
ar
X

iv
:2

20
2.

06
67

6v
2 

 [
m

at
h.

N
T

] 
 2

1 
A

pr
 2

02
3

On the Computation of General

Vector-valued Modular Forms

Tobias Magnusson Martin Raum*

April 24, 2023

Abstract: We present and discuss an algorithm and its implementation that is capable of directly

determining Fourier expansions of any vector-valued modular form of weight at least 2 associated

with representations whose kernel is a congruence subgroup. It complements two available algo-

rithms that are limited to inductions of Dirichlet characters and to Weil representations, thus cover-

ing further applications like Moonshine or Jacobi forms for congruence subgroups. We examine the

calculation of invariants in specific representations via techniques from permutation groups, which

greatly aids runtime performance. We explain how a generalization of cusp expansions of classical

modular forms enters our implementation. After a heuristic consideration of time complexity, we

relate the formulation of our algorithm to the two available ones, to highlight the compromises be-

tween level of generality and performance that each them makes.

holomorphic modular forms � Fourier expansions � cusp expansions
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T
HE vector-valued case appears late in the chronicles of computing modular forms. The main chal-

lenge for several decades was to elucidate the modularity conjecture and special values of L-func-

tions. While they persist, in the past two decades the demand for Fourier expansions of vector-valued

modular forms has spiked. Their computational theory, however, has only recently started to unfold.

Via an induction construction (see [48]), vector-valued modular forms capture cusp expansions of

scalar-valued ones, which lends them significance to classical questions. For instance, the compu-

tation of modular forms for congruence subgroups Γns(N ) of non-split Cartan type was until recently

centered around the cusp expansion of modular forms for Γ1(N 2) [2, 34]. Given the role of such groups

in Mazur’s Program [33], it was and is an important challenge to determine all cusp expansions of

such modular forms, or alternatively to determine the corresponding vector-valued modular forms.

Vector-valued modular forms that arise in this setting are associated with, for instance, the induction

of Dirichlet characters from Γ0(N ) to SL2(Z).

Work of Borcherds on theta lifts [5] further accentuates the need for vector-valued modular forms. In

light of applications that rely on the concrete knowledge of Fourier expansions [17, 40], more efficient

or more general algorithms promise progress in domains like vertex operator algebras or algebraic

geometry. Vector-valued modular forms that arise in this setting are associated with Weil representa-

tions.

*The author was partially supported by Vetenskapsrådet Grant 2015-04139 and 2019-03551.
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There are presently two algorithms available to compute vector-valued modular forms, one that

covers inductions of Dirichlet characters and one that covers Weil representations. But some applica-

tions do not fall under the scope of either of them. These applications require vector-valued modular

forms associated with more general kinds of representations. Most prominently, Moonshine features

modular or Jacobi forms for signed permutation representations [12, 22]. Also cusp expansions of Ja-

cobi forms yield modular forms for representations that are more generic. We subsume them all under

the notion of twisted permutation representations in the sense of our Definition 3.4.

The need for a more general algorithm to determine vector-valued modular forms has become im-

minent. Our main theorem asserts the existence of an algorithm that solves this problem if the kernel

of the representation is a congruence subgroup. A more precise formulation is available in Theo-

rem 2.2.

Theorem A. Fix an integral weight k ≥ 2 and a finite-dimensional, complex representation ρ of a sub-

group Γ of SL2(Z) whose kernel is a congruence subgroup. Then Algorithm 1 on page 10 computes the

Fourier expansion of a basis of Mk (ρ) with algebraic coefficients up to any given precision.

The theoretical foundation of Algorithm 1 and Theorem A is a result on products of Eisenstein series

that span spaces of modular forms by Xià and one of the authors [39]. The pathway to Algorithm 1 is

prepared in Section 2 and in particular in Theorem 2.1.

In order to gauge the relevance of Theorem A, we briefly highlight some of the milestones in the

computation of vector-valued modular forms. Given the wide availability of Fourier expansions for

scalar-valued modular forms, numerical integration around cusps on the real line was a common

strategy for an extended period of time. It appears, for example, in an implementation of the O(log(p))-

algorithm to compute the p-th Fourier coefficient of the Ramanujan ∆-function [19]. Like all numeri-

cal techniques, it comes with its own challenges connected to the fluctuation of modular forms on low

enough horizontal lines. As for algebraic expressions, only cusp expansions of Eisenstein series were

generally available [16, 35]. Incidentally, Eisenstein series were also the first case for which an alge-

braic and vector-valued formulation was provided by Bruinier and Kuss [9] around 2001. The theory

of Jacobi forms and theta blocks [25] entered the picture around 2010, mostly in work by Poor, Yuen

et al. [24, 37], and gave access to vector-valued modular forms associated with some Weil represen-

tations. The use of products of vector-valued Eisenstein series to our knowledge was first suggested

in [48] in 2014, a variation of which was promptly adapted by Cohen [13] to an implementation of

classical modular forms [3]. In 2018 Williams provided, as part of his PhD thesis, the foundation to an

algorithm targeting Weil representations [50] and showcased several applications [49, 51]. For histori-

cal accuracy, we remark that these vector-valued approaches are predated by the study of products of

two scalar-valued Eisenstein series that goes back at least as far as to work of Rankin [38], and appears

in several subsequent articles [30, 31]. We also record that when relaxing the restriction to products

with at most two factors and focusing instead on Eisenstein series of small weight, early results are

contained in the work of Borisov–Gunells [6–8] and the strongest results known to the authors are due

to Khuri-Makdisi [29].

We have provided an implementation of Algorithm 1 in the programming language Julia based on

the computer algebra packages Nemo/Hecke [21]. We plan to make it also available via the Julia soft-

ware repository. In the process of creating this implementation, we needed to develop several math-

ematical tools specific to vector-valued modular forms, which we share in Sections 3 and 4. Our al-

gorithm requires the computation of homomorphisms between representations. In Section 4.1, we
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discuss how this computation can be facilitated by purely group theoretic calculations in the case of

twisted permutation representations. In the case of SL2(Z)-representations this reduces the heuristic

time complexity from O((N 4 dim(ρ))κ) to O(N 3+ǫdim(ρ)2), where κ ≈ 2.8, practically, is explained in

Section 4.4. Further, we employ a deflation–inflation principle that parallels the theory of cusp expan-

sions for classical modular forms, which we discuss in Section 4.2 based on Corollary 3.6. Its impact is

considerable, as it reduces heuristically the number of relevant Fourier expansions from from O(N 1+ǫ)

to O(N ǫ).

The main take away from our implementation of Algorithm 1 and our heuristic analysis of its time

complexity in Section 4.4 is that is the computation of homomorphisms dramatically dominates the

runtime. We therefore suggest to develop algorithms that skip this step altogether or at least simplify

it by introducing additional structure. In this light, it becomes particularly interesting to compare

with the two already existing algorithms by Cohen and Williams. In Section 5, we discuss their as-

sumptions on the representation that vector-valued modular forms are associated with and how they

leverage them to gain performance. We also include suggestions on how to relax their assumptions

while maintaining the performance advantage. In future work, we hope to come back to this topic.

1 Preliminaries

We refer to Miyake’s book [35] and to the book of Diamond–Shurman [16] for the basics of classical

modular forms. In this section, we revisit vector-valued modular forms and recast some facts about

classical ones in a representation theoretic light. We also include a summary of statements from rep-

resentation theory that we will use. A primer on representation theory of finite groups can be found in

Serre’s book on representations of finite groups [42], or alternatively Bump’s book on Lie groups [11].

We assume standard notation for modular groups, modular forms, and spaces of modular forms.

1.1 Representation theory In this paper we work with finite dimensional, complex left-representations.

Let G be a discrete group. We throughout identify complex representations of G with the correspond-

ing left-module for the group algebra C[G]. Given a representation ρ, we write V (ρ) for its representa-

tion space and ρ∨ for its dual. If ρ and σ are representations of the same group G that is clear by the

context, we allow ourselves to suppress it from the Hom-space notation:

Hom(ρ,σ) = HomG (ρ,σ) ⊆ Hom(V (ρ),V (σ)).

Given a finite dimensional representation ρ for a group G, its 0-th cohomology is the space of in-

variants. We have

H0(ρ) =
{

v ∈V (ρ) : ∀g ∈G.ρ(g )v = v
}

. (1.1)

Given a finite index subgroup H ⊆G and an H-representations ρ, the induction of ρ to G is defined

as

IndG
H ρ =C[G]⊗C[H ] ρ.

The restriction of a G-representation ρ to H will be denoted by ResH ρ = ResG
H
ρ. As functors, induction

and restriction are adjoint via the Frobenius reciprocity (see p. 278 of [11]). More precisely, given

an H-representation ρ and a G-representation σ, we have

HomG

(

IndG
H ρ, σ

)

∼= Hom H

(

ρ, ResG
H σ

)

. (1.2)
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Mackey’s Double Coset Theorem provides a decomposition of restriction–induction in terms of

smaller induced representations (see p. 280 of [11]). Given two subgroups H ,K ⊆ G and an H-rep-

resentation ρ, it asserts the isomorphism

ResG
K IndG

H ρ ∼=
⊕

g∈H\G/K

IndK
K∩H g ρ

g , (1.3)

where H g = g−1H g is the conjugate of H and ρg is the pullback of ρ along the associated conjugation

map from H g to H , whose action is given by ρg (h) = ρ(g hg−1).

We will need several specific representations of SL2(Z) and its subgroups. For positive integers N ,

we have the congruence subgroups

Γ0(N ) =
{(

a b
c d

)

∈ SL2(Z) : c ≡ 0 (mod N )
}

,

Γ1(N ) =
{(

a b
c d

)

∈ SL2(Z) : c ≡ 0 (mod N ), a,d ≡ 1 (mod N )
}

,

Γ(N ) =
{(

a b
c d

)

∈ SL2(Z) : b,c ≡ 0 (mod N ), a,d ≡ 1 (mod N )
}

,

and we have the parabolic subgroup

Γ∞ =
{(

a b
0 d

)

∈ SL2(Z)
}

.

The one-dimensional trivial representation of Γ ⊆ SL2(Z) will be written as 1, suppressing the de-

pendence on Γ from our notation. A Dirichlet character χ modulo N yields a one-dimensional repre-

sentation of Γ0(N ) via

(

a b
c d

)

7−−→χ(d) ∈GL1(C). (1.4)

We allow ourselves to equally denote this representation by χ. Given a positive integer N and a Dirich-

let character χ modulo N , we define

ρN = Ind
SL2(Z)
Γ1(N)

1 and ρχ = Ind
SL2(Z)
Γ0(N)

χ. (1.5)

The kernel of both ρN and ρχ is the normal core Γ(N ) of Γ0(N ) and Γ1(N ) in SL2(Z). We also record

that we have ρ∨
N
∼= ρN and ρ∨

χ
∼= ρχ.

1.2 Vector-valued modular forms We write S =
(

0 −1
1 0

)

and T =
(

1 1
0 1

)

. We let Γ be a finite index sub-

group of SL2(Z). An arithmetic type ρ for Γ is a finite-dimensional, complex representation of Γ. We

say that ρ is a congruence type if its kernel is a congruence subgroup. We refer to the smallest possible

possible level of its kernel as the level of ρ. Note that congruence types factor through the quotient

group Γ/Γ(N ) and thus are effectively representations of finite groups. We write V (ρ) for the represen-

tation space of ρ.

