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Toulouse, France

Francis Filbet
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Abstract. We propose and study a fully discrete finite volume scheme for the Vlasov-Fokker-Planck equa-
tion written as an hyperbolic system using Hermite polynomials in velocity. This approach naturally pre-
serves the stationary solution and the weighted L2 relative entropy. Then, we adapt the arguments developed
in [12] based the hypocoercivity method to get quantitative estimates on the convergence to equilibrium of
the discrete solution. Finally, we prove that in the diffusive limit, the scheme is asymptotic preserving with
respect to both the time variable and the scaling parameter at play.
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1. Introduction

The Vlasov-Fokker-Planck equation is the kinetic description of the Brownian motion of a large system
of charged particles under the effect of an electric field. For example, in electrostatic plasma, where the
Coulomb force are taken into account, the time evolution of the electron distribution function f solves the
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Vlasov-Poisson-Fokker-Planck system, under the action of a self-consistent potential Φ:
∂f

∂t
+ v · ∇xf +

qe
me

E · ∇vf =
1

τe
divv (vf + T0∇vf) ,

−ε0∆Φ = qe

∫
R3

fdv,

where ε0 is the vacuum permittivity, qe and me are elementary charge and mass of the electrons, whereas
τe is the relaxation time due to the collisions of the particles with the surrounding bath.

Considering ε > 0 as the ratio between the mean free path of particles and the length scale of observation,
it allows to identify different regimes and the Vlasov equation may be written in a adimensional form

(1.1) ε
∂f

∂t
+ v · ∇xf + E · ∇vf =

ε

τ(ε)
divv (vf + T0∇vf) ,

Our main purpose here is to build and analyse a numerical scheme able to capture two regimes of interest
for equation (1.1), in a linear framework: the long time behavior t→∞ and the diffusive regime ε→ 0. In
various situations, the scaling parameters at play may be non homogeneous across the system leading to
intricate situations, where both processes may coexist. Thus, we aim at designing a scheme robust enough
to capture simultaneously these different behaviors.

More precisely, we consider the one dimensional Vlasov-Fokker-Planck equation with periodic boundary
conditions in space, which reads

(1.2) ∂tf +
1

ε
(v ∂xf + E ∂vf) =

1

τ(ε)
∂v (v f + T0 ∂vf) ,

with t ≥ 0, position x ∈ T and velocity v ∈ R, whereas the electric field derives from a potential Φ such
that E = −∂xΦ, with the following regularity assumption

(1.3) Φ ∈W 2,∞ (T) .

We also define the density ρ by integrating the distribution function in velocity,

(1.4) ρ(t, x) =

∫
R
f(t, x, v) dv.

It is worth to mention that there are already several works on preserving large-time behaviors of solutions
to the Fokker-Planck equation or related kinetic models. On the one hand, a fully discrete finite difference
scheme for the homogeneous Fokker-Planck equation has been proposed in the pioneering work of Chang
and Cooper [9]. This scheme preserves the stationary solution and the entropy decay of the numerical
solution. On the other hand, finite volume schemes preserving the exponential trend to equilibrium have
been studied for non-linear convection-diffusion equations (see for example [2, 6, 7, 19]). More recently, in
[27], the authors investigate the question of describing correctly the equilibrium state of non-linear diffusion
and kinetic models for high order schemes. Let us also mention some works on boundary value problems
[14, 8] where non-homogeneous Dirichlet boundary conditions are dealt with.

In the case of space non homogeneous kinetic equations, the convergence to equilibrium becomes tricky
because of the lack of coercivity since dissipation occurs only in the velocity variable whereas transport acts
in the space variable. Therefore, only few results are available and a better understanding of hypocoercive
structures at the discrete level is challenging. Let us mention a first rigorous work in this direction on the
Kolmogorov equation [28, 17, 18]. In [17], a time-splitting scheme is applied and it is shown that solutions
decay polynomially in time. In [28, 18], a different approach has been used, based on the work of Hérau
[20] and Villani [31], for finite difference and a finite element schemes. Later, Dujardin, Hérau and Lafitte
[13] studied a finite difference scheme for the kinetic Fokker-Planck equation. Finally, in a more recent
work [5], the authors established a discrete hypocoercivity framework based on the continuous approach
provided in [12]. It is based on a modified discrete entropy, equivalent to a weighted L2 norm involving
macroscopic quantities and the authors show quantitative estimates on the numerical solution for large
time and in the limit ε→ 0.

The present contribution can be considered as a continuation of this latter work in order to discretize
the kinetic Fokker-Planck equation with an applied force field. On the one hand, we consider the case
where the interactions associated to collisions and electrostatic effects have the same magnitude, that is,
τ(ε) ∼ ε, hence the limit t/ε → +∞ corresponds to the long time behavior of equation (1.2). In this
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regime, the distribution function f relaxes towards the stationary solution to the Vlasov-Fokker-Planck
equation ρ∞M, where the Maxwellian M is given by

M(v) =
1√

2π T0
exp

(
− |v|

2

2T0

)
,

whereas the density ρ∞ is determined by

(1.5) ρ∞ = c0 exp

(
− Φ

T0

)
,

where the constant c0 is fixed by the conservation of mass, that is,∫
T
ρ∞ dx =

∫∫
T×R

f0(x, v) dvdx .

Thus, we set f∞ the stationary state of (1.2), defined as

f∞(x, v) = ρ∞(x)M(v)

and we expect that f → f∞ as t/ε→ +∞.

On the other hand, the diffusive regime corresponds to a frontier where collisions dominate but still
not enough to cancel completely the electrostatic effects. This situation occurs as ε → 0 in the case
where τ(ε) ∼ τ0 ε

2, for some τ0 > 0. Due to collisions, the distribution of velocities also relaxes towards
a Maxwellian equilibrium. However, in this case, the spatial distribution converges to a time dependent
distribution ρ whose dynamics are driven by a drift-diffusion equation depending on the force field E.
Indeed, performing the change of variable x → x + τ0 ε v in (1.2) and integrating with respect to v, we
deduce that the quantity

π (t, x) =

∫
R
f (t, x− τ0 ε v, v) dv ,

solves the following equation

∂t π + τ0 ∂x

(∫
R
E f (t, x− τ0 ε v, v) dv − T0 ∂x π

)
= 0 .

According to its definition, π verifies: ρ ∼ π in the limit ε → 0. Therefore, we may formally replace π
with ρ and ε with 0 in the latter equation. This yields

f(t, x, v) −→
ε→0

ρτ0(t, x)M(v) ,

where ρτ0 solves

(1.6) ∂tρτ0 + τ0 ∂x (E ρτ0 − T0 ∂x ρτ0) = 0 .

To be noted that this regime is an intermediate situation which contains more information than the long
time asymptotic since we have ρ→ ρ∞ by taking either t→ +∞ or τ0 → +∞.

At the discrete level, Asymptotic-Preserving schemes have been developed to capture in a discrete setting
the diffusion limit, so that in the limit ε → 0, the numerical discretization converges to the macroscopic
model (see for instance [23, 26, 22, 25] on finite difference and finite volume schemes and [11, 10] on particle
methods).

In the present article, our aim is to design a numerical scheme which is able to capture these two regimes
but also all the intermediate situations where ε2 . τ(ε) . ε. More precisely, we suppose that

(1.7) sup
ε>0

τ(ε)

ε
≤ τ0 ∈ (0 , +∞) .

and distinguish two cases on τ(ε) :

(i) either the diffusive regime assumption

(1.8)
τ(ε)

ε2
−→
ε→0

τ0 < +∞ ,

where collisional effects strongly dominate;
3



(ii) or the intermediate regime assumption

(1.9)
τ(ε)

ε2
−→
ε→0

+∞ ,

which may for instance correspond to τ(ε) = εβ, with 1 ≤ β < 2. It describes all the intermediate
situations between long time and diffusive regime.

The starting point of our analysis is the following estimate, obtained multiplying equation (1.2) by
f / f∞, and balancing the transport term with the source term corresponding to the electric field thanks
to the weight f−1

∞

(1.10)
1

2

d

dt

∫
Td×Rd

|f − f∞|2 f−1
∞ dv dx +

T0

τ(ε)

∫
T×R

∣∣∣∣∂v ( f

f∞

)∣∣∣∣2 f∞ dv dx = 0 .

This estimate is important since it yields a L2 stability result on the solution to the Vlasov-Fokker-Planck
equation (1.2).

Our purpose is to design a numerical scheme for which such estimate occurs. To this aim, we split our
approach in two steps: we apply a spectral decomposition in velocity of f based on Hermite decomposition
and we apply a structure preserving finite volume scheme for the space discretization. In the next section
(Section 2), we provide explicit convergence rates for the continuous model written in the Hermite basis (see
Theorems 2.1 and 2.2). This first step allows us to present the general strategy and to highlight the main
properties of the transport operator in order to design suitable numerical scheme. Therefore, in Section
3 we adapt these latter results without any loss to the fully discrete setting using a structure preserving
finite volume scheme and an implicit Euler scheme for the time discretization (see Theorems 3.1 and 3.2).
The variety of situations that we aim to cover may lead to various and intricate behaviors. Therefore, we
successfully put great efforts into providing results which are uniform with respect to all parameters at
play: time t, scaling parameters (ε, τ0) and eventually the numerical discretization. The result is worth
the pain, since we propose in the Section 4 various simulations, in which we are able to capture, at low
computational cost, a rich variety of situations.

2. Hermite’s decomposition for the velocity variable

The purpose of this section is to present a formulation of the Vlasov-Fokker-Planck equation (1.2) based
on Hermite polynomial and to provide quantitative results on f when ε→ 0 and t→ +∞. These results are
identical to the ones obtained in the continuous case except that there are formulated on the corresponding
Hermite’s coefficients solution to a linear hyperbolic system. This formulation is well adapted to prepare
the fully discrete setting in Section 3.
We first use Hermite polynomials in the velocity variable and write the Vlasov-Fokker-Planck equation
(1.2) as an infinite hyperbolic system for the Hermite coefficients depending only on time and space. The
idea is to apply a Galerkin method only keeping a small finite set of orthogonal polynomials rather than
discretizing the distribution function in velocity [1, 24]. The merit to use orthogonal basis like the so-called
scaled Hermite basis has been shown in [21, 30, 29] or more recently [16, 4] for the Vlasov-Poisson system.
In this context the family of Hermite’s functions (Ψk)k∈N defined as

Ψk(v) = Hk

(
v√
T0

)
M(v) ,

constitutes an orthonormal system for the inverse Gaussian weight, that is,∫
R

Ψk(v) Ψl(v)M−1(v)dv = δk,l .

In the latter definition, (Hk)k∈N stands for the family of Hermite polynomials defined recursively as follows
H−1 = 0, H0 = 1 and

ξ Hk(ξ) =
√
kHk−1(ξ) +

√
k + 1Hk+1(ξ) , ∀ k ≥ 0 .

Let us also point out that Hermite’s polynomials verify the following relation

H ′k(ξ) =
√
kHk−1(ξ) , ∀ k ≥ 0 .
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Taking advantage of the latter relations, one can see why Hermite’s functions arise naturally when studying
the Vlasov-Poisson-Fokker-Planck model, especially in the diffusive regime, as they constitute an orthonor-
mal basis which diagonalizes the Fokker-Planck operator:

∂v [ vΨk + T0 ∂v Ψk ] = − kΨk .

Therefore, we consider the decomposition of f into its components C = (Ck)k∈N in the Hermite basis

(2.1) f (t, x, v) =
∑
k∈N

Ck (t, x) Ψk(v) .

It’s worth to mention that we also may consider a truncated series neglecting high order coefficient in order
to construct a spectrally accurate approximation of f in the velocity variable.

