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ABSTRACT. We propose and study a fully discrete finite volume scheme for the Vlasov-Fokker-Planck equa-
tion written as an hyperbolic system using Hermite polynomials in velocity. This approach naturally pre-
serves the stationary solution and the weighted L? relative entropy. Then, we adapt the arguments developed
in [12] based the hypocoercivity method to get quantitative estimates on the convergence to equilibrium of
the discrete solution. Finally, we prove that in the diffusive limit, the scheme is asymptotic preserving with
respect to both the time variable and the scaling parameter at play.
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1. INTRODUCTION

The Vlasov-Fokker-Planck equation is the kinetic description of the Brownian motion of a large system
of charged particles under the effect of an electric field. For example, in electrostatic plasma, where the
Coulomb force are taken into account, the time evolution of the electron distribution function f solves the
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Vlasov-Poisson-Fokker-Planck system, under the action of a self-consistent potential ®:

e 1 3
of +v-Vaf + LE.va = —divy (vf + TH Vo f) ,
ot Me Te

—0AP = qe/ fdv,
R3

where g¢ is the vacuum permittivity, g. and m,. are elementary charge and mass of the electrons, whereas
Te 18 the relaxation time due to the collisions of the particles with the surrounding bath.

Considering € > 0 as the ratio between the mean free path of particles and the length scale of observation,
it allows to identify different regimes and the Vlasov equation may be written in a adimensional form
(1.1) Eg{—l—v-vxf—kE-va:T(i)
Our main purpose here is to build and analyse a numerical scheme able to capture two regimes of interest
for equation (1.1), in a linear framework: the long time behavior ¢ — oo and the diffusive regime ¢ — 0. In
various situations, the scaling parameters at play may be non homogeneous across the system leading to
intricate situations, where both processes may coexist. Thus, we aim at designing a scheme robust enough
to capture simultaneously these different behaviors.

More precisely, we consider the one dimensional Vlasov-Fokker-Planck equation with periodic boundary
conditions in space, which reads

divy, ('Uf + Ty va) ,

1 1
(1.2) &gf-kg(v@xf—i-E&,f):@&J(vf—i-To&,f),
with ¢ > 0, position x € T and velocity v € R, whereas the electric field derives from a potential ® such
that £ = —0,®, with the following regularity assumption

(1.3) d e W (T) .

We also define the density p by integrating the distribution function in velocity,

(1.4) p(t,x) = /Rf(t,:v,v)dv.

It is worth to mention that there are already several works on preserving large-time behaviors of solutions
to the Fokker-Planck equation or related kinetic models. On the one hand, a fully discrete finite difference
scheme for the homogeneous Fokker-Planck equation has been proposed in the pioneering work of Chang
and Cooper [9]. This scheme preserves the stationary solution and the entropy decay of the numerical
solution. On the other hand, finite volume schemes preserving the exponential trend to equilibrium have
been studied for non-linear convection-diffusion equations (see for example [2, 6, 7, 19]). More recently, in
[27], the authors investigate the question of describing correctly the equilibrium state of non-linear diffusion
and kinetic models for high order schemes. Let us also mention some works on boundary value problems
[14, 8] where non-homogeneous Dirichlet boundary conditions are dealt with.

In the case of space non homogeneous kinetic equations, the convergence to equilibrium becomes tricky
because of the lack of coercivity since dissipation occurs only in the velocity variable whereas transport acts
in the space variable. Therefore, only few results are available and a better understanding of hypocoercive
structures at the discrete level is challenging. Let us mention a first rigorous work in this direction on the
Kolmogorov equation [28, 17, 18]. In [17], a time-splitting scheme is applied and it is shown that solutions
decay polynomially in time. In [28, 18], a different approach has been used, based on the work of Hérau
[20] and Villani [31], for finite difference and a finite element schemes. Later, Dujardin, Hérau and Lafitte
[13] studied a finite difference scheme for the kinetic Fokker-Planck equation. Finally, in a more recent
work [5], the authors established a discrete hypocoercivity framework based on the continuous approach
provided in [12]. It is based on a modified discrete entropy, equivalent to a weighted L? norm involving
macroscopic quantities and the authors show quantitative estimates on the numerical solution for large
time and in the limit € — 0.

The present contribution can be considered as a continuation of this latter work in order to discretize
the kinetic Fokker-Planck equation with an applied force field. On the one hand, we consider the case
where the interactions associated to collisions and electrostatic effects have the same magnitude, that is,
T(g) ~ ¢, hence the limit t/e — +oo corresponds to the long time behavior of equation (1.2). In this
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regime, the distribution function f relaxes towards the stationary solution to the Vlasov-Fokker-Planck
equation poo M, where the Maxwellian M is given by

whereas the density poo is determined by

(15) e = o (7 )

where the constant ¢y is fixed by the conservation of mass, that is,

/pooda: :/ fo(z,v)dvdz .
T TxR

Thus, we set fo the stationary state of (1.2), defined as
Jfoo(@,v) = poo(x) M(v)

and we expect that f — foo as t/e — 400.

On the other hand, the diffusive regime corresponds to a frontier where collisions dominate but still
not enough to cancel completely the electrostatic effects. This situation occurs as € — 0 in the case
where 7(g) ~ 79€2, for some 79 > 0. Due to collisions, the distribution of velocities also relaxes towards
a Maxwellian equilibrium. However, in this case, the spatial distribution converges to a time dependent
distribution p whose dynamics are driven by a drift-diffusion equation depending on the force field F.
Indeed, performing the change of variable x — = + 7pev in (1.2) and integrating with respect to v, we
deduce that the quantity

Tr(t,a:):/Rf(t,x—Toev,v) dv,

solves the following equation

Oy + 700, (/Ef(t,m—mev,v) dv — Toaxﬂ'> =0.
R

According to its definition, 7 verifies: p ~ 7 in the limit ¢ — 0. Therefore, we may formally replace m
with p and € with 0 in the latter equation. This yields

ft,z,0) — pry(t,x) M(v),
e—0
where p;, solves
(1.6) 875/77'0 + 700y (Ep'ro — Ty Oy pTo) = 0.

To be noted that this regime is an intermediate situation which contains more information than the long
time asymptotic since we have p — po by taking either ¢t — +o0 or 79 — +00.

At the discrete level, Asymptotic-Preserving schemes have been developed to capture in a discrete setting
the diffusion limit, so that in the limit € — 0, the numerical discretization converges to the macroscopic
model (see for instance [23, 26, 22, 25] on finite difference and finite volume schemes and [11, 10] on particle
methods).

In the present article, our aim is to design a numerical scheme which is able to capture these two regimes
but also all the intermediate situations where e2 < 7(e) < e. More precisely, we suppose that

7(e)

(1.7) sup —= < 7 € (0, +00).
e>0 €

and distinguish two cases on 7(¢) :

(i) either the diffusive regime assumption

7(e)
(18) ET :6 T0 < +OO,

where collisional effects strongly dominate;



(7i) or the intermediate regime assumption
(1.9) —- — +o00,

which may for instance correspond to 7(¢) = &, with 1 < 8 < 2. Tt describes all the intermediate
situations between long time and diffusive regime.

The starting point of our analysis is the following estimate, obtained multiplying equation (1.2) by
f/ feo, and balancing the transport term with the source term corresponding to the electric field thanks
T

=l fldvde + 2 [
TxR

to the weight f.!
/
Oy | —
7(¢) (foo >

This estimate is important since it yields a L? stability result on the solution to the Vlasov-Fokker-Planck
equation (1.2).

Our purpose is to design a numerical scheme for which such estimate occurs. To this aim, we split our
approach in two steps: we apply a spectral decomposition in velocity of f based on Hermite decomposition
and we apply a structure preserving finite volume scheme for the space discretization. In the next section
(Section 2), we provide explicit convergence rates for the continuous model written in the Hermite basis (see
Theorems 2.1 and 2.2). This first step allows us to present the general strategy and to highlight the main
properties of the transport operator in order to design suitable numerical scheme. Therefore, in Section
3 we adapt these latter results without any loss to the fully discrete setting using a structure preserving
finite volume scheme and an implicit Euler scheme for the time discretization (see Theorems 3.1 and 3.2).
The variety of situations that we aim to cover may lead to various and intricate behaviors. Therefore, we
successfully put great efforts into providing results which are uniform with respect to all parameters at
play: time ¢, scaling parameters (e, 79) and eventually the numerical discretization. The result is worth
the pain, since we propose in the Section 4 various simulations, in which we are able to capture, at low
computational cost, a rich variety of situations.

2

1d
fodvdz = 0.

1.10 -—
( ) 2dt Td xRA

2. HERMITE’S DECOMPOSITION FOR THE VELOCITY VARIABLE

The purpose of this section is to present a formulation of the Vlasov-Fokker-Planck equation (1.2) based

on Hermite polynomial and to provide quantitative results on f when ¢ — 0 and ¢ — +00. These results are
identical to the ones obtained in the continuous case except that there are formulated on the corresponding
Hermite’s coefficients solution to a linear hyperbolic system. This formulation is well adapted to prepare
the fully discrete setting in Section 3.
We first use Hermite polynomials in the velocity variable and write the Vlasov-Fokker-Planck equation
(1.2) as an infinite hyperbolic system for the Hermite coefficients depending only on time and space. The
idea is to apply a Galerkin method only keeping a small finite set of orthogonal polynomials rather than
discretizing the distribution function in velocity [1, 24]. The merit to use orthogonal basis like the so-called
scaled Hermite basis has been shown in [21, 30, 29] or more recently [16, 4] for the Vlasov-Poisson system.
In this context the family of Hermite’s functions (Wy), defined as

) MO,

constitutes an orthonormal system for the inverse Gaussian weight, that is,

Uy (v) = Hy (

/R‘I’k(v) Uy(v) M~ (v)do = 6.

