = zv(t) and in a similar way T (zw, t) =
zw(t) for all t ∈ [0, τ1] and τ1 > 0 sufficiently small. Proceeding in the same way for each connected arc
γ(t) ⊂ γk(t), we obtain T (∂γk, t) = ∂γk(t) for all t ∈ [0, τ1], where ∂γk(t) denotes the boundary of γk(t)
relatively to ∂ωk(t).

Since T (·, t) is a homeomorphism on γ, T (γ, t) is connected. Hence, as T (∂γ, t) = ∂γ(t), we must
either have T (γ, t) = γ(t) or T (γ, t) ⊂ int(γ(t)c), where the interior and complementary are relative to
∂ωk(t). In the latter case, we have either T (γ, t) ⊂ γk(t) or T (γ, t) 6⊂ γk(t). If T (γ, t) ⊂ γk(t), then
T (γ, t) must be one of the connected component of γk(t), hence we must have T (γ, t) = γ(t) due to
T (∂γ, t) = ∂γ(t). The case T (γ, t) 6⊂ γk(t) is not possible; otherwise there would exist a x ∈ γ such

that φ̂j(x, 0) < 0 and φ̂j(T (x, t), t) ≥ 0, for some j ∈ K \ {k}, and passing to the limit t → 0 we would

get φ̂j(x, 0) = 0, which contradicts x ∈ γ. Thus we conclude that T (γ, t) = γ(t). Repeating the same
argument for each connected component γ ⊂ γk we obtain T (γk, t) = γk(t).

Now recall that we have supposed in the beginning of the proof that the boundary of γk is not empty.
In the case where the boundary of γk is empty, we define the mapping as

T (x, t) := x+ α̂(x, t)∇xφ̂k(x, 0) on γk × [0, τ1], (20)
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i.e., we do not need to use β. One can then prove in a similar way that T (·, t) is Lipschitz on γk and
that T (γk, t) = γk(t).

Finally, using (11), we get

T (∂VK, t) = T

(⋃
k∈K

γk, t

)
=
⋃
k∈K

T (γk, t) =
⋃
k∈K

γk(t) = ∂VK(t).

Since T (·, t) is Lipschitz on γk with constant 1+Ct for all t ∈ [0, τ1], and by construction T (·, t) : ∂VK →
∂VK(t) is continuous at the vertices of ∂VK, we obtain that T (·, t) : ∂VK → ∂VK(t) is Lipschitz with
constant 1 + Ct for all t ∈ [0, τ1]. This proves the result.

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. Then there exists τ1 > 0 and a mapping
T : VK× [0, τ1]→ R2 satisfying T (VK, t) = VK(t), T (∂VK, t) = ∂VK(t) and such that T (·, t) : VK → VK(t)
is bi-Lipschitz for all t ∈ [0, τ1]. In addition we have

θ(x) · ν(x) = − ∂tφ̂k(x, 0)

‖∇xφ̂k(x, 0)‖
for all x ∈ γk, (21)

θ(z) · τ(z) = −(Dxφ̂I(z, 0)−1∂tφ̂I(z, 0)) · τ(z) for all z ∈M2 ∩ VK, (22)

where θ := ∂tT (·, 0), ν is the outward unit normal vector to VK, and τ is the tangent vector to ∂VK with
respect to a counterclockwise orientation.

Proof. Let T : ∂VK × [0, τ1] → ∂VK(t) be given by Lemma 6. Using Kirszbraun’s theorem [26] we can
extend x 7→ T (x, t) to a Lipschitz function on VK with the same Lipschitz constant 1 + Ct. Since C is
independent of t, we can choose τ1 sufficiently small so that x 7→ T (x, t) is invertible for all t ∈ [0, τ1], and
the inverse is also Lipschitz with Lipschitz constant (1−Ct)−1. This shows that T (·, t) : VK → T (VK, t)
is bi-Lipschitz for all t ∈ [0, τ1].

Now we prove T (VK, t) = VK(t). Suppose first that ∂VK has only one connected component. Since
T (·, t) : VK → T (VK, t) is bi-Lipschitz it is a homeomorphism, thus it maps interior points onto interior
points and boundary points onto boundary points, which implies that T (VK, t) is the interior of T (∂VK, t).
Applying the Jordan curve theorem yields that VK(t) is the interior of ∂VK(t), and since T (∂VK, t) =
∂VK(t) due to Lemma 6, their interiors coincide and we get T (VK, t) = VK(t). The case where ∂VK has
several connected components follows in a similar way.

In view of (14) we have β(x, 0) = x for x ∈ γk. Then due to (16) we have, for x ∈ γk,

θ(x) = ∂tT (x, 0) = ∂tβ(x, 0) + ∂tα̂(x, 0)∇xφ̂k(x, 0)

+∇Γα̂(x, 0) · ∂tβ(x, 0)∇xφ̂k(x, 0) + α̂(x, 0)D2
xφ̂k(x, 0)∂tβ(x, 0),

where ∇Γ denotes the tangential gradient on γk. Using α̂(x, 0) = 0 for all x ∈ ∂ωk∩B, and consequently
∇Γα̂(x, 0) = 0 for all x ∈ ∂ωk ∩B, where B is the ball given by Assumption 1, we get

θ(x) = ∂tβ(x, 0) + ∂tα̂(x, 0)∇xφ̂k(x, 0). (23)

Then, taking the derivative with respect to t at t = 0 in (15) we obtain

∂tα̂(x, 0)∇φ̂k(x, 0) · ∇φ̂k(x, 0) + ∂tφ̂k(x, 0) = 0,

hence

∂tα̂(x, 0) = − ∂tφ̂k(x, 0)

‖∇φ̂k(x, 0)‖2
.

Since β(x, t) ∈ ∂ωk ∩B for all t ∈ [0, τ1], ∂tβ(x, 0) is tangent to γk. Using also

ν(x) =
∇xφ̂k(x, 0)

‖∇xφ̂k(x, 0)‖
for x ∈ γk,
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in view of (23) we obtain, for x ∈ γk,

θ(x) · ν(x) = ∂tβ(x, 0) · ν(x)︸ ︷︷ ︸
=0

+∂tα̂(x, 0)∇xφ̂k(x, 0) · ν(x) = − ∂tφ̂k(x, 0)

‖∇xφ̂k(x, 0)‖
,

which proves (21).

Since ∇xφ̂k(x, 0) is normal to γk, using (23) we get, for z ∈M2 ∩ VK,

θ(z) · τ(z) = ∂tβ(z, 0) · τ(z).

Now, using the notation of the proof of Lemma 6, suppose that z = zv. In view of (14) we then have

∂tβ(zv, 0) = ∂tσ(s(zv), 0)ξ′(σ(s(zv), 0)) = [λ(s(zv))s
′
w(0) + (1− λ(s(zv)))s

′
v(0)]ξ′(σ(s(zv), 0))

= s′v(0)ξ′(sv),

where we have used s(zv) = sv, λ(sv) = 0 and σ(sv, 0) = sv. Since sv(t) = ξ−1(P (zv(t))) = s(P (zv(t)))
and P (zv) = zv we get s′v(0) = ∇Γs(zv) · [DxP (zv)z

′
v(0)], thus

∂tβ(zv, 0) · τ(z) = ∇Γs(zv) · [DxP (zv)z
′
v(0)]ξ′(sv) · τ(z) = ∇Γs(zv) · ξ′(sv)[DxP (zv)z

′
v(0)] · τ(z),

where we have used the fact that both ∇Γs(zv) and ξ′(sv) are tangent to γk to obtain the last equality.
Since s(x) = ξ−1(x), differentiating s ◦ ξ at sv yields ∇Γs(zv) · ξ′(sv) = 1. One can also show that
DxP = I − ν ⊗ ν on γk, where I is the identity matrix, see [16, Section 2.2]. This yields, using
DxP

> = DxP on γk,

∂tβ(zv, 0) · τ(z) = [DxP (zv)z
′
v(0)] · τ(z) = [DxP (zv)τ(z)] · z′v(0) = z′v(0) · τ(z).

Finally, using (9) we get (22) for z = zv. The same procedure yields (22) for any z ∈M2 ∩ VK.

Example 1. In order to illustrate the notations and results of this section, we consider the simple
example where K = {1, 2, 3}, φ̂k(x, t) = ‖x − ak‖2 − (r + tδr)2, a1 = (0, 1), a2 = (−

√
3/2,−1/2),

a3 = (
√

3/2,−1/2) and ωk(t) is a disk of center ak and radius r + tδr; see Figure 1 for an illustration
of the geometric configuration. Then for r = 1, δr = 1 and t > 0, the cell VK(t) =

⋂
k∈K ωk(t) forms a

well-known geometric figure called Reuleaux triangle. In this example, each set γk is an arc of circle with
only one connected component, and it is easy to see that (11) is satisfied. In (10), we have |M2∩VK| = 3
and the points zv(t), v ∈ M2 ∩ VK are the vertices of the Reuleaux triangle. We have M{k}(t) = ∂ωk(t)
for all k ∈ K. The set M{i,j}(t), {i, j} ⊂ K is composed of the two intersection points of the circles
∂B(ai, r+tδr) and ∂B(aj , r+tδr), thusM2(t) := ∪I∈I2MI(t) is composed of six points. Note that three
of these six points are the vertices of the Reuleaux triangle, while the other three points are irrelevant
for the description of the cell VK(t). We also have M3 = ∪I∈I3MI = ∅. Thus we conclude that
Assumptions 1, 2 and 3 are satisfied when r = 1, δr = 1 and t > 0. In the singular case r = 1, δr = 1
and t = 0, we have M3 := ∪I∈I3MI = (0, 0) 6= ∅, i.e., the three circles intersect at the same point (0, 0),
thus Assumption 3 is not satisfied in this case.

3 Perturbation of minimization diagrams

In this section we describe how the abstract theory developed in Section 2 allows us to treat the case of
minimization diagrams. We start by giving a few particular examples of minimization diagrams taken
from [39].

Example 2 (Voronoi diagrams). Let ai ∈ Rq with q = 2. The cells of a Voronoi diagram are defined as

Vi(a) := int
{
x ∈ A such that ‖x− ai‖2 ≤ ‖x− ak‖2 for all k ∈ L \ {i}

}
.

This corresponds to a minimization diagram for the particular case φk(x, ak) = ‖x− ak‖2 for all k ∈ L.
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a1•

a2
•

a3
•

∂ω1

∂ω2 ∂ω3

z1

z2 z3

z4 z5

z6

γ1

γ3 γ2
VK

Figure 1: In this example K = {1, 2, 3} and the cell VK is a Reuleaux triangle formed by the intersection
of three disks ω1, ω2, ω3 of centers a1, a2, a3. We have M{1,2} = {z3, z4}, M{1,3} = {z2, z5}, M{2,3} =
{z1, z6} and M{1,2,3} = ∅, which means that the intersection of the three circles is empty. Thus M2 =
∪I∈I2MI = {z1, z2, z3, z4, z5, z6} and M3 = ∪I∈I3MI = ∅. Property (10) at t = 0 corresponds to
M2 ∩ VK = {z1, z2, z3}, which means that the points z1, z2, z3 are the vertices of the Reuleaux triangle.
The three arcs of circle γ1, γ2, γ3 of the decomposition (11) are the three edges of the Reuleaux triangle.