As we have shown before, Hermite’s decomposition with respect to the velocity variable is a suitable
choice in our setting. When it comes to the space variable, we see from estimate (1.10) that the natural
functional framework here is the L2 space with weight ρ−1

∞ . Unfortunately, it is not very well adapted to the
space discretization since it may generate additional spurious terms difficult to control when dealing with
discrete integration by part. We bypass this difficulty by integrating the weight in the quantity of interest:
instead of working directly with f , we consider the quantity f /

√
ρ∞ in order to get a well-balanced scheme

in the same spirit to what has been already done in [8, 14] for well-balanced finite volume schemes. More
precisely, we set

Dk :=
Ck√
ρ∞

in (2.1), and inject this ansatz in (1.2). Using that ρ∞E = T0 ∂xρ∞, we get that D = (Dk)k∈N satisfies
the following system

(2.2)


∂tDk +

1

ε

(√
kADk−1 −

√
k + 1A?Dk+1

)
= − k

τ(ε)
Dk ,

Dk(t = 0) = D0,ε
k ,

where operators A and A? are given by
Au = +

√
T0 ∂xu −

E

2
√
T0
u ,

A? u = −
√
T0 ∂xu −

E

2
√
T0
u .

In this framework, the equilibrium D∞ to (2.2) is given by

(2.3) D∞,k =

{ √
ρ∞, if k = 0 ,

0, else ,

and estimate (1.10) simply rewrites

(2.4)
1

2

d

dt
‖D(t)−D∞‖2L2 +

1

τ(ε)

∑
k∈N?

k ‖Dk(t)‖2L2(T) = 0 ,

where ‖ · ‖L2 stands for the overall L2-norm with no weight

‖D‖2L2 =
∑
k∈N
‖Dk‖2L2(T) .

On top of that, the limit of the diffusive regime is given by Dτ0 = (Dτ0,k)k∈N defined as follows

(2.5) Dτ0,k =

 Dτ0,0, if k = 0 ,

0, else ,

where the first Hermite coefficient Dτ0,0 solves the following drift-diffusion equation

(2.6) ∂tDτ0,0 + τ0A?ADτ0,0 = 0 ,

which is obtained substituting ρτ0 with Dτ0,0
√
ρ∞ in equation (1.6).
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To conclude this section, we introduce some additional norms which arise naturally along our analysis.
In Section 2.3, we consider the following H−1 norm defined on the L2 subspace orthogonal to

√
ρ∞: for all

g ∈ L2 (T) which meets the condition

(2.7)

∫
T
g
√
ρ∞ dx = 0 ,

we set

‖g‖H−1 = ‖Au‖L2(T) ,

where u solves the following elliptic equation

(2.8)


A?Au = g ,∫
T
u
√
ρ∞ dx = 0 .

The latter equation admits a unique solution in H2 (T) for any data g ∈ L2 (T) that meets the compatibility
condition (2.7). This well-posedness result crucially relies on the Poincaré inequality (2.18).

In Section 2.3, we use the following H1 norm, defined for all D = (Dk)k∈N as follows

‖BD‖2L2 =
∑
k∈N
‖BkDk‖2L2(T) ,

where the family of differential operator B = (Bk)k≥ 0 is defined as follows

(2.9) Bk =

{ A , if k = 0 ,

A?, else .

To end with, we introduce the notation D⊥ = (D⊥,k)k∈N, which corresponds to the Hermite coefficients
of f − ρM, that is

(2.10) D⊥,k =

 0, if k = 0 ,

Dk, else ,

so that

‖D⊥‖L2 = ‖f − ρM‖L2(f−1
∞ ).

2.1. Main results. In this section, we present two results which aim at describing the dynamics of (1.2)
in various regimes ranging from long time behavior to diffusive limit. We aim for result which capture
simultaneously the limits t→ +∞ and ε→ 0, in order to lay the groundworks for our upcoming numerical
analysis, in which we will build a scheme robust enough so that it captures all these situations.
Our first main result tackles the long time behavior of the solution D = (Dk)k∈N to (1.2). It is uniform
with respect ε and covers all the regimes of interests since we only impose assumption (1.7) on the scaling
parameter τ(ε). This result is the first step towards its discrete analog, Theorem 3.1

Theorem 2.1. Suppose that condition (1.7) on τ(ε) is satisfied and let D = (Dk)k∈N be the solution to
(2.2) with an initial datum D0,ε. There exists some positive constant C depending only on Φ and T0 such
that

(i) under the condition ‖D(0)‖L2 < +∞, it holds for all times t ≥ 0

‖D(t) − D∞‖L2 ≤
√

3 ‖D(0) − D∞‖L2 exp

(
−τ(ε)

ε2
κ t

)
;

(ii) under the condition ‖BD(0)‖L2 + ‖D(0)‖L2 < +∞, it holds for all times t ≥ 0

‖BD(t)‖L2 ≤
√

3 (C (τ0 + 1) ‖D(0) − D∞‖L2 + ‖BD(0)‖L2) exp

(
−τ(ε)

ε2
κ t

)
;

where κ > 0 is given by

κ =
1

C (τ2
0 + 1)

.
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The proof of this result is provided in Section 2.3. The main difficulty here consists in proving the con-
vergence of the first coefficient D0 in the Hermite decomposition of f towards the equilibrium

√
ρ∞. We

adapt hypocoercivity methods developed in [31, 12] to the framework of Hermite decomposition. Instead
of estimating directly the quantities of interest, we introduce modified entropy functionnals (see (2.20) and
(2.27)), in order to recover dissipation and thus a convergence rate on D0. Then, the second item tackles
the convergence in a H1 setting. Though a bit more technical, this second convergence result contains
no main additional difficulty in comparison to the L2 convergence result. Actually this latter result is
essentially motivated by the analysis of the regime ε→ 0 presented below.

This leads us to our second main result, which describes the behavior of the system as ε vanishes. We
distinguish the diffusive regime, which corresponds to the case where τ(ε) satisfies (1.8) and the intermediate
situations between long time and diffusive regime where τ(ε) satisfies (1.9). We will adapt this result into
the fully discrete setting in Theorem 3.2

Theorem 2.2. Suppose that τ(ε) meets assumption (1.7). For all positive ε, consider D = (Dk)k∈N the
solution to (2.2) with an initial datum D(0) such that

‖D(0)‖2H1 := ‖BD(0)‖2L2 + ‖D(0)‖2L2 < +∞ .

The following statements hold true uniformly with respect to ε

(i) suppose that τ(ε) satisfies (1.8), that is τ(ε) ∼ τ0 ε
2 and for simplicity, suppose

(2.11)

∣∣∣∣ τ(ε)

τ0 ε2
− 1

∣∣∣∣ ≤ 1

2
, ∀ ε > 0

and consider Dτ0 = (Dτ0,k)k∈N given by (2.5). On the one hand, it holds for all time t ∈ R+

‖D⊥(t)‖L2 ≤ ‖D⊥(0)‖L2 e
−t/(4τ0ε2) + τ0 εC(τ0 + 1) ‖D(0)−D∞‖H1 e

−τ0 κ t ,

where D⊥ is given in (2.10); on the other hand, it holds

‖D0(t)−Dτ0,0(t)‖H−1 ≤C
(
‖D0(0)−Dτ0,0(0)‖H−1 + ε τ0 (τ3

0 + 1) ‖D(0)−D∞‖H1

)
e−τ0 κ t

+C

∣∣∣∣τ0ε
2

τ(ε)
− 1

∣∣∣∣ ‖Dτ0(0)−D∞‖L2 e
−τ0κ t ;

(ii) suppose that τ(ε) satisfies (1.9), that is τ(ε)/ε2 → +∞ as ε vanishes. Then it holds for all time
t ∈ R+

‖D⊥(t)‖L2 ≤ ‖D⊥(0)‖L2 e
−t/(2τ(ε)) +

τ(ε)

ε
C(τ0 + 1) ‖D(0)−D∞‖H1 e

− τ(ε)
ε2

κ t ,

as well as

‖D0(t)−D∞,0‖H−1 ≤ C

(
‖D0(0)−D∞,0‖H−1 +

τ(ε)

ε
(τ3

0 + 1) ‖D(0)−D∞‖H1

)
e−

τ(ε)

ε2
κ t .

In the latter estimate, constant C only depends on Φ and T0 and exponent κ is given by

κ =
1

C (τ2
0 + 1)

.

The proof of this result is provided in Section 2.4, it showcases two major difficulties. The first one
is similar to the one encountered in Theorem 2.1; instead of estimating directly the H−1 norm between
the first Hermite coefficient D0 and its limit, we find the right intermediate quantity in order to recover
dissipation (see (2.29)). However, unlike in the case of Theorem 2.1, we crucially need to incorporate
derivatives of the solution D to (1.2) in this quantity in order to obtain some convergence rates. This
leads us to the second difficulty, which is that we propagate some regularity. Furthermore, since Theorem
2.2 describes simultaneously the large time behavior and the asymptotic ε → 0, it is not sufficient to
propagate derivative globally nor uniformly with respect to time, we need instead to prove a convergence
result in regular norms. This motivates item (ii) in Theorem 2.1, which will play a key role in our proof.
This regularity issue explains why we prove H−1 convergence with respect to the first Hermite coefficient
whereas we achieve strong L2 convergence with respect to other coefficients. To be noted that strong L2

convergence for the first coefficient may be achieved with our method at the price of loosing pointwise
estimate with respect to time and thus considering integrated norms with respect to the time variable.
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Theorems 2.1 and 2.2 fully answer their purpose, which is to describe the dynamics of (1.2) in the regime
of interests, uniformly with respect to all parameters at play here.

2.2. Preliminary results. Let us first emphasize the important properties satisfied by A, which we will
need to recover later on, in the discrete setting. First, A? is its dual operator in L2(T), indeed for all u,
v ∈ H1(T) it holds

(2.12) 〈A?u, v〉 = 〈Av, u〉 ,
where 〈., .〉 denotes the classical scalar product in L2(T). Furthermore, we have D∞,0 lies in the kernel of
A, indeed

(2.13) AD∞,0 = 0 ;

in this setting, conservation of mass is ensured by the following property

(2.14)

∫
T
A? u√ρ∞ dx = 0 ,

indeed, considering equation (2.2) with index k = 0 integrated over T and applying the latter relation with
u = D1, we obtain

d

dt

∫
T
D0(t)

√
ρ∞ dx = 0 ,

and therefore

(2.15)

∫
T
D0(t)

√
ρ∞ dx =

∫
T
D∞,0

√
ρ∞ dx ;

we also point out that since √
T0 (A+A?) = ∂xΦ ,

it holds

(2.16) ‖ (A+A?)u‖L2 ≤
1√
T0
‖Φ‖W 1,∞‖u‖L2 ,

on top of that, operators A and A? do not commute and we have

[A, A?] = AA? −A?A = ∂xxΦ ,

which yields

(2.17) ‖ [A, A?]u‖L2 ≤ ‖Φ‖W 2,∞ ‖u‖L2 ;

the last key property verified by operator A is the following Poincaré-Wirtinger inequality: under the
compatibility condition (2.7) on u ∈ H1 (T) it holds

(2.18) ‖u‖L2 ≤ CP
√
T0

(∫
T

∣∣∣∣∂x( u
√
ρ∞

)∣∣∣∣2 ρ∞ dx

)1/2

= CP ‖Au‖L2 ,

for some positive constant CP depending only on the potential Φ and T0. A proof of this result will be
given in the discrete setting (see Lemma 3.3), we do not detail it in the continuous case since it is not our
main interest here.

2.3. Proof of Theorem 2.1. It is worth to mention that estimate (2.4) itself is not sufficient to conclude
on the rate of convergence of D to the equilibrium D∞, since there is no dissipation with respect to the
zero-th Hermite coefficient D0. Therefore, it does not provide quantitative estimates when it comes to its
convergence towards D∞,0. Recovering this dissipation is the key feature of hypocoercivity [31, 12]. In our
setting it is done by combining the equations on D0 and D1, to remove stiff terms

(2.19) ∂t

(
D0 +

τ(ε)

ε
A?D1

)
+
τ(ε)

ε2

(
A?AD0 −

√
2 (A?)2D2

)
= 0 .