In the latter definition, (Hy),y stands for the family of Hermite polynomials defined recursively as follows
H_1 = 0, HO =1 and

EHK(E) = VEH1(§) + VE+1THpa(§), Yk >0,

Let us also point out that Hermite’s polynomials verify the following relation

Hi(§) = VEH,_1(£), Yk > 0.
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Taking advantage of the latter relations, one can see why Hermite’s functions arise naturally when studying
the Vlasov-Poisson-Fokker-Planck model, especially in the diffusive regime, as they constitute an orthonor-
mal basis which diagonalizes the Fokker-Planck operator:

O [V + To 0, Vi ] = — k.
Therefore, we consider the decomposition of f into its components C' = (Cj),cy in the Hermite basis
(2.1) f(t,z,v) ZC’ktx Uy (v).
keN

It’s worth to mention that we also may consider a truncated series neglecting high order coefficient in order
to construct a spectrally accurate approximation of f in the velocity variable.

As we have shown before, Hermite’s decomposition with respect to the velocity variable is a suitable
choice in our setting. When it comes to the space Variable we see from estimate (1.10) that the natural
functional framework here is the L? space with weight p2t. Unfortunately, it is not very well adapted to the
space discretization since it may generate additional spurious terms difficult to control when dealing with
discrete integration by part. We bypass this difficulty by integrating the weight in the quantity of interest:
instead of working directly with f, we consider the quantity f /\/p__ in order to get a well-balanced scheme
in the same spirit to what has been already done in [8, 14] for well-balanced finite volume schemes. More
precisely, we set

Ck
VPso

n (2.1), and inject this ansatz in (1.2). Using that pso £ = Tp 0zpeo, We get that D = (Dy)ren satisfies
the following system

Dk =

k

1
oDk + = (VEAD 1~ VEFTA Dypn) = - =~
c 7(e)

Dk’v
(2.2)

Dk(t = O) = DZ’a ,

where operators A and A* are given by

Au = +m8xu —

—/Ty Ozu —
In this framework, the equilibrium Dy, to (2.2) is given by

{ﬁw, if k=0,

0, else,

U,

E
AV

E
— U
24/Ty

(2.3) Doo e =

)

and estimate (1.10) simply rewrites

1d
(24 351 1200 = Dulfts + 5 = k1D = 0.
keN*
where || - || 72 stands for the overall L?-norm with no weight
IDI72 = > 1Dkl 72y -
keN

On top of that, the limit of the diffusive regime is given by Dy, = (Dx, k), defined as follows

Dryo, if k=0,
(2.5) Dy i =
0, else,

where the first Hermite coefficient Dy, o solves the following drift-diffusion equation
(26) 8t-DTO,O + 70 A*AD’T(),O = 07
which is obtained substituting pr, with D, 0+/p, in equation (1.6).
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To conclude this section, we introduce some additional norms which arise naturally along our analysis.
In Section 2.3, we consider the following H~! norm defined on the L? subspace orthogonal to VP for all
g € L?(T) which meets the condition

(2.7) /Tgﬁood:z o,

we set
gl = lAullp2ery
where u solves the following elliptic equation
A" Au = g,
(2.8)
/Tu\/ﬁOo dex = 0.

The latter equation admits a unique solution in H? (T) for any data g € L? (T) that meets the compatibility
condition (2.7). This well-posedness result crucially relies on the Poincaré inequality (2.18).
In Section 2.3, we use the following H' norm, defined for all D = (Dg)pen as follows

IBDI72 = > 1Bk Dill72(r)
keN

where the family of differential operator B = (By);, > is defined as follows

A, if k =0,
(2.9) B =
A*, else.
To end with, we introduce the notation D = (D] x)ren, which corresponds to the Hermite coefficients

of f — pM, that is

0, if k=0,
(2.10) Dy =
Dy, else,

so that
1Dz = I1f = pMllagsr,

2.1. Main results. In this section, we present two results which aim at describing the dynamics of (1.2)
in various regimes ranging from long time behavior to diffusive limit. We aim for result which capture
simultaneously the limits t — 400 and € — 0, in order to lay the groundworks for our upcoming numerical
analysis, in which we will build a scheme robust enough so that it captures all these situations.

Our first main result tackles the long time behavior of the solution D = (D), to (1.2). It is uniform
with respect € and covers all the regimes of interests since we only impose assumption (1.7) on the scaling
parameter 7(g). This result is the first step towards its discrete analog, Theorem 3.1

Theorem 2.1. Suppose that condition (1.7) on 7(e) is satisfied and let D = (Dy)ren be the solution to
(2.2) with an initial datum D%¢. There exists some positive constant C depending only on ® and Ty such
that

(i) under the condition ||D(0)||;2 < 400, it holds for all timest > 0

ID() = Daclys < VB IDO) = Daclys exp (=75 wt)

(73) under the condition ||[BD(0)||;2 + ||D(0)||;2 < 400, it holds for all timest > 0

IBD@ 2 < V3 (€ o+ DIDO) — Daclye + 18DO2)exp (-7 wt)

where K > 0 is given by
1
C(T+1)"
6
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The proof of this result is provided in Section 2.3. The main difficulty here consists in proving the con-
vergence of the first coefficient Dy in the Hermite decomposition of f towards the equilibrium /p_ . We
adapt hypocoercivity methods developed in [31, 12] to the framework of Hermite decomposition. Instead
of estimating directly the quantities of interest, we introduce modified entropy functionnals (see (2.20) and
(2.27)), in order to recover dissipation and thus a convergence rate on Dy. Then, the second item tackles
the convergence in a H! setting. Though a bit more technical, this second convergence result contains
no main additional difficulty in comparison to the L? convergence result. Actually this latter result is
essentially motivated by the analysis of the regime ¢ — 0 presented below.

This leads us to our second main result, which describes the behavior of the system as € vanishes. We
distinguish the diffusive regime, which corresponds to the case where 7(¢) satisfies (1.8) and the intermediate
situations between long time and diffusive regime where 7(¢) satisfies (1.9). We will adapt this result into
the fully discrete setting in Theorem 3.2

Theorem 2.2. Suppose that 7(¢) meets assumption (1.7). For all positive e, consider D = (Dy)ren the
solution to (2.2) with an initial datum D(0) such that
2 2 2
D)z := [IBDO)[Z2 + [[D(0)[|Z2 < +oo.
The following statements hold true uniformly with respect to

(i) suppose that T(¢) satisfies (1.8), that is 7(g) ~ 102 and for simplicity, suppose

1) < )

2.11 <, Ve>0
(2.11) 0 22 = €

[\]

and consider Dy, = (D, k)ken given by (2.5). On the one hand, it holds for all time t € Rt
IDL(O)l2 < IDLO) 2 €9 4 76 C(Fo +1) [D(0) — Dacll s ™",

where D is given in (2.10); on the other hand, it holds

10) D@l < (1D000) = Doyl + &7 (74 DIIDIO) ~ Dol

N

7'08

+C r(e) 1’ [ D7,(0) = Dooll 2 eimm;

(7i) suppose that 7(g) satisfies ( . ), that is 7(g)/e? — 400 as € vanishes. Then it holds for all time
teR*

_re
IDLOl < D105z e + T 1) D) ~ Dol e~
as well as

1Do(t) — Dacoll s < C (||Do<o>  Daollys +

(e @,
) @+ D ID0) - Dl )

In the latter estimate, constant C' only depends on ® and Ty and exponent k is given by
1

CT+1)°

The proof of this result is provided in Section 2.4, it showcases two major difficulties. The first one
is similar to the one encountered in Theorem 2.1; instead of estimating directly the H~! norm between
the first Hermite coefficient Dy and its limit, we find the right intermediate quantity in order to recover
dissipation (see (2.29)). However, unlike in the case of Theorem 2.1, we crucially need to incorporate
derivatives of the solution D to (1.2) in this quantity in order to obtain some convergence rates. This
leads us to the second difficulty, which is that we propagate some regularity. Furthermore, since Theorem
2.2 describes simultaneously the large time behavior and the asymptotic € — 0, it is not sufficient to
propagate derivative globally nor uniformly with respect to time, we need instead to prove a convergence
result in regular norms. This motivates item (i) in Theorem 2.1, which will play a key role in our proof.
This regularity issue explains why we prove H ! convergence with respect to the first Hermite coefficient
whereas we achieve strong L? convergence with respect to other coefficients. To be noted that strong L?
convergence for the first coefficient may be achieved with our method at the price of loosing pointwise
estimate with respect to time and thus considering integrated norms with respect to the time variable.

K =
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Theorems 2.1 and 2.2 fully answer their purpose, which is to describe the dynamics of (1.2) in the regime
of interests, uniformly with respect to all parameters at play here.