We write H = {τ ∈ C : Im(τ) > 0} for the Poincaré upper half plane. Let k be an integer and ρ an

arithmetic type for Γ. We say that a function f :H−→V (ρ) has moderate growth if there exists an a ∈R

and a norm ‖ · ‖ on V (ρ) such that for all γ ∈ SL2(Z) we have uniformly in Re(τ) that

∥

∥ f (γτ)
∥

∥≪ O
(

Im(τ)a
)

as Im(τ) −→∞.

We define a vector-valued slash action for functions f :H−→V (ρ) by

(

f
∣

∣

k ,ργ
)

(τ) = (cτ+d)−k f
( aτ+b

cτ+d

)

, where γ=
(

a b
c d

)

∈Γ.
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Now a vector-valued modular form of weight k and type ρ is a holomorphic function f : H−→V (ρ) of

moderate growth that satisfies

∀γ ∈Γ : f
∣

∣

k ,ρ γ= f .

The vector-space of such forms of weight k and type ρ will be written as Mk (ρ). Note that for ev-

ery k ∈Z, there is some ρ such that Mk (ρ) 6= {0}, for instance one of the symmetric power representa-

tions sym|k |+3 or sym|k |+4 of SL2(Z).

The Fourier coefficients of a modular form f will be denoted by c( f ; n) ∈ V (ρ), n ∈Q. We record a

Sturm bound for vector-valued modular forms.

Proposition 1.1 (see [10, 46]). Let k and N be positive integers, and ρ a congruence type for SL2(Z).

Further, let f ∈ Mk (ρ) be a modular form of weight k and type ρ. Then we have f = 0 if

∀n ∈Q, 0 ≤ n ≤ k/12 : c( f ; n) = 0.

1.3 Eisenstein series In this section, we recall the definition of Eisenstein series for Γ(N ) and show

how they are connected to the arithmetic type ρN . We write Ek (Γ) for the space of Eisenstein series for

a finite index subgroup Γ⊆ SL2(Z).

Given integers k > 3, N ≥ 1, and c,d we have a lattice Eisenstein series

Gk ,N ,c ,d (τ) =
∑

(c ′,d ′)∈Z2\{(0,0)}
(c ′,d ′)≡(c ,d) (mod N)

(c ′τ+d ′)−k
∈ Ek (Γ(N )). (1.6)

Since (1.6) only depends on c and d modulo N , we identify them with their congruence class. In

the cases of the weights 1 and 2, one obtains a similar Eisenstein series by analytic continuation (see

Chapter 7 of [35]). While the weight 1 Eisenstein series are holomorphic, the weight 2 Eisenstein in

general are almost holomorphic. We reserve the notation G2,N ,c ,d for the unique holomorphic linear

combination Gahol
2,N ,c ,d

+νN G2,1,0,0, νN ∈ C, where Gahol
k ,N ,c ,d

is the almost holomorphic Eisenstein series.

The Fourier expansion of (1.6) and its extension to weight 1 and 2 is known [16, 35].

An alternative definition of Eisenstein series uses an average over cosets. For k > 2 and N ≥ 1, we

define

Ek ,N (τ) =
∑

γ∈Γ∞\Γ1(N)

1
∣

∣

k γ. (1.7)

As in the case of Gk ,N ,c ,d , one extends this via analytic continuation to weight 1 and 2. We again reserve

the notation E2,N for the holomorphic linear combination E ahol
2,N +νN E2,1, νN ∈ C, where E ahol

2,N is the

almost holomorphic Eisenstein series.

Given a positive integer k, we let Ek (N ) = Ek (Γ(N )) be the space spanned by Ek ,N |kγ as γ runs

through SL2(Z), and set E0(N ) = C. Now if k > 0, then Gk ,N ,c ,d and Ek ,N |kγ are nonzero scalar mul-

tiplies of one another if γ=
(

a b
c d

)

∈ SL2(Z). In particular, we have

Ek (N )= spanC
{

Gk ,N ,c ,d : 0≤ c,d < N ,gcd(c,d , N ) = 1
}

. (1.8)

Per its definition, Ek (N ) naturally carries the structure of an SL2(Z)-representation, on which γ acts

from the left on f as f |kγ
−1. The next proposition states the resulting connection between Ek (N )

and the arithmetic type ρN defined in (1.5). To state it explicitly, we fix the natural basis eγ = γ⊗1,

γ ∈ SL2(Z)/Γ1(N ), of V (ρN ), where we allow ourselves to identify cosets with their representatives. It

gives rise to a dual basis e∨γ of V (ρ∨
N

).
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Proposition 1.2. Let k and N be positive integers. Then the following defines a surjective homomor-

phism of representations:

ρ∨
N −→→ Ek (N ), e

∨
γ 7−−→Gk ,N ,c ,d with γ−1

=
(

a b
c d

)

. (1.9)

Proof. We first check that (1.9) is well-defined. The left column of a left-coset representative γ ∈

SL2(Z)/Γ1(N ) is unique modulo N . We conclude that the bottom row of γ−1 is unique modulo N ,

and hence Gk ,N ,c ,d in (1.9) only depends on the coset of γ.

As a linear map the given homomorphism is surjective because of (1.8). It remains to verify that it is

a homomorphism of representations. We let γ,δ ∈ SL2(Z). Note that we have by definition of the dual

ρ∨
N (δ)e∨γ = e

∨
γ ◦ρN (δ−1) = e

∨
δγ.

As for the Eisenstein series, we have (see p. 111 of [16])

Gk ,N ,c ,d

∣

∣

kδ
−1

=Gk ,N ,c ′,d ′ with
(

a′ b′

c ′ d ′

)

=
(

a b
c d

)

δ−1.

We combine these equalities to find that

ρ∨
N (δ)e∨γ = e

∨
δγ 7−−→Gk ,N ,c ′,d ′ =Gk ,N ,c ,d

∣

∣

kδ
−1

= δGk ,N ,c ,d ,

where the right hand side features the action of δ on the left-representation Ek (N ), and

γ−1
=

(

a b
c d

)

, (δγ)−1
= γ−1δ−1

=

(

a′ b′

c ′ d ′

)

.

This confirms that the map (1.9) intertwines the action of δ and thus finishes the proof.

1.4 Products of Eisenstein series We will need the next statement of [39]. It features tensor products

of an arithmetic type ρ with spaces of Eisenstein series Ek (N ). Recall from Section 1.3 that we view

them as representations for SL2(Z). Also recall from (1.1) that the 0-th cohomology describes invariant

vectors.

The next lemma allows us to view specific invariants as modular forms.

Lemma 1.3. Consider an arithmetic type ρ and a subspace W ⊆ Mk (Γ) for some weight k and finite

index subgroup Γ ⊆ SL2(Z). We assume that W is stable under the action of SL2(Z) by the weight-k

slash action and view it as a left representation via (γ, f ) 7−→ f |kγ
−1. Then we have the map

H0
(

W ⊗ρ
)

−−→ Mk (ρ),
∑

i

fi ⊗ vi 7−−→
(

τ 7−→
∑

i

fi (τ)vi

)

. (1.10)

Proof. We let ψ denote the map in (1.10). Consider an element
∑

i fi ⊗ vi , fi ∈ W , vi ∈ V (ρ), of the

left hand side of (1.10) and its image f =
∑

i fi vi under ψ. Then the weight-k and type-ρ slash action

of γ∈ SL2(Z) on f yields

(

f
∣

∣

k ,ργ
)

(τ) =
∑

i

(

fi

∣

∣

k γ
)

(τ)ρ
(

γ−1
)

vi =
∑

i

ψ
(

fi

∣

∣

k γ ⊗ ρ
(

γ−1
)

vi

)

(τ)

=ψ
(

γ−1
∑

i

fi ⊗ vi

)

(τ) =ψ
(
∑

i

fi ⊗ vi

)

(τ) = f (τ).

With Lemma 1.3 in mind, the next theorem, due to Xià and the second author [39], allows us to

identify the invariants on the right hand side of (1.11) with modular forms.

Theorem 1.4. Let k, l be integers with k ≥ 2 and 1 ≤ l ≤ k −1. Fix a congruence type ρ of level N . Then

there is a positive integer N0 with N |N0 such that under the map in Lemma 1.3 we have

Mk (ρ) ∼= H0
(

Ek (N )⊗ρ
)

+H0
(

(El (N0) ·Ek−l (N0))⊗ρ
)

. (1.11)
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2 Main algorithm

In this section we combine Theorem 1.4 with the surjections onto Ek (N ) in (1.9), the Fourier expansion

of modular forms, and their Sturm bounds to outline our main algorithm.

The main point in employing (1.9) is to avoid the computation with functions in favor of symbolic

calculations. In particular, we can determine invariant spaces of products of Eisenstein series from

invariant spaces of tensor products of induced types. Theorem 1.4 then allows us to determine Mk (ρ)

from this. We make this connection and intermediate step clear in Theorem 2.1.

We represent modular forms and hence Eisenstein series in terms of their Fourier expansions. This

allows us to profit from available, highly optimized implementations of products of power series. It

does however require us to set a precision. We use the Sturm bounds for Mk (ρ) for this. The details

are described in Theorem 2.2 and Algorithm 1.

The statement of Theorem 2.1 requires some preparation. We have a linear map ΦE that arises

from (1.9) by applying it componentwise. More precisely, it is defined by

ΦE : H0
(

ρ∨
N ⊗ρ

)

⊕H0
(

ρ∨
N0

⊗ρ∨
N0

⊗ρ
)

−−→H0
(

Ek (N )⊗ρ
)

⊕H0
(

El (N0)⊗Ek−l (N0)⊗ρ
)

,
(

e
∨
γ1

⊗ v, e∨γ2
⊗ e

∨
γ3

⊗w
)

7−−→
(

Gk ,N ,c1 ,d1
⊗ v, Gl ,N0 ,c2,d2

⊗Gk−l ,N0 ,c3,d3
⊗w

)

,
(2.1)

where γ−1
i

=

(

ai bi
ci di

)

for 1≤ i ≤ 3.

Next, the product of modular forms yields a map

El (N0)⊗Ek−l (N0) −−→ El (N0) ·Ek−l (N0) ⊆ Mk (Γ(N0)), f1 ⊗ f2 7−−→ f1 · f2. (2.2)

Since it is a homomorphism of SL2(Z)-representations, we obtain a corresponding linear map Φ×

defined by

Φ× : H0
(

Ek (N )⊗ρ
)

⊕H0
(

El (N0)⊗Ek−l (N0)⊗ρ
)

−−→ H0
(

Ek (N )⊗ρ
)

⊕H0
(

(El (N0) ·Ek−l (N0))⊗ρ
)

,
(

f1 ⊗ v, f2 ⊗ f3 ⊗w
)

7−−→
(

f1 ⊗ v, f2 · f3 ⊗w
)

.

(2.3)

Lemma 1.3 allows us to map both direct summands of the right hand side of (2.3) to Mk (ρ). In

particular, we obtain a map ΦΣ by adding up their images.