Example 3 (Power diagrams). Let ai = (ci, ri) with ci ∈ R2 and ri ∈ R, then ai ∈ Rq with q = 3. The
cells of a power diagram are defined as

Vi(a) := int
{
x ∈ A such that ‖x− ci‖2 − r2

i ≤ ‖x− ck‖2 − r2
k for all k ∈ L \ {i}

}
.

This corresponds to a minimization diagram for the particular case φk(x, ak) = ‖x−ck‖2−r2
k for all k ∈ L.

Example 4 (Möbius diagrams). Let ai = (pi, λi, µi) with pi ∈ R2, and λi, µi ∈ R, then ai ∈ Rq with
q = 4. The cells of a Möbius diagrams are defined as

Vi(a) := int
{
x ∈ A such that λi‖x− pi‖2 − µi ≤ λk‖x− pk‖2 − µk for all k ∈ L \ {i}

}
.

This corresponds to a minimization diagram for the particular case φk(x, ak) = λk‖x−pk‖2−µk, k ∈ L.

3.1 Sensitivity analysis of edges and vertices

Let δa = {δai}i∈L be a set of sites perturbations, with δai ∈ Rq. Through appropriate choices of the

sets K, I, of the function φ̂I , and applying Theorem 1, we are able to describe the perturbations of
the cells Vi(a + tδa) via a bi-Lipschitz mapping T (·, t) : Vi(a) → Vi(a + tδa). The purpose of this
section is mainly to give a more concrete description of the formulas (21)-(22) in the particular case of
minimization diagrams. Formula (21) is used to describe the perturbation of both interior edges and
edges on the boundary of A, and (22) is used here to describe the perturbation of both interior vertices
and vertices on the boundary of A, see Theorem 5.

To avoid too many technicalities, in this section we will assume that A is smooth and bounded and
that A is defined as the sublevel set of a given function ϕ ∈ C∞(R2,R), i.e.,

A := {x ∈ R2 | ϕ(x) < 0}.

The smoothness of A is not a restrictive assumption, as the case of a piecewise smooth A can be readily
obtained by considering intersections of smooth sets, and the general theory of Section 2 could still be
applied.
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We now show that under appropriate conditions on φ(a), the minimization diagram V forms a parti-
tion of A and the boundary of the cells of the minimization diagram are one-dimensional. Assumption 4
below corresponds to Assumption 2 with a specific choice of φ̂I and of the set of indices K.

Assumption 4. Assumption 2 holds for K = {κ+ 1} ∪L \ {i} for all i ∈ L, with φ̂κ+1(x, t) = ϕ(x) and

with φ̂k(x, t) = φi(x, ai + tδai)− φk(x, ak + tδak) for all k ∈ L \ {i}.

Remark 3. If Assumption 4 holds, then Assumption 1 is satisfied since A is bounded. Assumption 4
also implies that ‖∇xφi(x, ai)−∇xφj(x, aj)‖ > 0 for all x ∈ {y ∈ R2 | φi(y, ai) = φj(y, aj)} and for all
{i, j} ⊂ L, and that ‖∇xϕ(x)‖ > 0 for all x ∈ ∂A. Note that these are natural and standard assumptions
for domains defined as sublevel sets.

The proof of the following result can be found in [30, Theorem 1]. It essentially guarantees that the
cells of the diagram do not overlap when Assumption 4 holds.

Theorem 2. Suppose that Assumption 4 holds, then dim ∂Vk(a) ≤ 1, Vk(a)∩V`(a) = ∅ for all {k, `} ⊂ L
and

⋃
k∈L Vk(a) = A.

We now study the evolution of the vertices of the minimization diagram. For {i, j, k} ⊂ L let us define
Yijk(t) := Vi(a + tδa)∩ Vj(a + tδa)∩ Vk(a + tδa) and Xij(t) := Vi(a + tδa)∩ Vj(a + tδa)∩ ∂A. The set
Yijk(t) is a set of interior vertices, i.e., points in A at the intersection of three cells. The set Xij(t) is a
set of boundary vertices, i.e., points on ∂A at the intersection of two cells. We will write Yijk := Yijk(0)
and Xij := Xij(0) for simplicity. The purpose of Assumption 5 is to guarantee that Yijk(t) and Xij(t)
are stable with respect to t, which means essentially that their cardinality is constant and that they are
continuous with respect to t. Assumption 5 corresponds to Assumption 3 with a specific choice of the
function φ̂I and of the set of indices K.

Assumption 5. Assumption 3 holds for K = {κ+ 1} ∪L \ {i} for all i ∈ L, with φ̂κ+1(x, t) = ϕ(x) and

with φ̂k(x, t) = φi(x, ai + tδai)− φk(x, ak + tδak) for all k ∈ L \ {i}.

Remark 4. If Assumption 5 holds, then Assumption 1 is satisfied since A is bounded. Also, Assump-
tion 5 implies

(∇xφi(v, ai)−∇xφj(v, aj))⊥ · (∇xφi(v, ai)−∇xφk(v, ak)) 6= 0

for all v ∈ Yijk and any {i, j, k} ⊂ L, and

(∇xφi(v, ai)−∇xφj(v, aj))⊥ · ∇ϕ(v) 6= 0

for all v ∈ Xij and any {i, j} ⊂ L.

Theorem 3. Suppose Assumption 5 holds and let {i, j, k} ⊂ L. Then Yijk is finite and there exists
τ1 > 0 such that for all v ∈ Yijk there exists a unique smooth function zv : [0, τ1] → R2 satisfying
zv(0) = v and

Yijk(t) =
⋃

v∈Yijk

{zv(t)} for all t ∈ [0, τ1]. (24)

In addition we have

z′v(0) = Mv(j, k, i)δai +Mv(k, i, j)δaj +Mv(i, j, k)δak (25)

where

Mv(i, j, k) :=
(∇xφi(v, ai)−∇xφj(v, aj))⊥ ⊗∇akφk(v, ak)>

Qv(i, j, k)
(26)

and

Qv(i, j, k) := det

(
(∇xφi(v, ai)−∇xφj(v, aj))>
(∇xφi(v, ai)−∇xφk(v, ak))>

)
.
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Proof. Applying Lemma 3 with I = {j, k} ⊂ K = {κ + 1} ∪ L \ {i}, with φ̂j(x, t) = φi(x, ai + tδai) −
φj(x, aj+tδaj) and φ̂k(x, t) = φi(x, ai+tδai)−φk(x, ak+tδak), we get Yijk(t) ⊂MI(t) and (24) follows.

Further, we have

φ̂I(x, t) =

(
φ̂j(x, t)

φ̂k(x, t)

)
, Dxφ̂I(x, t) =

(
∇xφ̂j(x, t)>

∇xφ̂k(x, t)>

)
.

In view of (9) we have, for v ∈ Yijk,

z′v(0) = −Dxφ̂I(v, 0)−1∂tφ̂I(v, 0).

We compute

Dxφ̂I(v, 0)−1 =
(−(∇xφi(v, ai)−∇xφk(v, ak))⊥ (∇xφi(v, ai)−∇xφj(v, aj))⊥)

detDxφ̂I(v, 0)

and

∂tφ̂I(v, 0) =

(
∇aiφi(v, ai) · δai −∇ajφj(v, aj) · δaj
∇aiφi(v, ai) · δai −∇akφk(v, ak) · δak

)
=

(
∇aiφi(v, ai)>
∇aiφi(v, ai)>

)
δai −

(
∇ajφj(v, aj)>

0

)
δaj −

(
0

∇akφk(v, ak)>

)
δak

=

[(
1
1

)
⊗∇aiφi(v, ai)>

]
δai −

[(
1
0

)
⊗∇ajφj(v, aj)>

]
δaj −

[(
0
1

)
⊗∇akφk(v, ak)>

]
δak.

Then we compute

(−(∇xφi(v, ai)−∇xφk(v, ak))⊥ (∇xφi(v, ai)−∇xφj(v, aj))⊥)

[(
1
1

)
⊗∇aiφi(v, ai)>

]
= (−(∇xφi(v, ai)−∇xφk(v, ak))⊥ + (∇xφi(v, ai)−∇xφj(v, aj))⊥)⊗∇aiφi(v, ai)>

= (∇xφk(v, ak)−∇xφj(v, aj))⊥ ⊗∇aiφi(v, ai)>.

In a similar way we also have

(−(∇xφi(v, ai)−∇xφk(v, ak))⊥ (∇xφi(v, ai)−∇xφj(v, aj))⊥)

[
−
(

1
0

)
⊗∇ajφj(v, aj)>

]
= (∇xφi(v, ai)−∇xφk(v, ak))⊥ ⊗∇ajφj(v, aj)>

and

(−(∇xφi(v, ai)−∇xφk(v, ak))⊥ (∇xφi(v, ai)−∇xφj(v, aj))⊥)

[
−
(

0
1

)
⊗∇akφk(v, ak)>

]
= (∇xφj(v, aj)−∇xφi(v, ai))⊥ ⊗∇akφk(v, ak)>.

Gathering these results we obtain (25).

Remark 5. Note that we have Qv(i, j, k) = Qv(k, i, j) = Qv(j, k, i); this can be checked using the
multilinearity of the determinant. Note also that Qv(i, j, k) is the oriented area of the parallelogram
spanned by the vectors ∇xφi(v, ai)−∇xφj(v, aj) and ∇xφi(v, ai)−∇xφk(v, ak).

Remark 6. A rotation of the index notation for (i, j, k) in (25), for instance (i, j, k) → (k, i, j), gives
exactly the same expression for z′v(0), as expected, since the result should be independent of the choice
of the indices i, j, k. Also, it can be checked that exchanging the notation for two indices, for instance
(i, j, k)→ (i, k, j) yields the same result for z′v(0). As an example, for the first term of z′v(0) we have

Mv(j, k, i) =
(∇xφk(v, ak)−∇xφj(v, aj))⊥ ⊗∇aiφi(v, ai)>

Qv(j, k, i)
,

Mv(k, j, i) =
(∇xφj(v, aj)−∇xφk(v, ak))⊥ ⊗∇aiφi(v, ai)>

Qv(k, j, i)
= Mv(j, k, i),

where we have used the fact that Qv(j, k, i) = Qv(k, i, j) = −Qv(k, j, i) since Qv(k, i, j) is an oriented
area.
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Now we consider the case of vertices at the boundary of two cells and located on the boundary of A.

Theorem 4. Suppose Assumption 5 holds and let {i, j} ⊂ L. Then Xij is finite and there exists τ1 > 0
such that for all v ∈ Xij there exists a unique smooth function zv : [0, τ1]→ R2 satisfying zv(0) = v and

Xij(t) =
⋃

v∈Xij

{zv(t)} for all t ∈ [0, τ1]. (27)

In addition we have

z′v(0) = Mv(j, i)δai + Mv(i, j)δaj (28)

with

Mv(j, i) :=
∇ϕ(v)⊥ ⊗∇aiφi(v, ai)>

det

(
(∇xφi(v, ai)−∇xφj(v, aj))>

∇xϕ(v)>

) . (29)

Proof. Applying Lemma 3 with I = {j, κ+1} ⊂ K = {κ+1}∪L\{i} and φ̂I(x, t) = (φ̂j(x, t), φ̂κ+1(x, t))>

with φ̂j(x, t) = φi(x, ai + tδai)−φj(x, aj + tδaj) and φ̂κ+1(x, t) = ϕ(x), we get Xij(t) ⊂MI(t) and (27)
follows.