2.2. Preliminary results. Let us first emphasize the important properties satisfied by A, which we will
need to recover later on, in the discrete setting. First, A* is its dual operator in L?(T), indeed for all u,
v € HY(T) it holds

(2.12) (A*u, v) = (Av, u),

where (., .) denotes the classical scalar product in L?*(T). Furthermore, we have Dy ¢ lies in the kernel of
A, indeed

(2.13) ADug = 0;

in this setting, conservation of mass is ensured by the following property

(2.14) /A*u\/f)oodx =0,
T

indeed, considering equation (2.2) with index k = 0 integrated over T and applying the latter relation with
u = Dy, we obtain

d
/Do(t)\/ﬁ de = 0,
at Jp o0

and therefore

(2.15) /EDo(t) \/,BOO dex = /EDOQ() \/ﬁoo dl’;

we also point out that since
VT (A+ A% = 0,9,
it holds

1
(2.16) I (A+ A ullz <

T [@[[wr.eellull 2,
on top of that, operators A and A* do not commute and we have

[A, A = AA— A" A = 0,9,
which yields
(2.17) 1A, Aullze < [|@llwaee [lullz2;

the last key property verified by operator A is the following Poincaré-Wirtinger inequality: under the
compatibility condition (2.7) on u € H! (T) it holds

9 1/2
(2.18) lull2 < Cpy/To (/T am,(\/; >‘ poodx> = CpllAul2,

for some positive constant Cp depending only on the potential & and Ty. A proof of this result will be
given in the discrete setting (see Lemma 3.3), we do not detail it in the continuous case since it is not our
main interest here.

2.3. Proof of Theorem 2.1. It is worth to mention that estimate (2.4) itself is not sufficient to conclude
on the rate of convergence of D to the equilibrium D, since there is no dissipation with respect to the
zero-th Hermite coefficient Dy. Therefore, it does not provide quantitative estimates when it comes to its
convergence towards D 9. Recovering this dissipation is the key feature of hypocoercivity [31, 12]. In our
setting it is done by combining the equations on Dy and D1, to remove stiff terms

(2.19) Oy <D0 - T(;)A*D1> + TS) (A*ADO — V2 (A*)2D2> =0.

To prove quantitative estimates on the solution to (2.2), we therefore introduce the ”modified entropy
functional” [12, 31]: for any «p > 0, which will be specified later, we define Hy as

1
(2.20) Ho[D|Dsc] = 5 || D(t) — Dsoll72 + ag <Tff) A*Dl,u6> ,
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where u® is the particular solution to equation (2.8) with source term is ¢ = Dy — D o. To be noted
that ¢ = Dy — Do o fullfils the compatibility condition (2.7), thanks to the conservation of mass property
(2.14).

The first step consists in proving some intermediate results on the solutions u® to (2.8)

Lemma 2.3. Consider any g € L*(T) which meets condition (2.7) and u the corresponding solution to
(2.8). Then, u satisfies the following estimate

(2.21) Il < Cplglie,
and

Cp
(2.22) A2 a2 < <1+-vqbu®qum)rmuw,

where Cp is the Poincaré constant in (2.18).
Moreover, considering now the solution D to (2.2) and u® the solution to (2.8) with source term g =
Dy — Dy, it holds for all timet > 0

(2.23) e [[Adu(@)[l2 < [D1(E)] 22 -
Proof. The first estimate is obtained by testing the elliptic equation (2.8) against u and applying (2.12)

lAwullFz < lgllze lullze
hence the Wirtinger-Poincaré inequality (2.18) yields,

[Aull2 < Cpligllez-

For the second estimate, we rewrite A%u as follows

Au = —A*Au + (A+ A% Au,
then we replace A*Awu according to equation (2.8), take the L? norm on both sides of the relation and
apply in turn (2.16) to estimate operator A 4+ A* and item (2.21) to estimate the norm of Auw, it yields

uﬂwgs< fr@mm)mm.

For the third estimate we consider now that D is solution to (2.2) and first take the time derivative of the
elliptic equation (2.8) and use the equation (2.2) on Dy to get

58,5(A*Au€) = 58t(D0 — Doo,O) = —.A*Dl .
Then multiply by 0,u® and use (2.12) to get

1 1
10:A w72 = —2 (D10 Aw) < — Dz [0 A w2
O

Thanks to the latter result we now prove that for small enough oy > 0, the square root of the modified
entropy is equivalent to the L? norm of D — Du,

Lemma 2.4. Suppose that condition (1.7) on 7(¢) is satisfied. Then for all oy € (0,@), with @y =
1/(479Cp) and D € L*(T) such that Dy — Do satisfies the compatibility condition (2.7), one has

(2.24) 1D = Doo||72 < 4Ho[D|Doo] < 3D — Decl72 -

Proof. We estimate the additional term in the expression of H( by applying the duality formula (2.12) and
then Cauchy-Schwarz inequality

[ (A"Dy,u) | = [{D1, Au)pz | < [ Dl | AWl 2 -

Then, we apply item (2.21) of Lemma 2.3 with u® and ¢ = Dy — Do o and upper bound the norm of A u®
accordingly
D12 A%z < Cp D — Dos|72

hence, applying assumption (1.7), we deduce

00 " 4Dy ) | < 070 Cr D~ Dl
9



Choosing ag = 1/(470 Cp), the result follows for ag € (0, @p). O
Relying on the previous lemmas, we are now able to carry out the proof of the first item (i) of Theorem
2.1. We compute the time derivative of the modified relative entropy and split into three terms
d
&’Ho[D(t)‘Doo] = Il(t) + OZOIQ(t) + OéoIg(t),
where the first one corresponds to the dissipation of the L2 norm (2.4),

1 2
T = ——— Y kD)7,
() i o

whereas the other ones correspond to the additional term of the modified relative entropy,

T = " (A A Dy~ Do) ~ VA Do) — 4Dy )

2
T(€) | g :
Ig = +? <./4 Dl, atu > .

On the one hand, the term 7, gives the expected dissipation on (Dy — Do) since u® solves (2.8) with
source term (Dg — Do 0). On the other hand we get some additional terms which can be estimated thanks
to (2.21) and (2.22) in Lemma 2.3, it yields,

(e) . 7 Cr
Iy < —{_:72||DO—D<>o,0||L2‘|'{_:72\/§ 1+\/7T—OH‘I)||WLOO |Do — Dooyoll 2] D2|| 2
C
+ D0 = Doollz2 [ D12
7(¢) 2 ¢ (7(e) 2 1 2
< ——=2(1-Cn)||Dy—D — (—=Z|Dp — b
< -T - o Do Dl + 5 (D22l + 5 1D

for any positive n and for some positive constant C' depending only on Ty and ®. The term Z3 is estimated
directly by applying (2.23) of Lemma 2.3,

T\E
7, < "Dy ..

22
From these latter estimates and taking n = 1/(2C), we get the following inequality
d
—Ho|D|Dso
q tHO[ [ Do
< T 201Dy — Deooll?s + 5—2—02 1+ = ag ) Yk ||Dxl?
> ) 2 0 00,01 1,2 7(8)2 7'(8)2 0 — kilL2 .

Under the following condition

2 2
ap < argmax min (&, £ _ c? (1 + © a
= a>0 9’ 7_(5)2 7.(5)2 ’
which, according to assumption (1.7) on 7(¢), is fulfilled as long as
< 1
(e N =9 . a4y
= CF+1)

for some constant C' depending only on ® and Tj, and taking ¢ such that 3k9/4 = ap/2, we derive the
following estimate

d 7(g) 3 Ko 9
- AT _ <0.
SHoDIDa] + 5 20 D - Do < 0

Then applying Lemma 2.4 and taking oy < @y, we deduce

d 7(e)
a?‘[o[D|Doo] + ?HoHo[D|Doo] <0,

which yields after applying Gronwall’s lemma, for any ¢ > 0,

Ho[D()|Da] < Ho[D(0)|Dac] exp (—” o t> .

10



We conclude this proof by applying Lemma 2.4 in order to substitute Ho with the L? norm of D — D4, in
the latter estimate.

We now turn to the proof of the second item (ii) of Theorem 2.1. To estimate the norm of B D, we
apply the operator By to (2.2) and next multiply by By Dy, integrate with respect to € T and sum over
k € N, it yields

1d

= —IBD@)|7. = (1),
2 dt

where 77 is defined as follows

k Vk .
J = Z ———||BkDy|l32 + ~— ((By_1.A*Dy, By_1Dy_1) — (BrADy_1, BiDy))
et 7(e) €

where we use that A Dy o = 0 and D = 0 for £ > 0. Hence applying an integration by part and from
the specific choice (2.9) of B, we have

1 1
(225) = 5 TR IBDE — - S VE (A A Dy, 4D
T ken k>2
Applying Young inequality and property (2.17) on the commutator [A* ] we get that
1 /n 1 7'
55 =5 (190 1) 3k IBRDAIE: + 5 S Iz
keN* k>1

Therefore, choosing 7 < 1/[|®||22 ., it yields

(2.26)

Q-‘Q,

1
57 18Dl + 5= ¥k IBDE < ¢ T S il

keN* k>1

Again since there is no dissipation on the zero-th Hermite coefficient of By Dy, we proceed as for the L?
estimate and introduce a correction H; given by

1
.27 HDIDL] = JIBDI%: + r (" 4o Dy ).

where a1 has to be determined. First, we point out that for small enough 1 > 0, the modified entropy
H; is controlled by the squares of the L? norms of D — Dy, and BD.