ΦΣ : H0
(

Ek (N )⊗ρ
)

⊕H0
(

(El (N0) ·Ek−l (N0))⊗ρ
)

−−→ Mk (ρ),
(

f1 ⊗ v, f2 · f3 ⊗w
)

7−−→ f1 · v + f2 · f3 ·w .
(2.4)

Theorem 2.1. Let k, l be integers with k ≥ 2 and 1 ≤ l ≤ k −1, and fix a congruence type ρ of level N ,

and a positive integer N0. Then the linear maps (2.1), (2.3), and (2.4) are surjective. In particular, if N0

is chosen as in Theorem 1.4, by composing additionally with (1.10), we have a surjective map

H0
(

ρ∨
N ⊗ρ

)

⊕ H0
(

ρ∨
N0

⊗ρ∨
N0

⊗ρ
) ΦE
−−−→→ H0

(

Ek (N )⊗ρ
)

⊕ H0
(

El (N0)⊗Ek−l (N0)⊗ρ
)

Φ×
−−−→→ H0

(

Ek (N )⊗ρ
)

⊕ H0
(

(El (N0) ·Ek−l (N0))⊗ρ
)

ΦΣ

−−−→→ H0
(

Ek (N )⊗ρ
)

+ H0
(

(El (N0) ·Ek−l (N0))⊗ρ
)

−→→ Mk (ρ).

(2.5)
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Proof. We argue one by one that each map in the composition is surjective. Recall that given a ho-

momorphism of finite dimensional and semi-simple representations ρ −→σ, the corresponding map

on invariants H0(ρ) −→ H0(σ) is surjective, if ρ −→ σ is surjective. Since both ρ∨
M and Ek (M) for any

positive integer M are finite dimensional representations of SL2(Z) that factor through the finite quo-

tient group SL2(Z)/Γ(M), they are semi-simple. We combine this with the homomorphism in (1.9) to

conclude that

H0
(

ρ∨
N ⊗ρ

)

−−→H0
(

Ek (N )⊗ρ
)

and H0
(

ρ∨
N0

⊗ρ∨
N0

⊗ρ
)

−−→H0
(

El (N0)⊗Ek−l (N0)⊗ρ
)

are surjective, and therefore the map ΦE in (2.1) is surjective.

The product map (2.2) is surjective by definition of its codomain. Since the codomain is contained

in the finite dimensional space Mk (Γ(N0)) and it factors as a representation through SL2(Z)/Γ(N0), it

is semi-simple. We conclude that the map Φ× in (2.3) is surjective. In particular, the map ΦΣ in (2.4) is

surjective by the definition of its codomain. The final map in (2.5) arises from (1.10) in Lemma 1.3. It

is surjective by Theorem 1.4.

2.1 Fourier expansions To derive Algorithm 1 from Theorem 2.1, we employ truncated Fourier ex-

pansions with coefficients in Qab. Given any ring R and rational number B ∈Q, we write

FE(R) =
⋃

N∈Z>0

R
�

q
1
N

�[

q−1
]

and FEB (R) = FE(R)
/

qB
⋃

N∈Z>0

R
�

q
1
N

�

for the ring of Puiseux series with coefficients in R and its quotient by series of valuation at least B .

If ρ(T ) is diagonalizable the Fourier expansion of modular forms yields a map

fe : Mk (ρ) −−→ FE(C)⊗V (ρ), f 7−−→ fe( f ) :=
∑

n∈Q

c( f ; n)qn . (2.6)

If ρ has level N , then exponents of q in the support of the image have denominator at most N . For

fixed k and ρ, the Sturm bound for vector-valued modular forms (see Proposition 1.1) yields some

explicit nonnegative P ∈Q such that the resulting “truncated” Fourier expansion map is injective:

feP : Mk (ρ) −−→ FEP (C)⊗V (ρ), f 7−−→ feP ( f ) :=
∑

n∈Q
n<P

c( f ; n)qn . (2.7)

For given P ∈Q, we can apply feP to each space in the middle and right column of (2.5). Since Fourier

expansions are ring homomorphisms, that is, they are compatible with multiplication and addition,

the following diagram commutes, where the first bottom arrow is the multiplication of Puiseux series:

H0
(

El (N0)⊗Ek−l (N0)⊗ρ
)

H0
(

(El (N0) ·Ek−l (N0))⊗ρ
)

Mk (ρ)

FEP (C)⊗FEP (C)⊗V (ρ) FEP (C)⊗V (ρ) FEP (C)⊗V (ρ)

feP ⊗ feP ⊗ id feP ⊗ id feP

A similar diagram holds for the other terms that occur in (2.5).
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For simplicity and by slight abuse of notation, we write feP ◦ΦE for the Fourier expansion map

(feP ⊗ idρ ⊕ feP ⊗ feP ⊗ idρ) ◦ΦE . Further, we write Φ× and ΦΣ for the multiplication and addition

maps on spaces of Puiseux series that correspond to the maps in (2.5). Then we have the equality

feP ◦ΦΣ ◦Φ× ◦ΦE = ΦΣ ◦Φ× ◦ feP ◦ΦE . (2.8)

In other words, we can intertwine the Fourier expansion with the maps in Theorem 2.1.

2.2 Algebraic Fourier coefficients Assume that we have a Qab-structure V (ρ,Qab) ⊂ V (ρ), that is,

V (ρ) =V (ρ,Qab)⊗Qab C and V (ρ,Qab) is stable under the action of ρ. Then we define

Mk

(

ρ,Qab
)

:=
{

f ∈ Mk (ρ) : ∀n ∈Q .c( f ; n) ∈V
(

ρ,Qab
)}

and Ek (N ,Qab) = Ek (N )∩Mk(Γ(N ),Qab),

where we suppress the dependence on V (ρ,Qab) from our notation. If ρ is a congruence type, then by

for example Deligne-Rapoport [14] we have

Mk (ρ) = Mk (ρ,Qab)⊗Qab C. (2.9)

The representations ρ∨
N have Qab-structures via their identification with permutation representations,

which are compatible with the map (1.9) to Ek (N ) and the respective Qab-structures of their images.

We also have Qab-structures of the domain of (2.5) in Theorem 2.1. In particular, we obtain

H0
(

ρ∨
N ⊗ρ

)

= H0
(

ρ∨
N ⊗ρ, Qab

)

⊗Qab C and H0
(

ρ∨
N0

⊗ρ∨
N0

⊗ρ
)

= H0
(

ρ∨
N0

⊗ρ∨
N0

⊗ρ, Qab
)

⊗Qab C.

(2.10)

We use similar notation for the other spaces in (2.5). By definition, the Qab-structures of modular

forms are compatible with products and sums. In particular, the maps Φ× and ΦΣ both descend to

maps of the Qab-structures. Thus Theorem 2.1 yields a surjective map

ΦΣ ◦Φ× ◦ΦE : H0
(

ρ∨
N ⊗ρ, Qab

)

⊕ H0
(

ρ∨
N0

⊗ρ∨
N0

⊗ρ, Qab
)

−−→ Mk

(

ρ,Qab
)

. (2.11)

2.3 Statement of the algorithm Combining Theorem 2.1 with the discussion in Sections 2.1 and 2.2,

we prove correctness of our main algorithm.

Theorem 2.2. Fix a weight k ≥ 2 and a congruence type ρ. Assume that P ∈ Q is at least the Sturm

bound for k and ρ. Then Algorithm 1 computes a basis for the image of Mk (ρ) −→ FEP (C)⊗V (ρ) that is

contained in FEP (Qab)⊗V (ρ,Qab).
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Algorithm 1: Computing a basis for Mk (ρ)

1 let N the level of ρ, N0 as in Theorem 1.4, and P ←−⌈P N⌉/N ;

2 let vi , 1 ≤ i ≤ dim(ρ) be a basis of V (ρ,Qab);

3 let M be the matrix of size 0×P N dim(ρ) over Qab;

4 let B =
⋃I

i=1
Bi be a disjoint decomposition of a basis of

H0(ρ∨
N ⊗ρ, Qab)⊕H0(ρ∨

N0
⊗ρ∨

N0
⊗ρ, Qab);

5 for 1 ≤ i ≤ I :

6 for b ∈Bi :

7 let f =
∑

i fi vi ←−ΦΣΦ× feP ΦE (b);

8 append to M the row with entries ri ,n ←− c( fi ; n/P ), 0 ≤ n < N P 1 ≤ i ≤ dim(ρ);

9 replace M by its reduced row echelon form;

10 if rank M = dim Mk (ρ) :

11 for each row r of M , output the truncated Fourier expansion f with

coefficient c( fi ; n) = ri ,n ;

12 return;

Remark 2.3. By keeping track of the formal linear combinations of elements b ∈B that equal the rows

of M in each stage of Algorithm 1, we can also compute an expression for each element of the basis

of Mk (ρ) in terms of products of Eisenstein series.

Proof of Theorem 2.2. To see that Algorithm 1 terminates, it suffices to note that B is finite. We have

to show that its output is correct.

We can and will assume that P ∈
1
N
Z. We let λ be the linear map from FEP (Qab)⊗V (ρ) to QabP N .

We impose an ordering b1, . . . ,b Ji
on Bi . By induction on 1 ≤ i ≤ I and 1 ≤ j ≤ Ji , one shows that after

line 7 of Algorithm 1 the row span of M equals the span of

λΦΣΦ× feP ΦE

(

B1 ∪·· ·∪Bi−1 ∪ {b1, . . . ,b j }
)

.

By the relation in (2.8), we can intertwine feP with ΦΣΦ× in the previous expression. Lemma 1.3

implies that ΦΣΦ×ΦE (b) lies in Mk (ρ) for every b ∈B. The compatibility with Qab-structures in (2.11)

implies that it even lies in Mk (ρ,Qab). Since ρ has level N , the Fourier coefficients of any element

of Mk (ρ) of index n ∈ Q vanish if n 6∈
1
N
Z. They also vanish if n is negative. Therefore, λ feP is an

isomorphism from Mk (ρ,Qab) onto its image. We conclude that after line 7 of Algorithm 1 the row

span of M is isomorphic to the span of

ΦΣΦ×ΦE

(

B1 ∪·· ·∪Bi−1 ∪ {b1, . . . ,b j }
)

∈Mk (ρ).

From what we have shown, we have rank M ≤ dim Mk (ρ) at every stage of Algorithm 1. By (2.10), the

basis B is a basis for the domain of (2.5). Now Theorem 1 implies that

Mk (ρ) = spanC
{

ΦΣΦ×ΦE (b) : b ∈Bi ,1 ≤ i ≤ I
}

.

In particular, after processing all b ∈B in, we have rank M = dim Mk (ρ,Qab). If this equality holds in

line 10, then the row span of M equals Mk (ρ,Qab), and therefore its rows yield a basis as desired.
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3 Decompositions

Many of the implementation details for Algorithm 1 depend on suitable decompositions of various

arithmetic types and representations that appear. In this section, we discuss the isotypic decomposi-

tions that are relevant to the left hand side of (2.5) in Section 3.1 and a decomposition into induced

representations that holds for specific arithmetic types in Section 3.2. In Section 3.3, we use the results

from the latter one to analyze the support of the Fourier expansion of vector-valued modular forms.

The results obtained in this section are essential ingredients for our implementation of Algorithm 1,

which we discuss in Section 4.