In view of (9) we have

z′v(0) = −Dxφ̂I(v, 0)−1∂tφ̂I(v, 0) with Dxφ̂I(x, t) =

(
∇xφ̂j(x, t)>
∇xϕ(x)>

)
.

We compute

Dxφ̂I(v, 0)−1 =
(−∇xϕ(v)⊥ (∇xφi(v, ai)−∇xφj(v, aj))⊥)

detDxφ̂I(v, 0)

and

∂tφ̂I(v, 0) =

(
∇aiφi(v, ai) · δai −∇ajφj(v, aj) · δaj

0

)
=

[(
1
0

)
⊗∇aiφi(v, ai)>

]
δai −

[(
1
0

)
⊗∇ajφj(v, aj)>

]
δaj .

Further,

(−∇ϕ(v)⊥ (∇xφi(v, ai)−∇xφj(v, aj))⊥)

[(
1
0

)
⊗∇aiφi(v, ai)>

]
= −∇ϕ(v)⊥ ⊗∇aiφi(v, ai)>,

(−∇ϕ(v)⊥ (∇xφi(v, ai)−∇xφj(v, aj))⊥)

[
−
(

1
0

)
⊗∇ajφj(v, aj)>

]
= ∇ϕ(v)⊥ ⊗∇ajφj(v, aj)>.

Gathering these results we obtain (28).

The following result corresponds to the application of Theorem 1 in the context of minimization
diagrams. For k ∈ L \ {i}, Eik(a + tδa) := Vi(a + tδa) ∩ Vk(a + tδa) denotes an interior edge of the
diagram V(a + tδa), while Ei(a + tδa) := Vi(a + tδa) ∩ ∂A denotes a boundary edge of the diagram.
Note that Eik(a + tδa) and Ei(a + tδa) may have several connected components.

Theorem 5. Suppose Assumptions 4 and 5 hold. Then there exist τ1 > 0 and a mapping T : Vi(a) ×
[0, τ1] → R2 satisfying T (Vi(a), t) = Vi(a + tδa), T (Eik(a), t) = Eik(a + tδa) for all k ∈ L \ {i},
T (Ei(a), t) = Ei(a + tδa), T (∂Vi(a), t) = ∂Vi(a + tδa) and T (·, t) : VK → VK(t) is bi-Lipschitz for all
t ∈ [0, τ1]. In addition we have

θ(x) · ν(x) =
∇akφk(x, ak) · δak −∇aiφi(x, ai) · δai

‖∇xφk(x, ak)−∇xφi(x, ai)‖
for all x ∈ Eik(a), (30)

θ(x) · ν(x) = 0 for all x ∈ Ei(a), (31)

θ(v) · τ(v) = (Mv(j, k, i)δai +Mv(k, i, j)δaj +Mv(i, j, k)δak) · τ(v) for all v ∈ Yijk, (32)

θ(v) · τ(v) = (Mv(j, i)δai + Mv(i, j)δaj) · τ(v) for all v ∈ Xij , (33)

where θ := ∂tT (·, 0), ν is the outward unit normal vector to VK, and τ is the tangent vector to ∂Vi(a)
with respect to a counterclockwise orientation.
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Proof. The properties of T follow from Lemma 6 and Theorem 1, considering that Eik(a + tδa) and
Ei(a + tδa) both correspond to γk(t) in Lemma 6. Applying (21) in Theorem 1 with

φ̂k(x, t) = φi(x, ai + tδai)− φk(x, ak + tδak)

we get (30). Applying (21) in Theorem 1 with φ̂k(x, t) = ϕ(x) we get (31). Then (32) follows from
applying (22) and (25), and (33) is an application of (22) and (28).

3.2 Application to integrals on cells

We now give applications of Theorems 3, 4 and 5. Let us consider the following standard cost functional
defined as a domain integral:

G1(a) :=

∫
Vi(a)

f(x)dx,

where f ∈ C1(A,R2). Using Lemma 5, we get that Vi(a + tδa) is Lipschitz for all t ∈ [0, τ1]. Applying
Theorem 5 and a change of variables x 7→ T (x, t), then using the fact that T (·, t) : Vi(a) → Vi(a + tδa)
is bi-Lipschitz, we get

G1(a + tδa) :=

∫
Vi(a+tδa)

f(x)dx =

∫
T (Vi(a),t)

f(x)dx =

∫
Vi(a)

f(T (x, t))|detT (x, t)|dx.

This yields

∇G1(a) · δa =

∫
Vi(a)

div(f(x)θ(x))dx,

where θ := ∂tT (·, 0). Since Vi(a) is Lipschitz, applying the divergence theorem we get

∇G1(a) · δa =

∫
∂Vi(a)

f(x)θ(x) · ν(x)dx.

Let E int
i denote the set of interior edges of the cell Vi(a), i.e., edges that are included in A. Then, applying

(30) and (31) we get

∇G1(a) · δa =
∑

E∈Einti

∫
E

f(x)
∇ak(i,E)

φk(i,E)(x, ak(i,E)) · δak(i,E) −∇aiφi(x, ai) · δai
‖∇xφk(i,E)(x, ak(i,E))−∇xφi(x, ai)‖

dx,

where k(i, E) is the index such that E = Vi(a) ∩ Vk(i,E)(a). Note that Assumption 4 and Remark 3
imply ‖∇xφk(i,E)(x, ak(i,E))−∇xφi(x, ai)‖ > 0.

3.3 Application to integrals on edges

Let us consider another standard cost functional defined as an integral over an edge of the minimization
diagram V(a):

G2(a) :=

∫
E(a)

f(x)dx,

where f ∈ C1(A,R2). Here E(a) can either be an interior edge given by E(a) = Vi(a) ∩ Vk(a) or a
boundary edge given by E(a) = Vi(a)∩ ∂A. To compute the gradient of G2 we recall the following basic
results.

Theorem 6 (tangential divergence theorem). Let Γ ⊂ R2 be a Ck open curve, k ≥ 2, with a parameter-
ization ξ, and denote (v, w) the starting and ending points of Γ, respectively, with respect to ξ. Let τ be
the unitary-norm tangent vector to Γ, ν the unitary-norm normal vector to Γ, and H the mean curvature
of Γ, with respect to the parameterization ξ. Let F ∈W 1,1(Γ,R2) ∩ C0(Γ,R2), then we have∫

Γ

divΓ(F (x))dx =

∫
Γ

H(x)F (x) · ν(x)dx+ JF (x) · τ(x)Kwv ,

where divΓ(F ) is the tangential divergence of F on Γ, and

JF (x) · τ(x)Kwv := F (w) · τ(w)− F (v) · τ(v).
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Proof. The result follows from [35, § 7.2] and [18, Ch. 9, § 5.5].

Lemma 7 (change of variables for line integrals). Let Γ ⊂ R2 be a Ck open curve, k ≥ 2, and ν a
unitary-norm normal vector to Γ. Let F ∈ C0(Γ,R2) and T (·, t) : Γ→ T (Γ, t) be a bi-Lipschitz mapping.
Then ∫

T (Γ,t)

F (x) dx =

∫
Γ

F (T (x, t))ζ(x, t)dx,

where
ζ(x, t) := ‖ det(DxT (x, t))DxT (x, t)−>ν(x)‖ (34)

and det(DxT (x, t))DxT (x, t)−> is the cofactor matrix of DxT (x, t). Furthermore, we have

∂tζ(x, 0) = divΓ θ(x) with θ := ∂tT (·, 0) on Γ. (35)

Proof. See [24, Prop. 5.4.3].

Applying Theorem 5, Lemma 7 and a change of variables x 7→ T (x, t), then using the fact that
T (·, t) : E(a)→ E(a + tδa) is bi-Lipschitz, we get

G2(a + tδa) :=

∫
E(a+tδa)

f(x)dx =

∫
T (E(a),t)

f(x)dx =

∫
E(a)

f(T (x, t))ζ(x, t)dx.

This yields, using (35),

∇G2(a) · δa =

∫
E(a)

∇xf(x) · θ(x) + f(x) divΓ(θ(x))dx =

∫
E(a)

∂νf(x)θ(x) · ν(x) + divΓ(f(x)θ(x))dx,

where θ := ∂tT (·, 0), ν is the outward unit normal vector to Vi(a) and ∂νf(x) := ∇xf(x)·ν(x). According
to Lemma 5, E(a) is a finite union of smooth, connected arcs. Let EE(a) be the set of these arcs, then
we have

E(a) =
⋃

γ∈EE(a)

γ.

Thus we can write

∇G2(a) · δa =

∫
E(a)

∂νf(x)θ(x) · ν(x)dx+
∑

γ∈EE(a)

∫
γ

divΓ(f(x)θ(x))dx.

Since Vi(a) is Lipschitz, applying Theorem 6 on each integral over γ we get

∇G2(a) · δa =

∫
E(a)

(∂νf(x) +H(x))θ(x) · ν(x)dx+
∑

γ∈EE(a)

Jf(x)θ(x) · τ(x)Kwv , (36)

where (v, w) denote the starting and ending points of γ, with respect to a counterclockwise orientation
on ∂Vi(a). Finally, in (36), θ(x) · ν(x) is given by (30) if E(a) = Vi(a)∩ Vj(a) is an interior edge and by

(31) if E(a) = Vi(a) ∩ ∂A is a boundary edge. Also, θ(x) · τ(x) is given by (32) if x ∈ A and by (33) if
x ∈ ∂A.

4 The particular case of Euclidean Voronoi diagrams

Voronoi diagrams are the simplest example of minimization diagrams, corresponding to q = 2 and
φi(x, ai) = ‖x − ai‖2 for all i ∈ L, and have applications in many fields such as natural sciences,
engineering and computer sciences. Therefore it is both relevant and helpful, for a deeper understanding
of the perturbation theory for minimization diagrams, to interpret and discuss the results and formulas
of Sections 2 and 3 in the particular case of Voronoi diagrams, which is the purpose of this section. The
obtained formulas will be the basis for the calculation of the gradients used in the numerical experiments
of Section 5.
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Throughout this section we always assume that q = 2 and φi(x, ai) = ‖x − ai‖2 for all i ∈ L. For
x ∈ A let us introduce the set of indices

P (x) :=
{
i ∈ L such that x ∈ Vi(a)

}
.

We clearly have |P (x)| ≥ 1 for all x ∈ A. If |P (x)| = 1, then either x belongs to some cell Vi(a) or
x ∈ ∂A.

First of all we observe that Assumption 4, considering Remark 3, reduces to ‖∇xϕ(x)‖ > 0 for all
x ∈ ∂A and to the condition ‖ai − aj‖ > 0 for all {i, j} ⊂ L, which is independent of x. The latter
condition of well-separated sites also derives from Assumption 5, as can be seen in the following result.

Lemma 8. Suppose that Assumption 5 holds, then the sites {ai}i∈L are pairwise distinct. In addition,
we have |P (x)| ≤ 3 for all x ∈ A and |P (x)| ≤ 2 for all x ∈ ∂A.

Proof. Suppose ai = aj for some i 6= j, then we have ∇xφi(x, ai) −∇xφj(x, aj) = 0 for all x ∈ R2 and
Assumption 5 could not hold.

Now suppose that |P (x)| > 3 for some x ∈ A. Then there exist indices {i, j, k, `} ⊂ L such that
∇xφi(x, ai) = ∇xφj(x, aj) = ∇xφk(x, ak) = ∇xφ`(x, a`), but this is incompatible with condition (7). In
a similar way, |P (x)| > 2 for some x ∈ ∂A is incompatible with condition (7).