To prove quantitative estimates on the solution to (2.2), we therefore introduce the ”modified entropy
functional” [12, 31]: for any α0 > 0, which will be specified later, we define H0 as

(2.20) H0[D|D∞] =
1

2
‖D(t)−D∞‖2L2 + α0

〈
τ(ε)

ε
A?D1, u

ε

〉
,

8



where uε is the particular solution to equation (2.8) with source term is g = D0 − D∞,0. To be noted
that g = D0 − D∞,0 fullfils the compatibility condition (2.7), thanks to the conservation of mass property
(2.14).

The first step consists in proving some intermediate results on the solutions uε to (2.8)

Lemma 2.3. Consider any g ∈ L2(T) which meets condition (2.7) and u the corresponding solution to
(2.8). Then, u satisfies the following estimate

(2.21) ‖Au‖L2 ≤ CP ‖g‖L2 ,

and

(2.22) ‖A2 u‖L2 ≤
(

1 +
CP√
T0
‖Φ‖W 1,∞

)
‖g‖L2 ,

where CP is the Poincaré constant in (2.18).
Moreover, considering now the solution D to (2.2) and uε the solution to (2.8) with source term g =
D0 − D∞,0, it holds for all time t ≥ 0

(2.23) ε ‖A ∂tuε(t)‖L2 ≤ ‖D1(t)‖L2 .

Proof. The first estimate is obtained by testing the elliptic equation (2.8) against u and applying (2.12)

‖Au‖2L2 ≤ ‖g‖L2 ‖u‖L2 ,

hence the Wirtinger-Poincaré inequality (2.18) yields,

‖Au‖L2 ≤ CP ‖g‖L2 .

For the second estimate, we rewrite A2u as follows

A2 u = −A?Au + (A+A?)Au ,
then we replace A?Au according to equation (2.8), take the L2 norm on both sides of the relation and
apply in turn (2.16) to estimate operator A+A? and item (2.21) to estimate the norm of Au, it yields

‖A2 u‖L2 ≤
(

1 +
CP√
T0
‖Φ‖W 1,∞

)
‖g‖L2 .

For the third estimate we consider now that D is solution to (2.2) and first take the time derivative of the
elliptic equation (2.8) and use the equation (2.2) on D0 to get

ε ∂t(A?Auε) = ε ∂t(D0 −D∞,0) = −A?D1 .

Then multiply by ∂tu
ε and use (2.12) to get

‖∂tAuε‖2L2 = −1

ε
〈D1, ∂tAuε〉 ≤

1

ε
‖D1‖L2 ‖∂tAuε‖L2 .

�

Thanks to the latter result we now prove that for small enough α0 > 0, the square root of the modified
entropy is equivalent to the L2 norm of D −D∞
Lemma 2.4. Suppose that condition (1.7) on τ(ε) is satisfied. Then for all α0 ∈ (0, α0), with α0 =
1/(4 τ0CP ) and D ∈ L2(T) such that D0 −D∞ satisfies the compatibility condition (2.7), one has

(2.24) ‖D −D∞‖2L2 ≤ 4H0[D|D∞] ≤ 3 ‖D −D∞‖2L2 .

Proof. We estimate the additional term in the expression of H0 by applying the duality formula (2.12) and
then Cauchy-Schwarz inequality

| 〈A?D1, u
ε〉 | = | 〈D1,Auε〉L2 | ≤ ‖D1‖L2 ‖Auε‖L2 .

Then, we apply item (2.21) of Lemma 2.3 with uε and g = D0 − D∞,0 and upper bound the norm of Auε
accordingly

‖D1‖L2 ‖Auε‖L2 ≤ CP ‖D −D∞‖2L2 ,

hence, applying assumption (1.7), we deduce

α0
τ(ε)

ε
| 〈A?D1, u

ε〉 | ≤ α0 τ0CP ‖D −D∞‖2L2 .
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Choosing α0 = 1/(4 τ0CP ), the result follows for α0 ∈ (0, α0). �

Relying on the previous lemmas, we are now able to carry out the proof of the first item (i) of Theorem
2.1. We compute the time derivative of the modified relative entropy and split into three terms

d

dt
H0[D(t)|D∞] = I1(t) + α0 I2(t) + α0 I3(t) ,

where the first one corresponds to the dissipation of the L2 norm (2.4),

I1 = − 1

τ(ε)

∑
k∈N

k ‖Dk‖2L2 ,

whereas the other ones correspond to the additional term of the modified relative entropy,
I2 := −τ(ε)

ε2

〈
A?A (D0 −D∞,0) −

√
2 (A?)2D2, u

ε
〉
− 1

ε
〈A?D1, u

ε〉 ,

I3 := +
τ(ε)

ε
〈A?D1, ∂tu

ε〉 .

On the one hand, the term I2 gives the expected dissipation on (D0 − D∞,0) since uε solves (2.8) with
source term (D0−D∞,0). On the other hand we get some additional terms which can be estimated thanks
to (2.21) and (2.22) in Lemma 2.3, it yields,

I2 ≤ −τ(ε)

ε2
‖D0 −D∞,0‖2L2 +

τ(ε)

ε2

√
2

(
1 +

CP√
T0
‖Φ‖W 1,∞

)
‖D0 −D∞,0‖L2‖D2‖L2

+
CP
ε
‖D0 −D∞,0‖L2 ‖D1‖L2 ,

≤ −τ(ε)

ε2
(1 − C η) ‖D0 −D∞,0‖2L2 +

C

2 η

(
τ(ε)

ε2
‖D2‖2L2 +

1

τ(ε)
‖D1‖2L2

)
,

for any positive η and for some positive constant C depending only on T0 and Φ. The term I3 is estimated
directly by applying (2.23) of Lemma 2.3,

I3 ≤
τ(ε)

ε2
‖D1‖2L2 .

From these latter estimates and taking η = 1/(2C), we get the following inequality

d

dt
H0[D|D∞]

≤ −τ(ε)

ε2

(
α0

2
‖D0 −D∞,0‖2L2 +

(
ε2

τ(ε)2
− C2

(
1 +

ε2

τ(ε)2

)
α0

) ∑
k∈N

k ‖Dk‖2L2

)
.

Under the following condition

α0 ≤ argmaxα>0 min

(
α

2
,

ε2

τ(ε)2
− C2

(
1 +

ε2

τ(ε)2

)
α

)
,

which, according to assumption (1.7) on τ(ε), is fulfilled as long as

α0 ≤
1

C (τ2
0 + 1)

,

for some constant C depending only on Φ and T0, and taking κ0 such that 3κ0/4 = α0/2, we derive the
following estimate

d

dt
H0[D|D∞] +

τ(ε)

ε2

3κ0

4
‖D −D∞‖2L2 ≤ 0 .

Then applying Lemma 2.4 and taking α0 ≤ α0, we deduce

d

dt
H0[D|D∞] +

τ(ε)

ε2
κ0H0[D|D∞] ≤ 0 ,

which yields after applying Gronwall’s lemma, for any t ≥ 0,

H0[D(t)|D∞] ≤ H0[D(0)|D∞] exp

(
−τ(ε)

ε2
κ0 t

)
.
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We conclude this proof by applying Lemma 2.4 in order to substitute H0 with the L2 norm of D − D∞ in
the latter estimate.

We now turn to the proof of the second item (ii) of Theorem 2.1. To estimate the norm of BD, we
apply the operator Bk to (2.2) and next multiply by BkDk, integrate with respect to x ∈ T and sum over
k ∈ N, it yields

1

2

d

dt
‖BD(t)‖2L2 = J1(t) ,

where J1 is defined as follows

J1 =
∑
k∈N?

− k

τ(ε)
‖BkDk‖2L2 +

√
k

ε
(〈Bk−1A?Dk, Bk−1Dk−1〉 − 〈BkADk−1, BkDk〉) ,

where we use that AD∞,0 = 0 and D∞,k = 0 for k > 0. Hence applying an integration by part and from
the specific choice (2.9) of B, we have

(2.25) J1 = − 1

τ(ε)

∑
k∈N?

k ‖BkDk‖2L2 −
1

ε

∑
k≥2

√
k 〈 [A?,A]Dk−1, A?Dk〉 .

Applying Young inequality and property (2.17) on the commutator [A?,A], we get that

J1 ≤
1

τ(ε)

(η
2
‖Φ‖2W 2,∞ − 1

) ∑
k∈N?

k ‖BkDk‖2L2 +
1

2 η

τ(ε)

ε2

∑
k≥1

‖Dk‖2L2 .

Therefore, choosing η ≤ 1/‖Φ‖2W 2,∞ , it yields

(2.26)
1

2

d

dt
‖BD‖2L2 +

1

2 τ(ε)

∑
k∈N?

k ‖BkDk‖2L2 ≤ C
τ(ε)

ε2

∑
k≥1

‖Dk‖2L2 .

Again since there is no dissipation on the zero-th Hermite coefficient of B0D0, we proceed as for the L2

estimate and introduce a correction H1 given by

(2.27) H1[D|D∞] =
1

2
‖BD‖2L2 + α1

〈
τ(ε)

ε
AD0, D1

〉
,

where α1 has to be determined. First, we point out that for small enough α1 > 0, the modified entropy
H1 is controlled by the squares of the L2 norms of D −D∞ and BD.

Lemma 2.5. Suppose that condition (1.7) on τ(ε) is satisfied. Then for all α1 ∈ (0, α1), with α1 = 1/(2 τ0)
and D ∈ L2(T), one has

(2.28) ‖BD‖2L2 − ‖D −D∞‖2L2 ≤ 4H1[D|D∞] ≤ 3 ‖BD‖2L2 + ‖D −D∞‖2L2 .

Proof. The result is obtained applying the Young inequality to the additional term in the definition (2.27)
of H1 �

To complete the proof of the second item (ii) in Theorem 2.1, we compute the time derivative of the
modified relative entropy and split into two terms

d

dt
H1[D|D∞] = J1 + α1 J2 ,

where the first one corresponds to the dissipation of the L2 norm of B (D−D∞) for which we already have
an estimate (2.26), that is,

J1 ≤ −
1

2 τ(ε)

∑
k∈N?

k ‖BkDk‖2L2 + C
τ(ε)

ε2

∑
k≥1

‖Dk‖2L2 ,

whereas the other ones correspond to the additional term of the modified relative entropy,

J2 :=
τ(ε)

ε2

(
〈AA?D1, D1〉 − ‖AD0‖2L2 +

√
2 〈AD0, A?D2〉

)
− 1

ε
〈D1, AD0〉 .
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From (2.12) and (2.13) on the operators (A, A?), we have

1

ε
〈D1, AD0〉 =

〈
1

τ(ε)1/2
A?D1,

τ(ε)1/2

ε
(D0 −D∞,0)

〉
,

hence applying twice the Young inequality on the third term of the right hand side and on the latter term,
it yields

J2 ≤ −
τ(ε)

ε2

[
1

2
‖AD0‖2L2 −

(
1 +

ε2

τ(ε)2

) ∑
k∈N?

k ‖BkDk‖2L2 − ‖D0 −D∞,0‖2L2

]
.

Therefore, from these estimates, we get the following inequality

d

dt
H1[D|D∞] ≤ (C + α1)

τ(ε)

ε2
‖D0 −D∞,0‖2L2

− τ(ε)

2 ε2

[
α1 ‖AD0‖2L2 +

(
ε2

τ(ε)2
− 2α1

(
1 +

ε2

τ(ε)2

)) ∑
k∈N?

k ‖BkDk‖2L2

]
,

hence choosing α1

α1 ≤ argmaxα>0 min

(
α,

ε2

τ(ε)2
− 2α

(
1 +

ε2

τ(ε)2

))
=

1

2 + 3 τ(ε)2

ε2

,

which is verified under the following condition

α1 ≤
1

2 + 3 τ2
0

,

we get that
d

dt
H1[D|D∞] +

τ(ε)

ε2

α1

2
‖BD‖2L2 ≤ C

τ(ε)

ε2
‖D −D∞‖2L2 .

Furthermore, taking α1 ≤ 1/(2 τ0) and applying Lemma 2.5, we obtain

d

dt
H1[D|D∞] +

τ(ε)

ε2

2α1

3
H1[D|D∞] ≤ C

τ(ε)

ε2
‖D −D∞‖2L2 .