3.1 Isotypic decomposition In this section, we describe how to decompose the invariant spaces

H0(ρ∨
N ⊗ρ) and H0(ρ∨

N0
⊗ρ∨

N0
⊗ρ) by using standard tools from representation theory. Specifically, we

employ Frobenius reciprocity, Mackey’s double coset decomposition, and the isotypic decomposition

of intermediate arithmetic types for Γ1(N ) and Γ0(N ). This allows us to characterize H0(ρ∨
N
⊗ρ) as

the 1-isotypic component of ResΓ1(N)(ρ), and H0(ρ∨
N0

⊗ρ∨
N0

⊗ρ) as a direct sum of tensor products,

indexed by double cosets in Γ1(N0)\SL2(Z)/Γ1(N0), which we detail in (3.4).

Recall first that every semi-simple representation can be decomposed into a direct sum of its so-

called isotypic components. In particular, for a congruence type ρ of level N for Γ1(N ), we obtain the

following decomposition:

ρ ∼=
⊕

n (mod N)

ρ
[

e
( n

N

)]

, (3.1)

since Γ1(N )/Γ(N ) = T Z
Γ(N ) (see for example p. 13 of [16] or p. 8 of [44]). Here, the isotypic compo-

nent ρ[e(n/N )] ⊆ ρ equals the direct sum of all irreducible subrepresentations of ρ isomorphic to the

one-dimensional representation γ 7−→ e(nb/N ) ∈ GL1(C), γ=
(

a b
c d

)

. In other words, we have

V
(

ρ
[

e
( n

N

)])

= Hom
((

a b
c d

)

7−→ e
( nb

N

)

, ρ
)

(C)⊆V (ρ).

We refer to the decomposition (3.1) as the Γ1(N )-isotypic decomposition of ρ.

The decomposition of the invariant spaces H0(ρ∨
N
⊗ρ) and H0(ρ∨

N0
⊗ρ∨

N0
⊗ρ) is given in the next

proposition. In its statement we use the abbreviation

πg = Ind
Γ1(N0)

Γ1(N0)∩g−1Γ1(N0)g
1, g ∈ Γ1(N0)\SL2(Z)/Γ1(N0). (3.2)

Note that this is a permutation representation, that is, we can and will identify its image with a sub-

group of permutations of Γ1(N0)/(Γ1(N0)∩ g−1
Γ1(N0)g ).

Proposition 3.1. Let ρ be a congruence type of level N , and N0 a positive integer as in Theorem 1.4.

Then we have

H0
(

ρ∨
N ⊗ρ

)

∼=
(

ResΓ1(N) ρ
)

[1], (3.3)

and

H0
(

ρ∨
N0

⊗ρ∨
N0

⊗ρ
)

∼=
⊕

g∈Γ1(N0)\SL2(Z)/Γ1(N0)
m0 (mod N0),m (mod N)
m0≡−mN0/N (mod N0)

πg

[

e
( m0

N0

)]

⊗ ResΓ1(N0)

(

(

ResΓ1(N) ρ
)[

e
( m

N

)]

)

. (3.4)
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Proof. We begin by showing (3.3). Note first that H0(ρ∨
N ⊗ρ) ∼= Hom(ρN ,ρ). By Frobenius reciprocity

in (1.2), we obtain Hom(ρN ,ρ) ∼= H0(ResΓ1(N)(ρ)). From the definition of the 1-isotypic component,

we see that

H0
(

ResΓ1(N) ρ
)

∼=
(

ResΓ1(N) ρ
)

[1].

This establishes (3.3).

As for H0(ρ∨
N0

⊗ρ∨
N0

⊗ρ) in (3.4), we first employ (1.2) to obtain

H0
(

ρ∨
N0

⊗ρ∨
N0

⊗ρ
)

∼= H0
(

ResΓ1(N0)ρ
∨
N0

⊗ ResΓ1(N0)ρ
)

. (3.5)

In addition, Mackey’s double coset decomposition in (1.3) implies that

ResΓ1(N0)ρN0
∼=

⊕

g∈Γ1(N0)\SL2(Z)/Γ1(N0)

Ind
Γ1(N0)

Γ1(N0)∩g−1Γ1(N0)g
1. (3.6)

In the argument on the right hand side, we recognize the permutation representation πg defined

in (3.2). The self-duality ρ∨
N0

∼= ρN0 allows us to insert (3.6) into (3.5). We obtain

H0
(

ResΓ1(N0)ρ
∨
N0

⊗ ResΓ1(N0)ρ
)

∼=
⊕

g∈Γ1(N0)\SL2(Z)/Γ1(N0)

H0
(

πg ⊗ResΓ1(N0)ρ
)

. (3.7)

In order to apply the isotypic decomposition for Γ1(N )-representations, we rewrite the restriction

to Γ1(N0) on the right hand side of (3.7) as a restriction in steps to Γ1(N ) and then Γ1(N0). The Γ1(N0)-

isotypic decomposition of πg and the Γ1(N )-isotypic decomposition of ρ as in (3.1) yield

⊕

g∈Γ1(N0)\SL2(Z)/Γ1(N0)

H0
(

πg ⊗ ResΓ1(N0)

(

ResΓ1(N) ρ
)

)

∼=
⊕

g∈Γ1(N0)\SL2(Z)/Γ1(N0)
m0 (mod N0),m (mod N)

H0
(

πg

[

e
(m0

N0

)]

⊗ ResΓ1(N0)

(

(

ResΓ1(N) ρ
)[

e
( m

N

)]

))

. (3.8)

The tensor product in the argument on the right hand side of (3.8) is isomorphic to

(

a b
c d

)

7−−→ e
(

(m0 +mN0/N )b

N0

)

∈GL1(C).

In particular, to isolate the isotrivial component in (3.8), it suffices to impose the congruence condi-

tion m0 ≡−mN0/N (mod N0) in the direct sum. In conclusion, we obtain

H0
(

ρ∨
N0

⊗ρ∨
N0

⊗ρ
)

∼=
⊕

g∈Γ1(N0)\SL2(Z)/Γ1(N0)
m0 (mod N0),m (mod N)
m0≡−mN0/N (mod N0)

πg

[

e
( m0

N0

)]

⊗ ResΓ1(N0)

(

(

ResΓ1(N) ρ
)[

e
( m

N

)]

)

.

To estimate the runtime of Algorithm 1 in Section 4.4, we need to bound the dimension of the in-

variant spaces H0(ρ∨
N ⊗ρ) and H0(ρ∨

N0
⊗ρ∨

N0
⊗ρ). To this end, we need to know the structure of the

permutation πg (T ) defined in (3.2). The following lemma provides this structure.

Lemma 3.2. Given a positive integer N , we have that

Γ1(N )
/

(Γ1(N )∩ g−1
Γ1(N )g ) ∼=

(

Γ1(N )/Γ(N )
)/(

(Γ1(N )∩ g−1
Γ1(N )g )/Γ(N )

)

,

Γ1(N )/Γ(N ) = T Z
Γ(N ), (Γ1(N )∩ g−1

Γ1(N )g )/Γ(N ) = T ng ZΓ(N ),
(3.9)
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with

ng = lcm
( N

gcd(N ,ac)
,

N

gcd(N ,c2)

)

, g =
(

a b
c d

)

∈ SL2(Z).

Proof. The isomorphism is a direct application of Noether’s third isomorphism theorem (see for ex-

ample [18]). The equality Γ1(N )/Γ(N ) = T Z
Γ(N ) was already explained. Hence, we only need prove

the last equality.

To this end, let δ ∈ Γ1(N )∩ g−1
Γ1(N )g . Since δ ∈ Γ1(N ), we have that δ = T nδ′ for some integer n

and some δ′ ∈ Γ(N ). We also have that gδg−1 = g T nδ′g−1 ∈ Γ1(N ). Since Γ(N ) ⊆ Γ1(N ) is normal, this

is equivalent to g T n g−1 ∈ Γ1(N ). Inserting the entries of g , we discover that this is further equivalent

to the congruences acn ≡ 0 (mod N ) and c2n ≡ 0 (mod N ). This can be rephrased as

lcm
( N

gcd(N ,ac)
,

N

gcd(N ,c2)

)

|n.

In other words, we find that δ ∈T ng ZΓ(N ). We find that T ng ZΓ(N )⊆ (Γ1(N )∩g−1
Γ1(N )g )/Γ(N ), when

reverting the previous calculation, and thus finish the proof.

Lemma 3.2 directly implies that πg (T ) corresponds to a transitive, that is, cyclic, permutation of

order ng . Hence πg (T ) has distinct eigenvalues e(m/ng ) for m (mod ng ). The corresponding isotypic

components πg [e(m/ng )]⊆ ρ are therefore at most one-dimensional. Given v ∈V (πg ), we can project

to them, and obtain

v
[

e
( m

ng

)]

=
∑

h (mod ng )

e
(−mh

ng

)

πg (T )h v ∈V
(

πg

[

e
( m

ng

)])

. (3.10)

We finish this section with a bound on the dimension of H0(ρ∨
N0

⊗ρ∨
N0

⊗ρ) that will important in

Section 4.4.

Proposition 3.3. We have

dim H0
(

ρ∨
N0

⊗ρ∨
N0

⊗ρ
)

≤ #
(

Γ1(N0)\SL2(Z)/Γ1(N0)
)

dim(ρ) ≪ N 1+ǫ
0 dim(ρ),

where the implied contant is independent of N0 and ρ.

Proof. Since the isotypic components of πg have dimension at most one, the decomposition (3.4)

implies that

dim H0
(

ρ∨
N0

⊗ρ∨
N0

⊗ρ
)

≤
∑

g∈Γ1(N0)\SL2(Z)/Γ1(N0)
m (mod N)

dim ResΓ1(N0)

(

(

ResΓ1(N) ρ
)[

e
( m

N

)]

)

= #
(

Γ1(N0)\SL2(Z)/Γ1(N0)
)

dim ResΓ1(N0) ResΓ1(N) ρ

= #
(

Γ1(N0)\SL2(Z)/Γ1(N0)
)

dim(ρ).

To obtain the asymptotic upper bound, we may assume that N0 > 4. Using the Euler ϕ-function, we

find that

#
(

Γ1(N0)\SL2(Z)/Γ∞

)

=
1

2

∑

d |N0

ϕ(d)ϕ(N0/d).

Since Γ1(N0) is generated by T and Γ(N0), we conclude that

#
(

Γ1(N0)\SL2(Z)/Γ1(N0)
)

≪ #
(

Γ1(N0)\SL2(Z)/Γ∞

)

≪ N0

∑

d |N0

1 ≪ N 1+ǫ
0 .
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3.2 Twisted permutation types In this section, we introduce the notion of twisted permutation rep-

resentations, which generalize the notion of permutation representations. Their purpose in our work

is twofold. On one hand, they allow for a more efficient calculation of the invariants in the domain

of (2.5). On the other hand, we apply this concept to the restriction of arithmetic types to the group

generated by T ∈ SL2(Z). This allows for a dramatic reduction in size of the matrix in Algorithm 1. The

flexibility that we need, requires us to state the next definition for discrete groups as opposed to the

special case of SL2(Z).