Lemma 8 provides an interpretation of Assumptions 3 and 5 in the context of Voronoi diagrams. It
basically states that Assumption 3 (or Assumption 5) eliminates the trivial situations where two cells
are identical. The second result of Lemma 8 shows that the vertices of the Voronoi diagram belong to no
more than three cells. If Assumption 5 does not hold, then vertices may belong to four or more cells and
a new edge may appear after a small perturbation, a singular case that requires a specific asymptotic
analysis. These configurations are “rare” in the sense that they represent a set of zero measure in R2,
and an arbitrary small perturbation of the sites allows to avoid them when they occur.

In Section 3.1 we have introduced the set of interior vertices Yijk and the set of boundary vertices
Xij of the diagram. The following result is an immediate consequence of Lemma 8.

Lemma 9. Suppose that Assumption 5 holds, then for all {i, j, k} ⊂ L we have |Yijk| ≤ 1 and |Xij | ≤ 1.

Lemma 9 states that in the particular case of Voronoi, the intersection of three cells is at most one
point, and the intersection of two cells and of the boundary of A is at most one point. This well-known
fact illustrates Assumptions 3 and 5 in a particular case. Note that the results of Lemma 9 do not hold
in general for minimization diagrams.

Now we describe Theorems 3 and 4 for the particular case of Voronoi diagrams.

Theorem 7. Suppose Assumption 5 holds and |Yijk| = 1 for some {i, j, k} ⊂ L. Then, denoting v = Yijk,
there exists τ1 > 0 and a unique smooth function zv : [0, τ1]→ R2 satisfying zv(0) = v and

z′v(0) = M(j, k, i)δai +M(k, i, j)δaj +M(i, j, k)δak (37)

where

M(i, j, k) :=
(ai − aj)⊥ ⊗ (v − ak)>

Q(i, j, k)
(38)

and

Q(i, j, k) := det

(
(aj − ai)>
(ak − ai)>

)
.

Proof. The result follows by applying Theorem 3 with φ`(x, a`) = ‖x− a`‖2, ` = i, j, k.

Theorem 8. Suppose Assumption 5 holds and |Xij | = 1 for some {i, j} ⊂ L. Then, denoting v = Xij,
there exists τ1 > 0 and a unique smooth function zv : [0, τ1]→ R2 satisfying zv(0) = v and

z′v(0) = M (j, i)δai + M (i, j)δaj (39)

with

M (j, i) :=
−∇xϕ(v)⊥ ⊗ (v − ai)>

det

(
(aj − ai)>
∇xϕ(v)>

) . (40)
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Proof. The result follows by applying Theorem 4 with φ`(x, a`) = ‖x− a`‖2, ` = i, j.

Next, we compute the gradient of G1(a) of Section 3.2 in the particular case of Voronoi diagrams.
Taking φ`(x, a`) = ‖x− a`‖2, ` = i, k, we obtain

∇G1(a) · δa =
∑

E∈Einti

δai
‖ai − ak(i,E)‖

·
∫
E

f(x)(x− ai)dx−
δak(i,E)

‖ai − ak(i,E)‖
·
∫
E

f(x)(x− ak(i,E))dx.

Let vE and wE denote the vertices of E with respect to a counterclockwise orientation on Vi(a). In the
particular case f ≡ 1 we compute

∇G1(a) · δa =
∑

E∈Einti

δai
‖ai − ak(i,E)‖

·
∫
E

(x− ai)dx−
δak(i,E)

‖ai − ak(i,E)‖
·
∫
E

(x− ak(i,E))dx

=
∑

E∈Einti

|E|δai
‖ai − ak(i,E)‖

·
[
vE + wE

2
− ai

]
−
|E|δak(i,E)

‖ai − ak(i,E)‖
·
[
vE + wE

2
− ak(i,E)

]
.

Introducing the midpoint pE := (vE + wE)/2 of E, this yields

∇G1(a) · δa =
∑

E∈Einti

|E|
‖ai − ak(i,E)‖

[δai · (pE − ai)− δak(i,E) · (pE − ak(i,E))].

Next, we compute the gradient of G2(a) of Section 3.3 in the particular case of Voronoi diagrams and
f ≡ 1. In this case H = 0, ∂νf ≡ 0 and each edge E has only one connected component, hence

∇G2(a) · δa = θ(wE) · τ(wE)− θ(vE) · τ(vE).

Considering that θ(v) · τ(v) is given by (32) if v ∈ A and by (33) if v ∈ ∂A, we get

∇G2(a) · δa = F(i, wE) · τ(wE)−F(i, vE) · τ(vE), (41)

where

F(i, v) :=

{
Mv(j, k, i)δai +Mv(k, i, j)δaj +Mv(i, j, k)δak if v ∈ Yijk,
Mv(j, i)δai + Mv(i, j)δaj if v ∈ Xij .

(42)

Note that in (42), the indices j, k in Yijk and the index j in Xij actually depend on the index i and on
the vertex v. These indices may be uniquely determined by choosing a counterclockwise orientation of
the cells around the vertex v.

5 Numerical experiments

In this section we assume that A is open and polygonal, and we show numerical experiments to illustrate
the application of the developed theory to the specific case of Voronoi diagrams. The optimization of
Voronoi diagrams is highly relevant in applications, in particular for mesh optimization [19, 20, 34]. The
advantage of our approach is to provide a general framework for computing derivatives for a wide class
of cost functions and generalized Voronoi diagrams, and also to provide a sensitivity analysis for cells,
edges and vertices on the boundary of A. In Section 5.1, we addressed the problem of constructing
Voronoi diagrams with cells of equal volume. In Section 5.2, we show how to avoid cells with very small
edges. In Section 5.3, we show how to avoid sharp angles. In Section 5.4, we deal with approximating
the midpoint of a Voronoi edge with the midpoint of the corresponding Delaunay edge. In Section 5.5,
we show how to get cells with different pre-specified sizes for different parts of the region A.

Considering that A is a polygon, define E∂Ai the set of edges of Vi(a) ∩ ∂A. Let E int
i denote the set

of interior edges of the cell Vi(a), i.e., edges that are included in A. Define Ei := E int
i ∪ E∂Ai as the

set of edges of the cell Vi(a). Note that this definition of edges of Vi(a) is not exactly the same as the
definition given in Section 3.3. Indeed, in the previous sections we have assumed that A was smooth for
convenience, and boundary edges could be defined directly as Vi(a) ∩ ∂A, whereas Vi(a) ∩ ∂A may have
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several edges when A is a polygon. Also, the edges of A need to be taken into account for defining the
cost functions and their gradients in this section.

So far we have defined the cells Vi(a) as subset of A. For the numerical implementation we also
introduce Voronoi cells relative to the plane:

Wi(a) := int
{
x ∈ R2 such that ‖x− ai‖2 ≤ ‖x− ak‖2 for all k ∈ L \ {i}

}
.

Clearly, Vi(a) = Wi(a) ∩A.

5.1 Identical volume cells

Initially, we consider the merit function given by

J1(a) :=
1

κ

κ∑
i=1

[
J1
i (a)

]2
,

where

J1
i (a) :=

(∫
Vi(a)

dx

)/( 1

κ

∫
A

dx

)
− 1,

that measures the deviation of the area of the Voronoi cell respect to the average area of the cells in the
domain A. For future reference, note that J1(a) ≤ 10−8 means that, on average, |J1

i (a)| ≤ 10−4. This
means that, on average, the relative error of the area of a cell in relation to the ideal area of a cell is less
than 0.01%.

As the Voronoi diagrams are not well defined if two sites coincide, it is useful in practice to ask the
sites to keep a certain distance between each other. Therefore, the minimization of J1 can be combined
with the minimization of J0 given by

J0(a) :=

κ∑
i=1

κ∑
j=i+1

max
{

0, J0
ij(a)

}2
with J0

ij(a) := δ2 − ‖ai − aj‖2,

where δ > 0 is a small pre-established tolerance. J0 nullifies when all pairs of sites are at least δ
apart, i.e., when they represent the centers of non-overlapping balls of radius δ/2. At first glance, the
computation of J0 has time complexity O(κ2). However, it is expected that sites of non-neighboring
cells have distance greater than δ and, therefore, do not contribute to the computation of J0. Thus, in
practice, it is reasonable to compute the terms in J0 that correspond only to pairs (i, j) of neighbor cells,
reducing its evaluation cost to O(κ).

Following [4, 5], we consider examples of regions A given by the union of disjoint convex polygons
A1, . . . , Ap. In that way, we can represent non-convex regions and regions with holes. Given the sites a ∈
R2κ, we first compute the Delaunay diagram using the Dtris2 subroutine from Geompack [25] (available
at https://people.math.sc.edu/Burkardt/f_src/geompack2/geompack2.html) and, from that, the
Voronoi diagram W(a) = {Wi(a) for i = 1, . . . , κ}. Each cell of the Voronoi diagram is a polyhedron
(which can be unbounded). For each Wi(a), we compute Vi(a) = Wi(a) ∩ A as Vi(a) = ∪pj=1Vij(a),
where Vij(a) = Wi(a)∩Aj . Each Vij(a) is the intersection of a polyhedron with a convex polygon and is
computed using an adaptation of Sutherland-Hodgman algorithm [38]. With this information, the area
of Vi(a) in J1

i is trivially calculated as the sum of the areas of the corresponding polygons Vij(a). At this
point it is worth noting that the interpretation of J1 may not correspond precisely to what one imagines
at first, since for non-convex regions A some cells Vi(a) may be disconnected.

Code was written in Fortran 90. All tests were conducted on a computer with a 3.4 GHz Intel Core i5
processor and 8GB 1600 MHz DDR3 RAM memory, running macOS Mojave (version 10.14.6). Code was
compiled by the GFortran compiler of GCC (version 8.2.0) with the -O3 optimization directive enabled.
In J0, we considered δ = 0.1. This value is appropriate since the considered regions A were scaled so
that |A| ≈ κ, i.e., at a solution a it is expected that |Vi(a)| ≈ 1 for all i. The optimization problems
were solved using the Spectral Projected Gradient (SPG) method [8, 9, 10, 11]. As anticipated in the
discussion above, the stopping criterion was to achieve a value of the objective function less than or equal
to 10−8. The initial point a0 of the optimization process was constructed by drawing points in A with
uniform distribution. In fact, from the description of A, it is possible to establish the smallest rectangle D
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such that A ⊆ D. Uniformly distributed points are drawn in D until κ points a1, . . . , aκ ∈ R2 belonging
to A are obtained. These points constitute the initial guess a0.

Figures 2–4 show the result of minimizing f(a) := 10J0(a) + J1(a) subject to a ∈ R2κ with
κ ∈ {100, 1000} for some non-convex regions A. The behavior of the optimization method varies slightly
depending on the relative weight attributed to J0 and J1. The weight 10 for J0 was obtained empiri-
cally. Non-convex regions “America”, “Cesàro Fractal”, “Minkowski Fractal”, “Star”, and “Polygon with
Holes” were already considered in [4, 5], where a detailed description can be found. Non-convex regions
“Letter A” and “Key” were inspired by [34, Fig.2]. The detailed description of our free interpretation
of these figures can be found in Appendix B, as well as the description of the other two simple convex
regions considered. The figures show that many cells Vi(a) are non-convex, mainly near the borders of A.
Disconnected cells Vi(a) are rare, but do exist. See for example the Gulf of California or Tierra del Fuego
regions in the map of America with κ = 100. In the second case, two disconnected parts of A are covered
by the same Voronoi cell, resulting, evidently, in a disconnected Vi(a). These two cases correspond to
κ = 100. When κ = 1000, the cells are small compared to the edges of the polygons defining A and,
therefore, the cases are rarer or nonexistent.