Lemma 2.5. Suppose that condition (1.7) on 7(¢) is satisfied. Then for all oy € (0,a1), withay = 1/(270)
and D € L*(T), one has

(2.28) IBD|Z> = ||D = Degl[72 < 4#H1[D|Dec] < 3[|BD||Z> + [|D — Dol

Proof. The result is obtained applying the Young inequality to the additional term in the definition (2.27)
of 7‘[1 |

To complete the proof of the second item (ii) in Theorem 2.1, we compute the time derivative of the
modified relative entropy and split into two terms

d
&HI[D‘DOO] =N +a T2,

where the first one corresponds to the dissipation of the L? norm of B (D — D) for which we already have
an estimate (2.26), that is,

J1 < —

> k|IBkDil7. + cTF Z 1Dk 175

27'(
kEN* k>1

whereas the other ones correspond to the additional term of the modified relative entropy,

1
Ty = 75} ({A4Dy, Dy) — [ADos + VE(ADo, A*Ds)) ~ L (D1, ADy)

€
11



From (2.12) and (2.13) on the operators (A, A*), we have
1

3

1/2

(D1, ADy) = <T(6)1/2 A*Dy, 5) (Do _Doo,0)> )

hence applying twice the Young inequality on the third term of the right hand side and on the latter term,
it yields
2

£
) ™k 1BkDuEs — Do — Docol] -
7(e)*) &

Therefore, from these estimates, we get the following inequality

1
2

j2§—7-£§)

A Dyl2, — (1+

d T(e
SHpIDG) < (C+a) Dy~ Dacols
_ e, | ADo|2> + =9, 1+ e >k |1BeDyll7
282 1 0 L2 T(E)Q 1 T(E)Q 5 k k L2 9

hence choosing a3
£2

2
. 6 1
a1 < argmax,. min <a, pSE -2« <1 + 7_(8)2)> = m7
&

which is verified under the following condition

1
< -
N =93
we get that
d 7(e) « T(e
Saipa + 7 sz < " p - D,
Furthermore, taking oy < 1/(27y) and applying Lemma 2.5, we obtain
d 7(e) 2 7(e) 9
ale[D\Doo] + 7?H1[D|Doo] < CET||D—DOO||L2'
Then we set
(55t m)
K1 = Imin T, KQ

and multiply the latter inequality by exp (% 2%75), integrate in time and apply the first item (¢) of

Theorem 2.1 to estimate the right hand side, this yields

H1[D(t)| Do) < (C (72 + 1) |ID(0) — Dusli72 + Hl[D(0)|Doo]) exp (—TS) K1 t> .

We conclude this proof by substituting H; with the norm of BD in the latter estimate according to Lemma
2.5.

2.4. Proof of Theorem 2.2. Once again, instead of estimating directly the H~! norm of Dy — D, we
introduce the following quantity, meant to recover dissipation on the zero-th Hermite coefficient

1
(2.29) E(t) = 5 I @)L,
where v°(t) solves the elliptic equation (2.8) with source term given by
T(e
o(t) = Do(t) + " ADu(1) ~ Dryolt),
where Dy(t) and D1 (t) are the first two components of the solution D(t) of (2.2) and D, (t) is either the

unique solution to the convection-diffusion equation (2.6) when 7y is finite or the stationary solution D o
given by (2.3) when 79 = co. The latter right hand side is motivated by equation (2.19) since it is given

by the difference between Dy + @ A*D; and Dy, 0. We point out that the latter source term meets the
compatibility condition (2.7) thanks to property (2.14), which ensures that .A*D;(t) is orthogonal to \/p_
in L? (T).

12



Before proving the first item of Theorem 2.2, let us present some preliminary results. On the one hand,
the following Lemma ensures that £(¢) is controlled by the squares of the L? norm of BD(t) and the H~!
norm of Dy(t) — Dry0(t)

Lemma 2.6. We consider E(t) defined by (2.29). It holds uniformly with respect to e

2
T\E
(2.30) £(1) < 1D0(t) ~ Do)+ + O3 TS IBDOI.
and
1 7(g)?
(231) Do) — Deyo(D1 — O3 N B < £().

Proof. Defining w® and u,, as the respective solutions to (2.8) with source term ¢ = A*Dy and D, o —
D, it holds

€
vszus—um+—T()wE.
€

We apply operator A to the latter relation, take the L? norm, and apply the triangular inequality, it yields

&€ T\E 154
VEE < A )z + T 4w

and
A — )l — D A s < VEE,
We estimate || Aw®||;2 applying (2.21) in Lemma 2.3 with source term g = A*D;, this yields
7(e)

V2E < [[Do — Dryollg— + jCP”BDHLQ,

and

T(e
Do~ Dyl — " Cp 8D < V2E.
We obtain the result taking the square of the latter inequalities and applying Young’s inequality.

0

On the other hand, when 7 is finite, we observe that the long time behavior of D; o may be easily
investigated. Indeed, since A Do o = 0, we have that Dy, o — Do o also solves (2.6). Therefore, multiplying
(2.6) by D7, 0—Doo 0, integrating over T and applying the Poincaré inequality (2.18), we obtain the following
estimate after applying Gronwall lemma

]
(2.32) 1Dny () — Docllzz < 1Dy (t) — Dol 12 exp (‘aﬂ%ﬁ) . VieR*.

We are now able to prove the first item (i) of Theorem 2.2, which treats the case where 7(g) ~ 7%, when
e — 0 where 79 € R. To derive the first estimate in item (i) of Theorem 2.2, our starting point is the L2
estimate (2.4) which ensures

1d ) 1 5 1d )
- _— < _
5 10Ol + 5 IDLOIE < =5 G100 — Dol
1
<~ (A"Di(t), Dolt) — Do)

_ % (Di(t), A(Do(t) — Do) .

hence it gives from the Young inequality

d 2 1 2 7(e) 2
3 1PL®lz2 + ) D@72 < =h IBD(t)||72 -

13



We bound ||BD(t)||3. applying item (ii) of Theorem 2.1. After multiplying the latter estimate by /()
and integrating with respect to time, it yields

DLl < IDLOE e (~—5)

37(e)? T(e
+ (06 +1) 1D0) = Dalfe + IBDO):) 52y oxw (<75 e
where C is a positive constant depending only on ® and Ty and k = (C (72 + 1))71. Then we apply
condition (1.7) on 7(e), which ensures that taking C' greater than 2 in the definition of , it holds 1/2 <
1 —k7(e)? / 2 uniformly with respect to e. Therefore, we deduce the following estimate, which yields the
first result in (i) of Theorem (2.1), after taking its square root and applying assumption (2.11) in order to
substitute 7(g) with 79 &

Lt _ 7(e)? _re
DLW < 1D O ¢ + 6 (O3 + 1) D) - Dl + [BDO)[3) T e 5.

We now prove the second result in item (i) of Theorem 2.2. To do so, we evaluate £ observing that

d&é
T <6t <D() + T(;).A*Dl — DTO7()> , ”UE> .

Therefore, relying on equations (2.19) and (2.6) we deduce
&
dt

= = ( ) |Do + —= (8) A*D; — 70,0”%2 + & + & + &,

where

( & = (To—T£)> (A*ADry o, %),

2
& = " (ap,, )

e

& = ﬁi? <(A*)2D2, v€> .
€
We rewrite &1, & and &3 according to the following considerations: first, we notice that D o solves (2.13)

and therefore add Dy o to the left hand side of the bracket in &, second we apply the duality formula
(2.12) in &1, & and &3 and then replace v° in £; and & according to the relation

.A*.A V= DO + T(;) A*Dl — DT@,O .

(o _ (&) (5) x
& = TO_ To, ooO>D0+ ADl_DTO,O >

& = ( ) <D Dy UG ).A*D1 DT0,0> )

Hence, we obtain

& = \/il—i <D2,A2v€>.

\
To estimate &1, we apply Young’s inequality, which yields
2

7(e)

- (e 1 &2
£ < n (e )HD (E)A*Dl TO’Q”LQ + — 70*572 ”DTO*DOOH%Q’

2 20 7(c)
for all positive n. To estimate &, we apply Young’s inequality and then assumption (1.7) which ensures
that 7(¢)/e* < (Fg7(e)) /2, this gives

17(e)

T 7(e _
& < Z 6( °) Do + E_:)A*Dl — Dryoll72 + 557270 IDLIZ>

for all positive 1. To estimate &£, we apply Young’s inequality and then bound the norm of A% v® by
applying item (2.22) in Lemma 2.3 with source term

T\E
g = D0+ (&_)A*DI_DTO,Oa
14



it yields

Crle
& < 0" by + "D ap - p m,o|%2+n<2> 1D, |

for some constant C' depending only on ® and Tjy. We gather the latter estimates, take 7 = 1/4 and apply
item (2.21) in Lemma 2.3, which ensures that

C?
£ < P | Do + UG )A*Dl Dryoll7 -
Therefore, we obtain
A& 7(e) 7(e) i 5 €2 m(e)|? )
T @5 < C? (1+75) IDLll7> + C@ - g D7y — Doollz2

€
for some constant C' depending only on ® and 7y. Then we multiply the latter estimate by exp (52( )2 t)
P 6

and integrate with respect to time. After applying (2.32) to estimate ||D,, — Dsol| 2 and the first result in
item (¢) of Theorem 2.2 to estimate the norm of D, it yields

HEE a8+ 1)1000) - Dl ) e (<25 vt

100 - Dl == 1>_1 exp (<7 ).

resp. (2.30)) in

£(t) < (5(0) +C

2
T0 €
05

+C @)

To conclude, we substitute £(¢) (resp. £(0)) in the latter estimate accordlng to

(2.31) (
Lemma 2.6 and then apply assumption (2.11) on 7(¢), which ensures < e’ ) < 3, this yields
1Do(t) = Dy o()[I7-1 <
7(e)

2
C (HDO(O) — Doy 0(0)]13-1 + T(;) (7S + 1) || D(0) — D@u%ﬂ) e~ R

2
_7(e)
HDTO(O)_DOOH%QB 22 Ht‘

T0 62
7(e)

We obtain the second estimate provided in (i) of Theorem 2.2 taking the square root in the latter estimate
and applying assumption (2.11) in order to substitute 7(¢) with 792

To prove the second item (i) of Theorem 2.2, we follow the same lines as the ones for item (i) replacing
D, by Do, and observing that D, also solves the equation (2.6) since it is a stationary solution. Therefore,
computations are even simpler since the term &; vanishes in this case. As a consequence the estimate

provided in item (i7) follows.