We will need the wreath product with the symmetric group Sn on n letters, which for a group H and

a positive integer n we define as as follows

H ≀Sn :=
{

(π,γ) : π ∈ Sn , γ : {1, . . . ,n} −→ H
}

, (π′,γ′)(π,γ) :=
(

π′π, (γ′
◦π) ·γ

)

=
(

π′π, i 7−→ γ′(π(i ))γ(i )
)

.

Elements of the form (id,γ) form a subgroup of H ≀Sn that yields the quotient Sn .

Given a complex representation σ of H , the wreath product gives rise to a representation σ ≀ Sn

on Cn ×V (σ) that we define as

σ ≀Sn : H ≀Sn −−→ GL(Cn
×V (σ)), (π,γ) 7−−→

(

(ei ⊗w) 7−→ eπ(i) ⊗σ(γ(i ))w
)

. (3.11)

Definition 3.4. Let G be a discrete group, n a positive integer, and σ a complex representation of some

group H . We call a complex representationρ of G a twisted permutation representation of order n with

twist representation σ if ρ factors through σ ≀Sn . In other words, we have a group homomorphism ρ≀ :

G −→GL(W ) ≀Sn and an isomorphism ϕρ between V (ρ) and V (σ ≀Sn ) =Cn ⊗V (σ) such that

ρ =ϕ∗
ρ ◦ (std(W ) ≀Sn )◦ρ≀.

We call dim(V (σ)) in Definition 3.4 the twist dimension of ρ. If both ρ and σ in Definition 3.4 are

arithmetic types, we call ρ a twisted permutation type.

Note that neitherρ≀ norφρ in Definition 3.4 are unique in general. Throughout this work, we identify

twisted permutation representations ρ with a triple (ρ,ρ≀ ,ϕρ). That is, we make an implicit choice of ρ≀

and ϕρ .

In the next proposition, we describe twisted permutation representation in terms of induced repre-

sentations. It can be viewed as a representation theoretic formulation of the orbit-stabilizer theorem

from group theory. We need some notation to state Proposition 3.5. Given a twisted permutation

representation ρ of order n with twist representation σ, we define for I ⊆ {1, . . . ,n}:

V (ρ)I = span{Cei ⊗V (σ) : i ∈ I } ⊆V (ρ). (3.12)

If I = {i }, we write V (ρ)i for (3.12). Note that V (ρ)i
∼=V (σ).

Composition of ρ≀ with the projection H ≀Sn −→ Sn yields a map ρ≀
π : G −→ Sn . Inspecting the defini-

tion of σ ≀Sn in (3.11) and using that G is a group, we see that

StabG

(

V (ρ)I

)

=
{

g ∈G : ρ(g )V (ρ)I ⊆V (ρ)I

}

=
{

g ∈G : ρ(g )V (ρ)I =V (ρ)I

}

=
(

ρ≀
π

)−1(
StabSn (I )

)

⊆G.

(3.13)

Restricting ρ to this stabilizer yields a representation ρI on V (ρ)I :

ρI : Stab
(

V (ρ)I

)

−−→ GL
(

V (ρ)I

)

. (3.14)

If I = {i } we write ρi for it.
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Proposition 3.5. Let ρ be a twisted permutation representation of a discrete group G of order n. Further,

let R ⊆ {1, . . . ,n} be a set of representatives for the action of ρ≀
π(G) ⊆ Sn . Then with ρi as in (3.14), we have

an isomorphism

ρ ∼=
⊕

i∈R

IndG
Stab(V (ρ)i )ρi . (3.15)

Proof. We can and will replace G by its image under ρ≀(G). This allows us to assume that G ⊆ H ≀Sn

and ρ is the restriction of σ ≀Sn to G. We also identify V (ρ) with Cn ⊗V (σ) via the isomorphism ϕρ

in Definition 3.4. We write Gπ ⊆ Sn for the image of G under the quotient map from H ≀Sn to Sn . We

write Gi for the orbit of 1≤ i ≤ n under Gπ.

With R as in the statement of the proposition, we have the direct sum decomposition

V (ρ) = span{Ce j : 1 ≤ j ≤ n}⊗V (σ) =
⊕

i∈R

span{e j : j ∈Gi }⊗V (σ)=
⊕

i∈R

V (ρ)Gi .

It yields the isomorphism

ρ ∼=
⊕

i∈R

ρGi .

We can and will replace G and ρ by Stab(V (ρ)Gi ) and ρGi for any fixed i ∈ R to assume that Gπ acts

transitively on {1, . . . ,n} in the remainder of the proof. To further ease notation, we assume that R = {1}

and set G1 = Stab(V (ρ)1). We then have to show that

ρ ∼= IndG
G1

ρ1.

Since Gπ acts transitively on {1, . . . ,n}, we can fix elements (πi ,γi ) ∈ G with πi (1) = i for 2 ≤ i ≤ n,

and let (π1,γ1) ∈G be the trivial element. We define a linear map by

ϕ : Cn
⊗V (σ) −−→C[G]⊗G1 V (ρ)1, ei ⊗w 7−→ (πi ,γi )⊗

(

e1 ⊗σ(γi (1)−1)w
)

.

It is an isomorphism of vector spaces, since the (πi ,γi ) are coset representatives for the quotient of G

by G1. We have to show that ϕ intertwines ρ and the induction of ρ1.

To this end, we fix 1 ≤ i ≤ n and (π,γ) ∈ G, and set j = π(i ). Note that the inverse of (π j ,γ j )

equals (π−1
j

,γ−1
j

◦π−1
j

), where the inverse of γ j is taken pointwise. For simplicity, we write the action

of G via the induced representation of ρ1 as multiplication. Then we have to check that

ϕ
(

ρ(π,γ)(ei ⊗w)
)

= (π,γ)ϕ
(

ei ⊗w
)

.

We insert the action of ρ(π,γ) using j = π(i ) on the left hand side and then the definition of ϕ on

both sides. This leads us to prove that

(π j ,γ j )⊗
(

e1 ⊗σ
(

γ j (1)−1γ(i )
)

w
)

= (π,γ)(πi ,γi )⊗
(

e1 ⊗σ(γi (1)−1)w
)

. (3.16)

We now simplify the right hand side. Observe that π(πi (1)) = j , and thus (π j ,γ j )−1 (π,γ) (πi ,γi ) ∈ G1.

We therefore have

(π,γ)(πi ,γi )⊗
(

e1 ⊗σ(γi (1)−1)w
)

= (π j ,γ j )⊗ρ1

(

(π j ,γ j )−1 (π,γ) (πi ,γi )
)(

e1 ⊗σ(γi (1)−1)w
)

. (3.17)
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We calculate the product in G1 that appears in the second tensor factor on the right hand side:

(π j ,γ j )−1 (π,γ) (πi ,γi ) =
(

π−1
j ππi , γ−1

j ◦π−1
j ππi ·γ◦πi ·γi

)

.

We insert this into the right hand side of (3.17) and use the definition of ρ1, which is a restriction

of ρ =σ ≀Sn , from (3.11) to obtain

(π j ,γ j )⊗ρ1

(

(π j ,γ j )−1 (π,γ) (πi ,γi )
)(

e1 ⊗σ(γi (1)−1)w
)

= (π j ,γ j )⊗
(

e1 ⊗σ
(

(γ−1
j ◦π−1

j ππi ·γ◦πi ·γi )(1)
)

σ(γi (1)−1)w
)

= (π j ,γ j )⊗
(

e1 ⊗σ
(

γ−1
j (1)γ(i )γi (1)γi (1)−1

)

w
)

.

We recognize this as the left hand side of (3.17), and thus conclude the proof.

3.3 Translation orbits and Fourier expansions We next specialize Proposition 3.5 to the case of

twisted permutation types ρ for Γ1(N ) restricted to T Z ⊆ Γ1(N ). The action of ρ(T ) yields valuable

information on the support of the Fourier expansions of modular forms of type ρ.

Assuming that ρ(T ) is diagonalizable, then we have fe(ρ(T ) f ) = ρ(T )fe( f ). That is, ρ(T ) intertwines

with the Fourier expansion map fe in (2.6). We equip FE(C) with the T -action

T
∑

n∈Q

c(n)qn
=

∑

n∈Q

e(n)c(n)qn . (3.18)

This action intertwines with the scalar-valued slash action of T on modular forms. The isotypic de-

composition of FE(C), using notation adopted from (3.1), is

FE(C)=
⊕

n∈Q/Z

FE(C)[e(n)], FE(C)[e(n)]= qn
C

�

q
�[

q−1
]

. (3.19)

Combining this, we find that for f ∈ Mk (ρ), we have

fe( f ) = fe
(

f
∣

∣

k ,ρ T
)

= T fe( f ), (3.20)

where T acts on the first tensor component of FE(C)⊗V (ρ) as in (3.18) and on the second one by ρ(T ).

In other words, the Fourier expansion of modular forms is T -invariant. This justifies the next corollary

to Proposition 3.5.

Corollary 3.6. Fix a twisted permutation type ρ for Γ⊆ SL2(Z) with T ∈ Γ. Let n be the twist order of ρ

and σ : H −→ GL(V (σ)) its twist representation. Further, let R be a set of representatives for the action

of T on {1, . . . ,n} via its image in H ≀Sn . Given 1 ≤ i ≤ n, write ni = #T Zi for the orbit length of i . Define

the representation σi of T ni Z on V (σ) by

ei ⊗σi

(

T ni
)

w = ρ(T ni )(ei ⊗w).

Then given a decomposition

σi =
⊕

s∈Q/niZ

σi [e(s)], σi [e(s)]
(

T ni
)

= e(s),
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into isotypic representations, in which only finitely many direct summands are nontrivial, we have the

following decomposition of the restriction of ρ to T Z into isotypic representations:

ρ =
⊕

i∈R
m (mod ni )

s∈Q/niZ

(

C
∑

h (modni )

e
(−h(m + s)

ni

)

ρ
(

T h
)(

ei ⊗σi [s]
)

)

.

The action of T on the summand of index (i ,m, s) is by e((m + s)/ni ).

Proof. Proposition 3.5 reduces the proof to a computation of an isotypic decompositions of an in-

duced representation. A calculation shows that the sums in the given decomposition of ρ are well-

defined. Also the action of T follows from a direct calculation.

4 Implementation

In this section, we briefly highlight two of the key ingredients of our implementation of Algorithm 1

and heuristically argue about its runtime. This section contains neither formal statements nor proofs,

and thus takes the role of a commentary.

The discussion of the first two aspects of our implementation builds up on the results in Section 3.

The first one concerns the computation of invariants, which we will see in Section 4.4 is the slowest

part of Algorithm 1. The second one concerns the computation of the Fourier expansions, that we

require in line 7 of Algorithm 1. The major part of this section is dedicated to a heuristic analysis

of our implementation’s runtime performance. This is presented in Section 4.4. In this section, we

assume that fundamental arithmetic operations cost O(1), which is correct for some base fields, but

not for Qab. In Section 4.3, we thus complement Section 4.4 with a discussion of the current state of

base field arithmetic in our implementation.