Then we set

κ1 = min

(
2α1

3
, κ0

)
and multiply the latter inequality by exp

(
τ(ε)
ε2

2α1
3 t
)

, integrate in time and apply the first item (i) of

Theorem 2.1 to estimate the right hand side, this yields

H1[D(t)|D∞] ≤
(
C
(
τ2

0 + 1
)
‖D(0) − D∞‖2L2 + H1[D(0)|D∞]

)
exp

(
−τ(ε)

ε2
κ1 t

)
.

We conclude this proof by substituting H1 with the norm of BD in the latter estimate according to Lemma
2.5.

2.4. Proof of Theorem 2.2. Once again, instead of estimating directly the H−1 norm of D0 −Dτ0 , we
introduce the following quantity, meant to recover dissipation on the zero-th Hermite coefficient

(2.29) E(t) =
1

2
‖A vε(t)‖2L2 ,

where vε(t) solves the elliptic equation (2.8) with source term given by

g(t) = D0(t) +
τ(ε)

ε
A?D1(t) − Dτ0,0(t) ,

where D0(t) and D1(t) are the first two components of the solution D(t) of (2.2) and Dτ0,0(t) is either the
unique solution to the convection-diffusion equation (2.6) when τ0 is finite or the stationary solution D∞,0
given by (2.3) when τ0 = ∞. The latter right hand side is motivated by equation (2.19) since it is given

by the difference between D0 + τ(ε)
ε A

?D1 and Dτ0,0. We point out that the latter source term meets the
compatibility condition (2.7) thanks to property (2.14), which ensures that A?D1(t) is orthogonal to

√
ρ∞

in L2 (T).
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Before proving the first item of Theorem 2.2, let us present some preliminary results. On the one hand,
the following Lemma ensures that E(t) is controlled by the squares of the L2 norm of BD(t) and the H−1

norm of D0(t)−Dτ0,0(t)

Lemma 2.6. We consider E(t) defined by (2.29). It holds uniformly with respect to ε

(2.30) E(t) ≤ ‖D0(t)−Dτ0,0(t)‖2H−1 + C2
P

τ(ε)2

ε2
‖BD(t)‖2L2 ,

and

(2.31)
1

4
‖D0(t)−Dτ0,0(t)‖2H−1 − C2

P

τ(ε)2

2 ε2
‖BD(t)‖2L2 ≤ E(t) .

Proof. Defining wε and uτ0 as the respective solutions to (2.8) with source term g = A?D1 and Dτ0,0 −
D∞,0, it holds

vε = uε − uτ0 +
τ(ε)

ε
wε .

We apply operator A to the latter relation, take the L2 norm, and apply the triangular inequality, it yields

√
2 E ≤ ‖A (uε − uτ0)‖L2 +

τ(ε)

ε
‖Awε‖L2 ,

and

‖A (uε − uτ0)‖L2 −
τ(ε)

ε
‖Awε‖L2 ≤

√
2 E .

We estimate ‖Awε‖L2 applying (2.21) in Lemma 2.3 with source term g = A?D1, this yields

√
2 E ≤ ‖D0 −Dτ0,0‖H−1 +

τ(ε)

ε
CP ‖BD‖L2 ,

and

‖D0 −Dτ0,0‖H−1 −
τ(ε)

ε
CP ‖BD‖L2 ≤

√
2 E .

We obtain the result taking the square of the latter inequalities and applying Young’s inequality.
�

On the other hand, when τ0 is finite, we observe that the long time behavior of Dτ0,0 may be easily
investigated. Indeed, since AD∞,0 = 0, we have that Dτ0,0−D∞,0 also solves (2.6). Therefore, multiplying
(2.6) byDτ0,0−D∞,0, integrating over T and applying the Poincaré inequality (2.18), we obtain the following
estimate after applying Gronwall lemma

(2.32) ‖Dτ0(t)−D∞‖L2 ≤ ‖Dτ0(t)−D∞‖L2 exp

(
− τ0

C2
P

t

)
, ∀ t ∈ R+ .

We are now able to prove the first item (i) of Theorem 2.2, which treats the case where τ(ε) ∼ τ0 ε
2, when

ε→ 0 where τ0 ∈ R+
? . To derive the first estimate in item (i) of Theorem 2.2, our starting point is the L2

estimate (2.4) which ensures

1

2

d

dt
‖D⊥(t)‖2L2 +

1

τ(ε)
‖D⊥(t)‖2L2 ≤ −1

2

d

dt
‖D0(t)−D∞,0‖2L2

≤ −1

ε
〈A?D1(t), D0(t)−D∞,0〉

= −1

ε
〈D1(t), A (D0(t)−D∞,0)〉 ,

hence it gives from the Young inequality

d

dt
‖D⊥(t)‖2L2 +

1

τ(ε)
‖D⊥(t)‖2L2 ≤

τ(ε)

ε2
‖BD(t)‖2L2 .
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We bound ‖BD(t)‖2L2 applying item (ii) of Theorem 2.1. After multiplying the latter estimate by et/τ(ε)

and integrating with respect to time, it yields

‖D⊥(t)‖2L2 ≤ ‖D⊥(0)‖2L2 exp

(
− t

τ(ε)

)
+

(
C(τ2

0 + 1) ‖D(0)−D∞‖2L2 + ‖BD(0)‖2L2

) 3 τ(ε)2

ε2 − κ τ(ε)2
exp

(
−τ(ε)

ε2
κ t

)
,

where C is a positive constant depending only on Φ and T0 and κ =
(
C(τ2

0 + 1)
)−1

. Then we apply
condition (1.7) on τ(ε), which ensures that taking C greater than 2 in the definition of κ, it holds 1/2 ≤
1− κ τ(ε)2/ε2 uniformly with respect to ε. Therefore, we deduce the following estimate, which yields the
first result in (i) of Theorem (2.1), after taking its square root and applying assumption (2.11) in order to
substitute τ(ε) with τ0 ε

2

‖D⊥(t)‖2L2 ≤ ‖D⊥(0)‖2L2 e
− t
τ(ε) + 6

(
C(τ2

0 + 1) ‖D(0)−D∞‖2L2 + ‖BD(0)‖2L2

) τ(ε)2

ε2
e−

τ(ε)

ε2
κ t .

We now prove the second result in item (i) of Theorem 2.2. To do so, we evaluate E observing that

dE
dt

=

〈
∂t

(
D0 +

τ(ε)

ε
A?D1 − Dτ0,0

)
, vε
〉
.

Therefore, relying on equations (2.19) and (2.6) we deduce

dE
dt

= − τ(ε)

ε2
‖D0 +

τ(ε)

ε
A?D1 −Dτ0,0‖2L2 + E1 + E2 + E3 ,

where 

E1 =

(
τ0 −

τ(ε)

ε2

)
〈A∗ADτ0,0 , v

ε〉 ,

E2 =
τ(ε)2

ε3
〈A∗AD1 , v

ε〉 ,

E3 =
√

2
τ(ε)

ε2

〈
(A∗)2D2 , v

ε
〉
.

We rewrite E1, E2 and E3 according to the following considerations: first, we notice that D∞,0 solves (2.13)
and therefore add D∞,0 to the left hand side of the bracket in E1, second we apply the duality formula
(2.12) in E1, E2 and E3 and then replace vε in E1 and E2 according to the relation

A?A vε = D0 +
τ(ε)

ε
A?D1 −Dτ0,0 .

Hence, we obtain 

E1 =

(
τ0 −

τ(ε)

ε2

) 〈
Dτ0,0 −D∞,0 , D0 +

τ(ε)

ε
A?D1 −Dτ0,0

〉
,

E2 =
τ(ε)2

ε3

〈
D1 , D0 +

τ(ε)

ε
A?D1 −Dτ0,0

〉
,

E3 =
√

2
τ(ε)

ε2

〈
D2 , A2 vε

〉
.

To estimate E1, we apply Young’s inequality, which yields

E1 ≤
η

2

τ(ε)

ε2
‖D0 +

τ(ε)

ε
A?D1 −Dτ0,0‖2L2 +

1

2η

ε2

τ(ε)

∣∣∣∣τ0 −
τ(ε)

ε2

∣∣∣∣2 ‖Dτ0 −D∞‖2L2 ,

for all positive η. To estimate E2, we apply Young’s inequality and then assumption (1.7) which ensures
that τ(ε)3/ε4 ≤

(
τ2

0 τ(ε)
)
/ε2, this gives

E2 ≤
η

2

τ(ε)

ε2
‖D0 +

τ(ε)

ε
A?D1 −Dτ0,0‖2L2 +

1

η

τ(ε)

ε2
τ2

0 ‖D⊥‖
2
L2 ,

for all positive η. To estimate E3, we apply Young’s inequality and then bound the norm of A2 vε by
applying item (2.22) in Lemma 2.3 with source term

g = D0 +
τ(ε)

ε
A?D1 −Dτ0,0 ,
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it yields

E3 ≤ η
τ(ε)

ε2
‖D0 +

τ(ε)

ε
A?D1 −Dτ0,0‖2L2 +

C

η

τ(ε)

ε2
‖D⊥‖2L2 ,

for some constant C depending only on Φ and T0. We gather the latter estimates, take η = 1/4 and apply
item (2.21) in Lemma 2.3, which ensures that

E ≤
C2
P

2
‖D0 +

τ(ε)

ε
A?D1 −Dτ0,0‖2L2 .

Therefore, we obtain

dE
dt

+
τ(ε)

C2
P ε

2
E ≤ C

τ(ε)

ε2

(
1 + τ2

0

)
‖D⊥‖2L2 + C

ε2

τ(ε)

∣∣∣∣τ0 −
τ(ε)

ε2

∣∣∣∣2 ‖Dτ0 −D∞‖2L2 ,

for some constant C depending only on Φ and T0. Then we multiply the latter estimate by exp

(
τ(ε)

C2
P ε

2
t

)
and integrate with respect to time. After applying (2.32) to estimate ‖Dτ0 −D∞‖L2 and the first result in
item (i) of Theorem 2.2 to estimate the norm of D⊥, it yields

E(t) ≤
(
E(0) + C

τ(ε)2

ε2
(τ6

0 + 1) ‖D(0)−D∞‖2H1

)
exp

(
−τ(ε)

ε2
κ t

)
+ C

∣∣∣∣τ0 ε
2

τ(ε)
− 1

∣∣∣∣2 ‖Dτ0(0)−D∞‖2L2

(
2 τ0 ε

2

τ(ε)
− 1

)−1

exp

(
−τ(ε)

ε2
κ t

)
.

To conclude, we substitute E(t) (resp. E(0)) in the latter estimate according to (2.31) (resp. (2.30)) in

Lemma 2.6 and then apply assumption (2.11) on τ(ε), which ensures

(
2 τ0 ε

2

τ(ε)
− 1

)−1

≤ 3, this yields

‖D0(t)−Dτ0,0(t)‖2H−1 ≤

C

(
‖D0(0)−Dτ0,0(0)‖2H−1 +

τ(ε)2

ε2
(τ6

0 + 1) ‖D(0)−D∞‖2H1

)
e−

τ(ε)

ε2
κ t +

C

∣∣∣∣τ0 ε
2

τ(ε)
− 1

∣∣∣∣2 ‖Dτ0(0)−D∞‖2L2 e
− τ(ε)

ε2
κ t .

We obtain the second estimate provided in (i) of Theorem 2.2 taking the square root in the latter estimate
and applying assumption (2.11) in order to substitute τ(ε) with τ0 ε

2.
To prove the second item (ii) of Theorem 2.2, we follow the same lines as the ones for item (i) replacing

Dτ0 by D∞ and observing that D∞ also solves the equation (2.6) since it is a stationary solution. Therefore,
computations are even simpler since the term E1 vanishes in this case. As a consequence the estimate
provided in item (ii) follows.

3. Finite volume discretization for the space variable

In this section we present a finite volume scheme for (2.2). Then we prove discrete hypocoercive estimates
on the discrete solution to investigate the long time behavior and the speed of convergence to the steady
state. Finally, we prove an asymptotic preserving property for the diffusive limit taking τ(ε) ∼ τ0 ε

2 with
error estimates with respect to ε. Thanks to the groundworks laid in the previous Section, we are able to
propose a scheme which describes all the variety of regimes that we aim to capture in this article.