C

3. FINITE VOLUME DISCRETIZATION FOR THE SPACE VARIABLE

In this section we present a finite volume scheme for (2.2). Then we prove discrete hypocoercive estimates
on the discrete solution to investigate the long time behavior and the speed of convergence to the steady
state. Finally, we prove an asymptotic preserving property for the diffusive limit taking 7(¢) ~ 19 &? with
error estimates with respect to €. Thanks to the groundworks laid in the previous Section, we are able to
propose a scheme which describes all the variety of regimes that we aim to capture in this article.

3.1. Numerical scheme. For simplicity purposes, we consider the problem in one space dimension. It
will be straightforward to generalize this construction for Cartesian meshes in multidimensional case. In
a one-dimensional setting, we consider an interval (a,b) of R and for N, € N* we introduce the set
J ={1,...,N;} and a family of control volumes (Kj)jej such that K; = ]xj_1/2,xj+1/2|: with z; the
middle of the intervall K; and

a4 =219 <T1 < T3/2 <. < Tj—1/2 <z; < Tjy1/2 <..<zpn, < TN,+1/2 = b.
Let us set

{ Azj =119 —Tj_12, for j€T,

Azipy/0 =xjp1 —xj, for 1 <j< N, —1.
15



We also introduce the parameter h such that
h = max Az, .
JjeJ
Let At be the time step. We set t" = nAt with n € N. A time discretization of RT is then given by the
increasing sequence of (t")nen. In the sequel, we will denote by D} the approximation of Dy (t"), where
the index k represents the k-th mode of the Hermite decomposition, whereas D}’ ; is an approximation of
the mean value of Dy, over the cell K; at time ¢".
First of all, the initial condition is discretized on each cell K; by:

1
D). =—— | Di(t=0,2)dz, jeJ.
L= ag D=0 @ Geg

The finite volume scheme is obtained by integrating the equation (2.2) over each control volume K; and
over each time step. Concerning the time discretization, we can choose any implicit method (backward
Euler, Implicit Runge-Kutta,...). Since in this paper we are interested in the spatial discretization, we will
only consider a backward Euler method afterwards. Let us now focus on the spatial discretization.

By integrating equation (2.2) on Kj for j € J, we obtain the numerical scheme: for D} = (Dﬁj)jej

DZ+1 — Dlycl 1 n+1 * yn+1 k n+1
(3.1) b 4 - (VRAW DI - VEFTAL D) = - Dp

At 7(e)
where Ay, (resp. Aj) is an approximation of the operator A (resp. A*) given by
(3.2) .Ah - (.Aj)jej and A}: = (.A;)jej .

and where for D = (Dj),c7 it holds

Diy1—D,;i_ E;
AjD—+\/T0( R Dj), jed,

2A$]‘ 2T0
(3:3) D D E
D= T | 22— Tl I p, ‘
A 0( 28z, 2Ty 7)) 1€,

whereas the discrete electric field F; is given by

(3.4) E = 7S B _ 270 VPoo,ji1 ~ VPos i
! 2Ax; WOOJ 2 Az, ’

where po j is an approximation of the stationary density p on the cell K;. This latter formula is consistent
with the definition of \/p_ = co e~®/(2T0) and the fact that

1 1
— 0,0 = — 0, .

This choice of discretization is motivated by preserving at the discrete level the key properties (2.12)-
(2.18). In the end, we propose the following approximation of the continuous solution f to (1.2)

FM@,0) = ) Voo (x) D () Wi(v),

keN

where for each & > 0 and n > 0, we define a piecewise constant function D} from the numerical values
(D j)jeq as
D,:f(x):DZJ, r e Kj.

In this context the equilibrium D, is given by

By if k=0,

0, else;

as for the limit in the diffusive regime D7 = (D ;)ken, it is given by

Dn o, it k=0,
70,
(3.6) Dr, =

70,
0, else,

16



where D7 , solves the following discrete version of equation (2.6)
prtl_ pn
(3.7) OT“O + 1 AR AR DL = 0.
We now introduce the norms we will work with in this section. We denote by (.,.) the L? scalar product
for any u = (uj)jes and v = (vj)jez,
(u, v) = Z Azxjujvj
JET

and
1/2

lull gz = | D Awju?
jeT

As in the (2.7), we consider the following H ! norm defined on the L? subspace orthogonal to VP for
all g, = (95) ;7 which meets the condition

(3.8) Y ATjgi\pa; = 0,
JjeJ

we set
lgnll g1 = ”Auh”L2(T) ’

where up, = (u;);jes is the solution to the discrete equivalent of equation (2.8)

(Ay Ap)un = g,

ZAQZJ‘U]' \/ﬁoo,j =0.

jeTJ

(3.9)

We also use the H' norm, analog to the one given in (2.9), defined for all D = (Dj),cy as follows

1BL DlIz2 = Y 1Bk Dl
keN

where the family of discrete operator B, = (Bpx),~  is given as follows

A, if k=0,
(3.10) Bhx =

7, else.

To conclude with this section, we take the same definition of D as in the continuous setting.

3.2. Main results. We can now release the two results that constitute the core of this article. Thanks to
our choice of discretization, they are an exact translation of their continuous analogs, Theorems 2.1 and
2.2, into the discrete setting, without any loss of accuracy nor uniformity with respect to the parameters
at play in our analysis. On top of that, the results are also uniform with respect to the discretization
parameters.

This first result is the continuous analog of Theorem 2.1, it ensures that our scheme has the same long
time behavior as the continuous model

Theorem 3.1. Suppose that condition (1.7) on 7(e) is satisfied and Let D™ = (D}})ren be the solution to
(3.1). The following statements hold true

(i) there exists some positive constant Cy depending only on ® and Ty such that for alle > 0 and all
n > 0, we have

7(g) —n/2
| D™ — Duoll;2 < V3 HDO - DOOHL2 <1 + 62/-{,0At> :
17



(i) suppose in addition that the mesh is reqular enough so that the quantity
(3.11) R;, = sup ‘ijAxi_l —1|
(i,5)€T?
stays uniformly bounded with respect to the discretization parameter h. Then there exists a positive
constant Cy (depending only on ®, Ty and Ry ) such that that for alle > 0 and alln > 0, we have

_ T(e —3
IB.D" 12 < V3 (Cs (Fo+ 1) B0+ [0° = Dule) (1 + T )
In the previous estimates k; > 0 is given by
1
C; (7% + 1) '

Our second result deals with the asymptotic € — 0, it is the discrete analog of Theorem 2.2

KR; =

Theorem 3.2. Suppose that 7(¢) meets assumption (1.7) and that the mesh meets assumption (3.11).
Consider the solution D™ = (D} )ren to (3.1). The following statements hold true uniformly with respect
to e
(i) suppose that 7() satisfies (1.8) and (2.11) and consider D7 = (D} \)ken given by (3.6). Then it
holds for all n > 0,
n 0 At \7E - 0 -2
IDH 2 < ||IDY) 2 (1+ sme) T 106 C(To+1) ||D° = Dos|| ;0 (1 +70KAL) 2,

and

108 = D oll -+ < € (1108 = Dyoll -1 + 70 (78 + 1) [0° = Dol ) (14 mire) %

2
7_06 0 _n .
C @ - ].’ HDTO - DOOHL2 (1 +7'0K}At) 2
(ii) suppose that T(e) satisfies (1.9). Then it holds for any n >0

n
2

At C(ro+1) | D° — Dac]|,n <1+ T@)mt) ,

-4
Dyl < IDL|3e (14 —
DL < IDulfs (14 55) T

7(¢)
22
and
Dy — D <C|(|p§- DY ™) = 1) |p° - D 14 7)) *
1P5 = Dol -1 < € (106 = Dasoll g + —= Fo + D) | ol ) 1+ —zrAL
In the latter estimate, constant C' only depends on ®, Ty and Ry, and exponent k is given by
1
CT+1)°
Furthermore the shorthand notation ||-|| ;1 stands for

2 2 2
Dl == IBDlz> + [IDlIZ2 -

R =

The proof of these results follows almost exactly the same lines as the proof of Theorems 2.1 and 2.2
thanks to the Lemma 3.3, which constitutes the keystone of our analysis and which ensures that our dis-
cretization Ay, of operator A shares all the important properties (2.12)-(2.18) of its continuous analog. The
only difference comes down to some numerical remainder terms that we easily control applying methods
already developed in the continuous section.