In this section, we also discuss a variant of Algorithm 1 based on the decompositions

ρN =
⊕

χ (mod N)

ρχ and Ek (N )=
⊕

χ (mod N)

Ek (χ),

where χ runs through Dirichlet characters modulo N , ρχ ,−→ ρN is as in (1.5), and Ek (χ) ⊆ Ek (N ) is the

corresponding subspace with ρ∨
χ →→ Ek (χ) as in Proposition 1.2. It yields the direct sum decomposition

⊕

χ (mod N)

H0
(

ρ∨
χ ⊗ρ, Qab

)

⊕
⊕

χ1 ,χ2 (mod N0)

H0
(

ρ∨
χ1

⊗ρ∨
χ2

⊗ρ, Qab
)

(4.1)

that replaces the space of invariants in Algorithm 1. The advantage of this decomposition lies in re-

ducing the size of each representation for which we have to compute invariants on the left hand side

of (2.1) at the expense of introducing further roots of unity in the Fourier expansion on its right hand

side. When working numerically or modulo a suitable prime p, the latter is hardly relevant for perfor-

mance. A more detailed discussion of this issue can be found in Section 4.3.

4.1 Computation of invariants The calculation of the invariants

H0
(

ρ∨
N ⊗ρ, Qab

)

⊕H0
(

ρ∨
N0

⊗ρ∨
N0

⊗ρ, Qab
)

in line 3 of Algorithm 1 was left opaque. This kind of computation can be performed via GAP [23], and

very efficiently so in general. We have found, however, that a custom made implementation that lever-

ages specific features of the relevant arithmetic types achieves better performance. We would like to
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point out that, nevertheless, all calculations with permutation groups in our current implementation

are invariably performed via GAP.

The motivation and starting point for our specialized implementation is the observation that ρN

and ρχ, defined in (1.5), are naturally twisted permutation types in the sense of Definition 3.4. What

is more, many of the arithmetic types ρ for which ones usually computes modular forms are twisted

permutation types, too. Besides the cases ρ = ρN and ρ = ρχ, this includes inductions of Weil repre-

sentations that correspond to Jacobi forms for subgroups of SL2(Z) by work of Skoruppa [43], or signed

permutation representations that appear in generalized Moonshine [12, 22].

Duals and tensor products of twisted permutation types are twisted permutation types, and twist

orders are multiplicative under tensor products. In particular, if ρ is a twisted permutation type of

twist order n and twist dimension d , then

ρ∨
N0

⊗ρ∨
N0

⊗ρ and ρ∨

χ′
1
⊗ρ∨

χ′
2
⊗ρ

are twisted permutation types of twist dimension d and twist order O(nN 4+ǫ
0 ) and O(nN 2+ǫ

0 ). We can

profit in the calculation of its invariants from the improved time complexity of the orbit-stabilizer

algorithm as opposed to row echelon reduction. With κ ≥ 2 is the time complexity exponent of ma-

trix multiplication explained in Section 4.4, row echelon reduction would yield runtime O((nN 4+ǫ
0 )κ)

and O((nN 2+ǫ
0 )κ). By Section 4.1 of [26], in our setting the orbit-stabilizer algorithm has runtime

O(n2N 8+ǫ
0 ) and O(n2N 4+ǫ

0 ), but by using stabilizer chains arising from the tensor product structure one

can reduce this further to O(n2N 4+ǫ
0 ) and O(n2N 2+ǫ

0 ). Specifically, the runtime of the orbit-stabilizer

algorithm receives a quadratic contribution from the size of the set acted on. In first case this set is

the Cartesian product Γ/Γ1(N0)×Γ/Γ1(N0) or Γ/Γ0(N0)×Γ/Γ0(N0), and when using stabilizer chains

it is Γ/Γ1(N0) or Γ/Γ0(N0). One combines this with usual linear algebra on the remaining d dimen-

sions, which contributes O(N 3+ǫ
0 d2 +dκ) to the runtime in the first case and O(nN 2+ǫ

0 d2 +dκ) in the

second case. Observe that the terms N 3+ǫ
0 and nN 2+ǫ

0 are connected to the number of generators of

stabilizers resulting from the permutation group computation. This is not the number of generators

guaranteed by the orbit-stabilizer algorithm, but results from an application of Farey fractions [32, 36]

to the geometry of modular groups.

Our reformulation in terms of tensor products of twisted permutation types enables another major

optimization. Stabilizer chains, which we mentioned before in passing, can be utilized in a similar

way to the Schreier-Sim algorithm in Section 4.4.2 of [26]. In practice, the required number of genera-

tors for the intermediate stabilizers that arise can be reduces drastically by the use of Farey fractions.

Interestingly, Farey fractions also allow us to benefit from some of the advantages of the orbit-Schreier-

vector algorithm in Section 4.4.1 of [26]. In total, this seems to improves the runtime contribution of

the permutation group computation to O(n+N 1+ǫ
0 ).

4.2 Inflation and deflation via translation orbits In this section, we show how the decomposition in

Section 3.3 can be used to a priori bound the dimension of the space of Fourier expansions feP (Mk (ρ)).

This generalizes the concept of cusp expansions: When computing Fourier expansions of f |kγ for a

modular form f ∈ Mk (Γ0(N ),χ) and arbitrary γ ∈ SL2(Z), then it suffices to consider representatives γ

of Γ0(N )\SL2(Z)/Γ1(N ), since the action of T ∈ SL2(Z) can be calculated on Fourier series.

We recall from Lemma 1.3 the inclusion

H0
(

Ek (N )⊗ρ
)

+ H0
(

(El (N0) ·Ek−l (N0))⊗ρ
)

⊆ Mk (ρ). (4.2)
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Fourier expansions that we handle are thus of the same level as ρ, which impacts our implementation

of Algorithm 1. We call the resulting procedures deflation and inflation, adjusting language from the

AbstractAlgebra package [21] for power, Laurent, and Puiseux series.

Suppose that ρ has level N and Qab-structure as in Section 2.2. Then naively, we have

fe
(

Mk (ρ)
)

⊆C�q
1
N �⊗V (ρ).

Using merely this inclusion, the number of columns of the matrix M in Algorithm 1 is O(N P dim(ρ)).

Since we apply row echelon reduction to M , the total contribution to the runtime is O((N P dim(ρ))κ),

where κ is the time complexity exponent explained in Section 4.4.

In Section 3.3, however, we saw that the image of Mk (ρ) under feP is T -invariant. We we will use that,

since ρ is a congruence type, the transformation ρ(T ) is diagonalizable and of finite order. Writing ρT

for the restriction of ρ to the subgroup T Z ⊂ SL2(Z), the isotypic decomposition of FE(C) given in (3.19)

ensures that

fe
(

Mk (ρ)
)

⊆
⊕

s∈ 1
N Z

0≤s<1

q sC�q�⊗V
(

ρT [e(−s)]
)

.

In those cases in which this extends to Fourier expansions in FE(Qab)⊗V (ρ,Qab), it allows us to reduce

the size of M in Algorithm 1 to O(P dim(ρ)), thus removing the factor N .

The purpose of Corollary 3.6 is to make this reduction computationally efficient. We assume that ρ

is a twisted permutation type, and for simplicity assume further that ρ = σ ≀ Sn . We adopt notation

from Corollary 3.6. In particular, we let R ⊆ {1, . . . ,n} be a set of representatives for the action arising

from ρ(T Z). Then we have a deflation and inflation maps

FE(C)⊗Cn
⊗V (σ) −−→ FE(C)⊗CR

⊗V (σ),
n
∑

i=1

fi 7−−→
∑

i∈R

fi , fi ∈ FE(C)⊗Cei ⊗V (σ)

FE(C)⊗CR
⊗V (σ) −−→ FE(C)⊗Cn

⊗V (σ),
∑

i∈R

fi 7−−→
∑

i∈R
h (mod #TZi)

T fi , fi ∈ FE(C)⊗Cei ⊗V (σ),

where #T Zi is the length of the orbit of i under T Z. In general, deflation is left inverse to inflation.

On the subspace of T -invariant Fourier expansions, that is, for Fourier expansions of modular forms,

deflation is injective, and inflation is an inverse to it.

4.3 Arithmetic operations in the base fields In Section 4.4 we make the assumption that each fun-

damental arithmetic operation contributes O(1) to the runtime of our algorithm. This is justified for

calculations over finite fields and for numerical calculations of bounded precision at a limited number

of infinite places. However, for exact arithmetic over Qab and cyclotomic fields of arbitrary degree this

is false, which on its own is a reason why the current implementation of our algorithm falls behind

alternative ones. This issue gains further importance in situations where intermediate fields of higher

degree appear in the calculation, as is the case in the variant of Algorithm 1 discussed in the beginning

of Section 4.

The type systems provided by Julia and Nemo/Hecke allowed us to provide an implementation that

is polymorphic in the type of the base ring elements. In addition to the standard requirements for

fields in Nemo/Hecke, our implementation makes use of a cyclotomic tower over the base field that

we provide for cyclotomic fields, for finite fields, and for C modeled by ball arithmetic (which is an
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approximate field and thus requires some extra steps to accommodate). Our implementation thus

is sufficiently flexible to accommodate advanced methods like multi-modular calculations. From a

practical perspective, consider the performance of matrix operations on, say,

Matm,n

(
⊕

q∈Q

Fq

)

and Matm,n(Z)⊗
⊕

q∈Q

Fq

for a finite set Q of powers of mutually distinct primes. The former fits into the polymorphic imple-

mentation, but suffers from degraded cache locality. In future work when we apply our implementa-

tion, we plan to implement the latter variant.

An implementation over
⊕

q∈Q Fq does not suffice for a complete multi-modular implementation,

which requires height bounds. For clarity and comparison observe that Cohen’s implementation of

scalar-valued modular forms, which we discuss in Section 5.1, does employ multi-modular arithmetic

to calculate cusp expansions. He is able to derive height bounds from work of Katz [28] and Deligne-

Rapoport [14], since he first determines Fourier expansions at ∞ via a trace formula. In our algorithm

we do not have access to a priori Fourier expansions of any component of our arithmetic type ρ,

and the work of Deligne-Rapoport would not apply directly, either. On the other hand, when naively

deriving a height bound from the products of Eisenstein series, we obtain a prohibitively large bound.

We are thus naturally led to an approach that incorporates multi-modular calculations with cal-

culations at the infinite places. We have not made any attempt to implement our algorithm using

machine-size floating point arithmetic, but rely on ball arithmetic provided by Arb [27] to track round-

ing errors. At the time of writing, a multi-modular variant of our implementation is not yet functional,

but we intend to further evaluate it as it seems one of the more promising ways to perform Fourier

expansions over large cyclotomic fields that appear when determining cusp expansions of modular

forms of large level.

4.4 Heuristic discussion of time complexity We next discuss the time complexity of computing a

basis of Mk (ρ) via Algorithm 1 and its modification arising from (4.1). Throughout the section, we

assume that ρ is a congruence type of level N for Γ ⊆ SL2(Z) with Γ1(N ) ⊆ Γ and that ρ(T ) is diag-

onalizable. Note that any arithmetic type can be considered as a twisted permutation type of twist

order one. We therefore can and will view ρ as a twisted permutation type of twist order n and twist

dimension d .