Table 1 shows some details of the optimization process. In the table, scaling factor corresponds
to the scale factor the region A was multiplied by, so that its volume is approximately equal to κ, i.e.,
that the cells have ideal area |A|/κ of approximately 1, while |A| corresponds to the actual volume of
A. Column p corresponds to the number of convex polygons defining A. Column κ corresponds to the
considered number of sites and column ntrials corresponds to the number of different initial guesses
(limited to 10) that were used in the optimization process until a final iterate with a functional value
smaller than or equal to 10−8 was found. it identifies the number of iterations, fcnt identifies the
number of evaluations of the objective function, and Time identifies the elapsed CPU time in seconds.
The number of gradient evaluations coincides with the number of iterations plus 1. The columns f(a∗)
and ‖∇f(a∗)‖∞ identify the value of the objective function and the sup-norm of the gradient at the final
iterate a∗.

The figures in Table 1 show that the considered problems could be solved using a simple, available
and well-established optimization algorithm with an acceptable effort. Moreover, the target functional
value was found in 7 out of the 9 considered problem starting from a single initial guess. In one problem
(“Letter A” with κ = 100), a functional value smaller than 10−8 was found in the third trial; while in
one problem (“America” with κ = 1000) the smallest functional value was found in the fourth trial, but
no value below 10−8 was found. In any case, small functional values were found in all problems with an
affordable computational effort. This performance is in accordance with the solution of a large practical
problem for which multiple runs might be unaffordable.

Problem scaling factor |A| p κ ntrials f(a∗) ‖∇f(a∗)‖∞ it fcnt Time

Convex
Polygon

3.06250E+00 1.00582E+02 1 100 1 9.09410E−09 5.2E−06 39 41 0.02
9.67188E+00 1.00320E+03 1 1000 1 9.84241E−09 5.8E−07 258 346 1.68

Regular
Polygon

5.70312E+00 1.00510E+02 1 100 1 9.62359E−09 9.5E−07 54 57 0.03
1.79531E+01 9.96007E+02 1 1000 1 7.37442E−09 2.5E−06 228 287 1.64

Letter A
6.56250E−01 1.00143E+02 16 100 3 9.76781E−09 1.7E−06 350 450 0.67
2.07812E+00 1.00421E+03 16 1000 1 9.16932E−09 7.4E−07 1209 1849 27.37

America
1.18750E+00 9.91234E+01 34 100 1 9.51486E−09 6.0E−07 866 1368 3.98
3.76562E+00 9.96743E+02 34 1000 4 2.14619E−05 9.8E−09 5603 9241 267.93

Cesàro
Fractal

1.17812E+01 1.00214E+02 21 100 1 9.66216E−09 2.9E−06 58 68 0.13
3.71758E+01 9.97855E+02 21 1000 1 9.98247E−09 7.3E−08 485 706 13.79

Key
1.06250E+00 9.95155E+01 22 100 1 6.63147E−09 1.0E−06 135 165 0.37
3.36719E+00 9.99464E+02 22 1000 1 9.86242E−09 1.5E−07 728 1101 22.28

Minkowski
Fractal

2.50000E+00 1.00000E+02 16 100 1 8.02930E−09 1.7E−06 77 85 0.14
7.89062E+00 9.96191E+02 16 1000 1 6.94410E−09 3.2E−06 528 752 11.59

Star
2.54688E+00 9.91209E+01 9 100 1 5.52897E−09 8.7E−06 119 133 0.15
8.08984E+00 1.00007E+03 9 1000 1 9.76350E−09 3.5E−07 467 621 6.80

Polygon
with Holes

1.20156E+01 9.97793E+01 14 100 1 8.39601E−09 7.0E−06 103 123 0.19
3.79141E+01 9.93456E+02 14 1000 1 8.43135E−09 7.2E−07 419 576 8.57

Table 1: Details of the optimization process and the solutions found for the problem of finding Voronoi
diagrams with cells of equal volume.
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Figure 2: Voronoi diagrams with κ ∈ {100, 1000} cells of identical area. Regions “Letter A”, “America”,
and “Cesàro Fractal”.

We close this section by showing how the method behaves when the problem size increases, i.e. when
the number of cells grows. Table 2 shows details of the solutions obtained and the performance of the
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Figure 3: Voronoi diagrams with κ ∈ {100, 1000} cells of identical area. Regions “Key”, “Minkowski
Fractal”, and “Regular Polygon”.

method when applied to the region A given by a regular polygon with κ ∈ {100, 500, 1, 000, 5,000, 10,000,
20,000, 30,000, 40,000, 50,000}. Column fcnt/it shows that the number of function evaluations per iter-
ation is, on average, smaller than 1.5, regardless of κ. At this point it is perhaps interesting to mention
that the computation of the objective function and its gradient share many operations, among them the
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Figure 4: Voronoi diagrams with κ ∈ {100, 1000} cells of identical area. Regions “Star”, “Polygon with
Holes”, and “Convex Polygon”.

construction of the Voronoi diagram, which is the dominant cost. Therefore, among the several possible
options, we opted for computing them together. At iteration k, being at the current point ak, the SPG
method calculates ak,trial and, if the value of the merit function at that point is considered acceptable,
it defines ak+1 := ak,trial. (Otherwise, the method starts a backtracking process to calculate a new point
closer to ak.) Whenever a new iteration starts, the gradient at the new current point ak+1 is necessary;
see [8, 9, 10, 11] for details. If, when calculating the merit function at ak,trial, we already calculated
the gradient together, then the joint calculation of function and gradient can be used. The value, in
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average, smaller than 1.5 in column fcnt/it suggests, as already known in the literature, that the method
goes from ak to ak+1 with a single function evaluation in about half of the iterations, making the joint
evaluation of function and gradient profitable. Regarding the cost, as a function of κ, of the routine that
evaluates function and gradient, it follows, as expected, the cost O(κ log(κ)) related to the computation
of the Voronoi diagram; see, for example, [17]. This is shown in the last column, which presents the
value of c given by Time/fcnt divided by κ log10(κ). The column shows that c ≈ 2 × 10−6 seconds
independently of κ. (The case κ = 100 should be ignored, since the measurement of such small times is
subject to large relative measurement errors.)

κ scaling factor |A| f(a∗) ‖∇f(a∗)‖∞ it fcnt Time fcnt/it c

100 5.70312E+00 1.00510E+02 9.62359E−09 9.5E−07 54 57 0.03 1.06 2.94E−06
500 1.27188E+01 4.99886E+02 9.16129E−09 2.6E−06 137 156 0.43 1.14 2.05E−06
1000 1.79531E+01 9.96007E+02 7.37442E−09 2.5E−06 228 287 1.62 1.26 1.88E−06
5000 4.03750E+01 5.03741E+03 1.13295E−07 8.0E−09 638 925 30.01 1.45 1.75E−06
10000 5.71094E+01 1.00785E+04 6.91039E−07 8.6E−09 1131 1725 114.84 1.53 1.66E−06
20000 8.03750E+01 1.99629E+04 5.40638E−06 8.9E−09 927 1385 188.07 1.49 1.58E−06
30000 9.82344E+01 2.98201E+04 1.16004E−05 9.8E−09 673 969 216.83 1.44 1.67E−06
40000 1.14109E+02 4.02369E+04 1.36545E−05 8.6E−09 785 1134 342.17 1.44 1.64E−06
50000 1.27008E+02 4.98475E+04 3.66230E−05 8.3E−09 668 965 363.70 1.44 1.60E−06

Table 2: Details of the optimization process and the solutions found for the problem of finding Voronoi
diagrams with cells of equal volume in the region A given by a regular polygon with increasing values of κ.

5.2 Avoiding cells with relatively small edges

In this section, we consider convex regions1. If we analyze the cells of the regular polygon with κ = 100
in Figure 3, we can see that there are cells with small edges. Specifically, given a fraction c2 ∈ (0, 1), we
say that an edge E of a cell Vi is small if its size |E| is smaller than c2 (Pi/ni), where Pi is the perimeter
of the cell Vi, ni is the number of edges of the cell Vi, and, therefore, Pi/ni is the average size of the
cell’s edges. To construct Voronoi diagrams that do not have cells with relatively small edges, given a
tolerance c2 ∈ (0, 1), we consider the merit function given by

J2(a) :=

κ∑
i=1

J2
i (a) with J2

i (a) :=
1

ni

∑
E∈Ei

min

{
0,
|E|
Ēi
− c2

}2

,

where Ei is the set of edges of the cell Vi, ni = |Ei|, and Ēi = Pi/ni. Given c2 ∈ (0, 1), if all edges
E ∈ Ei of a cell Vi satisfy |E| ≥ c2 Ēi, i.e., if they are at least 100% × c2 larger than the average, then
|E|/Ēi − c2 ≥ 0 and, therefore, J2

i vanishes. In general, J2
i measures the average violation of the size of

the edges of Vi relative to the minimum desired size.
For the Voronoi diagram with κ = 1000 of the Regular Polygon region shown in Figure 3, Figure 5a

shows, painted with different tones of blue, the cells Vi that satisfy J2
i > 0 for different values of

c2 ∈ {0.1, 0.2, . . . , 0.5}. The darker the color of the cell Vi, the smaller the maximum value of c2 for
which J2

i > 0, i.e., the more unbalanced are the edge sizes of the cell Vi. The uncolored cells Vi satisfy
J2
i = 0 for the considered values of c2 and are, therefore, deemed balanced. Preserving the meaning of

the colors, Figures 5b–f show the diagrams obtained by minimizing

f(a) := 10J0(a) + J1(a) + J2(a) (43)

with c2 ∈ {0.1, 0.2, . . . , 0.5}, respectively. In the cases with c2 up to 0.4, the unwanted unbalanced cells
were eliminated. In the case c2 = 0.5, a single run of the optimization method was not able to find
a global minimizer of f and, therefore, cells Vi with J2

i (a) > 0 remained. Regardless of that, in the

1There would be, a priori, no limitation to apply the content of this section to non-convex regions. However, due to the
way we compute Vi(a) := Wi(a)∩A, when A is non-convex, we have direct access to the edges of each Vij(a) := Wi(a)∩Aj

for j = 1, . . . , p instead of having access to the edges of Vi(a). When A is convex (in which case p = 1), Vi(a) coincides
with Vi1(a) for all i and, thus, we have direct access to the edges of Vi(a). This is a technical limitation that could be
overcome by re-implementing this part of the software.
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solutions found by minimizing (43) with c2 = 0.4 and c2 = 0.5 (Figures 5e and 5f), all cells Vi satisfy
J2
i (a) = 0 with c2 = 0.4, i.e., they are considered balanced with tolerance c2 = 0.4 and, thus, no cell has

an edge whose size is less than 40% of the average size of the cell edges.
Figure 6 analyzes the six different solutions a∗ (depicted in Figure 5) found by minimizing (43) with

c2 ∈ {0.0, 0.1, . . . , 0.5}. For a given solution a∗, the figure shows the proportion of cells Vi satisfying
J2
i (a∗) = 0 as a function of c2 ∈ [0, 1]. The case in which (43) is minimized with c2 = 0 is identical

to minimizing 10J0(a) + J1(a), since J2(a) is identically null when c2 = 0. For the solution found in
this case, the figure shows, for example, that the statement “all my edges are at least 20% the average
size of my edges” is true for 60% and that the statement “all my edges are at least 40% the average
size of my edges” is true for slightly more than 30% of the cells. The figure also shows that when we
minimize (43) with c2 = 0.4 or c2 = 0.5, the statement “all my edges are at least 40% the average size
of my edges” is true for all the cells. Table 3 shows details of the solutions found and the optimization
process. The first column corresponds to the value of c2 considered in (43). The other columns contain
the same information as Table 1. The numbers in the table show that the problems that correspond to
minimizing (43) with c2 ∈ {0.1, 0.2, 0.3} were easily solved. When c2 = 0.4, solving the problem was
more expensive; and the method failed to find a solution with a value of a merit function less than 10−8

within a limit of 50,000 iterations when we minimized (43) with c2 = 0.5.

c2 f(a∗) ‖∇f(a∗)‖∞ it fcnt Time

0.1 8.98014E−09 3.7E−07 288 357 2.07
0.2 6.17602E−09 4.3E−06 362 448 2.77
0.3 9.86248E−09 4.5E−08 519 628 3.83
0.4 9.99953E−09 5.4E−08 30304 46154 309.08
0.5 1.15592E−04 8.2E−06 50000 83594 608.91

Table 3: Details of the optimization process and the solutions found for the problem of finding Voronoi
diagrams with cells of equal volume and avoiding cells with relatively small edges.