3.1. Numerical scheme. For simplicity purposes, we consider the problem in one space dimension. It
will be straightforward to generalize this construction for Cartesian meshes in multidimensional case. In
a one-dimensional setting, we consider an interval (a, b) of R and for Nx ∈ N?, we introduce the set
J = {1, . . . , Nx} and a family of control volumes (Kj)j∈J such that Kj =

]
xj−1/2, xj+1/2

[
with xj the

middle of the intervall Kj and

a = x1/2 < x1 < x3/2 < ... < xj−1/2 < xj < xj+1/2 < ... < xNx < xNx+1/2 = b .

Let us set {
∆xj = xj+1/2 − xj−1/2, for j ∈ J ,

∆xi+1/2 = xj+1 − xj , for 1 ≤ j ≤ Nx − 1 .
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We also introduce the parameter h such that

h = max
j∈J

∆xj .

Let ∆t be the time step. We set tn = n∆t with n ∈ N. A time discretization of R+ is then given by the
increasing sequence of (tn)n∈N. In the sequel, we will denote by Dn

k the approximation of Dk(t
n), where

the index k represents the k-th mode of the Hermite decomposition, whereas Dnk,j is an approximation of
the mean value of Dk over the cell Kj at time tn.

First of all, the initial condition is discretized on each cell Kj by:

D0
k,j =

1

∆xj

∫
Kj

Dk(t = 0, x) dx, j ∈ J .

The finite volume scheme is obtained by integrating the equation (2.2) over each control volume Kj and
over each time step. Concerning the time discretization, we can choose any implicit method (backward
Euler, Implicit Runge-Kutta,...). Since in this paper we are interested in the spatial discretization, we will
only consider a backward Euler method afterwards. Let us now focus on the spatial discretization.

By integrating equation (2.2) on Kj for j ∈ J , we obtain the numerical scheme: for Dn
k = (Dnk,j)j∈J

(3.1)
Dn+1
k −Dn

k

∆t
+

1

ε

(√
kAhDn+1

k−1 −
√
k + 1A?hDn+1

k+1

)
= − k

τ(ε)
Dn+1
k ,

where Ah (resp. A?h) is an approximation of the operator A (resp. A?) given by

(3.2) Ah = (Aj)j∈J and A?h = (A?j )j∈J .

and where for D = (Dj)j∈J it holds

(3.3)


AjD = +

√
T0

(
Dj+1 −Dj−1

2∆xj
− Ej

2T0
Dj
)
, j ∈ J ,

A?jD = −
√
T0

(
Dj+1 −Dj−1

2∆xj
+

Ej
2T0
Dj
)
, j ∈ J ,

whereas the discrete electric field Ej is given by

(3.4) Ej = −Φj+1 − Φj−1

2∆xj
=

2T0√
ρ∞,j

√
ρ∞,j+1

−√ρ∞,j−1

2 ∆xj
,

where ρ∞,j is an approximation of the stationary density ρ∞ on the cell Kj . This latter formula is consistent

with the definition of
√
ρ∞ = c0 e

−Φ/(2T0) and the fact that

1

2T0
∂xΦ = − 1

√
ρ∞

∂x
√
ρ∞ .

This choice of discretization is motivated by preserving at the discrete level the key properties (2.12)-
(2.18). In the end, we propose the following approximation of the continuous solution f to (1.2)

fn(x, v) =
∑
k∈N

√
ρ∞(x)Dn

k (x) Ψk(v) ,

where for each k ≥ 0 and n ≥ 0, we define a piecewise constant function Dn
k from the numerical values

(Dnk,j)j∈J as

Dn
k (x) = Dnk,j , x ∈ Kj .

In this context the equilibrium D∞ is given by

(3.5) D∞,k =

{ √
ρ∞, if k = 0 ,

0, else ;

as for the limit in the diffusive regime Dn
τ0 = (Dn

τ0,k
)k∈N, it is given by

(3.6) Dn
τ0,k =

 Dn
τ0,0

, if k = 0 ,

0, else ,
16



where Dn
τ0,0

solves the following discrete version of equation (2.6)

(3.7)
Dn+1
τ0,0
−Dn

τ0,0

∆t
+ τ0A?hAhDn+1

τ0,0
= 0 .

We now introduce the norms we will work with in this section. We denote by 〈., .〉 the L2 scalar product
for any u = (uj)j∈J and v = (vj)j∈J ,

〈u, v〉 =
∑
j∈J

∆xj uj vj

and

‖u‖L2 =

∑
j∈J

∆xj u
2
j

1/2

.

As in the (2.7), we consider the following H−1 norm defined on the L2 subspace orthogonal to
√
ρ∞: for

all gh = (gj)j∈J which meets the condition

(3.8)
∑
j∈J

∆xj gj
√
ρ∞,j = 0 ,

we set

‖gh‖H−1 = ‖Auh‖L2(T) ,

where uh = (uj)j∈J is the solution to the discrete equivalent of equation (2.8)

(3.9)


(A?hAh)uh = g ,∑
j∈J

∆xj uj
√
ρ∞,j = 0 .

We also use the H1 norm, analog to the one given in (2.9), defined for all D = (Dk)k∈N as follows

‖BhD‖2L2 =
∑
k∈N
‖BkDk‖2L2 ,

where the family of discrete operator Bh = (Bh,k)k≥ 0 is given as follows

(3.10) Bh,k =

{ Ah , if k = 0 ,

A?h , else .

To conclude with this section, we take the same definition of D⊥ as in the continuous setting.

3.2. Main results. We can now release the two results that constitute the core of this article. Thanks to
our choice of discretization, they are an exact translation of their continuous analogs, Theorems 2.1 and
2.2, into the discrete setting, without any loss of accuracy nor uniformity with respect to the parameters
at play in our analysis. On top of that, the results are also uniform with respect to the discretization
parameters.

This first result is the continuous analog of Theorem 2.1, it ensures that our scheme has the same long
time behavior as the continuous model

Theorem 3.1. Suppose that condition (1.7) on τ(ε) is satisfied and Let Dn = (Dn
k )k∈N be the solution to

(3.1). The following statements hold true

(i) there exists some positive constant C0 depending only on Φ and T0 such that for all ε > 0 and all
n ≥ 0, we have

‖Dn − D∞‖L2 ≤
√

3
∥∥D0 − D∞

∥∥
L2

(
1 +

τ(ε)

ε2
κ0 ∆t

)−n/2
;

17



(ii) suppose in addition that the mesh is regular enough so that the quantity

(3.11) Rh = sup
(i,j)∈J 2

∣∣∆xj∆x−1
i − 1

∣∣
stays uniformly bounded with respect to the discretization parameter h. Then there exists a positive
constant C1 (depending only on Φ, T0 and Rh) such that that for all ε > 0 and all n ≥ 0, we have

‖BhDn‖L2 ≤
√

3
(
C1 (τ0 + 1)

∥∥BhD0
∥∥
L2 +

∥∥D0 − D∞
∥∥
L2

)(
1 +

τ(ε)

ε2
κ1 ∆t

)−n
2

,

In the previous estimates κi > 0 is given by

κi =
1

Ci (τ2
0 + 1)

.

Our second result deals with the asymptotic ε→ 0, it is the discrete analog of Theorem 2.2

Theorem 3.2. Suppose that τ(ε) meets assumption (1.7) and that the mesh meets assumption (3.11).
Consider the solution Dn = (Dn

k )k∈N to (3.1). The following statements hold true uniformly with respect
to ε

(i) suppose that τ(ε) satisfies (1.8) and (2.11) and consider Dn
τ0 = (Dn

τ0,k
)k∈N given by (3.6). Then it

holds for all n ≥ 0,

‖Dn
⊥‖L2 ≤

∥∥D0
⊥
∥∥
L2

(
1 +

∆t

2 τ0 ε2

)−n
2

+ τ0 εC(τ0 + 1)
∥∥D0 −D∞

∥∥
H1 (1 + τ0 κ∆t)−

n
2 ,

and∥∥Dn
0 −Dn

τ0,0

∥∥
H−1 ≤ C

(∥∥D0
0 −D0

τ0,0

∥∥
H−1 + ε τ0 (τ3

0 + 1)
∥∥D0 −D∞

∥∥
H1

)
(1 + τ0κ∆t)−

n
2 ,

C

∣∣∣∣τ0ε
2

τ(ε)
− 1

∣∣∣∣ ∥∥D0
τ0 −D∞

∥∥
L2 (1 + τ0κ∆t)−

n
2 ;

(ii) suppose that τ(ε) satisfies (1.9). Then it holds for any n ≥ 0

‖D⊥‖2L2 ≤ ‖D⊥‖2L2

(
1 +

∆t

τ(ε)

)−n
2

+
τ(ε)

ε
C(τ0 + 1)

∥∥D0 −D∞
∥∥
H1

(
1 +

τ(ε)

ε2
κ∆t

)−n
2

,

and∥∥Dn
0 −Dn

∞,0
∥∥
H−1 ≤ C

(∥∥D0
0 −D0

∞,0
∥∥
H−1 +

τ(ε)

ε
(τ3

0 + 1)
∥∥D0 −D∞

∥∥
H1

)(
1 +

τ(ε)

ε2
κ∆t

)−n
2

.

In the latter estimate, constant C only depends on Φ, T0 and Rh and exponent κ is given by

κ =
1

C (τ2
0 + 1)

.

Furthermore the shorthand notation ‖·‖H1 stands for

‖D‖2H1 := ‖BD‖2L2 + ‖D‖2L2 .

The proof of these results follows almost exactly the same lines as the proof of Theorems 2.1 and 2.2
thanks to the Lemma 3.3, which constitutes the keystone of our analysis and which ensures that our dis-
cretization Ah of operator A shares all the important properties (2.12)-(2.18) of its continuous analog. The
only difference comes down to some numerical remainder terms that we easily control applying methods
already developed in the continuous section.

3.3. Preliminary properties. This section is dedicated to the following fundamental Lemma, which
ensures that the key properties (2.12)-(2.18) of the continuous operator A are preserved by its discrete
analog Ah. Thanks to this Lemma, all the computations carried in Section 2 directly translate into the
discrete framework.

Lemma 3.3. Consider the discrete operators Ah and A?h given in (3.2). Then we have for any u = (uj)j∈J
and v = (vj)j∈J

(1) preservation of the duality formula

〈Ahu, v〉 = 〈u, A?hv〉 ;
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(2) preservation of the kernel of operator Ah
AhD∞,0 = 0 ,

where the equilibrium D∞ is given by (3.5);
(3) preservation of the mass conservation properties

(3.12)
∑
j∈J

∆xj A?ju
√
ρ∞,j = 0 ,

and for all n ≥ 0, the solution Dn
0 = (Dn0,j)j∈J to (3.1) with index k = 0 verifies

(3.13)
∑
j∈J

∆xj Dn0,j
√
ρ∞,j =

∑
j∈J

∆xj ρ∞,j ;

(4) preservation of the sum property

‖ (Ah +A?h)u‖L2 ≤
1√
T0
‖Φ‖W 1,∞‖u‖L2 ;

(5) preservation with the commutator property

‖ [Ah, A?h]u‖L2 ≤ C ‖Φ‖W 2,∞‖u‖L2 ,

where constant C depends only on Rh (see (3.11)), it is explicitly given by

C = 2 + Rh ;

(6) conservation of the Poincaré-Wirtinger inequality: under condition (3.8) on u there exists a con-
stant Cd > 0 depending only on Φ and T0 such that

(3.14) ‖u‖L2 ≤ Cd ‖Ah u‖L2 .

Remark 3.4. When the mesh is regular, item (5) in Lemma 3.3 may be improved into a consistent estimate
compared to its continuous analog (2.17), indeed we easily obtain

‖ [Ah, A?h]u‖L2 ≤
(
‖Φ‖W 2,∞ +

h

2
‖Φ‖W 3,∞

)
‖u‖L2 ,

for any u = (uj)j∈J , following the same method as in the proof.