We assume also that fundamental arithmetic operations cost O(1), which covers numerical calcula-

tions and calculations modulo primes p in a fixed range, but is incorrect for computations in number

fields. The time complexity of Algorithm 1 depends on the time complexity of various matrix opera-

tions. Given n×n matrices A and B , we assume that the time complexity of computing the product AB ,

the inverse A−1, and of diagonalizing A is O(nκ+ǫ), where here and in the remainder of this section κ

denotes the exponent in the time complexity of matrix multiplication [15]. We have κ/ 2.373 in the-

ory [1], but in practice implementations rely on results of Strassen [45], whose algorithm established

that κ/ 2.807.

Translation orbits We estimate the time complexity of computing orbits under T that appear in

Corollary 3.6 and Section 4.2. Let n be the twist order of ρ and σ its twist representation of dimen-

sion d for an auxiliary group H .

Per Definition 3.4, we have an associated group homomorphism ρ≀ from Γ to H ≀ Sn . It yields an

action of T ∈ Γ on {1, . . . ,n} via the projection to Sn . Applying the orbit algorithm in this setting has

time complexity O(n). The stabilizer of any 1 ≤ i ≤ n is generated by T ni , where ni := #T Zi is the orbit

length of i .
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In typical situations, the action of ρ(T ni ) on the i -th component V (ρ)i of Cn ⊗V (σ) (cf. (3.12)) is

in diagonal form already. This includes the cases of arithmetic types associated with Dirichlet char-

acters and of Weil representations. In general, diagonalizing it contributes O(#Rdκ) to the total time

complexity, where R is a set of orbit representatives for T Z acting on {1, . . . ,n}.

Given orbits for T Z on {1, . . . ,n} and an isotypic decomposition of ρ(T niZ) acting on V (ρ)i , Corol-

lary 3.6 provides an isotypic decomposition of ρ(T ). The time complexity contributed by this step

equals
∑

i∈R O
(

n2
i

d
)

≤ O(n2d).

In summary, we obtain an isotypic decomposition of ρ(T ) including a convenient basis in

O(n)+O(#Rdκ) + O(n2d) = O
(

dim(ρ)(dκ−1
+n)

)

.

Invariants We discuss the contribution of (3.4) to the time complexity, and neglect the one of (3.3),

which is dominated by the former.

We recall from Proposition 3.3 that the space of invariants on the right hand side of (3.4) is bounded

by O(N 1+ǫ
0 dim(ρ)). The estimate in Proposition 3.3 arises from a bound on Γ1(N0)-invariant vectors.

We apply Frobenius reciprocity as in (1.2) to reconstruct invariants for Γ. This results in a basis of

invariants in (3.4), each of whose elements is a sum over less than [Γ : Γ1(N0)] vectors of dimen-

sion dim(ρ). The time complexity thus depends on the index of Γ1(N0) in Γ. We obtain a total contri-

bution of

O
(

N 1+ǫ
0 dim(ρ) [Γ :Γ1(N0)]dim(ρ)

)

= O
(

N 1+ǫ
0 [Γ :Γ1(N0)]dim(ρ)2

)

.

For later purposes, we also record that for each of these invariant basis elements each component

of ρ on average can be expressed by the following number of terms:

O
(

[Γ : Γ1(N0)]dim(ρ)/dim(ρ)
)

= O
(

[Γ :Γ1(N0)]
)

.

Remark 4.1. If N0 ≫ k, which is usually the case, the estimate N 1+ǫ
0 dim(ρ) is larger than the dimen-

sion of Mk (ρ), which is of order O(k dim(ρ)). Therefore we expect significant redundancy among the

modular forms associated to the invariants in (3.4). This is the ultimate reason for the preemptive

comparison of dimensions in line 10 of Algorithm 1. In practice, the required number of invariants for

small and fixed k, appears be of order O(N ǫdim(ρ)). Assuming this, we can replace the total contribu-

tion of the calculation of invariants by

O
(

N ǫ
0 [Γ1(N0) :Γ]dim(ρ)2

)

.

Fourier expansions Given a basis of invariants as in line 3 of Algorithm 1, the next step is to compute

Fourier expansions. Naively, for each basis element this involves the computation of dim(ρ) sums of

products of Eisenstein series each with P N coefficients, where P is the truncation bound in Theo-

rem 2.2 and Algorithm 1. Each sum involves O([Γ :Γ1(N0)]) products on average. A typical choice of P

is the Sturm bound, which is of size O(k[SL2(Z) : Γ]). Products of power series of length P N can be

determined in time complexity O(P N log(B N )). The naive contribution to time complexity of Fourier

expansions of an invariant is hence

O
(

dim(ρ)[Γ : Γ1(N0)](k[SL2(Z) :Γ]N )1+ǫ
)

≪ O
(

(kN 2
0 N )1+ǫ dim(ρ)

)

.

Now we note that we can employ the T -invariance of Fourier expansion of modular forms in (3.20).

This means that we can reduce ourselves to the computation with power series of length P , removing

the contribution of N to the time complexity. This yields time complexity

O
(

(kN 2
0 )1+ǫdim(ρ)

)

.
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Reduced row echelon forms The truncated and deflated vector-valued Fourier series expansions are

gathered in a matrix in line 7 of Algorithm 1. We provide a pessimistic bound for the time complexity

of the row echelon reduction in line 8 by ignoring the extra termination condition on line 10.

With the discussion in Section 4.2 in mind, we can estimate the size of the matrix M in Algorithm 1

by

O
(

N 1+ǫ
0 dim(ρ)

)

· O
(

k[SL2(Z) :Γ]dim(ρ)
)

.

The number of rows arises from the dimension of invariants, and the number columns from the

Fourier expansion. This matrix is reduced to row echelon form. The time complexity contributed

by this step is

O
(

max
{

N 1+ǫ
0 dim(ρ), k[SL2(Z) : Γ]dim(ρ)

}κ)

.

By Remark 4.1, for small and fixed k we expect that preemptive termination in line 10 of Algorithm 1

yields the significantly better estimate

O
(

max
{

N ǫ
0 dim(ρ), [SL2(Z) : Γ]dim(ρ)

}κ)

.

Fourier expansions of arbitrary precision Given a basis of modular forms computed along the lines

of Algorithm 1, we also obtain expressions for their components in terms of products of Eisenstein

series as mentioned in 2.3. The length of each these expressions, in the shape we implemented it, is

tightly connected to the explicit Frobenius reciprocity in (1.2), which yields the length estimate O([Γ :

Γ1(N0)]). As before, products of Eisenstein series to precision P can be computed in time complex-

ity O(P log P ). In total, computing a single component has time complexity

O
(

[Γ :Γ1(N0)]P log P
)

.

Modular forms for Γ0(N ) We conclude with the special case of modular forms for Γ0(N ) and a Dirich-

let character χ. If we determine merely the cusp expansion at ∞ for small and fixed k, then ρ ∼= χ is

one-dimensional. We assume that N0 ≈ N , which is experimentally true for small k. Then the heuristic

time complexity estimates for the computation of T -invariants, of invariants, the Fourier expansion of

all invariants, and the reduced row echelon normal form are O(1), O(N 3+ǫ), O(N 3+ǫ), and O(N (1+ǫ)κ).

The computation of invariants and their Fourier expansions is dominant. It yields the total time com-

plexity

O
(

N 3+ǫ
)

.

Under the experimental assumption from Remark 4.1, the computation of invariants becomes fast

and the row echelon form is dominant. It yields a total time complexity

O
(

Nκ+ǫ
)

.

We conclude with a remark on the observed performance. Also in case of classical modular forms

for Γ0(N ) our implementation is surprisingly slow. Profiling reveals that it is dominated by the calcu-

lation of invariants which happens in GAP and via an implementation of Farey fractions that improves

upon the one provided in Sage [47].
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4.5 Examples To illustrate the use of the implementation provided by the authors, we consider two

cases that we mentioned in the introduction: Modular forms for congruence subgroups of non-split

Cartan type and modular forms for “Moonshine-like” arithmetic types.

Congruence subgroups of non-split Cartan type We recall from the introduction that modular forms

for the congruence subgroups Γns(N ) of non-split Cartan type are usually computed via cusp expan-

sions of modular forms for Γ1(N 2) [2, 34]. In our framework, we can treat them on equal footing

with modular forms for any other congrunce subgroup when taking the induction of the trivial type

of Γns(N ) to SL2(Z). The computation of a 20-dimensional such space is illustrated in Listing 1.

Listing 1: Julia code to compute modular forms for Γns(7) of weight 6

1 using ModularForms

2 rho = induction (SL2Z , TrivialArithmeticType ( GammaNS (7)))

3 mfs = ModularFormsSpace (6, rho , QQab )

4 [ fourier_expansion (f ,2) for f in basis(mfs )]

The resulting Fourier expansions are too long to reproduce in print. As an example we provide the

Fourier expansion of the first component of the first basis element, which is associated with a modular

form for Γns(7).

1+
(

−5ζ11
42 −ζ9

42 −2ζ8
42 +ζ6

42 +5ζ4
42 +2ζ42 +2

)

q
4
7

+
(

9ζ11
42 +7ζ9

42 +7ζ8
42 +9ζ6

42 −9ζ4
42 +5ζ3

42 −7ζ42 −5
)

q
5
7

+
(

−19ζ11
42 +16ζ9

42 +19ζ8
42 −23ζ6

42 +19ζ4
42 +16ζ3

42 −19ζ42

)

q
6
7

+
(

39ζ11
42 +10ζ8

42 −10ζ6
42 −39ζ4

42 −39ζ3
42 −10ζ42 −74

)

q

+
(

−60ζ9
42 +17ζ8

42 −17ζ6
42 +17ζ3

42 −17ζ42 +60
)

q
8
7

+
(

32ζ11
42 −159ζ9

42 −253ζ8
42 −32ζ4

42 −253ζ3
42 +253ζ42 +32

)

q
9
7

+
(

49ζ11
42 −49ζ9

42 +206ζ6
42 −49ζ4

42 +249ζ3
42 +206

)

q
10
7

+
(

−465ζ11
42 +117ζ9

42 −240ζ8
42 −117ζ6

42 +465ζ4
42 +240ζ42 +240

)

q
11
7

+
(

346ζ11
42 +704ζ9

42 +704ζ8
42 +346ζ6

42 −346ζ4
42 +582ζ3

42 −704ζ42 −582
)

q
12
7

+
(

−875ζ11
42 +594ζ9

42 +875ζ8
42 −731ζ6

42 +875ζ4
42 +594ζ3

42 −875ζ42

)

q
13
7 +O(q2)

To illustrate the performance of our implementation, we consider the induction of the trivial type

from Γns(3), Γns(5), and Γns(7) to SL2(Z). These representations have dimensions 6, 20, and 42. The

calculation of the associated weight-6 modular forms takes 0.08, 0.48, and 5.28 seconds, respectively,

on a single hardware thread of a home computer with AMD Ryzen 9 3900XT. Profiling the calcula-

tion reveals that the vast majority of runtime is spend on determining invariants on the left hand side

of (2.5). This is despite the fact that linear algebra is performed over the cyclotomic field of order 42.

In more detail, most time is spent in orbit calculations using the highly optimized GAP implementa-

tion [23], and in our implementation of Farey symbols to determine generators of stabilizer subgroups.

The latter is a variant of the implementation in Sage [47] going back to the work of Kurth–Long [32].