5.3 Avoiding sharp-angled cells

The solution illustrated in Figure 5e has cells of identical size for which the statement “my edges are all
at least 40% of the average size of my edges” holds true. In this section we focus on the balancing of
the internal angles of the cells. To construct Voronoi diagrams that do not have cells with sharp-angled
cells, given a tolerance c3 ∈ (0, 1), we consider the merit function given by

J3(a) :=

κ∑
i=1

J3
i (a) with J3

i (a) :=
1

|Ẽi|

∑
E∈Ẽi

min

{
0,
θE
θ̄i
− c3

}2

,

where (i) for a given edge E ∈ Ei, vE and wE represent its vertices in counterclockwise order, (ii)

τE :=
wE − vE
‖wE − vE‖

is the tangential vector on E pointing counterclockwise, (iii) θE := arccos(−τE · τÊ) is the interior angle

formed by the edge E and the edge before E, denoted Ê, considering a counterclockwise orientation,
(iv) Ẽi := {E ∈ Ei such that vE /∈ T∂A}, where T∂A denotes the set of vertices of ∂A, and (v)

θ̄i :=
1

|Ẽi|

∑
E∈Ẽi

θE

is the average angle value in the cell Vi, excluding the angles of Vi that are also vertices of A.
The five black dashed lines in Figure 7 show, for each of the five solutions described in Section 5.2,

the proportion of cells satisfying J3 ≡ 0 as a function of c3. It is worth noting that the merit function J3

was not considered in Section 5.2. However, the black dashed lines in Figure 7 show that, somehow,
trying to balance the size of the edges produced cells more or less well balanced in relation to their angles
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Voronoi diagram with κ = 1000 for the region given by a regular polygon. In (a) we show
the Voronoi diagram obtained in Section 5.1, minimizing f(a) := 10J0(a) + J1(a). The darker the
cell, the more unbalanced the sizes of its edges. In (b), (c), (d), (e) and (f), preserving the meaning
of the colors, we show the diagrams obtained by minimizing f(a) := 10J0(a) + J1(a) + J2(a) with
c2 ∈ {0.1, 0.2, . . . , 0.5}, respectively.
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Figure 6: This figure analyzes the solutions found when minimizing (43) with c2 ∈ {0.0, 0.1, . . . , 0.5}.
(The case in which c2 = 0 is identical to minimizing 10J0(a)+J1(a), i.e., ignoring J2.) For each solution,
the figure shows, as a function of c, the proportion of cells that satisfy the statement “all my edges are
at least 100%× c the average size of my edges”.

as well. The three solid lines in the figure show the same property in relation to solutions obtained by
minimizing

f(a) := 10J0(a) + J1(a) + J2(a) + J3(a) (44)

with c2 = 0.4 and c3 ∈ {0.5, 0.6, 0.7}. Details of these solutions and the optimization process are shown
in Table 4. The numbers in the table show that, in the problems with c3 = 0.5 and c3 = 0.6, it was
possible to find a solution with f(a∗) ≤ 10−8, while the same was not possible with c3 = 0.7, considering
a single attempt and a limit of 50,000 iterations. Figure 8 shows the solutions found.

c3 f(a∗) ‖∇f(a∗)‖∞ it fcnt Time

0.5 9.93676E−09 6.6E−06 20514 33342 266.28
0.6 9.99877E−09 3.2E−07 36549 61748 490.28
0.7 3.05663E−06 1.2E−07 50000 81335 654.68

Table 4: Details of the optimization process and the solutions found for the problem of finding Voronoi
diagrams with cells of equal volume and avoiding, simultaneously, cells with relatively small edges and
sharp-angles.

5.4 Balancing Delaunay and Voronoi edges

So far we have shown that, in association with looking for cells of equal size, we can try to balance the
edges and angles of each cell. On the other hand, it is a fact that one cannot optimize everything at
the same time, since some objectives may conflict and, in the end, one could get a result that does not
minimize anything. In this section, we return to looking at cells of equal size and try to build cells such
that the midpoint of each edge is contained in the associated Delaunay edge, i.e., that the midpoints of
the associated Voronoi and Delaunay edges coincide. This is a relevant objective to improve the accuracy
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Figure 7: This figure analyzes (solid lines) the solutions found when minimizing (44) with c2 = 0.4 and
c3 ∈ {0.5, 0.6, 0.7}. For each solution, the figure shows, as a function of c, the proportion of cells that
satisfy the statement “all my angles are at least 100% × c my average angle”. The five black dashed
lines show, for each of the five solutions described in Section 5.2, in which J3 was not considered, the
proportion of cells satisfying J3 ≡ 0 as a function of c.

of discrete differential operators for grid optimization; see the tweaking optimization algorithm in [23].
In this case, the considered merit function is given by

J4(a) :=

κ∑
i=1

J4
i (a) with J4

i (a) :=
1

|E int
i |

∑
E∈Einti

‖pE − qE‖2

|E|2
, (45)

where E int
i ⊆ Ei denotes the set of all edges of the cell Vi that are contained in A, i.e., edges on the

boundary of A are excluded, pE := 1
2 (vE + wE) is the midpoint of edge E, qE := 1

2 (ai + ak(i,E)) is the
midpoint of the edge of the Delaunay triangulation that joins ai with ak(i,E), and ak(i,E) is the site of
the Voronoi cell Vk(i,E) that shares edge E with Vi.

The merit function J4
i measures, for a cell Vi, the relative mean deviation between the midpoints

of associated Voronoi and Delaunay edges; while the merit function J4 measures the average of that
metric over all cells in the diagram. Note that, in this case, when defining J4

i , we made a different choice
(relative to the choice made when defining J2

i and J3
i ); J4

i measures the mean of the desired metric over a
cell and it is nullified only if the midpoints coincide in all pairs of edges. There is no desired upper bound
on the relative distance ‖pE − qE‖/|E| which causes the function to nullify if that bound is honored.

It should also be noted that it may be impossible to obtain a solution with cells Vi of equal volume
that satisfies pE = qE for all E ∈ ∪κi=1E int

i . That is, in this problem, the stopping criterion should not be
to get a solution that nullifies the objective function with a certain tolerance. The remaining criterion
in this case is to find a stationary point of the merit function, i.e., a solution that cancels the gradient
of the objective function (with a tolerance εopt > 0). Independently of that, if what we want is, among
the solutions with cells of equal size, a solution that minimizes J4, we must find a weight ρ so that we
can get such a solution by minimizing

f(a) := 10J0(a) + J1(a) + ρJ4(a).

A numerical experiment with ρ = 1 shows that J4 dominates f(a) and that the obtained solution does
not have cells of the same size. On the other hand, the desired result is obtained with ρ = 10−4.
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(a) (b)

(c) (d)

Figure 8: Voronoi diagram with κ = 1000 for the region given by a regular polygon. In (a) we show the
Voronoi diagram obtained in Section 5.2, minimizing f(a) := 10J0(a) + J1(a) + J2(a) with c2 = 0.4.
The darker the cell, the more unbalanced the angles. In (b), (c), and (d), preserving the meaning of
the colors, we show the diagrams obtained by minimizing f(a) := 10J0(a) + J1(a) + J2(a) + J3(a) with
c2 = 0.4 and c3 ∈ {0.5, 0.6, 0.7}, respectively.
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Figure 9: Voronoi diagram with κ = 1000 for the region given by a regular polygon constructed by
seeking cells of the same size such that the midpoints of the edges of the Voronoi cells and their associated
Delaunay edges coincide. Segments [pE , qE ], which ideally should be null or small relative to |E|, appear
painted blue.

Figure 9 shows the solution (corresponding to the eighth of ten attempts, which was the best in
terms of lowest objective function value), obtained using ρ = 10−4 and εopt = 10−8. In fact, despite
the εopt = 10−8, the optimization method stopped due to lack of progress in the objective function in
an iterate a∗ with f(a∗) ≈ 10−6 and ∇f(a∗) ≈ 10−6, using 2039 iterations, 3310 functional evaluations,
and 24.10 seconds of CPU time. Importantly, at this point, we have J0(a∗) = 0, J1(a∗) ≈ 10−5,
and J4(a∗) ≈ 84.40. Moreover, mini∈L{J4

i (a∗)} ≈ 10−4, maxi∈L{J4
i (a∗)} ≈ 0.89, and the average

1
κ

∑κ
i=1 J

4
i (a∗) = J4(a∗)/m ≈ 0.08, meaning that, in average over all E ∈ ∪κi=1E int

i , ‖pE − qE‖2 is
smaller than 10% of |E|2. As a reference, the solution ā illustrated in Figure 5a, obtained by minimizing
10J0(a) + J1(a), has mini∈L{J4

i (ā)} ≈ 10−3, maxi∈L{J4
i (ā)} ≈ 184323.03, and the average J4(ā)/m ≈

504.63. These relatively “large” values must in part correspond to edges E with “small” |E|. This shows
that the inclusion of the merit function J4 has the desirable side effect of avoiding “small” edges. In
Figure 9, the blue segments correspond to segments of the form [pE , qE ]. In most cases, it is valid that
[pE , qE ] ⊆ [vE , wE ], where vE and wE are the vertices of the edge E. The cases where [pE , qE ] 6⊆ [vE , wE ]
correspond to cases where a Voronoi edge and its associated Delaunay edge do not even intersect.