3.3. Preliminary properties. This section is dedicated to the following fundamental Lemma, which
ensures that the key properties (2.12)-(2.18) of the continuous operator A are preserved by its discrete
analog Ajp. Thanks to this Lemma, all the computations carried in Section 2 directly translate into the
discrete framework.

Lemma 3.3. Consider the discrete operators Ay, and A} given in (3.2). Then we have for any u = (uj)jes
and v = (vj)jeg
(1) preservation of the duality formula

<~Ahu7 U) = <u7 *AZU> ;
18



(2) preservation of the kernel of operator Ap
Ah-DOO,O = 0)

where the equilibrium Do, is given by (3.5);
(8) preservation of the mass conservation properties

(3.12) > Az Ajun/p,,; =0,
JjeT
and for allm > 0, the solution D = (D ;)jer to (3.1) with index k = 0 verifies
(3.13) Z Az Dy /P Z AZj Pooj;
jeT jeT
(4) preservation of the sum property

I (A + AR) ull 2 |@l[wroo ]l z2;

1
< —=|
V1o
(5) preservation with the commutator property
[ [An, Aplullze < Cl®]lwze flullz2
where constant C' depends only on Ry, (see (3.11)), it is explicitly given by
C =2+ Ry;

(6) conservation of the Poincaré-Wirtinger inequality: under condition (3.8) on u there exists a con-
stant Cq > 0 depending only on ® and Ty such that

(3.14) ullz < CallAnullpz-

Remark 3.4. When the mesh is regular, item (5) in Lemma 3.3 may be improved into a consistent estimate
compared to its continuous analog (2.17), indeed we easily obtain

h
1w Aullzs < (10l + 5 ol ) Tl

for any u = (Uj)jej, following the same method as in the proof.

Proof. To prove item (1), we consider any (u;) ey and (v;)jes, we have after a discrete integration by part
and using periodic boundary conditions

(Apu, v) = ZA:UjAjuvj

JjeT
Ujp1 — Uj_q E.
= ;\/TO <] 9 J Uj — Al’jQI{ijUj)
’U_|_1 E
- Z VT ( . uj + Azj 2T0U7uj> = (u, A v).
jeJ

To prove item (2), we look for D = (Dy); <y such that A, Dy = 0, that is,

VTy i1 — P
0=A;Dy = Do, j+1 — Do, j— "Dy
A; Dy 5 A, 0,j+1 0,j—1 + 5T, 0, ]
Hence, from the particular choice of the discrete electric field (3.4), we have that
Do, j+1 — Do, j—1 VPoo it1 ™ VPoo j—1
Do, j VPoo, j

= O’

which yields to definition (3.5).
We turn to the mass conservation property (3). According to the definition (3.3) of A}, it holds

« U1 — i1 | VPosojr1 ~ VPoojo1
-Aju\/laooyijj = —+/1p <\/ﬁoo,j z B) z + St B 2% uj | -
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Therefore, relation (3.12) is obtained summing the latter over j € J and performing a discrete integration
by part. Relation (3.13) is obtained evaluating equation (3.1) with index £ = 0 and j € J, multiplying by
ﬁooj Az, then summing over j € J and applying relation (3.12) with v = D?H.

We prove item (4) taking the L? norm in the following relation

2Ty VPoojr1 ~ VPooj-1
VIo (A + A u = — o= = o,
m?]

which holds for any u = (u;),c ;-
We turn to item (5) and compute the commutator for the discrete operator [Aj, AF]

A Aflyu = (A A} — AL A
Ej— B Ej1 —2E; + E;_4
= —7”4&3,] (w1 + 1) = == (41 — 1)
J J

and therefore, we deduce item (5) taking the L? norm in the latter result

Finally, we prove the Poincaré inequality (3.14). Consider u = (u;),. ; which meets condition (3.8) and
let us denote by p,, the mean of p
Poo = Y Ajpoc-
JjET
First using the zero weighted average assumption (3.8) on u, we remark that the cross term vanishes and

2
lullze = Aa pooi
> a2

JjeJ
2
Uk uj
LSS A ( : ) A
2 oo jeT keg \/'60071? ﬁoo,j
2
1 U Uj
- Aa:j Al’k ( - g ) Poo,j Poo,k -
P oo ];7]2 \/ﬁoo,k \/ﬁoo,j
For j < k, we have
k—1
U o Uj _ Z Ul+1 B uj
\/ﬁoo,k \/ﬁoo,j I=j \/ﬁoo,l-l—l \/ﬁoo,l
which yields
2
_ Ul+1 uy
(3.15) lullZ2 < Po ( - ) :
Z;T \/ﬁoo,l+1 \/ﬁoo,l
On the other hand, we set for any j € J
VPoojo1 T VPoo ji1 and 1 — VPosjt1 ™ VPooj-1
J 2 \/ﬁ ; 9

\/ﬁoohj = 2 ’
0,

and observe that the discrete operator Apu may be written as
ey /Th , . . .
71/‘3 Aju = 0 ( Uj+1 — Y ) (1 —|—77j) + ( Y -
VP j 2 VPsojrt VPoo VPooj  VPosj-
Then we have using periodic boundary conditions
mz ( Uj+1 Uj ) _ v Z < Uj+1 Uj ) T ( R )
J Visjtt VP VPooj  VPaoja

jeT \/ﬁ 00,j+1 ﬁoo JjET
uj )nj_anrl

Ax; Uit
- .A iU — To < J —
jezj fooy \/ﬁoo,j-ﬁ—l \/ﬁoo,j
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Hence using that ® is Lipschitzian, we have

nj+1 —n;| < Ca h,
which yields that

VI

jeT

Yj+1 i | < 2: Az; | A; / 2: Yj+1 Yy
S u| + Co hn/Tp .
\/ﬁoo ,J+1 \/ﬁoo,] jed f 00,j jeT \/EOOjJrl \/ﬁoo,]

On the one hand, we consider the case when h is small enough such that 1 — Cph > 1/2, we get that

Z Ujp1 uj Z Ax; A ul
jEJ \/50073"'1 f \/7 jej f 7.7

On the other hand, when 1—Cg h < 1/2 (the space step h is large), we use the fact that in finite dimension,
both semi-norms are equivalent. Thus, there exists a constant Cj > 0, independent of h, such that
Uj41 Uy

Az
> - Z [ Ajul.
jET \/5007‘7—}—1 f ]Ej f 00,7

Gathering the latter result with (3.15), it yields

Using the Cauchy-Schwarz inequality, we obtain the result
lullz> < CFllARul,

where C’g is given by

(Ch) A,
Ci = = Z = 2"

O

From the latter results, we may now get estimates on the solution wuy to (3.9) as in Lemma 2.3 in the
continuous setting.

Lemma 3.5. Let us consider the solution uy, to (3.9) with source term g = (g;)jeg satisfying the compat-
ibility assumption (3.8). Then, uy, satisfies the following estimate

(3.16) I wnllze < Calglie
and

C
(3.17) 12 unlle < ( o, <I>\|Loo) lllzs

Moreover, consider now (D )ken solution to (3.1) and uj, = (u})jes the corresponding solution to (3.9)
with the source term Dy — \/p_ . Then we define dtu”+1 as

T
3.18 dpuptt = "
( ) tuh At 9
which satisfies
(3.19) e ||An deup ™| 2 < IDT 2

Proof. We follow the proof of Lemma 2.3, we multiply (3.9) by Az; u;, sum over i € J and apply item (1)
of Lemma 3.3, it yields

AR unl2 < 1D = /oo lle llunllzz

hence the discrete Wirtinger-Poincaré inequality, obtained in Lemma 3.5, gives,

| A unll2 < CallD —/pollr2 -
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For the second estimate, we observe that

\/ﬁoo,j-i—l - ﬁoo,j—l "
2025 /P !

(An + Ap)jun =

hence we obtain

VP jr1 ~ VP

AZ - — A*A up 00,j—1 A'Uh
( h)] h ( h h)] h 2A£U] \/ﬁoo’] ]
\/ﬁoo i+1 ﬁoo i—1
= —(Doj = Vs ) + v S Aj .
( J) QAQZ] \/ﬁoo,j

Since ® is Lipschitzian and applying (3.16), we obtain the result

IR unllzz < CID(E) — Vo lze -

For the third estimate we consider now the solution D" = (D}})ien to (3.1) and u} the solution to (3.9)
with source term D — /p_ . We get for any j € 7,

+1 _ 04 05 _ * pn+l
(AR Ap); duy™ = Az =-C A DY
Then we multiply by Az; dyu}™, sum over j € J and use (2.12) to get
2 1 1
A | = —2 07, Audei™) < LUDPs

O

3.4. Proof of Theorem 3.1. We split the proof of Theorem 3.1 into two steps corresponding to the L?
and H'! convergence result. Thanks to Lemma 3.5, the method followed in Section 2 to prove the continuous
analog to this result (Theorem 2.1) directly applies here, excepted for some additional numerical remainders
for which we give a detailed method in order to get control over.

We define H{} as
1 €
(320) My = 510"~ Dl + a0 ("2 4iD )

where u™ is solution to (3.9) with Df — /p_ as a source term. First let us point out that Hg shares the
same properties as its continuous analog, indeed it holds

Lemma 3.6. Suppose that condition (1.7) on 7(e) is satisfied. Then for all oy € (0,o0), with g =
1/(479 Ca) and D" = (D} ;)je7 , ken, one has

1 3
(3.21) LID7" = Dl < HE < 2 D" = Dacl22.