Our implementation employs more suitable data structures and thus achieves a 10-fold speedup in a

benchmark with Γ(64), that now requires 37 seconds to complete.
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Moonshine-like arithmetic types To illustrate the use of our implementation in the context of Moon-

shine, we intended to examine generalized Mathieu Moonshine [22]. However, we were unable to

verify that twists computed using the code accompanying the paper by Gaberdiel–Persson–Ronellen-

fitsch–Volpato yield representations of SL2(Z). Instead, we have implemented the following construc-

tion that mimics the setup in any kind of generalized Moonshine: Given a finite abelian group G, we

have a permutation action of SL2(Z) from the right on G ×G. We determine all twisted permutation

types that extend this permutation action, pick a random one, and compute a corresponding space of

modular forms. This is illustrated in Listing 2. We execute these calculations over a number field and

also determine the corresponding space of modular forms over F17.

Listing 2: Julia code to compute modular forms for a Moonshine-like type of weight 4

1 using ModularForms

2 using ModularForms . MoonshineLikeType

3 rho = rand_moonshine_like_type([2 ,2] , 4)

4 mfsQQab = ModularFormsSpace (4, rho , QQab )

5 mfsFF = ModularFormsSpace (4, rho , FiniteField (17)[1])

The runtime of calculations with Moonshine-like types varies vastly with the twist. If G =Z/2×Z/2,

which is a group that appears in Mathieu Moonshine, there are 241 different twists of the permutation

action on G ×G. Table 1 provides the permutation and the twists for a typical example. We label

the basis elements by integers between 1 and 16 and give their images including the associated twists

under two generators of SL2(Z). The calculation of weight-4 modular forms for this type over a number

field takes 1.15 seconds and 1.14 seconds over F17. The marginal difference between these runtimes

illustrates the large proportion that it takes to calculate the left hand side of (2.5).

Table 1: An example of a Moonshine-like twisted permutation action

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(

0 −1
1 0

) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

ζ4 ζ2 ζ3
4 ζ3

4 1 ζ4 ζ2 ζ4 ζ4 1 ζ1 ζ4 ζ3
4 ζ4 ζ4 ζ4

(

1 1
0 1

) 1 2 3 4 6 5 8 7 11 12 9 10 16 15 14 13

ζ4 1 ζ2 ζ3
4 ζ4 ζ2 ζ3

4 ζ4 ζ3
4 1 ζ3

4 1 ζ2 ζ4 ζ4 ζ2

5 Comparisons with alternative algorithms

There are two established algorithms to compute classical modular forms, which were surveyed in [4]:

Modular symbols and the Eichler-Selberg trace formula. Both are a priori limited to the computation

of scalar-valued modular forms for congruences subgroups Γ via their Hecke eigenvalues, that is, their

cusp expansions at ∞. If the level of Γ is square-free the associated vector-valued modular forms of

type IndΓ1 for SL2(Z) can be recovered from the action of Atkin-Lehner involutions. For general Γ

this is not possible. Fixing the weight, as we did in Section 4.4, computing the Fourier expansions up

to precision P ≫ N of a basis of Mk (Γ0(N ),χ) using modular symbols or the trace formula has time
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complexity

O
(

N 1+ǫP 2
)

and O
(

N
3
2+ǫP

3
2
)

.

While both algorithms compute less than what Algorithm 1 does, they do so significantly faster.

There are two further algorithms in the literature that target vector-valued modular forms and share

some features with the our Algorithm 1. The first one by Cohen [13] is based on products of scalar-

valued Eisenstein series for Γ0(N ) with character. The second one by Williams [50] is based on prod-

ucts of Eisenstein series for the Weil representation with theta series of weight 1
2 , which are residues

of Eisenstein series. Both are restricted to specific kinds of vector-valued modular forms, but when

applicable perform significantly better than our implementation of Algorithm 1. We will discuss the

reason why and potential remedies to their limitations.

5.1 Products of scalar-valued Eisenstein series Cohen [13] implemented an algorithm in Pari/GP

to calculate Petersson scalar products of modular forms in Mk (Γ0(N ),χ), the space of modular forms

of weight k with f |kγ=χ(d) f for γ=
(

a b
c d

)

∈ Γ0(N ) for a Dirichlet character χ. As one of the steps in his

algorithm he requires the cusp expansions of modular forms. He determines these cusp expansions

after having calculated modular forms via Eichler-Selberg trace formula [3], but we remark that his

approach can be adjusted to calculate a basis for Mk (Γ0(N ),χ). General cusp expansions enable the

computation of a basis of Mk (ρχ), where ρχ is as in (1.5). In other words, one can recover from Cohen’s

work the special case ρ = ρχ of Algorithm 1.

Remark 5.1. Any irreducible congruence type with nontrivial T -fixed vectors embeds into a suitableρχ .

To make general congruence types accessible to Cohen’s approach, one can use the vector-valued

Hecke operators TN of [48] and the inclusion ρ ,−→ TN TN ρ. If N is suitably chosen, then there is a

subrepresentation of ρ′
,−→ TN ρ generated by its T -fixed vectors such that ρ ,−→ TN ρ′.

The theoretical foundation of Cohen’s algorithm was given by Borisov–Gunells in their work on toric

modular forms [6–8]. As a corollary to their results one finds that if k > 2, then

Mk (Γ0(N ),χ) ⊆ Ek (Γ0(N ),χ)+
k−1
∑

l=1

El (Γ1(N )) ·Ek−l (Γ1(N )),

where Ek (Γ0(N ),χ) stands for the spaces of weight-k Eisenstein series for Γ0(N ) and χ. In other words,

we have

Mk (Γ0(N ),χ) = Ek (Γ0(N ),χ)+
k−1
∑

l=1

H0
(

(El (Γ1(N )) ·Ek−l (Γ1(N )))⊗χ
)

, (5.1)

where we allows ourselves to identify the invariants on the right hand side with the corresponding

modular forms. If k = 2, there is no direct analogue of (5.1), but Cohen works around this by a variant

of it.

The equality in (5.1) parallels the isomorphism in (1.11), but the underlying representation theory

is much simpler, since the former features El (Γ1(N )) as opposed to El (N )= El (Γ(N )) from Section 1.3.

Recall from Proposition 1.2 that El (N ) as a representation of SL2(Z) is a quotient of the induced rep-

resentation ρN from (1.5). By Mackey’s Double Coset Theorem, its restriction to Γ0(N ) in general

contains multidimensional, irreducible representations. Not so El (Γ1(N )), which can be decomposed
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into characters. More precisely, since El (Γ1(N )) consists of T -invariant functions, it descends to a

representation of the abelian quotient Γ0(N )/Γ1(N ). In classical terms, we have

El (Γ1(N )) =
⊕

χ (mod N)

El (Γ0(N ),χ),

which parallels the representation theoretic decomposition

Ind
Γ0(N)
Γ1(N)

1∼=
⊕

χ (mod N)

χ,

where the direct sum in both equations runs over Dirichlet characters χ and in the second one we

view χ as a representations as in (1.4).

When formulating Cohen’s algorithm in the language of Theorem 2.1, we have to compute

⊕

χ′
1 ,χ′

2 (mod N)

H0
(

χ′∨
1 ⊗χ′∨

2 ⊗χ
)

.

Each of these spaces is nonzero if and only if χ=χ′
1χ

′
2. The most time-consuming part of Algorithm 1,

the computation of invariants, is hence reduce to a factorization in a finite, commutative group. This

explains the superior performance of Cohen’s implementation.

5.2 Products of Weil-type Eisenstein and theta series Based on his thesis [50], Williams provided an

algorithm to calculate a basis of Mk (ρ) where ρ is a Weil representation. Recall from, for instance [41],

that the Weil representation is associated with a finite quadratic module (F, q). If the signature of (F, q)

is even, the associated Weil representation is a representation of SL2(Z), and in general of the meta-

plectic group, which we do not introduce here. One can circumvent the limitation to Weil represen-

tation by the fact that every congruence type is a subrepresentation of a suitable Weil representation.

The dimension of this enveloping Weil representation, however, might be very large.

As opposed to the work of Borisov–Gunnells, the work by Williams a priori rather features Jacobi

forms [20] and not products of Eisenstein series. To make the analogy to Algorithm 1 clear, we need

some preparation. We write ρm for the Weil representation associated with the finite quadratic mod-

ule (Z/2mZ, x 7−→ x2/4m). Recall that classical Jacobi forms are functions in two variables τ and z

on H×C. We will need the connection between Jacobi forms of index m and type ρ, and vector-valued

modular forms of type ρ ⊗ ρ∨
m via the theta decomposition. It features the Jacobi theta series θm,l

for l (mod2m). A Jacobi form of index m can be written as

φ(τ, z) =
∑

l (mod 2m)

fl (τ)θm,l (τ, z), ( fl )l (mod2m) ∈ Mk− 1
2

(

ρ⊗ρ∨
m

)

. (5.2)

We write EJ
k ,m

(ρ) for the space of Jacobi Eisenstein series of weight k, index m, and type ρ. For our

purpose, it is important to record that the theta decomposition maps it to usual Eisenstein series.

Williams’s algorithm is founded on the combination of two facts: First, the specialization of Jacobi

Eisenstein series to z = 0 yields “Poincaré square-series”. Second, specific Dirichlet convolutions of

Poincaré square–series yield usual Poincaré series. Since Poincaré series span spaces of modular

forms, one obtains

Mk (ρ) =
∞
∑

m=1

EJ
k ,m

(ρ)
∣

∣

z=0, (5.3)
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An upper bound on which Eisenstein series are required on the right hand side can be deduced from

a Sturm bound for Mk (ρ) and the connection to Poincaré series. The resulting algorithm is very effi-

cient provided that the Fourier expansion of Jacobi Eisenstein series can be computed at the required

level of generality. Besides the relation between Poincaré square-series and Poincaré series, the need

for these Fourier expansions is the source of the restriction of Williams’s algorithm to Weil representa-

tions ρ.

The theta decomposition allows us to recognize the specialization of Jacobi Eisenstein series in (5.2)

as a sum of products of Eisenstein series of weight k −
1
2 and theta series of weight 1

2 . Since these

theta series appear as residues of Eisenstein series, we allows ourselves to write E 1
2

(ρm ) for the space

of modular forms (of half-integral weight) spanned by the θm,l , l (mod2m), and E 1
2

(ρm ) for the cor-

responding space of vector-valued modular forms. A weaker form of Williams’s results in the spirit of

Theorem 2.1 is

Mk (ρ) ∼=

∞
∑

m=1

H0
(

(Ek− 1
2

(ρ⊗ρ∨
m ) ·E 1

2
(ρm))⊗ρ

)

.

When evaluating this isomorphism, the invariants that occur are

H0
(

ρ∨
⊗ (ρ⊗ρ∨

m )⊗ρm

)

. (5.4)

But Williams successfully avoids the calculation of invariants altogether. He thus skips the most

time consuming part of Algorithm 1. Specifically, his results employ canonical elements idm in (5.4).

We view them as homomorphisms from modular forms of arithmetic type ρ⊗ρ∨
m ⊗ρm to modular

forms of type ρ. Then Williams’s result can be rephrased as:

Mk (ρ) =
∑

m

idm

(

Ek− 1
2

(ρ⊗ρ∨
m )⊗E 1

2
(ρm )

)

. (5.5)

This explains the superior performance of Williams’s implementation.
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