Proof. To prove item (1), we consider any (uj)j∈J and (vj)j∈J , we have after a discrete integration by part
and using periodic boundary conditions

〈Ahu, v〉 =
∑
j∈J

∆xj Aju vj

=
∑
j∈J

√
T0

(
uj+1 − uj−1

2
vj − ∆xj

Ej
2T0

uj vj

)

=
∑
j∈J
−
√
T0

(
vj+1 − vj−1

2
uj + ∆xj

Ej
2T0

vj uj

)
= 〈u ,A?h v〉 .

To prove item (2), we look for D = (Dk)k∈N such that AhD0 = 0, that is,

0 = AiD0 =

√
T0

2 ∆xj

(
D0, j+1 −D0, j−1 +

Φj+1 − Φj−1

2T0
D0, j

)
.

Hence, from the particular choice of the discrete electric field (3.4), we have that

D0, j+1 −D0, j−1

D0, j
−
√
ρ∞, j+1

−√ρ∞, j−1√
ρ∞, j

= 0 ,

which yields to definition (3.5).
We turn to the mass conservation property (3). According to the definition (3.3) of A?h, it holds

A∗ju
√
ρ∞,j ∆xj = −

√
T0

(
√
ρ∞,j

uj+1 − uj−1

2
+

√
ρ∞,j+1

−√ρ∞,j−1

2
uj

)
.
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Therefore, relation (3.12) is obtained summing the latter over j ∈ J and performing a discrete integration
by part. Relation (3.13) is obtained evaluating equation (3.1) with index k = 0 and j ∈ J , multiplying by√
ρ∞,j ∆xj , then summing over j ∈ J and applying relation (3.12) with u = Dn+1

1 .

We prove item (4) taking the L2 norm in the following relation√
T0

(
Aj +A?j

)
u = − 2T0√

ρ∞,j

√
ρ∞,j+1

−√ρ∞,j−1

2 ∆xj
uj ,

which holds for any u = (uj)j∈J .

We turn to item (5) and compute the commutator for the discrete operator [Ah, A?h] as

[Ah, A?h]j u = (AhA?h −A?hAh)ju

= −Ej+1 − Ej−1

4 ∆xj
(uj+1 + uj−1) − Ej+1 − 2Ej + Ej−1

4 ∆xj
(uj+1 − uj−1) ,

and therefore, we deduce item (5) taking the L2 norm in the latter result.

Finally, we prove the Poincaré inequality (3.14). Consider u = (uj)j∈J which meets condition (3.8) and

let us denote by ρ∞ the mean of ρ∞

ρ∞ =
∑
j∈J

∆xj ρ∞,j .

First using the zero weighted average assumption (3.8) on u, we remark that the cross term vanishes and

‖u‖2L2 =
∑
j∈J

∆xj

(
uj√
ρ∞,j

)2

ρ∞,j ,

=
1

2 ρ∞

∑
j∈J

∑
k∈J

∆xj ∆xk

(
uk√
ρ∞,k

− uj√
ρ∞,j

)2

ρ∞,j ρ∞,k ,

=
1

ρ∞

∑
k∈J

∑
j<k

∆xj ∆xk

(
uk√
ρ∞,k

− uj√
ρ∞,j

)2

ρ∞,j ρ∞,k .

For j < k, we have

uk√
ρ∞,k

− uj√
ρ∞,j

=
k−1∑
l=j

ul+1√
ρ∞,l+1

− ul√
ρ∞,l

,

which yields

(3.15) ‖u‖2L2 ≤ ρ∞

(∑
l∈J

ul+1√
ρ∞,l+1

− ul√
ρ∞,l

)2

.

On the other hand, we set for any j ∈ J√
ρ∞,j =

√
ρ∞,j−1

+
√
ρ∞,j+1

2
, and ηj =

√
ρ∞,j+1

−√ρ∞,j−1

2
√
ρ∞,j

,

and observe that the discrete operator Ahu may be written as

∆xj√
ρ∞,j

Aju =

√
T0

2

[(
uj+1√
ρ∞,j+1

− uj√
ρ∞,j

)
(1 + ηj) +

(
uj√
ρ∞,j

− uj−1√
ρ∞,j−1

)
(1− ηj)

]
.

Then we have using periodic boundary conditions√
T0

∑
j∈J

(
uj+1√
ρ∞,j+1

− uj√
ρ∞,j

)
=

√
T0

2

∑
j∈J

(
uj+1√
ρ∞,j+1

− uj√
ρ∞,j

)
+

(
uj√
ρ∞,j

− uj−1√
ρ∞,j−1

)

=
∑
j∈J

∆xj√
ρ∞,j

Aju −
√
T0

(
uj+1√
ρ∞,j+1

− uj√
ρ∞,j

)
ηj − ηj+1

2
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Hence using that Φ is Lipschitzian, we have

|ηj+1 − ηj | ≤ CΦ h,

which yields that√
T0

∑
j∈J

∣∣∣∣∣ uj+1√
ρ∞,j+1

− uj√
ρ∞,j

∣∣∣∣∣ ≤ ∑
j∈J

∆xj√
ρ∞,j

| Aj u | + CΦ h
√
T0

∑
j∈J

∣∣∣∣∣ uj+1√
ρ∞,j+1

− uj√
ρ∞,j

∣∣∣∣∣ .
On the one hand, we consider the case when h is small enough such that 1− CΦh ≥ 1/2, we get that∑

j∈J

∣∣∣∣∣ uj+1√
ρ∞,j+1

− uj√
ρ∞,j

∣∣∣∣∣ ≤ 2√
T0

∑
j∈J

∆xj√
ρ∞,j

| Aj u |

On the other hand, when 1−CΦ h ≤ 1/2 (the space step h is large), we use the fact that in finite dimension,
both semi-norms are equivalent. Thus, there exists a constant C ′Φ > 0, independent of h, such that∑

j∈J

∣∣∣∣∣ uj+1√
ρ∞,j+1

− uj√
ρ∞,j

∣∣∣∣∣ ≤ C ′Φ√
T0

∑
j∈J

∆xj√
ρ∞,j

| Aj u | .

Gathering the latter result with (3.15), it yields

‖u‖2L2 ≤
(C ′Φ)2 ρ∞

T0

∑
j∈J

∆xj√
ρ∞,j

| Aj u |

2

.

Using the Cauchy-Schwarz inequality, we obtain the result

‖u‖2L2 ≤ C2
d ‖Ah u‖2L2 ,

where C2
d is given by

C2
d =

(C ′Φ)2 ρ∞
T0

∑
j∈J

∆xj
|
√
ρ∞,j |2

.

�

From the latter results, we may now get estimates on the solution uh to (3.9) as in Lemma 2.3 in the
continuous setting.

Lemma 3.5. Let us consider the solution uh to (3.9) with source term g = (gj)j∈J satisfying the compat-
ibility assumption (3.8). Then, uh satisfies the following estimate

(3.16) ‖Ah uh‖L2 ≤ Cd ‖g‖L2 ,

and

(3.17) ‖A2
h uh‖l2 ≤

(
1 +

Cd√
T0
‖∂xΦ‖L∞

)
‖g‖L2 .

Moreover, consider now (Dn
k )k∈N solution to (3.1) and unh = (unj )j∈J the corresponding solution to (3.9)

with the source term Dn
0 −
√
ρ∞. Then we define dtu

n+1
h as

(3.18) dtu
n+1
h =

un+1
h − unh

∆t
,

which satisfies

(3.19) ε
∥∥Ah dtun+1

h

∥∥
L2 ≤ ‖Dn+1

1 ‖L2 .

Proof. We follow the proof of Lemma 2.3, we multiply (3.9) by ∆xi ui, sum over i ∈ J and apply item (1)
of Lemma 3.3, it yields

‖Ah uh‖2L2 ≤ ‖D −
√
ρ∞‖L2 ‖uh‖L2 ,

hence the discrete Wirtinger-Poincaré inequality, obtained in Lemma 3.5, gives,

‖Ah uh‖L2 ≤ Cd ‖D −
√
ρ∞‖L2 .
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For the second estimate, we observe that

(Ah + A?h)j uh =

√
ρ∞,j+1

−√ρ∞,j−1

2 ∆xj
√
ρ∞,j

uj

hence we obtain

(A2
h)j uh = − (A?hAh)j uh +

√
ρ∞,j+1

−√ρ∞,j−1

2 ∆xj
√
ρ∞,j

Aj uh

= −
(
D0,j −

√
ρ∞,j

)
+

√
ρ∞,j+1

−√ρ∞,j−1

2 ∆xj
√
ρ∞,j

Aj uh .

Since Φ is Lipschitzian and applying (3.16), we obtain the result

‖A2
h uh‖L2 ≤ C ‖D(t)−√ρ∞‖L2 .

For the third estimate we consider now the solution Dn = (Dn
k )k∈N to (3.1) and unh the solution to (3.9)

with source term Dn
0 −
√
ρ∞. We get for any j ∈ J ,

(A?hAh)j dtu
n+1
h =

Dn+1
0,j −Dn0,j

∆t
= −1

ε
A?j Dn+1

1 .

Then we multiply by ∆xj dtu
n+1
h , sum over j ∈ J and use (2.12) to get∥∥Ah dtun+1

h

∥∥2

L2 = −1

ε

〈
Dn+1

1 , Ah dtun+1
h

〉
≤ 1

ε
‖Dn+1

1 ‖L2

∥∥Ah dtun+1
h

∥∥
L2 .

�

3.4. Proof of Theorem 3.1. We split the proof of Theorem 3.1 into two steps corresponding to the L2

and H1 convergence result. Thanks to Lemma 3.5, the method followed in Section 2 to prove the continuous
analog to this result (Theorem 2.1) directly applies here, excepted for some additional numerical remainders
for which we give a detailed method in order to get control over.

We define Hn0 as

(3.20) Hn0 =
1

2
‖Dn −D∞‖2L2 + α0

〈
τ(ε)

ε
A?hDn

1 , u
n
h

〉
,

where un is solution to (3.9) with Dn
0 −
√
ρ∞ as a source term. First let us point out that Hn0 shares the

same properties as its continuous analog, indeed it holds

Lemma 3.6. Suppose that condition (1.7) on τ(ε) is satisfied. Then for all α0 ∈ (0, α0), with α0 =
1/(4 τ0Cd) and Dn = (Dnk,j)j∈J , k∈N, one has

(3.21)
1

4
‖Dn −D∞‖2L2 ≤ Hn0 ≤

3

4
‖Dn −D∞‖2L2 .

Proof. The proof follows the same lines as the one of Lemma 2.4. �

We are now able to proceed to the proof of the first item (i) of Theorem 3.1. On the one hand, proceeding
as the proof of item (i) in Theorem 2.1, it yields from Lemma 3.3

(3.22)
Hn+1

0 −Hn0
∆t

= In+1
1 + α0 In+1

2 + α0 In+1
3 − Rn+1

0 ,

where

In+1
1 = − 1

τ(ε)

∑
k∈N?

k
∥∥Dn+1

k

∥∥2

L2

whereas the other terms correspond to the additional term of the modified relative entropy,
In+1

2 := −τ(ε)

ε2

〈
A?hAh

(
Dn+1

0 −√ρ∞
)
−
√

2 (A?h)2Dn+1
2 , un+1

h

〉
− 1

ε

〈
A?hDn+1

1 , un+1
h

〉
,

In+1
3 := +

τ(ε)

ε

〈
A?hDn+1

1 , dtu
n+1
h

〉
,
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where dtu
n+1
h is given in (3.18) and R0 is a purely numerical remainder given by

(3.23) Rn+1
0 =

1

2 ∆t
‖Dn+1 −Dn‖2L2 + α0

τ(ε)

ε

〈
A?h
(
Dn+1

1 −Dn
1

)
, dtu

n+1
h

〉
.