Proof. The proof follows the same lines as the one of Lemma 2.4. U

We are now able to proceed to the proof of the first item (i) of Theorem 3.1. On the one hand, proceeding
as the proof of item (i) in Theorem 2.1, it yields from Lemma 3.3
Myt =

(3.22) A

1 1 1 1
= + a8 + a8 - R,

where

1 2
O = =5 > kDl
7(¢)
keN*
whereas the other terms correspond to the additional term of the modified relative entropy,

n T(€ * n * n n 1 * n n
T+ = _5(2) (AiAn (D = V/po) = V(AP D i) —— (A DI+, ™)

(@)
T = T2 (DI et
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where al,gu’,frl is given in (3.18) and Ry is a purely numerical remainder given by

g
(323) Ryt = D™ = D + a0 T (4 (D - DY) )

2A¢ |
Both terms Zy ! and Z§ ! can be estimated as in the proof of item (i) in Theorem 2.1, which yields
C [(7(e) 1
Tl < _T( £) 1 — Dn+1 2 v Dn—l—l Dt 2
3 < T2 (W= On) DG = Ducols + 5o (ZRIDE R + 5 108 )

for any positive 17 and for some positive constant C depending only on Ty and @ and
1 7(¢) 12
< gTHD?JF 172 -

From these latter estimates and taking n = 1/(2C) and as long as
1
C(T+1)’
for C' great enough and taking kg such that 3k9/4 = ag/2, we get that
M -y (o)
At g2

Now we treat the remainder term R"+1 observing that

oy <

nOHg“ < —RSH.

(AL (DT = DY), dyu ™) | < (IDY = DYII72 + |An (up™ —up) [I72) -

-2 At
Therefore, applying (3.16) in Lemma 3.5 with source term D”Jrl Dy, we obtain
1+C?

2 At
~1

Since 7(¢) meets assumption (1.7), the latter estimate ensures that, as long as oy < (?0 (1+ Cfl)) , it
holds

[(Aj (DY = DY), dyu ™| < ID" = D"

1
0 < Ryt
which yields

Ko H6L+1 < 0.

Mt =y, 7(e)
At 2
The result follows by applying a discrete Gronwall’s lemma and then applying Lemma 3.6 in order to
substitute H{ with the L? norm of D" — Dy in the latter estimate.
Now we turn to the proof of the second item (i7) of Theorem 3.1. Following Section 2.3, we introduce
' given by

1
(3.24) P=3 1B, D™|)72 + a1 <T(§) AhDg,D?> ,

where o has to be determined. Once again, H] shares the same properties as its continuous analog

Lemma 3.7. Suppose that condition (1.7) on 7(¢) is satisfied. Then for all oy € (0,@1), witha; = 1/(270)
and D" = (D} )ken, one has

1BhD" (|72 — D" = Duoll72 < 4HT < 3(|BpD"|[72 + | D" — Docll72 -
Proof. The result is obtained applying the same method as in the proof of Lemma 2.5. O

We now compute the variation of the modified relative entropy between one time step from t" to t"+!
and split it into three terms

HI D
1 1 _ leL+1+a1 jn+1 R?+17
At
where j1"+1 is given by
1 2
n+1 — - f A Dn+1 A*Dn-H o kB Dn-i-l
k§>2 ho Al k-1 g > () kEGN:* H hkH g HL2
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and

._72n+1 — 7—5(? <<Ah¢42D?+17 D?+1> _ HAhDSH-lHiQ + ﬂ<AhD6H-17 A2D5L+1>>
ECAR
whereas R7 is given by

1 1
B25) R = g (G0 = DY) e n T (A (DF - g DE - D7) )

On the one hand we estimate the terms J{H’l and j2"+1 following the same method as the one presented

to estimate their continuous analogs J;(t) and J2(t) (see the proof item (i7) in Theorem 2.1). On the other
hand, the remainder term R} can be treated as Ry in the proof of (i) of Theorem 3.1. Indeed,

1
[{(An (D5 = Dg) , DY = DY)| < o (105" = Dgligz + A" (D = DY) [IZ2) -
According to the mass conservation property (3.13), Dg'H — Dj meets condition (3.8). Therefore we may

apply the discrete Poincaré inequality (3.14) to bound ||D6LJrl - D6L||%2 in the latter estimate, this yields

1+C?

(o (0™ = D) Dt =y < 1

1By, (D" — D) |2,

Asin the case of RJT! in the former section, the latter estimate ensures that, as long as ag < (To (1+ Cg)) _1,
it holds

+1
0 <RI
Hence, we obtain the result by adapting at the discrete level the proof of item (7i) in Theorem 2.1 to bound
JI"H and \72”“ and applying a discrete Gronwall lemma.

3.5. Proof of Theorem 3.2. As in the continuous setting, we prove that the solution D" = (D})ren
to (3.1) converges to D7 = (D} ;)ken given by (3.6)-(3.7), whose long time behavior is easily obtained
relying on the discrete Poincaré inequality (3.14)
27 —3

0 0
(3.26) D% — Doollz2 < [[D7y — Dooll 12 (1 + C—?l At) , VteRT.
We estimate HDS . DZO,OH -1 by introducing the intermediate quantity £, meant to recover coercivity
with respect to the first coefficient D{

1
(3.27) £ = S ARz
where vy solves (3.9) with source term

T\E
o= 05+ "D aipp — pry.

The following lemma ensures that the quantity £ shares the same properties as its continuous analog.
Indeed it holds

Lemma 3.8. We consider E"™ defined by (3.27). It holds uniformly with respect to €

3.28 g" < |D* — D" |2 2T g pni2
(3.28) < ol + Cg = | BrD™||72
and

(3'29) 1 HD - DT()”?{_l - Cc% 9222 HBhD H%Q <&n.

Proof. Defining w}’ and u-, as the respective solutions to (3.9) with source term g = A; D7 and Do —
D, it holds

v = up — up + TEf)wZ
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Applying operator Ay, to the latter relation, taking the L? norm, and applying the triangular inequality, it
yields

28" < ||An (ujp — )|l 2 + T(;) AR Wl o

and
_ _ @ n \/7”
A (i =) e = = IAR w2 < V2ET.

We estimate ||Ap wy ||, applying (3.16) in Lemma 3.5, this yields

9
VEET < D"~ Dl + T Call Do,

and
n_ pm 7(e) n
1" = D3l — T2 CallBaDr e < VRET
We obtain the result taking the square of the latter inequalities and applying Young’s inequality. O

We now treat the asymptotic limit € — 0 corresponding to the case of (i) in Theorem 3.2 and therefore
suppose that 7(¢) fulfills the assumptions (1.7), (1.8) and (2.11). As in the continuous setting, we start by
deriving the first result in (i) of Theorem 3.2. We already know from the L? estimate (3.22) that

D2, —|Ipn 2 1 )
H 1 HL;At L2 + 7(5) HDT&HLZ

DS—H D(T)L n+1 1 n+1 2
_< A Do D8>_2Ath€N*HD’“ = Dillze

<

_ Dg+1 B 6L Dn+1 - D
At ) 0 00,0 .

Therefore, we replace Dg“ — D{ according to equation (3.1), and after applying the duality formula of
Lemma 3.3-(1), we obtain
2
1D = 1D 72
At 7(¢)

Hence, after multiplying by At and applying the Young inequality to bound the right hand side of the
latter inequality, it yields

1
1D I}e < —Z (DI AnDp™)

@+f)mmmswum+m(NmeP

To achieve the proof, it remains to bound ||B, D" ||? 7. by applying Theorem 3.1-(44) and again following
the line of the proof of Theorem 2.2, we deduce

1D )72 <

T 2 P —n
D912, <1+ (8)> +6 (CF2+1)||D° — Da|22 + ||BrDC||2,) (;2) <1+ 8(25)/£At> :

Therefore we obtain the result taking the square root in the latter estimate and substituting 7(¢) with 7 €2

according to assumption (2.11).
To prove the second result of (i) in Theorem 3.2 we evaluate £" as in the proof of Theorem 2.2 observing
that
w22 = (D5 + " At — Dty o)
hence, relying on equations (3.1) and (3.7) we deduce

gntl _gn 7(e) 7(e) 2 1 1 1 !
=~ S IDE TR A - Dl + &+ & 4 e - Ry
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where £ 071 and g5

of Theorem 2.2

are the numerical equivalents of the terms & (t), £2(t) and &;(t) in the proof

et = (n-"2) (Apanoni ).

2
Eptl = 7(53) ( Az A Dyt vﬁ“> ’

T(e
§L ! \/§ €<2) <(‘A>;L)2D£L ! UZ 1> ’
and Ry 1'is a numerical dissipation term

n n n\ |12
REM = o (o = o)

Since Rg“ is positive, we apply the same method as the one presented in the proof of Theorem 2.2 and
therefore we obtain the following estimate for £"

T(e)AtY ., n 7(e) _ 1112
<1+ C2%e? >g et CAt? (1+T(2)) HDL—HHLQ

2
+CAt — |10 —
7(e)

for some constant C' depending only on ® and Tp. In the latter inequality, we bound ||DF — D%,

according to (3.26) and the norm of D, according to the first estimate of (i) in Theorem 3.2. Then we
T(e)At
C2%e?