5.5 Seeking cells of varied sizes

Many possible merit functions may be defined in order to achieve cells with different sizes. For instance
in the framework of centroidal Voronoi tessellations, nonconstant density functions are used to obtain
nonuniform cell sizes [19]. In this work, we opted for a small variation of the function J1

i defined in
Section 5.1. One could generalize J1

i by introducing a density in the integral on the cell Vi(a), but this
would require to use a quadrature to compute the integral. In order to preserve the exactness of the
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(a) (b)

Figure 10: Voronoi diagram with κ = 1000 for the region given by a regular polygon constructed by
seeking cells of varied sizes. In (a), ψ(z) := 2.5−2‖z−c‖2/r2, where c and r are the center and the radius
of the circle circumscribing the polygon, respectively. In (b), ψ(z) = 0.25 if (z̄2−(z̄1/4)2)2 +(z̄1/4−1)2 ≤
1, where z̄ = (2, 2)T + 2

5z, and ψ(z) = 1.075, otherwise; i.e., the region to be covered by smaller cells is
a scaled and translated level set of the famous Rosenbrock function.

gradient, we avoid using a quadrature rule and we simply replace the constant 1 in J1
i by a function

of the cell site ai. In this way, the desired cell size is governed by a function ψ : A → R that dictates
the desired value for the ratio of the cell’s volume divided by the “ideal size” |A|/κ. The merit function
follows:

J5(a) :=
1

κ

κ∑
i=1

[
J5
i (a)

]2
with J5

i (a) :=

(∫
Vi(a)

dx

)/( 1

κ

∫
A

dx

)
− ψ(ai).

A difficulty of the merit function J5 thus defined is that the sum of the desired areas does not
necessarily coincide with the total area of the region A. As a consequence, there is no global minimizer
in which the merit function cancels out. Therefore, the stopping criterion of the optimization method
must again depend on the merit function gradient norm and there is no simple way to identify whether
a global minimizer has been found. As seen in the previous example, in which the stopping criterion
depended on the gradient norm, the method stopped due to “lack of progress”. That is, the method
continued as long as a decrease in the objective function was observed. If, in a successive number of
iterations, progress is no longer observed, the method stops. In fact, this is not an issue in practice and
this stopping criterion is as valid as any other, since the tolerance εopt used to stop by the gradient rule
is in general arbitrary.

Figure 10 shows two examples of minimizing f(a) := J5(a). In both cases the method stopped due
to lack of progress and the solution found corresponds to the best among ten attempts in terms of lowest
objective function value. In the case depicted in Figure 10a, the method used 58 iterations, 439 function
evaluations, and 2.29 seconds of CPU time to find a solution a∗ with f(a∗) ≈ 10−2 and ∇f(a∗) ≈ 10−4.
That merit function value corresponds to an average deviation relative to the desired area of 17%, with
a maximum deviation of 44%. In the case depicted in Figure 10b, the method used 116 iterations,
575 function evaluations, and 3.05 seconds of CPU time to find a solution a∗ with f(a∗) ≈ 10−2 and
∇f(a∗) ≈ 10−4. That merit function value corresponds to an average deviation relative to the desired
area of 8%, with a maximum deviation of 33%. Recall that a solution that satisfies all desired areas does
not exist with very high probability. On the other hand, solutions look exactly as expected.

6 Discussion

In Section 5, we showed that Voronoi diagrams with certain pre-specified desired characteristics, formally
described by differentiable merit functions, can be obtained by solving an optimization problem. Using
the chain rule and the first order derivatives obtained for the minimization diagrams in previous sections,
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the gradients of the merit functions were obtained. With the merit functions and their gradients in hand,
an off-the-shelf first-order optimization method with a well-established convergence theory was employed.

On the one hand, the use of Voronoi diagrams was an illustrative example, and other types of diagrams
with desired characteristics could also be constructed following the same procedure. On the other hand,
even in the case of Voronoi diagrams, many of the decisions made could have been different. For example:

• Depending on the merit functions considered, a better-than-random starting point could be con-
sidered, such as, for example, the sites of a Central Voronoi Tessellation (CVT).

• Instead of minimizing the mean of the desired measure for each cell, a constraint on the merit
measure of each cell could have been imposed. In Section 5 we described merit functions J`i
(` = 0, . . . , 5) that apply to the cells Vi (i = 1, . . . , κ) of a Voronoi diagram. The described merit
functions can be combined in a flexible way in the determination of an optimization problem whose
solution is a Voronoi diagram satisfying desired pre-specified properties. Considered merit functions
are written in such a way that the closer they are to zero, the better; but some are always non-
negative while others are not. If a non-negative merit function J`i is used to impose a constraint
to the desired Voronoi diagram, then constraints of the form

J`i (a) ≤ ε`, i = 1, . . . , κ

should be considered in the optimization problem, where ε` > 0 is an ad-hoc given constant; while
constraints of the form

−ε` ≤ J`i (a) ≤ ε`, i = 1, . . . , κ

should be considered if the merit function J`i (a) can assume negative values as well. When the
closest-to-zero possible value of a merit function is sought, a term of the form

J`(a) :=
1

κ

κ∑
i=1

(J`i (a))ζ

should be included in the objective function, with ζ = 2 or ζ = 1 depending on whether the merit
function assumes non-negative values only or not, respectively. Summing up, given merit functions
J`i with ` ∈ JF1 ∪JF2 ∪JC1 ∪JC2 , the nonlinear programming problem to be solved could be given
by

Minimize
∑
`∈JF1

ρ`J
`(a) +

∑
`∈JF2

ρ`(J
`(a))2 (46)

subject to

J`i (a) ≤ ε` for ` ∈ JC1 and − ε` ≤ J`i (a) ≤ ε` for ` ∈ JC2 , i = 1, . . . , κ, (47)

where 0 < ρ` with ` ∈ JF1
∪ JF2

are given weights and 0 < ε` with ` ∈ JC1
∪ JC2

are given
tolerances. For practical purposes, it is important to note that, for the merit functions considered
in Section 5, the Jacobian of the constraints in (47) is a sparse matrix. It is also important to
remark that nonlinear programming problems of the form (46,47) can be solved with, for example,
Augmented Lagrangian methods [1, 6, 7].

• The experiments in Section 5 and the remark in the item above correspond to the situation in
which the user knows in which way he/she wants to combine the various possible objectives. When
this is not the case, the problem is a multi-objective optimization problem, which may or may
not have constraints. If the different objectives are in fact conflicting, then there is no solution
that minimizes all of them at the same time and the Pareto set of solutions or at least a Pareto
solution should be computed. For that purpose, classical scalarization techniques, such as linear
scalarization and ε-constraint minimization can be used; see, for example, [32]. In all situations,
the merit functions presented in Section 5, their gradients, and the aforementioned optimization
methods (Spectral Projected Gradients and Augmented Lagrangians) can still be used.

• Once a problem is formulated and solved, new smaller optimization problems can be solved to
re-optimize or refine details of specific parts of the solution. Sites whose position must remain
fixed can be defined as constants or as variables with additional constraints.
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What this discussion shows is that the proposed methodology provides a flexible way to construct
Voronoi diagrams with desired characteristics, which could be extended to other types of minimization
diagrams. The point being made is that the approach is flexible and that optimization problems can be
solved with off-the-shelf methods with well-established convergence theory. It is important to observe
that many known and already in use ways of constructing Voronoi diagrams with desired characteristics
fit into the proposed framework.

7 Conclusions

In this paper we have developed a perturbation theory and performed a sensitivity analysis for sets
defined as intersections of smooth sets and for minimization diagrams. This contributes to consolidate
the theory developed in [30] for dynamic minimization diagrams. This also contributes to advance the
theory of nonsmooth shape optimization and calculus [4, 5, 29, 31]. This sensitivity analysis allowed us to
obtain general formulas for computing derivatives of functions depending on the cells, edges and vertices
of minimization diagrams. Our approach has the advantage of treating interior and boundary edges
and vertices in a unified way. Using the chain rule, we have applied these general formulas to compute
the first derivatives of different merit functions related to the cells of a Voronoi diagram. With this
tool, using established off-the-shelf optimization algorithms, we constructed Voronoi diagrams satisfying
pre-established desired properties. Numerical experiments showed that the proposed techniques work
well in practice.

The generality of the perturbation theory developed in this work opens various perspectives for
future research. The optimization of generalized Voronoi diagrams of interest for applications, such as
multiplicatively weighted Voronoi diagrams and power diagrams, seems to be a natural consideration.
Problems involving partial differential equations will also be considered, and present interesting challenges
from the shape optimization point of view, see [30]. Due to its significance for computing numerical
solutions of partial differential equations, grid generation and optimization should be one of the main
focus for future research. A natural step would be to extend and apply this theory for grid optimization
and manifolds and in particular on spheres [23]. Following the line of [4, 5], second derivatives could
also be computed using similar techniques. However, in the context of grid generation and optimization,
the problems to be solved are large and, therefore, it is not clear whether optimization techniques using
second order derivatives can be used. Perhaps they can be used in the context of re-optimizing small
regions of an already computed mesh, but that practical utility would need to be established. This will
be the subject of future work.

Acknowledgments. The authors would like to thank Pedro da Silva Peixoto for the inspiring discussions
and for sharing with us his knowledge and useful references about grid generation, optimization, quality
measures and the tweaking optimization algorithm.

Appendix A: Gradients of the considered merit functions

We start by defining some useful notations for writing the gradients calculated in this section. Recall
that A is open, polygonal and that T∂A denotes the set of vertices of ∂A. The Voronoi diagram associated
with A is denoted V(a). The set Tint denotes the set of vertices of V(a) belonging to the open set A.
The set Tbd denotes the set of vertices of V(a) belonging to ∂A \ T∂A. If v ∈ Tint ∩ Vi(a), then v belongs
to exactly three cells due to Lemma 9, and we denote `1(i, v) and `2(i, v) the indices of these cells with
respect to a counterclockwise orientation around v. In the case v ∈ Tbd ∩ Vi(a), v belongs to exactly
two cells due to Lemma 9, and we denote by `(i, v) the index of the other cell. In the case v ∈ T∂A, v
belongs to only one cell and is fixed, thus the contribution of such points to the gradient is zero. Recall
that Ei is the set of edges of the cell Vi(a) and E int

i denotes the set of interior edges of the cell Vi(a), i.e.,
edges that are included in A. For an edge E ∈ Ei, vE and wE denote the vertices of E with respect to a
counterclockwise orientation. Also recall that Ẽi := {E ∈ Ei such that vE /∈ T∂A}.
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Then we introduce the following function which frequently appears in the gradient formulas:

F (i, v, ζ) :=



M(`1(i, v), `2(i, v), i)>ζ · δxi +M(`2(i, v), i, `1(i, v))>ζ · δx`1(i,v)

+M(i, `1(i, v), `2(i, v))>ζ · δx`2(i,v), if v ∈ Tint,

M (`(i, v), i)>ζ · δxi + M (i, `(i, v))>ζ · δx`(i,v), if v ∈ Tbd,

0, if v ∈ T∂A.

Note that F (i, v, ζ) = F(i, v) · ζ, where F(i, v) is given by (42). Note that the case v ∈ T∂A does not
appear in (42) since A was assumed to be smooth in Section 4.

Gradient of J1

We compute

∇J1(a) =
2

κ

κ∑
i=1

J1
i (a)∇J1

i (a)

with

∇J1
i (a) · δa =

κ

|A|
∑

E∈Einti

|E|
‖ai − ak(i,E)‖

[δai · (pE − ai)− δak(i,E) · (pE − ak(i,E))],

where pE := (vE + wE)/2 and k(i, E) is the index such that E = Vi(a) ∩ Vk(i,E)(a).

Gradient of J2

We compute

∇J2(a) =

κ∑
i=1

∇J2
i (a).