Both terms In+1
2 and In+1

3 can be estimated as in the proof of item (i) in Theorem 2.1, which yields

In+1
2 ≤ −τ(ε)

ε2
(1 − C η) ‖Dn+1

0 −D∞,0‖2L2 +
C

2 η

(
τ(ε)

ε2
‖Dn+1

2 ‖2L2 +
1

τ(ε)
‖Dn+1

1 ‖2L2

)
,

for any positive η and for some positive constant C depending only on T0 and Φ and

In+1
3 ≤ τ(ε)

ε2
‖Dn+1

1 ‖2L2 .

From these latter estimates and taking η = 1/(2C) and as long as

α0 <
1

C (τ2
0 + 1)

,

for C great enough and taking κ0 such that 3κ0/4 = α0/2, we get that

Hn+1
0 −Hn0

∆t
+
τ(ε)

ε2
κ0Hn+1

0 ≤ −Rn+1
0 .

Now we treat the remainder term Rn+1
0 , observing that∣∣〈A?h (Dn+1

1 −Dn
1

)
, dtu

n+1
h

〉∣∣ ≤ 1

2 ∆t

(
‖Dn+1

1 −Dn
1 ‖2L2 + ‖Ah

(
un+1
h − unh

)
‖2L2

)
.

Therefore, applying (3.16) in Lemma 3.5 with source term Dn+1
0 −Dn

0 , we obtain∣∣〈A?h (Dn+1
1 −Dn

1

)
, dtu

n+1
h

〉∣∣ ≤ 1 + C2
d

2 ∆t
‖Dn+1 −Dn‖2L2 .

Since τ(ε) meets assumption (1.7), the latter estimate ensures that, as long as α0 ≤
(
τ0 (1 + C2

d)
)−1

, it
holds

0 ≤ Rn+1
0 ,

which yields

Hn+1
0 −Hn0

∆t
+
τ(ε)

ε2
κ0Hn+1

0 ≤ 0 .

The result follows by applying a discrete Gronwall’s lemma and then applying Lemma 3.6 in order to
substitute Hn0 with the L2 norm of Dn − D∞ in the latter estimate.

Now we turn to the proof of the second item (ii) of Theorem 3.1. Following Section 2.3, we introduce
Hn1 given by

(3.24) Hn1 =
1

2
‖BhDn‖2L2 + α1

〈
τ(ε)

ε
AhDn

0 , D
n
1

〉
,

where α1 has to be determined. Once again, Hn1 shares the same properties as its continuous analog

Lemma 3.7. Suppose that condition (1.7) on τ(ε) is satisfied. Then for all α1 ∈ (0, α1), with α1 = 1/(2 τ0)
and Dn = (Dn

k )k∈N, one has

‖BhDn‖2L2 − ‖Dn −D∞‖2L2 ≤ 4Hn1 ≤ 3 ‖BhDn‖2L2 + ‖Dn −D∞‖2L2 .

Proof. The result is obtained applying the same method as in the proof of Lemma 2.5. �

We now compute the variation of the modified relative entropy between one time step from tn to tn+1

and split it into three terms

Hn+1
1 −Hn1

∆t
= J n+1

1 + α1 J n+1
2 − Rn+1

1 ,

where J n+1
1 is given by

J n+1
1 := −1

ε

∑
k≥2

√
k
〈

[A?h,Ah]Dn+1
k−1 , A

?
hD

n+1
k

〉
− 1

τ(ε)

∑
k∈N?

k
∥∥Bh,kDn+1

k

∥∥2

L2
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and

J n+1
2 :=

τ(ε)

ε2

(〈
AhA?hDn+1

1 , Dn+1
1

〉
−
∥∥AhDn+1

0

∥∥2

L2 +
√

2
〈
AhDn+1

0 , A?hDn+1
2

〉)
− 1

ε

〈
Dn+1

1 , AhDn+1
0

〉
whereas Rn1 is given by

(3.25) Rn+1
1 =

1

∆t

(
1

2
‖Bh

(
Dn+1 −Dn

)
‖2L2 + α1

τ(ε)

ε

〈
Ah
(
Dn+1

0 −Dn
0

)
, Dn+1

1 −Dn
1

〉)
.

On the one hand we estimate the terms J n+1
1 and J n+1

2 following the same method as the one presented
to estimate their continuous analogs J1(t) and J2(t) (see the proof item (ii) in Theorem 2.1). On the other
hand, the remainder term Rn+1

1 can be treated as Rn+1
0 in the proof of (i) of Theorem 3.1. Indeed,∣∣〈Ah (Dn+1

0 −Dn
0

)
, Dn+1

1 −Dn
1

〉∣∣ ≤ 1

2

(
‖Dn+1

0 −Dn
0 ‖2L2 + ‖A∗

(
Dn+1

1 −Dn
1

)
‖2L2

)
.

According to the mass conservation property (3.13), Dn+1
0 −Dn

0 meets condition (3.8). Therefore we may

apply the discrete Poincaré inequality (3.14) to bound ‖Dn+1
0 −Dn

0 ‖2L2 in the latter estimate, this yields∣∣〈Ah (Dn+1
0 −Dn

0

)
, Dn+1

1 −Dn
1

〉∣∣ ≤ 1 + C2
d

2
‖Bh

(
Dn+1 −Dn

)
‖2L2 .

As in the case ofRn+1
0 in the former section, the latter estimate ensures that, as long as α0 ≤

(
τ0 (1 + C2

d)
)−1

,
it holds

0 ≤ Rn+1
1 .

Hence, we obtain the result by adapting at the discrete level the proof of item (ii) in Theorem 2.1 to bound
J n+1

1 and J n+1
2 and applying a discrete Gronwall lemma.

3.5. Proof of Theorem 3.2. As in the continuous setting, we prove that the solution Dn = (Dn
k )k∈N

to (3.1) converges to Dn
τ0 = (Dn

τ0,k
)k∈N given by (3.6)-(3.7), whose long time behavior is easily obtained

relying on the discrete Poincaré inequality (3.14)

(3.26) ‖Dn
τ0 −D∞‖L2 ≤ ‖D0

τ0 −D∞‖L2

(
1 +

2 τ0

C2
d

∆t

)−n
2

, ∀ t ∈ R+ .

We estimate
∥∥Dn

0 −Dn
τ0,0

∥∥
H−1 by introducing the intermediate quantity E , meant to recover coercivity

with respect to the first coefficient Dn
0

(3.27) En =
1

2
‖Ah vnh‖2L2 ,

where vnh solves (3.9) with source term

g = Dn
0 +

τ(ε)

ε
A?hDn

1 − Dn
τ0,0 .

The following lemma ensures that the quantity En shares the same properties as its continuous analog.
Indeed it holds

Lemma 3.8. We consider En defined by (3.27). It holds uniformly with respect to ε

(3.28) En ≤ ‖Dn − Dn
τ0‖

2
H−1 + C2

d

τ(ε)2

ε2
‖BhDn‖2L2 ,

and

(3.29)
1

4
‖Dn − Dn

τ0‖
2
H−1 − C2

d

τ(ε)2

2 ε2
‖BhDn‖2L2 ≤ En .

Proof. Defining wnh and uτ0 as the respective solutions to (3.9) with source term g = A?hDn
1 and Dτ0,0 −

D∞,0, it holds

vnh = unh − unτ0 +
τ(ε)

ε
wnh .
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Applying operator Ah to the latter relation, taking the L2 norm, and applying the triangular inequality, it
yields

√
2 En ≤

∥∥Ah (unh − unτ0)∥∥L2 +
τ(ε)

ε
‖Ahwnh‖L2 ,

and ∥∥Ah (unh − unτ0)∥∥L2 −
τ(ε)

ε
‖Ahwnh‖L2 ≤

√
2 En .

We estimate ‖Ahwnh‖L2 applying (3.16) in Lemma 3.5, this yields

√
2 En ≤ ‖Dn − Dn

τ0‖H−1 +
τ(ε)

ε
Cd ‖BhDn‖L2 ,

and

‖Dn − Dn
τ0‖H−1 −

τ(ε)

ε
Cd ‖BhDn‖L2 ≤

√
2 En .

We obtain the result taking the square of the latter inequalities and applying Young’s inequality. �

We now treat the asymptotic limit ε→ 0 corresponding to the case of (i) in Theorem 3.2 and therefore
suppose that τ(ε) fulfills the assumptions (1.7), (1.8) and (2.11). As in the continuous setting, we start by
deriving the first result in (i) of Theorem 3.2. We already know from the L2 estimate (3.22) that∥∥Dn+1

⊥
∥∥2

L2 − ‖Dn
⊥‖

2
L2

2 ∆t
+

1

τ(ε)

∥∥Dn+1
⊥
∥∥2

L2

≤ −
〈
Dn+1

0 −Dn
0

∆t
, Dn+1

0 −Dn
0

〉
− 1

2 ∆t

∑
k∈N∗

‖Dn+1
k −Dn

k‖2L2

≤ −
〈
Dn+1

0 −Dn
0

∆t
, Dn+1

0 −D∞,0
〉
.

Therefore, we replace Dn+1
0 − Dn

0 according to equation (3.1), and after applying the duality formula of
Lemma 3.3-(1), we obtain∥∥Dn+1

⊥
∥∥2

L2 − ‖Dn
⊥‖

2
L2

∆t
+

1

τ(ε)

∥∥Dn+1
⊥
∥∥2

L2 ≤ −
1

ε

〈
Dn+1

1 , AhDn+1
0

〉
,

Hence, after multiplying by ∆t and applying the Young inequality to bound the right hand side of the
latter inequality, it yields(

1 +
∆t

τ(ε)

)∥∥Dn+1
⊥
∥∥2

L2 ≤ ‖Dn
⊥‖

2
L2 + ∆t

τ(ε)

ε2
‖BhDn+1‖2L2 .

To achieve the proof, it remains to bound ‖BhDn+1‖2L2 by applying Theorem 3.1-(ii) and again following
the line of the proof of Theorem 2.2, we deduce

‖Dn
⊥‖

2
L2 ≤∥∥D0

⊥
∥∥2

L2

(
1 +

∆t

τ(ε)

)−n
+ 6

(
C(τ2

0 + 1) ‖D0 −D∞‖2L2 + ‖BhD0‖2L2

) τ(ε)2

ε2

(
1 +

τ(ε)

ε2
κ∆t

)−n
.

Therefore we obtain the result taking the square root in the latter estimate and substituting τ(ε) with τ0 ε
2

according to assumption (2.11).

To prove the second result of (i) in Theorem 3.2 we evaluate En as in the proof of Theorem 2.2 observing
that

‖Ah vnh‖2L2 =

〈
Dn

0 +
τ(ε)

ε
A?hDn

1 − Dn
τ0,0, v

n
h

〉
hence, relying on equations (3.1) and (3.7) we deduce

En+1 − En

∆t
= − τ(ε)

ε2
‖Dn

0 +
τ(ε)

ε
A?hDn

1 −Dn
τ0‖

2
L2 + En+1

1 + En+1
2 + En+1

3 − Rn+1
3 ,
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where En+1
1 , En+1

2 and En+1
3 are the numerical equivalents of the terms E1(t), E2(t) and E3(t) in the proof

of Theorem 2.2 

En+1
1 =

(
τ0 −

τ(ε)

ε2

) 〈
A∗hAhDn+1

τ0,0
, vn+1

h

〉
,

En+1
2 =

τ(ε)2

ε3

〈
A∗hAhDn+1

1 , vn+1
h

〉
,

En+1
3 =

√
2
τ(ε)

ε2

〈
(A∗h)2Dn+1

2 , vn+1
h

〉
,

and Rn+1
3 is a numerical dissipation term

Rn+1
3 =

1

2∆t

∥∥Ah (vn+1
h − vnh

)∥∥2

L2 .