2 —n
En < (80 + CT(;) (78 +1)||D° —Dooyﬁp> (1 + Q At)
7'0{52

o W%—mﬁ%ig—gqﬁ+<>myf

To conclude, we substitute £ (resp. £°) in the latter estimate according to (3.29) (resp. (3.28)) in Lemma
2

7(e) ? n+1 2
2| D5 = Declf

n
multiply the inequality by (1 + ) and sum for k ranging from 0 to n — 1, it yields

+C -1

27‘06

7(e)

DY — D% (1 7€) A _.
T(E) H T0 HLZ( + c2 KAt

We obtain the result taking the square root in the latter estimate and substituting 7(¢) with 79 e2according
to assumption (2.11).

Finally the proof of the second item follows the same lines replacing D7 by Do in the discrete functional
En.

-1
2.6 and then apply assumption (2.11) on 7(¢), which ensures ( — 1> < 3, this yields

) o
WO,WMww@% mmp+

7'062

+C

4. NUMERICAL SIMULATIONS

We performed several numerical simulations which confirm the accuracy of the scheme (3.1). We do
not detail this process here and rather focus on the physical interpretation and the quantitative results
obtained in our experiments. We refer to [3] for a precise discussion on that matter.

In this section, we want to illustrate the quantitative estimates of the solution obtained using the
Hermite Spectral method in velocity and finite volume scheme in space for the one-dimensional Vlasov-
Fokker-Planck equation. We choose 7(g) = 7p&? with 79 = 5 and consider the Vlasov-Fokker-Planck
equation (1.1) with F = —0,® and

2 4
®(x) = 0.1 cos <7£x> + 0.9 cos <7£:C> ,
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FIGURE 1. Test 1 : centred Maxwellian. time evolution in log scale of (a) ||f—fooHL2<f71>, (b) ||f—pM||L2(f71).

The stationary state is given by the Maxwell-Boltzmann distribution

Foola,v) = \/C;LW exp <— <<1>+ ’”2|2>> ,

where ¢g is given by mass conservation

foodvdx = foduvdz,
TxR TxR
where fy is the initial datum.

In our simulation, we take a time step At = 1073, a number of modes Ny = 200 and N, = 64. It
is worth to mention that all the numerical simulations presented in this section are not affected by the
numerical parameters, which allows us to focus our discussion on the quantitative results on the diffusive
limit € — 0 and large time behavior.

4.1. Test 1 : centred Maxwellian. For the first test, we choose the following initial condition

) = o (1o (27 ) o (15

with § = 0.5 and L = 10.
On the one hand, we present in Figure 1 the time evolution of ||f — fool| L2(fh) and the relative entropy
on f,
||f_PM||L2(fo—ol) = | DL ()l

The most striking feature in this test consists in the oscillatory behavior of the relative entropy which
unfolds in the relaxation of f towards its equilibrium. These oscillations may be observed in Figure 1-(b)
and occur for various values of € ranging from 1 represented by blue curves to 2.10~! represented by red
curves.

We also present in Figure 2 the relaxation to equilibrium of macroscopic quantities

1Do = Dosollr2 = llp = pooll 2yt

and the norm of the first moment D;. Time oscillations, observed on the distribution function, seem to
affect macroscopic quantities associated to the solution as moments Dy and D;.

On the other hand, we provide In Figure 3, a detailed description in the case € = 1, where we see that
the oscillations of the spatial density and the ones of the higher modes in velocity are asynchronous, this
may be interpretated as a transfer of information between these two quantities. This phenomenon has
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(£h

already been investigated for non-linear kinetic models (see [15]) but we show through these experiments
that even the simple model at play here captures this phenomena.

These oscillations stay visible for surprisingly small values of ¢, up to 107!, It showcases the robustness
of our scheme, which is still able to capture them at low computational cost. To be noted that our
numerical experiments indicate that a non zero external force field seems to be mandatory to observe this
oscillatory behavior. We also emphasize that these oscillations seem to be quite sensitive to the choice of
the initial data and the external field (see the second numerical test with a different initial data, where
such oscillations disappear for large time).

This leads us to the second feature of this test, which is the asymptotic preserving property of the scheme
for various values of . The method is accurate on large time intervals in the situation where ¢ = 1 (see
Figure 3-(a)), which corresponds to the long time behavior of the model but it is also accurate when ¢ < 1.
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Indeed, as it is shown in Figure 2-(a), the purple error curve of the density p corresponds exactly to the
circled error curve of the macroscopic model p,, when ¢ = 1073 and even smaller (not shown since the
curves coincide).

Finally we focus on the intermediate value e = 107!, for which we observe in Figures 1-(a), 2-(a) and
3-(b), a somehow surprising phenomenon: the kinetic model relaxes faster towards equilibrium than the
macroscopic one. This appears to be a consequence of our choice of initial data which is already at local
equilibrium at time t = 0. This aspect of the experiment justifies our efforts to cover a wide range of
values for the scaling parameter : it enables to capture intermediate regimes which may display peculiar
phenomena. As we will see in the next section, the reverse situation is possible as well, when the initial
condition is far from equilibrium.

We conclude this section by drawing the readers attention towards Figure 4, which features the graph of
the solution f at different times, in the case € = 1 and on which we witness its intricate relaxation towards
equilibrium.

4.2. Test 2 : shifted Maxwellian. We now choose the same parameter as before excepted that the
initial condition is a shifted Maxwellian

D)
fo(z,v) = \/12? (1+5cos (27TLLE>> exp (_|v2u0|>’

with ug = 1, which is far from equilibrium.

First, we focus on the case ¢ = 1 displayed in Figure 5, where we observe that unlike in the previous
test, the oscillatory relaxation stops after a short time and is replaced by a slower but straight relaxation
towards equilibrium. Another interesting comment on Figure 5 is that all the curves associated to value of
¢ below 5.1072 (red, beige, pink and purple) are parallel. These two features might be explained by a fine
spectral analysis of the model at play.

We now zoom in to focus on smaller time intervals and propose a detailed description of these dynamics
in Figure 6, where we distinguish three phases constituting a great illustration for the result presented in
item (7) of Theorem 3.2:

(1) the first phase is the initial time layer, it occurs on negligible time intervals compared to the time
scale chosen in Figure 6 but it is still visible if we focus on the red curves, reprensenting the norm
of Dy, in plots (a) to (d). As predicted by the first result in (i) of Theorem 3.2, higher Hermite
modes gathered in the quantity D; undergo a steep exponential descent with theoretical rate of
order (£279)~!, until they reach a critical level of order &;

(2) the second phase corresponds to the diffusive regime where f is close to p;, M. Indeed we see
that for times ranging from ~ 0 up to ¢t = 1 in the case ¢ = 1072 and increasing up to ¢t = 3 in
the case € = 1072, the red curve, which represents the norm of D, is parallel to the pink line
corresponding to the norm of p — p,, which itself coincides with the black curve reprensenting the
norm of pr; — poo. It indicates that, for a finite amount of time which increases as € goes to zero,
the kinetic model behaves like the macroscopic one;

(3) the last phase is the long time behavior, it starts as the error between p,, and p is of the same
order as the error between p and ps. In Figure 6 (a)-(d), it corresponds to the intersection between
circled blue and black lines. As predicted by the second result in (i) of Theorem 3.2, this circled
curve, representing the error |[p — pr, ||, starts with an ordinate of order ¢ at time ¢ = 0, then it
decays with a rate proportional to 79 but smaller than the relaxation rate of the macroscopic model.
This constitutes a striking illustration of ”hypocoercivity” phenomenon induced by the transport
term proper to kinetic equations. During this final phase, the solution f to (1.2) slowly relaxes
towards equilibrium. A surprising and unexpected fact is that the transition from diffusive regime
to long time behavior occurs synchronisingly for the spatial density and higher modes in velocity.
Indeed, as it can be observed in plots (a) to (¢) of Figure 6, the inflexions points of the red and the
pink curves are almost aligned.

5. CONCLUSION AND PERSPECTIVES

In the present article, we design a numerical method capable to capture a rich variety of regimes for a
Vlasov-Fokker-Planck equation with external force field. We prove quantitative estimates for all the regimes
of interest, and do this uniformly with respect to all parameter at play. We illustrate the robustness of our
scheme by proposing several numerical tests in which we capture a wide variety of situations (exponential
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FIGURE 4. Test 1 : centred Maxwellian. snapshots of the distribution function for e = 1 at time t = 0, 0.5, 1.5, 3, 5
and 20.

decay with oscillations, transition phase between diffusive regime an long time behavior, initial time layer,
etc ...). Furthermore, we built the method such that it should be easily adaptable in any dimension, at
least for cartesian mesh.
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(©) llp = posllp2(,z1y and (d) (D12

Two questions arise naturally from this work. The first one is to build on the groundworks layed in
this article in order to design a scheme which takes into account non-linear coupling with Poisson for the
electric force field. This challenging perspective would be a great improvement since even for the continuous
model, there exists to our knowledge very few results which treat the longtime behavior and the diffusive
regime with the accuracy proposed in this article. Up to our knowledge, all the works on this subject have
restrictions on the dimension of the phase-space and therefore, it would naturally be interesting to propose
a method which applies in the physical case d = 3.

Another interesting question arose from our numerical tests, in which we witnessed oscillating behaviors
in the solution’s relaxation towards equilibrium as well as transition phase between diffusive regime and
longtime behavior. It would be of great interest to carry out a fine spectral analysis of the model both at
the continuous and the discrete level in order to provide a quantitative description of these phenomena:
we may hope for precise and enlightening results due to the simplicity of our model.
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