Recalling that Ēi = Pi/ni and Pi =
∑
Ẽ∈Ei |Ẽ|, we obtain

∇J2
i (a) =

2

ni

∑
E∈Ei

min

{
0,
|E|
Ēi
− c
}∇|E|

Ēi
− |E|
niĒ2

i

∑
Ẽ∈Ei

∇|Ẽ|


=

2

Pi

(∑
E∈Ei

min

{
0,
|E|
Ēi
− c
}
∇|E|

)
− 2

Pi

∑
Ẽ∈Ei

∇|Ẽ|

(∑
E∈Ei

min

{
0,
|E|
Ēi
− c
}
|E|
Pi

)

=
2

Pi

∑
E∈Ei

min

{
0,
|E|
Ēi
− c
}
−
∑
Ẽ∈Ei

|Ẽ|
Pi

min

{
0,
|Ẽ|
Ēi
− c

}∇|E|.
Here ∇|E| · δa is given by (41), thus we obtain, using (42) and the property F (i, v, ζ) = F(i, v) · ζ,

∇J2
i (a) · δa =

∑
E∈Ei

µ(E)(F (i, wE , τE)− F (i, vE , τE))

with

µ(E) :=
2

Pi

min

{
0,
|E|
Ēi
− c
}
−
∑
Ẽ∈Ei

|Ẽ|
Pi

min

{
0,
|Ẽ|
Ēi
− c

} .
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Gradient of J3

We compute

∇J3(a) =

κ∑
i=1

∇J3
i (a).

The calculation of ∇J3
i is similar to the calculation of ∇J2

i and yields

∇J3
i (a) =

2

θ̄i|Ẽi|

∑
E∈Ẽi

min

{
0,
θE
θ̄i
− c
}
−
∑
Ẽ∈Ẽi

θẼ
θ̄i|Ẽi|

min

{
0,
θẼ
θ̄i
− c
}∇θE .

Now recall that τE = (wE − vE)/|E| is the tangential vector on E pointing counterclockwise, and
θE := arccos(−τE · τÊ) is the interior angle formed by the edge E and the edge before E, denoted Ê,
considering a counterclockwise orientation. Then we compute

∇θE · δa = −
∇[−τE · τÊ ] · δa

(1− (τE · τÊ)2)1/2
=
DτEδa · τÊ +DτÊδa · τE

(1− (τE · τÊ)2)1/2
.

In view of (37), (39), (42) we have DvEδa = F(i, vE) and DwEδa = F(i, wE). Using ∇|E| · δa given by
(41), we get

DτEδa · τÊ =

[
F(i, wE)−F(i, vE)

|E|
− (wE − vE)

|E|2
(F(i, wE) · τE −F(i, vE) · τE)

]
· τÊ

= (F(i, wE)−F(i, vE)) ·
(
τÊ
|E|
−
τE · τÊ
|E|

τE

)
= (F(i, wE)−F(i, vE)) · νE

(νE · τÊ)

|E|
,

and similarly

DτÊδa · τE = (F(i, wÊ)−F(i, vÊ)) · νÊ
(νÊ · τE)

|Ê|
.

By definition we have, using 0 < θE < π for E ∈ Ẽi,(
1− (τE · τÊ)2

)−1/2
=
(
1− (cos θE)2

)−1/2
= (sin θE)−1

and also νE · τÊ = sin θE , νÊ · τE = − sin θE . Gathering these results we get

∇θE · δa = (F(i, wE)−F(i, vE)) · νE
|E|
− (F(i, wÊ)−F(i, vÊ)) ·

νÊ
|Ê|

.

This yields

∇J3
i (a) · δa =

∑
E∈Ẽi

η(E)

|E|
(F (i, wE , νE)− F (i, vE , νE))− η(E)

|Ê|
(F (i, wÊ , νÊ)− F (i, vÊ , νÊ))

with

η(E) :=
2

θ̄i|Ẽi|

min

{
0,
θE
θ̄i
− c
}
−
∑
Ẽ∈Ẽi

θẼ
θ̄i|Ẽi|

min

{
0,
θẼ
θ̄i
− c
} .

Gradient of J4

Recall that

J4
i (a) :=

1

|E int
i |

∑
E∈Einti

‖dE‖2

|E|2
, where dE := pE − qE .
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We compute

∇J4
i (a) · δa =

1

|E int
i |

∑
E∈Einti

∇
(
‖dE‖2

|E|2

)
· δa.

=
1

|E int
i |

∑
E∈Einti

(
2dE · ∇dE
|E|2

− 2
‖dE‖2

|E|3
∇|E|

)
· δa.

=
1

|E int
i |

∑
E∈Einti

(
dE · (DvEδa +DwEδa− δai − δak(i,E))

|E|2
− 2
‖dE‖2

|E|3
∇|E| · δa

)
.

In view of (37), (39), (42) we have DvEδa = F(i, vE) and DwEδa = F(i, wE). Using (41) we have
∇|E| · δa = F (i, wE , τE)− F (i, vE , τE). Considering that τE = (wE − vE)/|E|, we get

∇J4
i (a) · δa =

1

|E int
i |

∑
E∈Einti

(
dE · (F(i, vE) + F(i, wE)− δai − δak(i,E)))

|E|2
− 2
‖dE‖2

|E|3
∇|E| · δa

)

=
1

|E int
i |

∑
E∈Einti

F (i, vE , µE) + F (i, wE , ηE)− dE · δai
|E|2

−
dE · δak(i,E)

|E|2
,

where

µE :=
dE
|E|2

+ 2
‖dE‖2

|E|4
(wE − vE) and ηE :=

dE
|E|2

− 2
‖dE‖2

|E|4
(wE − vE).

Gradient of J5

We compute

∇J5(a) =
2

κ

κ∑
i=1

J5
i (a)∇J5

i (a)

with ∇J5
i (a) · δa = ∇J1

i (a)−∇aiψ(ai) · δai, see the calculation of the gradient of J1.

Appendix B: Description of “Letter A” and “Key” regions

The description of each region A consists in the list of the vertices, in counterclockwise order, of the
convex polygons Aj that constitute the partition of the problem. Both regions being described here were
inspired by [34, Fig.2].

The non-convex polygon in the form of the letter “A” shown, with Vol(A) ≈ 232.5318, is composed
by p = 16 convex polygons. The vertices of polygons A1, . . . , A16 are given below:

V(A1) = {(−1, 0), (8.2, 0), (8.2, 0.62), (6.92, 0.76), (1, 0.8), (−0.1, 0.6)},

V(A2) = {(1, 0.8), (6.92, 0.76), (5.86, 1.32), (2, 1.5)},

V(A3) = {(2, 1.5), (5.86, 1.32), (5.24, 2.65), (3.5, 4.36)},

V(A4) = {(5.24, 2.65), (5.58, 4.36), (3.5, 4.36)},

V(A5) = {(3.5, 4.36), (5.58, 4.36), (7.58, 9), (5.5, 9)},

V(A6) = {(5.5, 9), (7.58, 9), (8.4, 10.91), (6.32, 10.91)},

V(A7) = {(6.32, 10.91), (8.4, 10.91), (14.02, 23.95), (11.94, 23.95)},

V(A8) = {(11.94, 23.95), (18.72, 23.95), (15.89, 30.56), (14.79, 30.56)},

V(A9) = {(19.6, 10.91), (24.3, 10.91), (18.72, 23.95), (14.02, 23.95)},
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V(A10) = {(7.58, 9), (20.42, 9), (19.6, 10.91), (8.4, 10.91)},

V(A11) = {(20.42, 9), (25.12, 9), (24.3, 10.91), (19.6, 10.91)},

V(A12) = {(22.06, 5.15), (26.54, 6), (25.12, 9), (20.42, 9)},

V(A13) = {(22.46, 2.26), (28.53, 2.3), (26.54, 6), (22.06, 5.15)},

V(A14) = {(22.05, 1.2), (29.6, 1.22), (28.53, 2.3), (22.46, 2.26)},

V(A15) = {(21.24, 0.82), (30.79, 0.74), (29.6, 1.22), (22.05, 1.2)},

V(A16) = {(19.13, 0), (32.15, 0), (32.15, 0.6), (30.79, 0.74), (21.24, 0.82), (19.13, 0.6)}.
The non-convex polygon in the shape of a key, with Vol(A) ≈ 88.15209, is composed by p = 22 convex

polygons. The vertices of polygons A1, . . . , A22 are given below:

V(A1) = {(0, 0), (0,−3.44), (2.49,−3.44), (3,−3), (3, 0)},

V(A2) = {(0,−3.44), (0,−4.5), (1.58,−4.5), (2.49,−3.74), (2.49,−3.44)},

V(A3) = {(0,−4.5), (0,−4.79), (1.58,−4.79), (1.58,−4.5)},

V(A4) = {(0,−4.79), (0,−5.48), (1.87,−5.48), (2,−5.4), (2,−5.14), (1.58,−4.79)},

V(A5) = {(0,−5.48), (0,−5.86), (1.87,−5.86), (1.87,−5.48)},

V(A6) = {(0,−5.86), (0,−6.9), (2.26,−6.9), (2.42,−6.76), (2.42,−6.51), (1.87,−5.86)},

V(A7) = {(0,−6.9), (0,−7.22), (2.26,−7.22), (2.26,−6.9)},

V(A8) = {(0,−7.22), (0,−7.98), (2.1,−7.98), (2.43,−7.65), (2.43,−7.4), (2.26,−7.22)},

V(A9) = {(0,−7.98), (0,−8.2), (2.1,−8.2), (2.1,−7.98)},

V(A10) = {(0,−8.2), (0,−8.87), (2.26,−8.87), (2.43,−8.74), (2.43,−8.49), (2.1,−8.2)},

V(A11) = {(0,−8.87), (0,−9.17), (2.26,−9.17), (2.26,−8.87)},

V(A12) = {(0,−9.17), (0,−10.15), (1.87,−10.15), (2.43,−9.62), (2.43,−9.28), (2.26,−9.17),

V(A13) = {(0,−10.15), (0,−10.5), (0.37,−10.9), (0.94,−10.9), (1.87,−10.35), (1.87,−10.15)},

V(A14) = {(0.94,−10.9), (1.29,−11.35), (1.86,−11.12), (2.26,−10.7), (1.87,−10.35)},

V(A15) = {(0.85, 6.06), (0.58, 6.68), (−0.51, 6.53), (−3, 6), (−3.6, 3.5), (−3, 0.7), (0, 0)},

V(A16) = {(1.5, 5.86), (0.85, 6.06), (0, 0), (3, 0)},

V(A17) = {(1.5, 5.86), (3, 0), (2.15, 6.06)},

V(A18) = {(2.15, 6.06), (3, 0), (6, 0.7), (6.6, 3.35), (6, 6), (3.51, 6.53), (2.42, 6.68)},

V(A19) = {(0.58, 6.68), (0.85, 7.3), (0.69, 8.16), (0, 7.62), (−0.51, 6.53)},

V(A20) = {(0.85, 7.3), (1.5, 7.5), (1.5, 8.5), (0.69, 8.16)},

V(A21) = {(1.5, 7.5), (2.15, 7.3), (2.31, 8.16), (1.5, 8.5)},

V(A22) = {(2.42, 6.68), (3.51, 6.53), (3, 7.62), (2.31, 8.16), (2.15, 7.3)}.
The regular polygon has nvert = 20 vertices of the form (cos(θi), sin(θi)) with θi = 2π(i − 1)/nvert

for i = 1, . . . , nvert. The vertices of the convex polygon with six edges are given by:

V(A1) = {(0.65, 2.31), (−1.98, 2.71), (−3.35, 1.64), (−2.59,−0.34), (−0.22,−1.07), (0.54, 0.72)}.
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