Since Rn+1
3 is positive, we apply the same method as the one presented in the proof of Theorem 2.2 and

therefore we obtain the following estimate for En(
1 +

τ(ε)∆t

C2
d ε

2

)
En+1 ≤ En + C ∆t

τ(ε)

ε2

(
1 + τ2

0

) ∥∥Dn+1
⊥
∥∥2

L2

+ C ∆t
ε2

τ(ε)

∣∣∣∣τ0 −
τ(ε)

ε2

∣∣∣∣2 ‖Dn+1
τ0 −D∞‖2L2 ,

for some constant C depending only on Φ and T0. In the latter inequality, we bound ‖Dn+1
τ0 − D∞‖2L2

according to (3.26) and the norm of D⊥ according to the first estimate of (i) in Theorem 3.2. Then we

multiply the inequality by

(
1 +

τ(ε)∆t

C2
d ε

2

)n
and sum for k ranging from 0 to n− 1, it yields

En ≤
(
E0 + C

τ(ε)2

ε2
(τ6

0 + 1)‖D0 −D∞‖2H1

)(
1 +

τ(ε)

ε2
κ∆t

)−n
+ C

∣∣∣∣τ0 ε
2

τ(ε)
− 1

∣∣∣∣2 ‖D0
τ0 −D∞‖

2
L2

(
2 τ0 ε

2

τ(ε)
− 1

)−1(
1 +

τ(ε)

ε2
κ∆t

)−n
.

To conclude, we substitute En (resp. E0) in the latter estimate according to (3.29) (resp. (3.28)) in Lemma

2.6 and then apply assumption (2.11) on τ(ε), which ensures

(
2 τ0 ε

2

τ(ε)
− 1

)−1

≤ 3, this yields

‖Dn
0 −Dn

τ0,0‖
2
H−1 ≤C

(
‖D0

0 −D0
τ0,0‖

2
H−1 +

τ(ε)2

ε2
(τ6

0 + 1)‖D0 −D∞‖2H1

)(
1 +

τ(ε)

ε2
κ∆t

)−n
+C

∣∣∣∣τ0 ε
2

τ(ε)
− 1

∣∣∣∣2 ‖D0
τ0 −D∞‖

2
L2

(
1 +

τ(ε)

ε2
κ∆t

)−n
.

We obtain the result taking the square root in the latter estimate and substituting τ(ε) with τ0 ε
2according

to assumption (2.11).
Finally the proof of the second item follows the same lines replacing Dn

τ0 by D∞ in the discrete functional
En.

4. Numerical simulations

We performed several numerical simulations which confirm the accuracy of the scheme (3.1). We do
not detail this process here and rather focus on the physical interpretation and the quantitative results
obtained in our experiments. We refer to [3] for a precise discussion on that matter.

In this section, we want to illustrate the quantitative estimates of the solution obtained using the
Hermite Spectral method in velocity and finite volume scheme in space for the one-dimensional Vlasov-
Fokker-Planck equation. We choose τ(ε) = τ0 ε

2 with τ0 = 5 and consider the Vlasov-Fokker-Planck
equation (1.1) with E = −∂xΦ and

Φ(x) = 0.1 cos

(
2π x

L

)
+ 0.9 cos

(
4π x

L

)
,
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Figure 1. Test 1 : centred Maxwellian. time evolution in log scale of (a) ‖f−f∞‖L2(f−1
∞ )

, (b) ‖f−ρM‖
L2(f−1

∞ )
.

The stationary state is given by the Maxwell-Boltzmann distribution

f∞(x, v) =
c0√
2π

exp

(
−
(

Φ +
|v|2

2

))
,

where c0 is given by mass conservation∫
T×R

f∞dvdx =

∫
T×R

f0dvdx,

where f0 is the initial datum.
In our simulation, we take a time step ∆t = 10−3, a number of modes NH = 200 and Nx = 64. It

is worth to mention that all the numerical simulations presented in this section are not affected by the
numerical parameters, which allows us to focus our discussion on the quantitative results on the diffusive
limit ε→ 0 and large time behavior.

4.1. Test 1 : centred Maxwellian. For the first test, we choose the following initial condition

f0(x, v) =
1√
2π

(
1 + δ cos

(
2π x

L

))
exp

(
−|v|

2

2

)
,

with δ = 0.5 and L = 10.
On the one hand, we present in Figure 1 the time evolution of ‖f − f∞‖L2(f−1

∞ ) and the relative entropy

on f ,

‖f − ρM‖L2(f−1
∞ ) = ‖D⊥(t)‖L2 .

The most striking feature in this test consists in the oscillatory behavior of the relative entropy which
unfolds in the relaxation of f towards its equilibrium. These oscillations may be observed in Figure 1-(b)
and occur for various values of ε ranging from 1 represented by blue curves to 2.10−1 represented by red
curves.

We also present in Figure 2 the relaxation to equilibrium of macroscopic quantities

‖D0 −D∞,0‖L2 = ‖ρ− ρ∞‖L2(f−1
∞ )

and the norm of the first moment D1. Time oscillations, observed on the distribution function, seem to
affect macroscopic quantities associated to the solution as moments D0 and D1.

On the other hand, we provide In Figure 3, a detailed description in the case ε = 1, where we see that
the oscillations of the spatial density and the ones of the higher modes in velocity are asynchronous, this
may be interpretated as a transfer of information between these two quantities. This phenomenon has
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Figure 2. Test 1 : centred Maxwellian. time evolution in log scale of (a) ‖ρ− ρ∞‖L2(ρ−1
∞ )

and (b) ‖D1‖L2 .
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Figure 3. Test 1 : centred Maxwellian. time evolution in log scale of ‖f −f∞‖L2(f−1
∞ )

(blue), ‖f −ρM‖
L2(f−1

∞ )

(red), ‖ρ− ρ∞‖L2(ρ−1
∞ )

(pink) and ‖ρτ0 − ρ∞‖L2(ρ−1
∞ )

(black) for (a) ε = 1 and (b) ε = 10−1.

already been investigated for non-linear kinetic models (see [15]) but we show through these experiments
that even the simple model at play here captures this phenomena.

These oscillations stay visible for surprisingly small values of ε, up to 10−1. It showcases the robustness
of our scheme, which is still able to capture them at low computational cost. To be noted that our
numerical experiments indicate that a non zero external force field seems to be mandatory to observe this
oscillatory behavior. We also emphasize that these oscillations seem to be quite sensitive to the choice of
the initial data and the external field (see the second numerical test with a different initial data, where
such oscillations disappear for large time).

This leads us to the second feature of this test, which is the asymptotic preserving property of the scheme
for various values of ε. The method is accurate on large time intervals in the situation where ε = 1 (see
Figure 3-(a)), which corresponds to the long time behavior of the model but it is also accurate when ε� 1.
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Indeed, as it is shown in Figure 2-(a), the purple error curve of the density ρ corresponds exactly to the
circled error curve of the macroscopic model ρτ0 when ε = 10−3 and even smaller (not shown since the
curves coincide).

Finally we focus on the intermediate value ε = 10−1, for which we observe in Figures 1-(a), 2-(a) and
3-(b), a somehow surprising phenomenon: the kinetic model relaxes faster towards equilibrium than the
macroscopic one. This appears to be a consequence of our choice of initial data which is already at local
equilibrium at time t = 0. This aspect of the experiment justifies our efforts to cover a wide range of
values for the scaling parameter ε: it enables to capture intermediate regimes which may display peculiar
phenomena. As we will see in the next section, the reverse situation is possible as well, when the initial
condition is far from equilibrium.

We conclude this section by drawing the readers attention towards Figure 4, which features the graph of
the solution f at different times, in the case ε = 1 and on which we witness its intricate relaxation towards
equilibrium.

4.2. Test 2 : shifted Maxwellian. We now choose the same parameter as before excepted that the
initial condition is a shifted Maxwellian

f0(x, v) =
1√
2π

(
1 + δ cos

(
2π x

L

))
exp

(
−|v − u0|2

2

)
,

with u0 = 1, which is far from equilibrium.
First, we focus on the case ε = 1 displayed in Figure 5, where we observe that unlike in the previous

test, the oscillatory relaxation stops after a short time and is replaced by a slower but straight relaxation
towards equilibrium. Another interesting comment on Figure 5 is that all the curves associated to value of
ε below 5.10−2 (red, beige, pink and purple) are parallel. These two features might be explained by a fine
spectral analysis of the model at play.
We now zoom in to focus on smaller time intervals and propose a detailed description of these dynamics
in Figure 6, where we distinguish three phases constituting a great illustration for the result presented in
item (i) of Theorem 3.2:

(1) the first phase is the initial time layer, it occurs on negligible time intervals compared to the time
scale chosen in Figure 6 but it is still visible if we focus on the red curves, reprensenting the norm
of D⊥, in plots (a) to (d). As predicted by the first result in (i) of Theorem 3.2, higher Hermite
modes gathered in the quantity D⊥ undergo a steep exponential descent with theoretical rate of
order (ε2 τ0)−1, until they reach a critical level of order ε;

(2) the second phase corresponds to the diffusive regime where f is close to ρτ0M. Indeed we see
that for times ranging from ∼ 0 up to t = 1 in the case ε = 10−2 and increasing up to t = 3 in
the case ε = 10−5, the red curve, which represents the norm of D⊥, is parallel to the pink line
corresponding to the norm of ρ− ρτ0 which itself coincides with the black curve reprensenting the
norm of ρτ0 − ρ∞. It indicates that, for a finite amount of time which increases as ε goes to zero,
the kinetic model behaves like the macroscopic one;

(3) the last phase is the long time behavior, it starts as the error between ρτ0 and ρ is of the same
order as the error between ρ and ρ∞. In Figure 6 (a)-(d), it corresponds to the intersection between
circled blue and black lines. As predicted by the second result in (i) of Theorem 3.2, this circled
curve, representing the error ‖ρ − ρτ0‖, starts with an ordinate of order ε at time t = 0, then it
decays with a rate proportional to τ0 but smaller than the relaxation rate of the macroscopic model.
This constitutes a striking illustration of ”hypocoercivity” phenomenon induced by the transport
term proper to kinetic equations. During this final phase, the solution f to (1.2) slowly relaxes
towards equilibrium. A surprising and unexpected fact is that the transition from diffusive regime
to long time behavior occurs synchronisingly for the spatial density and higher modes in velocity.
Indeed, as it can be observed in plots (a) to (c) of Figure 6, the inflexions points of the red and the
pink curves are almost aligned.

5. Conclusion and perspectives

In the present article, we design a numerical method capable to capture a rich variety of regimes for a
Vlasov-Fokker-Planck equation with external force field. We prove quantitative estimates for all the regimes
of interest, and do this uniformly with respect to all parameter at play. We illustrate the robustness of our
scheme by proposing several numerical tests in which we capture a wide variety of situations (exponential
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Figure 4. Test 1 : centred Maxwellian. snapshots of the distribution function for ε = 1 at time t = 0, 0.5, 1.5, 3, 5
and 20.

decay with oscillations, transition phase between diffusive regime an long time behavior, initial time layer,
etc ...). Furthermore, we built the method such that it should be easily adaptable in any dimension, at
least for cartesian mesh.
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Figure 5. Test 2 : shifted Maxwellian. time evolution in log scale of (a) ‖f−f∞‖L2(f−1
∞ )

, (b) ‖f−ρM‖
L2(f−1

∞ )
,

(c) ‖ρ− ρ∞‖L2(ρ−1
∞ )

and (d) ‖D1‖L2 .

Two questions arise naturally from this work. The first one is to build on the groundworks layed in
this article in order to design a scheme which takes into account non-linear coupling with Poisson for the
electric force field. This challenging perspective would be a great improvement since even for the continuous
model, there exists to our knowledge very few results which treat the longtime behavior and the diffusive
regime with the accuracy proposed in this article. Up to our knowledge, all the works on this subject have
restrictions on the dimension of the phase-space and therefore, it would naturally be interesting to propose
a method which applies in the physical case d = 3.
Another interesting question arose from our numerical tests, in which we witnessed oscillating behaviors
in the solution’s relaxation towards equilibrium as well as transition phase between diffusive regime and
longtime behavior. It would be of great interest to carry out a fine spectral analysis of the model both at
the continuous and the discrete level in order to provide a quantitative description of these phenomena:
we may hope for precise and enlightening results due to the simplicity of our model.
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Figure 6. Test 2 : shifted Maxwellian. time evolution in log scale of ‖f − ρM‖
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